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We initiate the study of congestion games with variable demands in which the players strategically choose both a nonnegative
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utility functions. The payoff for a player is defined as the difference between the utility of the demand and the associated cost
on the used resources. Although this class of noncooperative games captures many elements of real-world applications, it has
not been studied in this generality in the past. Specifically, we study the fundamental problem of the existence of pure Nash
equilibria, PNE for short. We call a set of cost functions consistent if every congestion game with variable demands and cost
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1. Introduction. Resource allocation problems play a key role in many applications. Whenever a set of
demands for scarce resources needs to be satisfied, the goal is to find the most profitable or least costly allocation
of the resources to the demands. Typical examples for such situations appear in the area of traffic networks
(Beckmann et al. [3], Roughgarden [35], Smith [37], Wardrop [40]) and telecommunication networks (Johari and
Tsitsiklis [21], Kelly et al. [22], Srikant [38]). A common characteristic of these examples is that the allocation
of the resources is determined by a finite number of independent and selfish players, which are optimizing an
individual and private objective function. To understand the behavior of such systems, a common approach is to
model them as a noncooperative game, more specifically as a congestion game (Rosenthal [33]). In a congestion
game, there is a set of resources and a pure strategy of a player is to choose a subset of resources. The cost of
a resource depends only on the number of players choosing the resource, and the private cost of a player is the
sum of the costs of the chosen resources. Under these assumptions, Rosenthal proved the existence of a pure
Nash equilibrium, PNE for short.

In the past, the existence of pure Nash equilibria has been analyzed in many variants of congestion games
such as scheduling, routing, facility location, and network design, each variant with unweighted and weighted
players (Ackermann et al. [1], Anshelevich et al. [2], Chen and Roughgarden [5], Gairing et al. [10], Ieong
et al. [20], Milchtaich [27]). Most of these previous works have a common feature: given a set of resources
whose cost increases with increasing congestion, every player allocates a fixed demand to an available subset.
While obviously important, such models do not take into account a fundamental property of many real-world
applications: the intrinsic coupling between the cost (or quality) of the resources and the resulting demands for
the resources. A prominent example of this coupling is the flow control problem in telecommunication networks.
In this setting, players receive a nonnegative utility from sending data and the perceived costs increase with
congestion. In this and other examples, the demands will be reduced if the resources are congested, and increased
if the resources are uncongested. Allowing for variable demands is, thus, a natural prerequisite for modeling the
trade-off between the benefit for demand and the cost or quality of the resources.

There is a large body of work addressing the issue of variable demands, e.g., Cole et al. [6], Low and
Lapsley [25], Kelly et al. [22], Shenker [36], and Srikant [38], in the context of telecommunication networks,
and Beckmann et al. [3] and Haurie and Marcotte [18] in the context of traffic networks. Most of these works
assume that the (variable) demand may be fractionally distributed over the available subsets of resources. This
assumption together with convexity assumptions on the cost and utility functions implies the existence of a
PNE by standard fixed point arguments (Glicksberg [13], Rosen [32]). Allowing a fractional distribution of the
demand, however, is obviously not possible in many applications. For instance, the standard TCP/IP protocol
suite uses single path routing, because splitting the demand comes with several practical complications, e.g.,
packets arriving out of order, packet jitter due to different server delays, etc. This issue has been explicitly
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addressed by Orda et al. [30]. Although the authors investigated the issue of uniqueness of pure Nash equilibria—
which they call Nash equilibrium points (NEP)—in congestion games with fixed splittable demands, they raise
the following question in the final section (Orda et al. [30, p. 519]):

Several other open questions of practical value deserve attention. For example, in many networks users are restricted
to route their flow along a single path with strict rules of changing them. Under such circumstances an NEP may not
exist at all and complicated oscillatory behavior is likely to arise.

We initiate the systematic study of congestion games with variable demands, where the (variable) demand has
to be assigned to exactly one subset of resources. We impose the standard economic assumption (cf. Haurie and
Marcotte [18], Kelly et al. [22], Shenker [36]) that every player is associated with a nondecreasing and concave
utility function that measures her utility for the demand. The payoff for a player is defined as the difference
between this utility and the associated congestion cost on the used resources.

There are two fundamental goals from a system design perspective: (i) the system must be stabilizable, i.e.,
there must be a stable state from which no player wants to unilaterally deviate; and (ii) myopic play of the
players should guide the system to a stable state. Because the utility functions are private information and not
available to the system designer (cf. Kelly et al. [22]), it is natural to study the existence of equilibria and the
convergence of selfish behavior with respect to the cost functions, which represent the technology associated
with the resources, e.g., queuing disciplines at routers, latency functions in transportation networks, etc. To this
end, we adopt the notion of consistency used in Holzman and Law-Yone [19] and Harks and Klimm [16]. A
set C of cost functions is consistent for congestion games with variable demands if every congestion game with
variable demands and costs in C possesses a PNE. We further say that C is approximately universally consistent
if every congestion game with variable demands and costs in C has the approximate finite improvement property
(AFIP), i.e., every path of unilateral deviations that increases the payoff of the deviating player by a constant
bounded away from 0 is finite.

1.1. Our results. In this paper, we provide a complete characterization of the consistency and approximate
universal consistency of cost functions for congestion games with variable demands. We first observe that the
existence of a PNE crucially depends on whether the cost functions are interpreted as (monetary) per-unit costs
or as latencies. In the per-unit cost setting, the cost every player incurs for using a certain resource equals the
resource cost multiplied with that player’s demand. Hence, on every resource every user pays proportionally
to her demand and such games will be called proportional games henceforth. When resource costs represent
latencies, it is reasonable to assume that the cost of every player on a certain resource is not multiplied with her
demand. Thus, each of the users of a particular resource experiences the same cost regardless of her demand
and we will refer to these games as uniform in the following.

As our main result, we completely characterize the consistency of cost functions for both proportional and
uniform congestion games with variable demands. Specifically, we show that a set C of continuous and non-
negative cost functions is consistent for proportional congestion games with variable demands if and only if
exactly one of the following cases holds: (i) C only contains affine functions of type c4x5 = acx + bc with
ac > 0, bc ≥ 0; or (ii) C only contains homogeneously exponential functions of type c4x5 = ace

�x for some
ac > 01� > 0, where ac may depend on c, and � must be equal for all c ∈ C. Moreover, we prove that C is
approximately universally consistent for proportional congestion games with variable demands if and only if
(i) holds. Under the same assumptions on C, we also prove that C is consistent for uniform games if and only
if (ii) holds.

As a byproduct of our analysis we obtain a complete characterization of consistency for congestion games
with resource-dependent demands as well. In such a game, every player i is associated with a vector 4di1 r5r∈R
of nonnegative demands and whenever player i chooses resource r , she uses it with the fixed demand di1 r . The
goal of every player is to minimize the costs of the resources used. As for congestion games with variable
demands, it is important to distinguish between proportional games and uniform games. They differ solely in
the fact that in the definition of the players’ payoff functions, for proportional games the cost of a resource is
multiplied with the player’s demand, whereas in uniform games it is not.

We prove the following complete characterization for consistency for congestion games with resource-
dependent demands: a set C of continuous cost functions is consistent for proportional congestion games with
resource-dependent demands if and only if C only contains affine functions. We further show that there is no set
C of cost functions that is consistent for uniform congestion games with resource-dependent demands except
for the trivial case that C only contains constant functions. Our results for congestion games with variable and
resource-dependent demands are summarized in Table 1.
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Table 1. Pure Nash equilibria (PNE), the finite improvement property (FIP) and the approximate finite improvement property (AFIP)
in congestion games with resource-dependent demands, congestion games with variable demands, and weighted congestion games (with
fixed and resource-independent demands). Here, by “exponential,” we denote sets C of cost functions, such that every c ∈ C is of type
c4x5 = ace

�x + bc , where ac1 bc ∈ � may depend on c and � is equal for all c ∈ C. By “hom. exponential” we denote sets C with the
additional property that bc = 0 for all c ∈ C. For both congestion games with variable demands and congestion games with resource-
dependent demands the nonexistence of a PNE for arbitrary nonaffine and nonexponential cost function follows by a simple corollary from
the nonexistence of a PNE in weighted congestion games shown in Harks and Klimm [16]; see Proposition 1 for a formal statement. The
existence of a PNE in proportional games with affine cost functions follows directly from the potential function given in Harks et al. [17].

Resource-dependent
demands Variable demands Fixed independent demands

Proportional Uniform Proportional Uniform

Costs PNE FIP PNE FIP PNE AFIP PNE AFIP PNE FIP

Affine Yes Yes No No Yes Yes No No Yes Yes Fotakis et al. [8], Harks et al. [17]
Hom. exponential No No No No Yes No Yes No Yes Yes Harks et al. [17], Panagopoulou and Spirakis [31]
Exponential No No No No No No No No Yes Yes Harks et al. [17], Panagopoulou and Spirakis [31]
Arbitrary No No No No No No No No No No Harks and Klimm [16]

1.2. Techniques and outline of the paper. The main difficulty when analyzing the existence of equilibria
in congestion games with variable demands stems from the fact that the players’ strategies involve both the
discrete choice of a set of resources and the continuous choice of the demand. We approach this issue by relating
the existence of equilibria in games with variable demands to the existence of equilibria in congestion games
with fixed, but resource-dependent demands.

For a set C of cost functions containing some c such that c′/c is injective, we show that whenever there
is a congestion game with resource-dependent demands and cost functions in C that does not possess a PNE,
then there is also a congestion game with variable demands and cost functions in C that has no PNE. Thus, in
order to understand the existence of equilibria in games with variable demands, in §4 we first investigate games
with resource-dependent demands. In contrast to weighted congestion games (in which the demand of a player
is independent of the chosen resource) the distinction between monetary per-unit costs and latencies matters for
the existence of equilibria. To analyze both types of games at the same time, we consider a more general class
of games, which we term g-scaled congestion games with resource-dependent demands, in which the private
cost of every player equals the sum of the costs of the chosen resources multiplied with some function g of that
player’s demand. To precisely characterize the existence of equilibria in these games, we first prove a necessary
condition on a single differentiable cost function c to be consistent. This condition requires that two terms
involving c and g, their derivatives, and a scalar � have unequal signs. For �= 0 this condition simply demands
that c is monotonic and we thus call this condition the generalized monotonicity condition. Then, we use this
condition in order to derive a complete characterization of consistency for g-scaled congestion games.

Given the characterization for resource-dependent demands, in §5 we then formally prove the aforementioned
connection between games with variable demands and games with resource-dependent demands. It is interesting
to note that for a homogeneously exponential cost function c, the function c′/c is not injective and, thus, our
connection between the two classes of games does not apply. However, we can prove that congestion games
with variable demands and homogeneously exponential cost functions always have a PNE, which is not true for
games with resource-dependent demands.

In §6, we show that all characterizations continue to hold for directed network games. In §7, we conclude the
paper with describing open problems.

1.3. Related work. Rosenthal [33] introduced the class of unweighted congestion games and showed that
they always possess a PNE. Many interesting generalizations of unweighted congestion games fail to have a
PNE in general, e.g., weighted congestion games (Fotakis et al. [8], Goemans et al. [14], Libman and Orda [24]),
games with player-specific cost functions (Milchtaich [26, 27], Gairing and Klimm [9]), and games with integer-
splittable demands (Rosenthal [34], Tran-Thanh et al. [39]). Bilò [4] and Monderer [29] proved that any finite
game can be represented as a congestion game with player-specific costs. Milchtaich [28] additionally showed
that any finite game can be represented as a weighted congestion game.

Given these results, several works analyzed under which additional assumptions the existence of a PNE can
be guaranteed. Ieong et al. [20] showed that singleton weighted congestion games with nondecreasing costs
possess a PNE. Ackermann et al. [1] proved that weighted congestion games with nondecreasing costs in which
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the strategy space of every player consists of the bases of a matroid possess a PNE. Fotakis et al. [8] showed
that a PNE exists in all weighted congestion games for which the cost of every resource is affine. Panagopoulou
and Spirakis [31] proved the same result for the exponential function. In previous work (Harks and Klimm [16])
we gave a complete characterization of the set of cost functions that guarantees the existence of a PNE in
all weighted congestion games. Specifically, we showed that only affine functions and the set of exponential
functions of type c4x5 = ae�x + b, where a1b ∈ � may depend on the function and � ∈ � is equal for all
functions within the set, guarantees the existence of a PNE.

Congestion games with resource-dependent demands have been examined in the context of scheduling games
studied by Even-Dar et al. [7]. In such a game, every player controls a job that she wishes to be processed
on exactly one machine out of an available set of feasible machines. The induced load of a job depends on
which machine it is scheduled. This class of games exactly corresponds to singleton congestion games with
resource-dependent demands.

Congestion games with variable demands (and proportional costs) have been introduced first in Harks
et al. [17], where it is shown that for affine cost functions, there is an exact potential function and, thus, there
always exists a PNE.

An extended abstract with parts of the results appeared in Harks and Klimm [15]. They are also included in
the thesis of the second author (Klimm [23, Chapters 4–5]).

2. Preliminaries. In this section, we fix notation and introduce congestion games with variable demands
and congestion games with resource-dependent demands. Finally, we state and discuss the regularity assumptions
imposed on the cost and utility functions.

Strategic games. A strategic game is a triple G = 4N 1S1�5, where N = 811 : : : 1 n9 is the nonempty and
finite set of players, S =×i∈NSi is the nonempty strategy space, and �2 S →�n is the combined payoff function
assigning a payoff vector �4s5 to every strategy profile s ∈ S. We call G finite if Si is finite for all i ∈ N . For
i ∈N , we write S−i =×j 6=iSj and s = 4si1 s−i5 meaning that si ∈ Si and s−i ∈ S−i. A strategy profile s ∈ S is a PNE
if �i4s5 ≥ �i4ti1 s−i5 for all i ∈ N and ti ∈ Si. For � > 0, we call a pair of strategy profiles 4s1 4ti1 s−i55 ∈ S × S
a �-improvement move of player i if �i4ti1 s−i5 > �i4s5+ �. A sequence � = 4s11 s21 : : : 5 of strategy profiles is
called a �-improvement path if for every k the tuple 4sk1 sk+15 is a �-improvement move of some player i. A
closed �-improvement path � = 4s11 : : : 1 sl1 s15 is called a �-improvement cycle (of length l) for which we drop
the duplicate first entry by writing � = 4s11 : : : 1 sl5. For �= 0, instead of 0-improvement move, 0-improvement
paths, and 0-improvement cycles, we will refer to improvement moves, improvement paths, and improvement
cycles, respectively. A game has the FIP if all improvement paths are finite. A slightly weaker notion, which is in
particular more suitable for infinite games, is the AFIP. A game has the AFIP if for all �> 0, all �-improvement
paths are finite.

Congestion model. The games considered in this paper are all based on a congestion model defined as
follows. Let R be a nonempty and finite set of resources, and for every i ∈N let Ai ⊂ 2R\� be a nonempty set
of nonempty subsets of resources available to player i. Whenever a player i uses the resources in �i ∈Ai, we say
that the resources in �i are allocated to player i; we also call �i an allocation of player i. Every resource r ∈R
is endowed with a cost function cr 2 �≥0 →�≥0 that maps the aggregated demand on r to a cost value. We call
the tuple M= 4N 1R1 4Ai5i∈N 1 4cr5r∈R5 a congestion model.

Congestion games with variable demands. In a congestion game with variable demands, we are given a con-
gestion model M and, for every player i ∈N , a utility function Ui2 6�i1 �i7→�≥0 where 6�i1 �i7⊆�≥0, �i ∈�≥0,
�i ∈�≥0 ∪ 8�9, �i ≤ �i is the interval of feasible demands of player i. We say that player i has an unrestricted
demand if �i = 0 and �i = �. The corresponding proportional congestion game with variable demands is the
maximization game G = 4N 1S1�5 with Si = Ai × 6�i1 �i7 and �i4�1d5 = Ui4di5−

∑

r∈�i
dicr4`r4�1d55 for all

i ∈N , where `r4�1d5=
∑

j∈N2 r∈�j
dj is called the load or aggregated demand of resource r under strategy profile

4�1d5. In the corresponding uniform congestion game with variable demands the private payoff is defined as
�i4�1d5=Ui4di5−

∑

r∈�i
cr4`r4�1d55. To treat uniform games and proportional games simultaneously, it is con-

venient to introduce games, in which the costs on the resources are scaled by a scaling function g2 �≥0 →�≥0,
g4x5= �x+�, �1� ∈ 80119, �+� = 1, i.e., the private payoff is �i4�1d5=Ui4di5− g4di5

∑

r∈�i
cr4`r4�1d55.

Congestion games with resource-dependent demands. In congestion games with resource-dependent demands
we are given a congestion model M and, for every player i ∈ N , a vector 4di1 r5r∈R of nonnegative resource-
dependent demands. The corresponding proportional congestion game with resource-dependent demands is the
strategic game G = 4N 1S1�5 with Si = Ai and �i4s5 = −

∑

r∈si
di1 rcr4`r4s55 for all i ∈ N , where `r4s5 =

∑

j∈N2 r∈sj
dj1 r . The corresponding uniform congestion game with resource-dependent demands has the same
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strategies but the payoff function of every player i is defined as �i4s5 = −
∑

r∈si
cr4`r4s55 and, for a scal-

ing function g, the g-scaled congestion game with resource-dependent demands has the payoff �i4s5 =
∑

r∈si
−g4di1 r5cr4`r4s55. For the special case that di1 r = di1 r ′ for all i ∈ N and r1 r ′ ∈ R, we call the game a

(proportional, uniform, or g-scaled) weighted congestion game.
Consistency of cost functions. Let C be a nonempty set of cost functions and let g be a scaling function. We

say that C is consistent for g-scaled congestion games with variable demands if every g-scaled congestion game
with variable demands and cost functions in C possesses a PNE. Furthermore, we call C approximately uni-
versally consistent (respectively, universally consistent) for g-scaled congestion games with variable demands if
every such game with cost functions in C has the AFIP (respectively, the FIP). Consistency for g-scaled conges-
tion games with resource-dependent demands and g-scaled weighted congestion games is defined accordingly.
For a cost function c, instead of saying that 8c9 is consistent we simply say that c is consistent.

Regularity assumptions. Throughout this paper, we impose the following regularity assumption on the cost
and utility functions.

Assumption 1. For every resource r ∈ R, the cost function cr 2 �≥0 → �≥0 is locally Lipschitz continuous,
nondecreasing, and strictly positive on �>0.

The assumption that cost functions are locally Lipschitz continuous is rather weak as, e.g., every continuously
differentiable function has this property. In contrast to most of the works in the area of congestion games with
splittable demands (e.g., Haurie and Marcotte [18], Kelly et al. [22], and Orda et al. [30]), we do not assume
semiconvexity of the cost functions.

For congestion games with variable demands, we further impose the following assumption on the utility
functions.

Assumption 2. For every player i ∈N , the utility function Ui2 6�i1 �i7→�≥0 is continuous, nondecreasing,
and concave.

Since every Ui is concave, for every x ∈ 4�i1 �i5 the left and right derivatives, denoted by 4¡−/¡x5Ui4x5,
respectively, 4¡+/¡x5Ui4x5 exist and satisfy 4¡−/¡x5Ui4x5≥ 4¡+/¡x5Ui4x5≥ 4¡−/¡y5Ui4y5≥ 4¡+/¡y5Ui4y5 for
all �i < x < y < �i; see Webster [41, Theorem 5.1.3] for a reference.

3. Necessary conditions on the existence of a pure Nash equilibrium. In previous work (Harks and
Klimm [16]) we have shown that a set C of continuous cost functions is consistent for proportional weighted
congestion games if and only if at least one of the following two cases holds: (i) C only contains affine functions;
or (ii) C only contains exponential functions of type c4x5 = ace

�x + bc, where ac1 bc ∈ � may depend on c,
while � is equal for all c ∈ C. This characterization is even valid for games with three players. We start with
the useful observation that these conditions are also necessary for games with resource-dependent and variable
demands, respectively.

Proposition 1. Let C 6= � be a set of continuous functions and let g be a scaling function such that one of
the following two cases holds:

A. C is consistent for g-scaled congestion games with resource-dependent demands.
B. C is consistent for g-scaled congestion games with variable demands.

Then, C satisfies at least one of the following two conditions:
1. C only contains affine functions.
2. C only contains exponential functions of type c4x5= ace

�x +bc, where ac1 bc ∈� may depend on c, while
� ∈� is equal for all c ∈C.

Proof. We show that for every set C of cost functions, that neither satisfies 1 nor 2, both A and B are
violated. Let C be such a set of cost functions. The main result in Harks and Klimm [16, Theorem 5.1] shows
the existence of a congestion model M = 4N 1R1 4Ai5i∈N 1 4cr5r∈R5 and resource-independent demands dw

i > 0,
i ∈N such that the corresponding proportional weighted congestion game Gw = 4N 1S1�w5 with Si =Ai for all
i ∈N does not have a PNE.

For an arbitrary scaling function g, consider the g-scaled congestion games with resource-dependent demands
Grd = 4N 1S1� rd5 with Si = Ai for all i ∈ N and di1 r = dw

i for all r ∈ R. We observe that � rd
i 4s5 =

4g4di5/di5�
w
i 4s5 for all s ∈ S and i ∈ N . As g4di5/di > 0 we derive that Grd does not possess a PNE and,

thus, A is violated. Next, let Gvar = 4N 1S1�var5 be a g-scaled congestion game with variable demands and with
Si =Ai × 6�i1 �i7 for all i ∈N , where �i = �i = dw

i . By construction, �var
i 4�1d5=Ui4d

w
i 5+ 4g4di5/di5�

w
i 4�5 for

all 4�1d5 ∈ S and i ∈N . We conclude that Gvar does not possess a PNE and B is violated. �
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4. Pure Nash equilibria in congestion games with resource-dependent demands. Proposition 1 implies
in particular that every consistent cost function is infinitely often differentiable. We proceed to present a strong
necessary condition on the consistency of a differentiable cost function c, which we term generalized mono-
tonicity condition.

Definition 1 (Generalized Monotonicity Condition (GMC)). Let g be a scaling function. A differen-
tiable cost function c satisfies the generalized monotonicity condition 4GMC5 for g if for all x1 y ∈ �>0 with
c4x5 6= 0, c4y5 6= 0, and all � ∈�≥0 the following two conditions hold:

G1. If c4x5 > c4x+ y5−�c′4x+ y5,
then 41 −�4g′4y5/g4y555c4x+ y5−�c′4x+ y5≤ 41 −�4g′4y5/g4y555c4y5−�c′4y5.

G2. If c4x5 < c4x+ y5−�c′4x+ y5,
then 41 −�4g′4y5/g4y555c4x+ y5−�c′4x+ y5≥ 41 −�4g′4y5/g4y555c4y5−�c′4y5.

For � = 0, the GMC is independent of the scaling function g and ensures only that c is monotonic. We
proceed to show that any differentiable cost function that is consistent for g-scaled congestion games with
resource-dependent demands satisfies the GMC for g.

Lemma 1 (Generalized Monotonicity Lemma). Let c be a differentiable function and let g be a scaling
function. If c is consistent for g-scaled congestion games with resource-dependent demands, then c satisfies the
GMC for g.

Proof. We start to show that c satisfies G1. Suppose not. Then, there are x1 y ∈ �>0 with c4x5 6= 0 and
c4y5 6= 0, and � ∈�≥0 such that the following two inequalities hold:

c4x5 > c4x+ y5−�c′4x+ y51 (1)
(

�
g′4y5

g4y5
− 1

)

c4y5+�c′4y5 >

(

�
g′4y5

g4y5
− 1

)

c4x+ y5+�c′4x+ y50 (2)

As the terms on the left-hand side and right-hand side of (1) and (2) are continuous in �, it is without loss of
generality to assume that � is rational and positive, i.e., �= p/q for some p1q ∈�. Let � > 0 be such that

c4x5 > c4x+ y5−�c′4x+ y5+ �1
(

�
g′4y5

g4y5
− 1

)

c4y5+�c′4y5 >

(

�
g′4y5

g4y5
− 1

)

c4x+ y5+�c′4x+ y5+ �0

Since the functions c and g are differentiable (and thus also continuous), there is m ∈� such that for �= 1/4q ·m5
we have

c4y+ �5 6= 01 (3a)
∣

∣

∣

∣

� ·
c4x+ y+ �5− c4x+ y5

�
−�c′4x+ y5

∣

∣

∣

∣

≤
�

4
1 (3b)

∣

∣

∣

∣

� ·
c4y+ �5− c4y5

�
−�c′4y5

∣

∣

∣

∣

≤
�

4
1 (3c)

∣

∣

∣

∣

�

g4y5
·
g4y+ �5− g4y5

�
· c4x+ y+ �5−� ·

g′4y5

g4y5
· c4x+ y5

∣

∣

∣

∣

≤
�

4
1 (3d)

∣

∣

∣

∣

�

g4y5
·
g4y+ �5− g4y5

�
· c4y+ �5−� ·

g′4y5

g4y5
· c4y5

∣

∣

∣

∣

≤
�

4
0 (3e)

Our proof proceeds in two steps. In the first step, we construct a g-scaled congestion game with resource-
dependent demands parameterized by b11 b2 ∈ �, and a ∈ �>0. Then, in the second step, we specify these
parameters such that the corresponding game does not possess a PNE.

For the first step, let the parameters b11 b2 ∈ �, and a ∈ � be fixed. We write b1 = b+

1 − b−
1 with b+

1 1 b
−
1 ∈

801 �b1�9 and b2 = b+

2 − b−
2 with b+

2 1 b
−
2 ∈ 801 �b2�9. Consider the congestion model M= 4N 1R1 4Ai5i∈N 1 4cr5r∈R5

with two players N = 81129. The set of resources R is partitioned into the mutually disjoint sets R1, R2, Q+

1 ,
Q−

1 , Q+

2 , and Q−
2 . The set R1 contains a4p · m + 15 resources, R2 contains a · p · m resources, Q+

1 contains
b+

1 resources, Q−
1 contains b−

1 resources, Q+

2 contains b+

2 resources, and Q−
2 contains b−

2 resources. We set
A1 = 8R1 ∪R2 ∪Q−

1 1Q
+

1 9 and A2 = 8R1 ∪Q−
2 1R2 ∪Q+

2 9. The demand of player 1 equals d11 r = x for all resources
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Player 2

Player 1 R1 ∪Q−

2 R2 ∪Q+

2

R1 ∪R2 ∪Q−

1 −ag4x544p ·m+ 15c4x+ y5+p ·m · c4x55− b−

1 g4x5c4x5, −ag4x544p ·m+ 15c4x5+p ·m · c4x+ y+ �55− b−

1 g4x5c4x5,
−ag4y54p ·m+ 15c4x+ y5− b−

2 g4y5c4y5 −ag4y+ �5p ·m · c4x+ y+ �5− b+

2 g4y+ �5c4y+ �5

Q+

1 −b+

1 g4x5c4x51 −b+

1 g4x5c4x51

−ag4y54p ·m+ 15c4y5− b−

2 g4y5c4y5 −ag4y+ �5p ·m · c4y+ �5− b+

2 g4y+ �5c4y+ �5

Figure 1. Bimatrix representation of the g-scaled congestion game with variable demands constructed in the proof of Lemma 1. The
rows and columns of the bimatrix correspond to the strategies of players 1 and 2, respectively. Every entry corresponds to a strategy profile
of the game and shows the payoff of player 1 on top and the payoff of player 2 below.

r ∈ R and the demand of player 2 equals d21 r = y for all r ∈ R1 ∪Q−
2 and d21 r = y + � for all r ∈ R2 ∪Q+

2 . A
bimatrix representation of the so-defined game is shown in Figure 1.

Let z= y+ �, if b2 ≥ 0 and z= y, if b2 < 0. Consider the cycle

� = 44Q+

1 1R1 ∪Q−

2 51 4R1 ∪R2 ∪Q−

1 1R1 ∪Q−

2 51 4R1 ∪R2 ∪Q−

1 1R2 ∪Q+

2 51 4Q
+

1 1R2 ∪Q+

2 550

Calculating the differences in the payoffs of the deviating players, we obtain

�14R1 ∪R2 ∪Q−

1 1R1 ∪Q−

2 5−�14Q
+

1 1R1 ∪Q−

2 5=−ag4x5

(

4p ·m+15c4x+y5+p ·m·c4x5−
b1

a
c4x5

)

1 (4a)

�24R1 ∪R2 ∪Q−

1 1R2 ∪Q+

2 5−�24R1 ∪R21R1 ∪Q−

2 5

=−ag4y5

(

g4y+�5

g4y5
4p ·m·c4x+y+�55+

b2

a
·
g4z5

g4y5
c4z5−4p ·m+15c4x+y5

)

1 (4b)

�14Q
+

1 1R2 ∪Q+

2 5−�14R1 ∪R2 ∪Q−

1 1R2 ∪Q+

2 5=−ag4x5

(

b1

a
c4x5−4p ·m+15c4x5−p ·m·c4x+y+�5

)

1 (4c)

�24Q
+

1 1R1 ∪Q−

2 5−�24Q11R2 ∪Q+

2 5=−ag4y5

(

4p ·m+15c4y5−
g4y+�5

g4y5
4p ·m·c4y+�55−

b2

a
·
g4z5

g4y5
c4z5

)

0 (4d)

We proceed to show that there are b11 b2 ∈�, and a ∈�>0 such that the expressions in (4a)–(4d) are strictly
positive, implying that � is an improvement cycle and that the corresponding game does not possess a PNE.
Using that a, g4x5, and g4y5 are strictly positive and substituting �1 = b1/a and �2 = b2/a, this is equivalent to
finding �11�2 ∈� such that

p ·m · c4x5+ 4p ·m+ 15c4x+ y5 < �1c4x5 < p ·m · c4x+ y+ �5+ 4p ·m+ 15c4x51 (5)
(

�
g′4y5

g4y5
− 1

)

c4x+ y5+�c′4x+ y5+
�

2
<−�2c4z5

g4z5

g4y5
<

(

�
g′4y5

g4y5
− 1

)

c4y5+�c′4y5−
�

2
1 (6)

where the inequalities in (5) and (6) are associated with the payoff differences of the first and second player
in �, respectively.

First, we show that there is �1 ∈� such that (5) holds. To this end, note that c4x5 6= 0 and c4x5 > c4x+ y5−
�c′4x+ y5+ � together imply the existence of �1 ∈� with

c4x5 > �1c4x5−p ·m · c4x+ y+ �5−p ·m · c4x5 > c4x+ y5−�c′4x+ y5+ �0

Adding p ·m · c4x+ y+ �5+p ·m · c4x5 to all terms and using p ·m=�/� we obtain

p ·m · c4x+ y+ �5+ 4p ·m+ 15c4x5

> �1c4x5 > �
c4x+ y+ �5− c4x+ y5

�
+�

c4x+ y5

�
+p ·m · c4x5+ c4x+ y5−�c′4x+ y5+ �0

Rearranging terms, using (3b) and again p ·m=�/�, we obtain

p ·m · c4x+ y+ �5+ 4p ·m+ 15c4x5 > �1c4x5 > p ·m · c4x5+ 4p ·m+ 15c4x+ y51

as claimed.
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We proceed in a similar fashion to show that there is�2 ∈� such that (6) holds. First, we use 4�4g′4y5/g4y55−15·
c4x+y5+�c′4x+y5+�/2<4�4g′4y5/g4y55−15c4y5+�c′4y5−�/2 and (3a) to derive the existence of �2 ∈ �
with

(

�
g′4y5

g4y5
− 1

)

c4x+ y5+�c′4x+ y5+
�

2
<−�2c4z5

g4z5

g4y5
<

(

�
g′4y5

g4y5
− 1

)

c4y5+�c′4y5−
�

2
0

Using (3b) and (3c), we incur at most an error of �/4 when replacing �c′4x + y5 by 4�/�54c4x + y + �5 −

c4x+ y55, and �c′4y5 by 4�/�54c4y+ �5− c4y55. Using p ·m=�/� this gives rise to

�
g′4y5

g4y5
c4x+ y5+p ·m · c4x+ y+ �5− 4p ·m+ 15c4x+ y5+

�

4

<−�2c4z5
g4z5

g4y5
< �

g′4y5

g4y5
c4y5+p ·m · c4y+ �5− 4p ·m+ 15c4y5−

�

4
0

Now, using (3d) and (3e), we obtain
(

p ·m
g4y+ �5

g4y5
−p ·m

)

c4x+ y+ �5+p ·m · c4x+ y+ �5− 4p ·m+ 15c4x+ y5

<−�2c4z5
g4z5

g4y5
<

(

p ·m
g4y+ �5

g4y5
−p ·m

)

c4y+ �5+p ·m · c4y+ �5− 4p ·m+ 15c4y50

Rearranging terms, we finally obtain

g4y+ �5

g4y5
p ·m · c4x+ y+ �5− 4p ·m+ 15c4x+ y5 <−�2c4z5

g4z5

g4y5
<

g4y+ �5

g4y5
p ·m · c4y+ �5− 4p ·m+ 15c4y51

as desired. By construction, � is an improvement cycle and because every strategy combination is contained
in �, we conclude that the constructed game does not possess a PNE, which contradicts the consistency of c.
To see that c also satisfies G2 we proceed as above, but traverse the cycle � in the opposite direction. �

The games constructed to prove the generalized monotonicity lemma (Lemma 1) have a simple structure:
every game has only two players with two strategies each. The first player has a single demand x ∈�>0 that she
places on all resources. For some y1� ∈ �>0, the second player’s demand equals y for all resources contained
in her first strategy and y+ � for all other resources. With these observations, Lemma 1 can be strengthened in
the following way.

Corollary 1. Let g be a scaling function and let c be a differentiable function not satisfying the
GMC for g. Then, there are x1 y1 � ∈ �>0 such that for every � ∈ 401 �5, there is a congestion model M =

4N 1R1 4Ai5i∈N 1 4cr5r∈R5 with the following properties:
1. N = 81129.
2. Every player i has two disjoint allocations, i.e., Ai = 8�i111�i129 with �i111�i12 ∈ 2R.
3. All cost functions are equal to c, i.e., cr = c for all r ∈R.
4. The corresponding g-scaled congestion game with the resource-dependent demands d11 r = x for all r ∈R,

d21 r = y for all r ∈ �211, and d21 r = y+ � for all r ∈ �212 does not possess a PNE.

In other words, for every cost function c not satisfying the GMC for g, there is a threshold value � > 0 such
for all � ∈ 401 �5 one can construct a simple game (two players with two feasible allocations each, all costs
equal to c) without a PNE. Moreover, the players’ demands in this game are almost resource independent, that
is, only the demand of the second player on the resources contained in her second allocation is increased by �,
which can be made arbitrarily small. This insight will be important in §5 where we characterize consistency for
congestion games with variable demands for congestion games with variable demands.

4.1. Consistency of affine functions. As noted in Proposition 1, every set of continuous cost functions that
is consistent for g-scaled congestion games with resource-dependent demands contains either only affine or only
certain exponential functions. In this section, we investigate the question whether affine functions are indeed
consistent. Whereas in weighted congestion games, the distinction between proportional and uniform games is
irrelevant for the existence of a PNE, it matters for games with resource-dependent demands. We will show
that the set of affine functions is consistent for proportional games with resource-dependent demands, but is not
consistent for uniform games with resource-dependent demands.
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Theorem 1. Let C be a set of affine functions that contains a nonconstant function. Then, C is consistent and
universally consistent for proportional congestion games with resource-dependent demands, but not consistent
for uniform congestion games with resource-dependent demands.

Proof. For proportional games, the statement follows from the potential function that has been given in
Harks et al. [17]. Thus, it is sufficient to show that C is not consistent for uniform games. For uniform games,
we have g′4x5 = 0 for all x ≥ 0. As c is nonconstant, we find x1 y ∈ �>0 such that c4x5 6= 0, c4y5 6= 0. We set
�= y+ 1 and observe that

c4x5− c4x+ y5+�c′4x+ y5= −c′4x+ y5y+�c′4x+ y5= c′4x+ y51
(

�
g′4y5

g4y5
− 1

)

c4x+ y5+�c′4x+ y5−

(

�
g′4y5

g4y5
− 1

)

c4y5−�c′4y5= c4y5− c4x+ y5= −xc′4x+ y51

which have opposite signs. Thus, either G1 or G2 is violated. �

4.2. Consistency of exponential functions. We proceed to show that there is no scaling function such that
exponential functions are consistent for g-scaled congestion games with resource-dependent demands.

Theorem 2. Let � > 0 and let c be a nonconstant exponential function of type c4x5 = ae�x + b, a 6= 0,
b ∈ �. Then, c satisfies the GMC for a scaling function g if and only if g satisfies the differential equation
g′4x5= 4�/4e�x − 155g4x5.

Proof. Let c be of the demanded form. For a contradiction, let us assume that c satisfies the GMC for g,
but g is not as claimed. The GMC implies that for all x1 y1�> 0 with c4x5 6= 0 and c4y5 6= 0 the expressions

c4x5− c4x+ y5+�c′4x+ y5 = ae�x41 + e�y4��− 155 (7)
(

�
g′4y5

g4y5
− 1

)

c4x+ y5+�c′4x+ y5−

(

�
g′4y5

g4y5
− 1

)

c4y5−�c′4y5 = ae�y4e�x − 15
(

�
g′4y5

g4y5
+��− 1

)

(8)

have equal signs.
We first make the useful observation that the monotonicity of exponential functions implies that c has at most

one root. Together with the continuity of the expressions in (7) and (8), this implies that if there are x1 y ∈�>0

such that (7) and (8) are nonzero and have different signs, then we can choose x and y such that additionally
c4x5 6= 0 and c4y5 6= 0. Furthermore, we observe that altering the sign of a also alters the sign of the right-hand
sides both of (7) and (8). From there, it is without loss of generality to assume that a> 0.

If there is y > 0 such that g′4y5/g4y5+�≤ 0, we choose �> 1/� and x > 0 arbitrarily. Then, (7) is positive
whereas (8) is negative, and we reach a contradiction. We conclude that g′4y5/g4y5 + � > 0 for all y > 0.
This implies, that (8) is positive if and only if �> g4y5/4g′4y5+�g4y55 whereas (7) is positive if and only if
�> 4e�y − 15/�e�y . For every

� ∈

(

min
{

g4y5

g′4y5+�g4y5
1
e�y − 1
�e�y

}

1max
{

g4y5

g′4y5+�g4y5
1
e�y − 1
�e�y

})

1

the expressions are nonzero and have different signs. We conclude that g4y5/4g′4y5+�g4y55= 4e�y − 15/�e�y

for all y > 0. Rearranging the terms, we derive that g satisfies the claimed differential equation. �
It is easy to verify that there is no affine function that satisfies the differential equation of Theorem 2. In fact,

one can show that all solutions to this differential equation are of the form g4x5= �4e−�x − 15 with � ∈�.

4.3. A characterization of consistency for games with resource-dependent demands. We are now ready
to state the main result of this section.

Theorem 3. Let C 6= � be a set of continuous functions and let g be a scaling function. Then, the following
are equivalent:

(1) C is consistent for g-scaled congestion games with resource-dependent demands.
(2) C is universally consistent for g-scaled congestion games with resource-dependent demands.
(3) At least one of the following two cases holds:

(a) C contains only constant functions.
(b) g4x5≡ x, and C contains only affine functions.
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Proof. 425⇒ 415 follows because every game with the FIP has a PNE.
415 ⇒ 435: Referring to Proposition 1, consistency of C implies that one of the following two cases holds:

(i) C contains only affine functions; (ii) C contains only exponential functions of type c4x5= ace
�x +bc, where

ac1 bc ∈ � may depend on c while � ∈ � is equal for all c ∈ C. Let us first consider the case that C contains
only affine functions. If all functions in C are constant, then (3)(a) is satisfied. If C contains a nonconstant
function, Theorem 1 establishes that g is linear and (3)(b) is satisfied. For the case that C contains a nonconstant
exponential function, the generalized monotonicity lemma (Lemma 1) and Theorem 2 imply that C is not
consistent.
435⇒ 425: First, we assume (3)(a). Let G= 4N 1S1�5 be a g-scaled congestion game with resource-dependent

demands where all cost functions are constant. Then, the payoff of every player i does not depend on the
strategies of all other players. We derive that the function P2 S →� defined as P4s5=

∑

i∈N �i4s5 for all s ∈ S
is an exact potential function of G. Finite potential games have the FIP. The implication 4354b50⇒ 425 is shown
in Theorem 1. �

As Proposition 1 is even valid for three-player games, and the proof of the general monotonicity lemma 1
requires only two players, the characterization of consistency stated in Theorem 3 is even valid for three-player
games.

5. Pure Nash equilibria in congestion games with variable demands. The characterization of consistency
for games with resource-dependent demands obtained in §4 will be the main building block when analyzing the
consistency for games with variable demands. The following lemma states necessary conditions for a PNE in
games with differentiable cost functions and will be useful in the remainder of this section.

Lemma 2. Let G be a g-scaled congestion game with variable demands and differentiable cost functions. If
4�1d5 is a PNE of G, then for all i ∈N the following two conditions hold:

(1) If di < �i, then 4¡+/¡di5Ui4di5≤ 4¡/¡di54g4di5
∑

r∈�i
cr4`r4�1d555.

(2) If di >�i, then 4¡−/¡di5Ui4di5≥ 4¡/¡di54g4di5
∑

r∈�i
cr4`r4�1d555.

Sketch of proof. In a PNE, no player may gain from unilaterally altering her demand. Thus, the above
conditions on the local optimality of the demands are necessary for a PNE. �

5.1. Homogeneously exponential cost functions. In this section, we show that for any scaling function g,
homogeneously exponential functions are consistent for g-scaled congestion games with variable demands. For
proving this, we introduce a novel concept termed essential improvement moves. A subset of improvement moves
is called essential if every player that has an improvement move from a strategy profile s also has an essential
improvement move from s. Formally, let G = 4N 1S1�5 be a maximization game and let I = 84s1 4s′

i1 s−i55 ∈

S × S2 �i4s5 < �i4s
′
i1 s−i59 denote the set of improvement moves of G. A subset I ′ ⊆ I of improvement moves

is called essential if 8s′2 4s1 s′5 ∈ I ′9= � implies 8s′2 4s1 s′5 ∈ I9= � for all s ∈ S. Such subsets exist since the
set of improvement moves I itself is essential.

We proceed to show that for congestion games with variable demands in which all cost functions are homo-
geneously exponential, there is an essential subset of improvement moves that is a strict subset of the set of
improvement moves. In fact, we will show that for every strategy profile s = 4�1d5 for which there is a player i
who improves when switching from si = 4�i1 di5 to s′

i = 4�′
i1 d

′
i5, this player i can also improve by either adapt-

ing her demand or changing her allocation. That is, one of the two strategies of the form s′′
i = 4�i1 d

′
i5 or

s′′′
i = 4�′

i1 di5 also yields an improvement for player i.

Lemma 3. Let G be a g-scaled congestion game with variable demands such that all cost functions are of
type c4x5 = ace

�x, where ac may depend on c and � is equal for all c ∈ C. Let I be the set of improvement
moves of G. Then, I ′ = 844�1d51 4�′1 d′55 ∈ I 2 �= �′9∪ 844�1d51 4�′1 d′55 ∈ I 2 d = d′9 is an essential subset of
improvement moves.

Proof. For a contradiction, let us assume that 44�1d51 4�′
i1�−i1 d

′
i1 d−i55 is an improvement move of player i

but 44�1d51 4�1d′
i1 d−i55 and 44�1d51 4�′

i1�−i1 d55 are not. We use `r4�−i1 d−i5 to denote the aggregated demands
of all players j ∈N\8i9 when playing sj = 4�j1 dj5. We obtain

�i4�1d
′

i1 d−i5−�i4�1d5

=Ui4d
′

i5−Ui4di5− g4d′

i5e
�d′

i
∑

r∈�i

are
�`r 4�−i1 d−i5 + g4di5e

�di
∑

r∈�i

are
�`r 4�−i1 d−i5 ≤ 01 (9a)
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�i4�
′

i1�−i1 d5−�i4�1d5

= −g4di5e
�di
∑

r∈�′
i

are
�`r 4�−i1 d−i5 + g4di5e

�di
∑

r∈�i

are
�`r 4�−i1 d−i5 ≤ 01 (9b)

�i4�
′

i1�−i1 d
′

i1 d−i5−�i4�1d5

=Ui4d
′

i5−Ui4di5− g4d′

i5e
�d′

i
∑

r∈�′
i

are
�`r 4�−i1 d−i5 + g4di5e

�di
∑

r∈�i

are
�`r 4�−i1 d−i5 > 00 (9c)

The last inequality expresses the fact that 44�1d51 4�′
i1�−i1 d

′
i1 d−i55 is an improvement move for G. Subtracting

(9a) from (9c), we obtain

−g4d′

i5e
�d′

i

(

∑

r∈�′
i

are
�`r 4�−i1 d−i5 −

∑

r∈�i

are
�`r 4�−i1 d−i5

)

> 01

a contradiction to (9b). �
Next, we use the above lemma to prove that every congestion game with variable demands and homogeneously

exponential costs possesses a PNE.

Theorem 4. Let g be a scaling function and C 6= � be a set of functions of type c4x5 = ace
�x, where

ac ∈ �>0 may depend on c and � ∈ �>0 is equal for all c ∈ C. Then, C is consistent for g-scaled congestion
games with variable demands.

Proof. Let � ∈ �>0 and let M = 4N 1R1 4Ai5i∈N 1 4cr5r∈R5 be a congestion model with the property that for
all r ∈R, there is ar ∈�>0 such that cr4x5= are

�x for all x ∈�≥0. Let g be a scaling function, 4Ui5i∈N a set of
utility functions, and G a corresponding g-scaled congestion game with variable demands. We first show that for
every i ∈N , there is �i <� such that for every PNE s = 4�1d5 of G we have di ≤�i for all i ∈N . For players
with �i <�, we trivially obtain �i = �i. So, let i be a player with �i = � and let a= minr∈R ar . (The minimum
exists as R is finite.) The marginal cost of every player i when playing a demand x > 0 can be bounded from
below by g′4x5ae�x + g4x5a�e�x ≥ g4x5a�e�x because each allocation contains at least one resource. Using
that g is nondecreasing, we derive that g4x5a�e�x diverges to � as x goes to �. This implies that for every
player i there is �i >�i such that g4x5a�e�x > 4¡+/¡di5Ui405 for all x >�i. Using Lemma 2 together with the
fact that utility functions are concave, we obtain that di ≤�i for all i ∈N and every PNE s = 4�1d5 of G.

Consider the function ê2 S → � defined as ê4�1d5 =
∑

i∈N

∫ di
0 44¡+Ui4x5/¡x5/4g4x5 + g′4x5/�55dx −

∑

r∈R cr4`4�1d55. Let S̄ = 84�1d5 ∈ S2 di ∈ 6�i1�i7 for all i ∈ N9. As S̄ is compact and ê is continuous,
ê attains its maximum and we may choose 4�∗1 d∗5 ∈ arg max4�1d5∈S̄ 2 ê4�1d5. We proceed to show that
4�∗1 d∗5 is a PNE. In light of Lemma 3, it suffices to show that there is no improvement move from 4�∗1 d∗5 in
which exclusively either the demand or the allocation of a single player is adapted.

We first show that there is no improvement move from 4�∗1 d∗5 in which a single player only changes her
demand. This is trivial for players with �i = �i. For all other players, the optimality conditions of 4�∗1 d∗5 give
rise to ¡ê4�∗1 d∗5/¡d∗

i ≥ 0 for all i ∈ N with d∗
i > �i and ¡ê4�∗1 d∗5/¡d∗

i ≤ 0 for all i ∈ N with d∗
i < �i. For

i ∈N , we thus obtain

¡+

¡d∗
i

Ui4d
∗

i 5≥

(

g4d∗

i 5+
1
�
g′4d∗

i 5

)

∑

r∈�∗
i

�are
�`r 4�

∗1 d∗5
=

¡

¡d∗
i

(

g4d∗

i 5
∑

r∈�∗
i

are
�`r 4�

∗1 d∗5

)

1 if d∗

i >�i,

¡+

¡d∗
i

Ui4d
∗

i 5≤

(

g4d∗

i 5+
1
�
g′4d∗

i 5

)

∑

r∈�∗
i

�are
�`r 4�

∗1 d∗5
=

¡

¡d∗
i

(

g4d∗

i 5
∑

r∈�∗
i

are
�`r 4�

∗1 d∗5

)

1 if d∗

i < �i.

As the utility functions are concave we further obtain ¡−Ui4d
∗
i 5/¡d

∗
i ≥ ¡+Ui4d

∗
i 5/¡d

∗
i . Using that the private

payoff function of every player is concave in her demand, this implies that the demand d∗
i is optimal for player i

when the allocation profile �∗ is played. Thus, there is no improvement move in which player i solely changes
her demand.

Next, we show that there is no improvement move from 4�∗1 d∗5 in which a single player only changes her
allocation. For a contradiction, suppose there is a player i that deviates profitably from strategy 4�∗

i 1 d
∗
i 5 to

strategy 4�′
i1 d

∗
i 5 ∈ Si. If g4d∗

i 5 = 0, then player i does not improve switching from 4�∗
i 1 d

∗
i 5 to 4�′

i1 d
∗
i 5. Thus,

we may assume that g4d∗
i 5 > 0. We obtain

ê4�′

i1�
∗

−i1 d
∗5−ê4�∗1 d∗5 =

(

1
e�d

∗
i

− 1
)(

∑

r∈�′
i

are
�`r 4�

′
i1�

∗
−i1 d

∗5

)

+

(

1 −
1

e�d
∗
i

)(

∑

r∈�∗
i

are
�`r 4�

∗1 d∗5

)
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=
1

g4d∗
i 5

(

1 −
1

e�d
∗
i

)(

−g4d∗

i 5
∑

r∈�′
i

are
�`r 4�

′
i1�

∗
−i1 d

∗5
+ g4d∗

i 5
∑

r∈�∗
i

are
�`r 4�

∗1 d∗5

)

=
1

g4d∗
i 5

(

1 −
1

e�d
∗
i

)(

�i4�
′

i1�
∗

−i1 d
∗5−�i4�

∗1 d∗5

)

> 00

This is a contradiction to the fact that 4�∗1 d∗5 maximizes ê. We derive that 4�∗1 d∗5 is a PNE. �

5.2. Necessary conditions for the existence of a pure Nash equilibrium. Although Proposition 1 shows
that every set of consistent cost functions only consists of affine functions or only of exponential functions, the
positive result of Theorem 4, however, holds only for homogeneously exponential functions. This leaves it open
whether there are additional sets of consistent cost functions. In this section, we will close this gap by showing
that inhomogeneously exponential functions are not consistent neither for proportional games nor for uniform
games and that affine functions are consistent only for proportional games.

To prove these results, we will show that if a cost function c is consistent for g-scaled congestion games
with variable demands and has the property that c′/c is injective on �>0, then c satisfies the GMC for g.
The additional condition that c′/c must be injective precisely explains why homogeneously exponential cost
functions are consistent for (uniform or proportional) congestion games with variable demands although they
are not consistent for (uniform or proportional) congestion games with resource-dependent demands.

Before we give the formal proof of the result, we first give some intuition. The proof of the generalized
monotonicity lemma (Lemma 1) relies on the construction of a prototypical game with a simple structure. As
noted in Corollary 1, the GMC is still necessary for games with two players that have two feasible allocations
each, that is, Ard

1 = 8�rd
1111�

rd
2119, A

rd
2 = 8�rd

2111�
rd
2129 with �rd

i1 k ⊆R, i1 k ∈ 81129. In addition, there are x1 y1 z ∈�>0

with y < z such that the demand of player 1 equals d11 r = x for all r ∈ R and the demand of player 2 equals
d21 r = y, if r ∈ �rd

211, and d21 r = z, otherwise.
We will design the utility function Ui2 6�i1 �i7→�≥0 of every player i such that in equilibrium she uses the

(fixed) demand of the game with resource-dependent demands Grd. That is, player 1 always plays d1 = x and
player 2 plays d2 = y when using �rd

211 and d2 = z when using �rd
212. If such a construction is possible, then the

necessary conditions for consistency in the case of resource-dependent demands translate to the case of variable
demands. For player 1, we may simply set �1 = �1 = x and U14�15 = 0, that is, we allow player 1 only to use
the demand x. For player 2 the situation is more subtle since we want her to use two distinct demand values
depending on which resources she uses.

We show that player 2 can be forced to use the right equilibrium demands, if c′/c is injective on �>0. The
main idea of the construction is to add additional resources to each of the allocations of player 2. The key point
is to also introduce an additional third player to the game who has only a single feasible demand and whose
only feasible allocation contains all of the additional resources added to one of the allocations of player 2.
This way the demand of player 3 increases the aggregated demand on some of the additional resources by a
certain offset. The condition that c′/c is injective ensures that adding an offset to the functional argument has a
different impact on the derivative of the function than scalar multiplication. By carefully choosing the number
of supplementary resources added to each of the allocations of player 2 and the feasible demand of player 3,
we can show that the marginal costs of player 2 can be manipulated as desired. Note that for a homogeneously
exponential function of type c̃4x5= ac̃e

�x it actually holds that c̃′/c̃ is constant, thus, adding an offset q to the
argument has the same effect as multiplying the function by the constant e�q .

We first need the following technical lemma.

Lemma 4. Let c2 �≥0 → �≥0 be a strictly increasing and differentiable function and let g be a scaling
function. If c′/c is injective on �>0, then for all y ∈ �>0 and � ∈ �>0 there are �1� ∈ �>0 and z ∈ 4y1 y + �5
such that one of the following two cases holds:

415
¡

¡y
4g4y5c4y+ �55 >

�g4z5c4z5− g4y5c4y+ �5

z− y
>

¡

¡z
4�g4z5c4z553

425
¡

¡y
4�g4y5c4y55 >

g4z5c4z+ �5−�g4y5c4y5

z− y
>

¡

¡z
4g4z5c4z+ �550
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Proof. Let c satisfy the demanded properties and let y > 0 be given. As c′/c is injective there is �̃ ∈ �>0

with c′4y+ �̃5/c4y+ �̃5 6= c′4y5/c4y5. We distinguish two cases.
First case. c′4y + �̃5/c4y + �̃5 > c′4y5/c4y5. Multiplying with g4y5c4y + �̃5 and setting �̃ = c4y + �̃5/c4y5

we obtain g4y5c′4y+ �̃5 > �̃g4y5c′4y5. Adding g′4y5c4y+ �̃5 to both sides gives

g′4y5c4y+ �̃5+ g4y5c′4y+ �̃5 > �̃g′4y5c4y5+ �̃g4y5c′4y50 (10)

As the expression on the left-hand side of (10) is continuous in �̃, there is � < �̃ such that

g′4y5c4y+ �5+ g4y5c′4y+ �5 > �̃g′4y5c4y5+ �̃g4y5c′4y50 (11)

Using the fact that c is strictly increasing, we obtain 0 = �̃g4y5c4y5−g4y5c4y+ �̃5 < �̃g4y5c4y5−g4y5c4y+�5
and hence

a0 2= �̃g4y5c4y5− g4y5c4y+ �5 > 00 (12)

Because the right-hand side of (11) is continuous in y, there is a sequence 4zn5n∈� with zn ∈ 4y1 y + �5 for all
n ∈� that converges to y and satisfies the inequality

g′4y5c4y+ �5+ g4y5c′4y+ �5 > �̃g′4zn5c4zn5+ �̃g4zn5c
′4zn5 (13)

for all n ∈ �. Further, using the definition of a0 in (12) and the fact that both g and c are nondecreasing, we
obtain for all n ∈� the inequality

�̃g4zn5c4zn5− g4y5c4y+ �5 > �̃g4y5c4y5− g4y5c4y+ �5= a01

which implies
�̃g4zn5c4zn5− g4y5c4y+ �5

zn − y
>

a0

zn − y

n→ �

−→ �0

Using that by (13), −�̃g′4zn5c4zn5− �̃g4zn5c
′4zn5 is bounded from below by a constant not depending on n, we

derive the existence of m ∈� such that

�̃g4zm5c4zm5− g4y5c4y+ �5

zm − y
− �̃g′4zm5c4zm5− �̃g4zm5c

′4zm5 > 00 (14)

Furthermore, (13) trivially implies

g′4y5c4y+ �5+ g4y5c′4y+ �5− �̃g′4zm5c4zm5− �̃g4zm5c
′4zm5=2 a1 > 00 (15)

To finish the proof of the first case, observe that the left-hand side of (15) increases as �̃ decreases. The
left-hand side of (14) is continuous as a function of �̃ and negative for �̃ = 4g4y5/g4zm55 · 4c4y + �5/c4zm55.
Thus, there is � ∈�>0 with 4g4y5/g4zm55 · 4c4y+ �5/c4zm55≤�≤ c4y+ �̃5/c4y5= �̃ such that

0 <
�g4zm5c4zm5− g4y5c4y+ �5

zm − y
−�g′4zm5c4zm5−�g4zm5c

′4zm5 < a10

Adding �g′4zm5c4zm5+�g4zm5c
′4zm5, we obtain

�g′4zm5c4zm5+�g4zm5c
′4zm5 <

�g4zm5c4zm5− g4y5c4y+ �5

zm − y
< a1 +�g′4zm5c4zm5+�g4zm5c

′4zm50

Finally, we observe that

a1 +�g′4zm5c4zm5+�g4zm5c
′4zm5 = g′4y5c4y+�5+g4y5c′4y+�5−4�̃−�5g′4zm5c4zm5−4�̃−�5g4zm5c

′4zm5

≤ g′4y5c4y+�5+g4y5c′4y+�51

where we used that �≤ �̃. This finishes the proof of the first case.
Second case. c′4y+ �̃5/c4y+ �̃5 < c′4y5/c4y5. This case essentially works as the first case but with reversed

inequality signs. First, we find y1 �̃ ∈�>0 such that for �̃= c4y+ �̃5/c4y5 the inequality (10) holds with reversed
sign, i.e.,

g′4y5c4y+ �̃5+ g4y5c′4y+ �̃5 < �̃g′4y5c4y5+ �̃g4y5c′4y50 (16)
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With the same continuity arguments as in the first case, there is � > �̃ such that

g′4y5c4y+ �5+ g4y5c′4y+ �5 < �̃g′4y5c4y5+ �̃g4y5c′4y50 (17)

Using that c is strictly increasing, we obtain a2 2= g4y5c4y + �5− �̃g4y5c4y5 > g4y5c4y + �̃5− �̃g4y5c4y5= 0.
We proceed analogous to the first case but exchange the roles of zn and y, i.e., we derive from (17) the existence
of sequence 4zn5n∈� with zn ∈ 4y1 y+ �5 for all n ∈� that converges to y and satisfies the inequality

g′4zn5c4zn + �5+ g4zn5c
′4zn + �5 < �̃g′4y5c4y5+ �̃g4y5c′4y5 (18)

for all n ∈�. Further, we use that both g and c are nondecreasing to obtain for all n ∈N the inequality

g4zn5c4zn + �5− �̃g4y5c4y5 > g4y5c4y+ �5− �̃g4y5c4y5= a21

which implies
g4zn5c4zn + �5− �̃g4y5c4y5

zn − y
>

a2

zn − y

n→�

−→ �0

Using that, by (18), −g′4zn5c4zn + �5− g4zn5c
′4zn + �5 is bounded from below by a constant not depending on

n, we derive as in the first case the existence of m ∈� such that

g4zm5c4zm + �5− �̃g4y5c4y5

zm − y
− g′4zm5c4zm + �5− g4zm5c

′4zm + �5 > 00 (19)

Furthermore, (18) trivially implies

�̃g′4y5c4y5+ �̃g4y5c′4y5− g′4zm5c4zm + �5− g4zm5c
′4zm + �5=2 a3 > 00 (20)

We proceed with the same arguments as in the first case. The left-hand side of (20) increases as �̃ increases and
the left-hand side of (19) is continuous as a function of �̃ and negative for �̃= 4g4zm5/g4y55 · 4c4zm +�5/c4y55.
Thus, there is � ∈�>0 with �̃= 4c4y+ �̃5/c4y55≤�≤ 4g4zm5/g4y55 · 4c4zm + �5/c4y55 such that

0 <
g4zm5c4zm + �5−�g4y5c4y5

zm − y
− g′4zm5c4zm + �5− g4zm5c

′4zm + �5 < a30

Adding −g′4zm5c4zm + �5− g4zm5c
′4zm + �5, we obtain

g′4zm5c4zm + �5+ g4zm5c
′4zm + �5 <

g4zm5c4zm + �5−�g4y5c4y5

zm − y
< a3 + g′4zm5c4zm + �5+ g4zm5c

′4zm + �50

Finally,

a3 + g′4zm5c4zm + �5+ g4zm5c
′4zm + �5 = �̃g′4y5c4y5+ �̃g4y5c′4y5− g′4zm5c4zm + �5− g4zm5c

′4zm + �5

≤ �g′4y5c4y5+�g4y5c′4y51

which finishes the proof of the second case. �
The next lemma establishes a necessary condition on the consistency of cost functions for g-scaled congestion

games with variable demands.

Lemma 5. Let g be a scaling function and let c be a differentiable and convex cost function that is strictly
positive on �>0 and has the property that c′/c is injective on �>0. If c is consistent for g-scaled congestion
games with variable demands, then c satisfies the GMC for g.

Proof. Let c be a function with the demanded properties that is consistent for g-scaled congestion games
with variable demands and let us assume that c does not satisfy the GMC for g. Applying Corollary 1, we
derive the existence of x1 y ∈ �>0 and � > 0 such that for every � ∈ 401 �5, there is a congestion model
Mrd

� = 4N rd1Rrd
� 1 4A

rd
�1 i5i∈N rd1 4crd

r 5r∈Rrd
�
5 with two players that have access to two disjoint allocations each and

all resources have cost function c (i.e., N rd = 81129, and Ard
i = 8�rd

i111�
rd
i129 for some �rd

i111�
rd
i12 ⊆ Rrd with

�rd
i11 ∩ �rd

i12 = �, i ∈ 81129, crd
r = c for all r ∈ R). Further there is a corresponding g-scaled congestion game

with resource-dependent demands Grd
� that does not have a PNE and for which the players’ resource-dependent

demands equal d11 r = x for all r ∈Rrd, d21 r = y, if r ∈ �rd
211, and d21 r = y+ �, otherwise.
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x x x

U1(x) U2(x) U3(x)

0
�1 = τ1 = x �3 = τ3 = �τ2 = z�2 = y

(a)

0

M

(b)

0

(c)

Figure 2. The players’ utility functions Ui in the three-player g-scaled congestion game with variable demands Gk constructed in the
proof of Lemma 5. For the second player’s utility the parameter M is chosen such that the slope of the function equals 4k/4z − y55 ·

4pg4z5c4z5− qg4y5c4y+ �55, that is, M = kpg4z5c4z5− kqg4y5c4y+ �5.

Let x1 y1 � ∈ �>0 be fixed accordingly. Referring to Lemma 4, there are z ∈ 4y1 y + �5 and �1� ∈ �>0 such
that one of the following two cases holds:

¡

¡x
4g4y5c4y+ �55 >

�g4z5c4z5− g4y5c4y+ �5

z− y
>

¡

¡z
4�g4z5c4z551 (21)

¡

¡y
4�g4y5c4y55 >

g4z5c4z+ �5−�g4y5c4y5

z− y
>

¡

¡z
4g4z5c4z+ �550 (22)

We fix such z1�1 and � and set � = z− y. In the following, we omit the subscript � and denote by Mrd =

4N rd1Rrd1 4Ard
i 5i∈N rd1 4crd

r 5r∈Rrd5 the congestion model and by Grd the corresponding g-scaled congestion game
with demands x1 y1 and z not possessing a PNE.

We proceed to show the proof for the case (21), the other case follows along the same lines. As all expressions
occurring in (21) are continuous in �, it is without loss of generality to assume that � is rational, i.e., �= p/q
for some p1q ∈�. Multiplying (21) with q, we obtain

¡

¡y
4qg4y5c4y+ �55 >

pg4z5c4z5− qg4y5c4y+ �5

z− y
>

¡

¡z
4pg4z5c4z550 (23)

For k ∈� we define a new congestion model Mk = 4N 1Rk1 4Ak
i 5i∈N 1 4cr5r∈R5. The set of players N =N rd ∪839

contains an additional third player, the set of resources Rk contains additional k4p+q5 resources partitioned into
two subsets Rk

11R
k
2 of cardinality �Rk

1� = kq and �Rk
2� = kp, respectively. We obtain Rk = Rrd ∪ Rk

1 ∪ Rk
2. Every

resource r ∈Rk is endowed with the cost function c. Player 1 has the same set of feasible allocations as in Grd,
that is, Ak

1 = 8�rd
1111�

rd
1129. For player 2, we add the kq new resources contained in Rk

1 to the first, and the kp
new resources contained in Rk

2 to the second allocation, that is, Ak
2 = 8�rd

211 ∪Rk
11�

rd
212 ∪Rk

29. Player 3 has a single
feasible allocation where she uses the kq new resources contained in Rk

1.
The players’ sets of feasible demands are given by �1 = �1 = x, �2 = y, �2 = z, and �3 = �3 = �. The utility

functions of players 1 and 3 are arbitrary. We may simply define them as U k
1 4�15 = U k

3 4�35 = 0. The utility
function U k

2 2 6y1 z7→�≥0 of player 2 is the linear function with slope 4k/4z−y55 · 4pg4z5c4z5−qg4y5c4y+�55
through the point 4y105. The three utility functions are shown in Figure 2.

We claim that there is m ∈� such that dm
2 = y for every PNE 4�m1 dm5 of Gm with �m

2 = �rd
211 ∪Rm

1 and dm
2 = z

for every PNE 4�m1 dm5 of Gm with �m
2 = �rd

212 ∪Rm
2 . For a contradiction, suppose for every k ∈ �, there is a

PNE 4�k1 dk5 such that one of the following cases holds: (i) �k
2 = �rd

211 ∪Rk
1 and dk

2 ∈ 4y1 z7; (ii) �k
2 = �rd

212 ∪Rk
2

and dk
2 ∈ 6y1 z5. Considering subsequences, it is without loss of generality to assume that either (i) holds for all

k ∈� or (ii) holds for all k ∈�.
Let us first assume, that (i) holds for all k ∈�. We calculate

¡�24�
k1 dk5

¡dk
2

= k

(

pg4z5c4z5− qg4y5c4y+ �5

z− y
− q

¡

¡dk
2

g4dk
25c4d

k
2 + �5

)

−
¡

¡dk
2

∑

r∈�rd
211

cr4`r4�
k1 dk550

Using that dk
2 > y and that c and g are convex and nondecreasing, we obtain

¡�24�
k1 dk5

¡dk
2

≤ k

(

pg4z5c4z5− qg4y5c4y+ �5

z− y
− q

¡

¡y
g4y5c4y+ �5−

1
k

·
¡

¡dk
2

∑

r∈�rd
211

cr4`r4�
k1 dk55

)

0
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From the left inequality of (23) we derive limk→� ¡�24�
k1 dk5/¡dk

2 < 0. This implies the existence of m ∈ �
with ¡�24�

m1 dm5/¡dm
2 < 0. Using Lemma 2, this contradicts the assumption that 4�m1 dm5 is a PNE of Gm.

If, on the other hand, (ii) holds for all k ∈�, we calculate

¡�24�
k1 dk5

¡dk
2

= k

(

pg4z5c4z5− qg4y5c4y+ �5

z− y
−p

¡

¡dk
2

g4dk
25c4d

k
25−

1
k

·
¡

¡dk
2

∑

r∈�rd
212

cr4`r4�
k1 dk5

)

)

≥ k

(

pg4z5c4z5− qg4y5c4y+ �5

z− y
−p

¡

¡z
g4z5c4z5−

1
k

·
¡

¡dk
2

∑

r∈�rd
212

cr4`r4�
k1 dk55

)

1

where we use the convexity of c and g and the fact that dk
2 < z. Using the right inequality of (23), we derive

limk→� ¡�24�
k1 dk5/¡dk

2 > 0. In light of Lemma 2, this is a contradiction to the assumption that 4�k1 dk5 is a
PNE for all k ∈ �. We conclude that there is m ∈ � such that dm

2 = y for every PNE 4�m1 dm5 of Gm with
�m

2 = �rd
211 ∪Rm

1 and dm
2 = z for every PNE 4�m1 dm5 of Gm with �m

2 = �rd
212 ∪Rm

2 .
To finish the proof, we show that Gm does not possess a PNE. For a contradiction, let 4�m1 dm5 be a PNE

of Gm. Here we show the contradiction only for the case that every player plays her first allocation, that is,
�m

1 = �rd
111 and �m

2 = �rd
211 ∪ Rm

1 . The other three cases can be treated with the same arguments. Consider the
strategy profile 4�rd

1111�
rd
2115 of Grd. Because Grd does not possess a PNE, at least one of the players 1 or 2

improves switching to her second allocation. We distinguish two cases.
First case. � rd

1 4�
rd
1121�

rd
2115 > � rd

1 4�
rd
1111�

rd
2115. Consider the strategy profile 4�rd

1121 x5 ∈ Sm
1 . We calculate

�m
1 44�

rd
1121 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �55−�m

1 44�
rd
1111 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �55

= −g4x5
∑

r∈�rd
112

cr4`r44�
rd
1121 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �555+ g4x5

∑

r∈�rd
111

cr4`r44�
rd
1111 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �555

=� rd
1 4�

rd
1121�

rd
2115−� rd

1 4�
rd
1111�

rd
2115 > 00

Second case. � rd
2 4�

rd
1111�

rd
2125 > � rd

2 4�
rd
1111�

rd
2115. Consider the strategy profile 4�rd

212 ∪ Rm
2 1 z5 where player 2

chooses allocation �rd
212 ∪Rm

2 and her demand equals z. We obtain

�m
2 44�

rd
1111 x51 4�

rd
212 ∪Rm

2 1 z51 4R
m
1 1 �55−�m

2 44�
rd
1111 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �55

=U24z5− g4z5
∑

r∈�rd
212

cr4`r44�
rd
1111 x51 4�

rd
212 ∪Rm

2 1 z51 4R
m
1 1 �555− kpg4z5c4z5

−U24y5+ g4y5
∑

r∈�rd
211

cr4`r44�
rd
1111 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �555+ kqg4y5c4y+ �5

= −g4z5
∑

r∈�rd
212

cr4`r44�
rd
1111 x51 4�

rd
212 ∪Rm

2 1 z51 4R
m
1 1 �555+ g4y5

∑

r∈�rd
211

cr4`r44�
rd
1111 x51 4�

rd
211 ∪Rm

1 1 y51 4R
m
1 1 �555

=� rd
2 4�

rd
1111�

rd
2125−� rd

2 4�
rd
1111�

rd
2115 > 00

This is a contradiction to the assumption that 4�m1 dm5 is a PNE of Gm. �

5.3. A characterization of consistency. We are ready to give the main results of this paper—a com-
plete characterization of consistency and approximate universal consistency for congestion games with variable
demands. We start with the characterization of the approximate universal consistency.

Theorem 5. Let C 6= � be a set of continuous functions and let g be a scaling function. Then, C is
approximately universally consistent for g-scaled congestion games with variable demands if and only if the
following two conditions are satisfied:

(1) g4x5≡ x.
(2) C only contains affine functions of type c4x5= acx+ bc where ac ∈�>0 and bc ∈�≥0.

If (1) and (2) are satisfied, then C is even consistent for g-scaled congestion games with variable demands.

Proof. We first show that conditions (1) and (2) imply consistency and approximate universal consistency
of C. Let M = 4N 1R1 4Ai5i∈N 1 4cr5r∈R5 be a congestion model such that for every resource r ∈ R, there are
ar ∈ �>0 and br ∈ �≥0 with cr4x5 = arx + br for all x ∈ �>0. For a set 4Ui5i∈N of utility functions let G be a
corresponding g-scaled congestion game with variable demands. Analogously as in the proof of Theorem 4, for
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every player i there is �i ∈ �>0 such that every demand di >�i is strictly dominated by the demand d′
i = �i,

that is, �i4�i1 di1�−i1 d−i5 < �i4�i1 d
′
i1�−i1 d−i5 for all �i ∈Ai and 4�−i1 d−i5 ∈ S−i.

In previous work (Harks et al. [17]) we noted that the function P2 S →� defined as P4�1d5=
∑

i∈N 4Ui4di5−
di

∑

r∈�i
ar4
∑

j∈811 : : : 1i92 r∈sj
dj5+br5 is an exact potential function for proportional congestion games with variable

demands. Let S̄ = 84�1d5 ∈ S2 di ∈ 6�i1�i7 for all i ∈N9. As S̄ is compact and P is continuous, we may choose
4�∗1 d∗5 ∈ arg max4�1d5∈S̄ P4�1d5. Using that strategies with demands larger than �i are strictly dominated we
derive that 4�∗1 d∗5 also maximizes P over S. This implies that 4�∗1 d∗5 is a PNE.

To see that C is also approximately universally consistent, let �> 0 and 4�01 d05 ∈ S be arbitrary. As P4�01 d05
is finite, P is bounded from above and every �-improvement move increases the value of P by at least �, we
conclude that every �-improvement path is finite.

We proceed to prove that if C is approximately universally consistent for g-scaled congestion games with
variable demands, then (1) and (2) hold. If C contains a constant function we can construct a one-player game
where player 1 can always improve her payoff by an arbitrary constant raising her demand. If C contains a
nonaffine function c̃ or g is not linear, Theorem 3 establishes the existence of a g-scaled congestion game
with resource-dependent demands Grd that does not possess a PNE and has the additional property that cr = c̃
for all r ∈ R. In light of Corollary 1 the game Grd can be chosen such that for every player all resources
contained in one allocation are accessed with the same resource-dependent demand, that is for all i ∈ N and
�i ∈Ai, there is di4�i5 such that di1 r = di4�i5 for all r ∈ �i. As Grd has no PNE there is an improvement cycle
�rd = 4�01 : : : 1�k5 in Grd and as �rd is finite there is � > 0 such that �rd is an �-improvement cycle.

We consider the g-scaled congestion game with variable demands G with the same set of players, resources,
and feasible allocations as Grd where for all players i we have 6�i1 �i7 = �≥0 and Ui4x5 = 0 for all x ≥ 0. By
construction, the cycle

� = 44�0
11 d14�

0
151 : : : 1�

0
n1 d14�

0
n551 : : : 1 4�

k
11 d14�

k
151 : : : 1�

k
n1 d14�

k
n551 4�

0
11 d14�

0
151 : : : 1�

0
n1 d14�

0
n555

in which every player chooses the demand specified in Grd is an �-improvement cycle of G. We derive that C
is not approximately universally consistent. �

The following theorem provides a complete characterization of the consistency of cost functions in g-scaled
congestion games with variable demands.

Theorem 6. Let C 6= � be a set of continuous functions and g be a scaling function. Then, the following
are equivalent:

(1) C is consistent for g-scaled congestion games with variable demands.
(2) Exactly one of the following two holds:

(a) C only contains homogeneously exponential functions of type c4x5= ace
�x, where ac ∈�>0 may depend

on c, and � ∈�>0 must be equal for all c ∈C.
(b) g4x5≡ x, and C only contains affine functions of type c4x5= acx+ bc, where ac ∈�>0 and bc ∈�≥0.

Proof. 415 ⇒ 425: For a contradiction, suppose there is a scaling function g and a set of cost functions C
that is consistent for g-scaled congestion games with variable demands, but neither (2)(a) nor (2)(b) are satisfied.
Referring to Proposition 1, C consists only of affine functions or only of exponential functions.

Let us first assume that C only contains affine functions. Because (2)(a) is not satisfied, at least one affine
function c ∈ C is nonconstant. Furthermore, g is not linear since (2)(b) is violated. As shown in the proof of
Theorem 1, this implies that c does not satisfy the GMC for g. Furthermore, because c is linear but not constant,
we derive that c′/c is injective on �>0. Applying Lemma 5 we derive the existence of a g-scaled congestion
game with variable demands not possessing a PNE. This is a contradiction to the consistency of C.

For the second case, let us assume that C only contains functions of type c4x5= ace
�x + bc. If C contains a

function c such that c′4x5 <K for some constant K and all x ≥ 0, it is easy to construct a one-player game with
unrestricted demands in which the single player can always improve her payoff by raising her demand. This
observation implies that �> 0. The nonnegativity of the cost functions further implies that ac > 0 and bc ≥ −ac.
Because (2)(a) is violated, C contains at least one inhomogeneously exponential function c, i.e., a function with
bc 6= 0. Theorem 2 implies that c does not satisfy the GMC for g. Using that c is inhomogeneously exponential,
we further see that c′4x5/c4x5=�/41 + 4bc/ac5e

−�x5 for all x ∈�>0. Thus, c′/c is injective on �>0. Applying
Lemma 5, the existence of a g-scaled congestion game with variable demands not possessing a PNE follows.

4254a5⇒ 415 and 4254b5⇒ 415 are shown in Theorems 4 and 5, respectively. �
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i

Figure 3. Lifting of the players’ utility functions used in the proof of Theorem 7. (a) the utility function U r
i of player i in the game with

restricted demands; (b) the lifted utility function Ui of player i in the game with unrestricted demands.

5.4. A characterization for unrestricted demands. In the previous sections, we characterized the sets of
cost functions that are consistent for g-scaled congestion games with variable demands. We assumed that for
every player i, the set of feasible demands is restricted to an interval 6�i1 �i7⊆�≥0, with �i ∈�≥0, �i ∈�≥0 ∪8�9,
and �i ≤ �i. In particular, we allowed the somewhat degenerate case �i = �i. This section is devoted to the
case of unrestricted demands, i.e., the case 6�i1 �i7 = �≥0 for all i ∈ N . As the main result, we show that our
characterizations of consistency for the case of restricted demands continuous to hold even for the case of
unrestricted demands. We additionally strengthen the above result by requiring that utility functions must be
smooth.

Theorem 7. Let Gr be a g-scaled congestion game with variable demands such that all utility functions
U r

i 2 6�
r
i 1 �

r
i 7 → �≥0 satisfy � r

i < �. If Gr does not possess a PNE, then there is a corresponding g-scaled
congestion game with unrestricted variable demands that does not possess a PNE as well.

Proof. Let T =
∑

i∈N � r
i . For every r ∈R, the cost function cr 2 �≥0 →� is locally Lipschitz continuous on

�≥0 and hence globally Lipschitz continuous with Lipschitz constant Lr on the compact 601 T 7. Let L=
∑

r∈RLr

and �max = maxi∈N � r
i . As g is continuously differentiable, it is globally Lipschitz continuous on 601�max7 and

we denote the Lipschitz constant by M . We define Cmax =
∑

r∈R maxx∈601 T 7 cr4x5. For some

�> max
{

L ·�max · g4�max5+�max ·M ·Cmax1max
i∈N

{

¡+U r
i 4�

r
i 5

¡� r
i

·� r
i

}}

1

we define the utility function of player i as the function Ui2 �≥0 →�≥0, where

Ui4x5=



























U r
i 4�

r
i 5+�

� r
i

· x1 if x ∈ 601� r
i 5

U r
i 4x5+�1 if x ∈ 6� r

i 1 �
r
i 7

U r
i 4�

r
i 5+�1 otherwise.

On 6� r
i 1 �

r
i 7, the new utility function equals the old utility function raised by �, on 6� r

i 1�5 it is constant and on
601� r

i 7 it equals the linear function through the origin and the point 4� r
i 1Ui4�

r
i 5+�5. Note that Ui is concave

as U r
i is concave and �> 4¡+U r

i 4�
r
i 5/¡�

r
i 5 ·� r

i ; see also Figure 3 for an illustration.
The new set 4Ui5i∈N of utility functions defines a new g-scaled congestion game with variable demands G.

We claim that G does not possess a PNE. For a contradiction, suppose 4�1d5 is a PNE of G.
We first show that it is without loss of generality to assume that di ≤ � r

i for all i ∈ N . Specifically, we
show that if there is a PNE 4�1d5 of G, then there is also a PNE 4�1d′5 with d′

i ≤ � r
i for all i ∈ N . To see

this, note that Ui4di5 = Ui4�
r
i 5 for all di ≥ � r

i and all i ∈ N . If there is a resource r ∈ �i with cr4`r4�1d55 >
cr4`r4�1d5− di + � r

i 5, we derive that player i improves lowering her demand from di to � r
i , which contradicts

the fact that 4�1d5 is a PNE. This implies that cr4`r4�1d55 = cr4`r4�1d5− di + � r
i 5 for all r ∈ �i and setting

d′
i = � r

i we derive that �j4�1d
′
i1 d−i5= �j4�1d5 for all j ∈ N . From there, 4�1d−i1 d

′
i5 is also a PNE. Iterating

this argument, we obtain a PNE 4�1d′5 with d′
i ≤ � r

i for all i ∈N .
Let 4�1d′5 be such a PNE. We claim that d′

i ≥ � r
i for all i ∈ N . Suppose there is i ∈ N with d′

i < � r
i and

consider the strategy where player i plays a demand of d′′
i = � r

i instead. We calculate

�i4�1d
′′

i 1 d
′

−i5−�i4�1d
′

i5 =
U r

i 4d
′′
i 5+�

d′′
i

4d′′

i −d′

i5− g4d′′

i 5
∑

r∈�i

cr4`r4�1d
′5−d′

i +d′′

i 5+ g4d′

i5
∑

r∈�i

cr4`r4�1d
′55

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

15
6.

10
0]

 o
n 

06
 J

an
ua

ry
 2

01
6,

 a
t 2

3:
53

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks and Klimm: Congestion Games with Variable Demands
Mathematics of Operations Research, Articles in Advance, pp. 1–23, © 2015 INFORMS 19

≥
�

�max

4d′′

i −d′

i5− g4d′′

i 5L4d
′′

i −d′

i5− 4g4d′′

i 5− g4d′

i55
∑

r∈�i

cr4`r4�1d
′55

≥ 4d′′

i −di5

(

�

�max

− g4�max5 ·L−M ·Cmax

)

> 00

Hence, player i improves, which contradicts the fact that 4�1d′5 is a PNE. To finish the proof, assume there
is a PNE 4�1d′5 with di ∈ 6� r

i 1 �
r
i 7 for all i ∈ N . Using the fact that the new utility function on 6� r

i 1 �
r
i 7 equals

the old utility function raised by the constant �, we derive that 4�1d′5 is also a PNE of Gr, and we reach a
contradiction. �

Note that the utility functions constructed in the proof of Theorem 7 are not differentiable. We proceed to
show that the result continues to hold if we assume that demands are unrestricted and all utility functions are
smooth (i.e., infinitely often differentiable).

Theorem 8. Let Gr be a g-scaled congestion game with variable demands such that all utility functions
U r

i 2 6�
r
i 1 �

r
i 7 → �≥0 satisfy � r

i < �. If Gr does not possess a PNE, then there is a corresponding g-scaled
congestion game with unrestricted variable demands and smooth utility functions that does not possess a PNE
as well.

Proof. Let Ui denote the piecewise linear utility function of player i constructed in the proof of Theorem 7.
For i ∈ N , we define the improvement function �i2 S →�≥0 as the function that maps every strategy profile to
the value by which player i can maximally improve her utility when switching to her best reply. Formally,

�i4s5= max
s′i∈Si

8�i4s
′

i1 s−i5−�i4s590

Note that for every player i, there is �i ∈�>0 such that Ui is constant on 6�i1�7. From there, we may effectively
restrict the demand of every player i to 601�i7. Setting S̄i = 8si = 4�i1 di5 ∈ Si2 di ≤ �i9, we observe that
maxs′i∈Si

�i4si1 s−i5= maxs′i∈S̄i
�i4si1 s−i5. Using that �i is continuous and S̄ is compact, the maximum is attained

and thus, � is well defined.
Writing the strategy profile s as s = 4�1d5 and using that all private payoff functions are continuous in d,

we observe that �i4�1d5 is continuous in d as well. Next, we define �2 S → �≥0 as �4s5 = maxi∈N �i4s5. As
the maximum of finitely many continuous functions, � is continuous in d as well. As a consequence, � =

mins∈S̄ �4s5= mins∈S �4s5 is attained and, since G does not admit a PNE, � > 0.
For any � > 0, the utility function Ui of every player i is infinitely often differentiable except on �-balls

around �i and �i. Ghomi [12] proved that a convex function can be approximated by a smooth convex function
such that both functions comply in all regions where the original function is already smooth. Using this result,
we can replace Ui by an approximation Ũi2 �≥0 → �≥0 that is concave, smooth, and satisfies Ui4x5 = Ũi for
all x ∈ 601�i − �5∪ 4�i + �1 �i − �5∪ 4�i + �1�5. Using that Ui is continuous, we may choose � > 0 such that
�Ui4x5− Ũi4x5�< �/2 for all x ∈�≥0. The new set of utility functions 4Ũi5i∈N defines a new g-scaled congestion
game with variable demands G̃= 4N 1S1 �̃5. Because �4s5≥ � for all s ∈ S, there is for all s ∈ S a player i4s5 and
an alternative strategy s′

i4s54s5 ∈ Si4s5 such that �i4s54s5≤�i4s54s
′

i4s54s51 s5− �. Using that ��i4s5− �̃i4s5�< �/2 for
all s ∈ S and i ∈N , we derive that �̃i4s54s5 < �̃i4s54s

′
i4s51 s−i5. Hence, the game G� does not possess a PNE. �

We have obtained the following characterization of consistency for congestion games with variable demands.

Theorem 9. Let C 6= � be a set of continuous functions and g a scaling function. Then, the following are
equivalent:

(1) C is consistent for g-scaled congestion games with unrestricted variable demands and smooth utility
functions.

(2) Exactly one of the following two holds:
(a) C only contains homogeneously exponential functions of type c4x5= ace

�x, where ac ∈�>0 may depend
on c, and � ∈�>0 must be equal for all c ∈C.

(b) g4x5≡ x, and C only contains affine functions of type c4x5= acx+ bc, where ac ∈�>0 and bc ∈�≥0.

6. Games on networks. In this section, we examine directed network congestion games, where the resources
correspond to edges of a directed graph and the allowable subsets for a player correspond to the paths connecting
a player-specific source and sink.
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u2

u1 v2 v1

w1

w5 w6

w2 w3 w4

w1

v3

u1 v2 v1w7

w5 w6

v2 w3 w4

u2, u3

R1 R2Pm Pm

P′m

Q–
2 ∪ Pk

Q–
1 ∪ {P1}

Q+
1 ∪ {P2}

Q+
2 ∪ P′k′

(a) Network congestion game with resource-dependent
demands

(b) Network congestion game with variable demands

Rk
1

Rk
2

{P5} {P6}
{P3}

{P4}

Figure 4. The network congestion game with resource-dependent demands and the network congestion game with variable demands
constructed in the proofs of Lemmas 6 and 7, respectively. Solid lines correspond to single edges and dashed lines correspond to directed
paths.

6.1. Network congestion games with resource-dependent demands. We first prove a variant of the gen-
eralized monotonicity lemma (Lemma 1) for games on directed networks. Note that this is a stronger result than
Lemma 1 as we now require a network structure when constructing games without having a PNE.

Lemma 6 (Generalized Monotonicity Lemma for Directed Networks). Let g be a scaling function
and let c be a differentiable function. If c is consistent for g-scaled network congestion games with resource-
dependent demands, then c satisfies the GMC for g.

Proof. We show that if c does not satisfy the GMC for g, then there is a g-scaled network congestion
game with resource-dependent demands with costs equal to c that does not possess a PNE. Let such c be given.
Lemma 1 implies the existence of a two-player game G with costs equal to c that does not possess a PNE.
The construction of G involves six mutually disjoint sets of resources R11R21Q

−
1 1Q

+

1 1Q
−
2 1Q

+

2 ∈ 2R such that
A1 = 8R1 ∪R2 ∪Q−

1 1Q
+

1 9, and A2 = 8R1 ∪Q−
2 1R2 ∪Q+

2 9, where for i ∈ 81129 always one of the two sets Q−
i and

Q+

i is empty. In addition, there are x1 y1� ∈ �>0 such that the players’ demands equal d11 r = x for all r ∈ R,
d21 r = y for r ∈R1 ∪Q−

2 , and d21 r = y+ �, otherwise.
Because G is finite, there is � > 0 such that G does not possess a �-approximate PNE. To obtain a game

with network structure, we slightly modify G by adding additional resources to each of the players’ strategies
without changing the equilibrium structure of the game. Let k1k′ ∈�>0 be such that

�4k+ 15g4y5c4y5− 4k′
+ 15g4y+ �5c4y+ �5�<�/20 (24)

Such k1k′ exist since c4y5 > 0 and c4y+ �5 > 0. Let m ∈� be such that

m · g4y5 · min8c4y51 c4x+ y59 > g4y5c4y50 (25)

We add k+k′ +2m+6 new resources with cost function c. We pick k+k′ +2m of the new resources and partition
them into subsets Pk1 P

′
k′ 1 Pm1 P

′
m with cardinalities �Pk� = k1 �P ′

k′ � = k′1 �Pm� =m1 �P ′
m� =m. The remaining 6 new

resources are called p11 : : : 1 p6. The demand of player 1 equals x for all new resources. Player 2 uses all new
resources with demand y except for the resources contained in P ′

k′ ∪ 8p69, which she uses with demand y+ �.
Consider the network game Gdn shown in Figure 4(a). The feasible allocations are equal to the sets of their

respective 4ui1 vi5-paths, i.e.,

A1 = 8Q−

1 ∪ 8p19∪R1 ∪Pm ∪R2 ∪ 8p391Q
+

1 ∪ 8p29∪P ′

m ∪ 8p4991

A2 = 8Q−

2 ∪Pk ∪R1 ∪ 8p591Q
+

2 ∪P ′

k′ ∪R2 ∪ 8p691Q
−

2 ∪Pk ∪R1 ∪Pm ∪R2 ∪ 8p6990

Using (25), we observe that the third strategy Q−
2 ∪ Pk ∪R1 ∪ Pm ∪R2 ∪ 8p69 of player 2 is strictly dominated

by her first strategy Q−
2 ∪Pk ∪R1 ∪ 8p59. This implies that player 2 does not use her third strategy in any PNE.

Compared to G, the payoff of player 1 is decreased by the constant mg4x5c4x5. The payoff of player 2 for
her first allocation is decreased by −4k + 15g4y5c4y5 and the payoff of her second allocation is decreased by
−4k′ + 15g4y + �5c4y + �5. Using (24) and the fact that the initial game G does not possess a �-approximate
PNE, we conclude that Gdn does not possess a PNE. �
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We are ready to state our characterization theorem for network congestion games with resource-dependent
demands.

Theorem 10. Let C 6= � be a set of continuous functions and let g be a scaling function. Then, the following
are equivalent:

(1) C is consistent for g-scaled directed-network congestion games with resource-dependent demands.
(2) C is universally consistent for g-scaled directed-network congestion games with resource-dependent

demands.
(3) At least one of the following two cases holds:

(a) C contains only constant functions.
(a) g4x5≡ x, and C contains only affine functions.

Sketch of proof. As shown in previous work (Harks and Klimm [16, Theorem 6.2]), every set of cost
functions that is consistent for network weighted congestion games may only contain affine functions or only
contain exponential functions. Given this observation and the fact that the GMC is also necessary for consistency
for network games (Lemma 6), the result can be proven analogously to Theorem 6.

This characterization of consistency is even valid for games with three players.

6.2. Network congestion games with variable demands. We proceed to characterize the set of consistent
cost functions for network congestion games with variable demands.

Lemma 7. Let g be a scaling function and c be a differentiable and convex cost function that is strictly
positive on �>0 and has the property that c′/c is injective on �>0. If c is consistent for g-scaled directed-network
congestion games with variable demands, then c satisfies the GMC for g.

Proof. Let g be an arbitrary scaling function and let c be a cost function with the demanded properties that
is consistent for g-scaled congestion games with variable demands. For a contradiction, let us assume that c
does not satisfy the GMC for g. The generalized monotonicity lemma for directed networks (Lemma 6) implies
the existence of a g-scaled network congestion game with resource-dependent demands and costs equal c on
all resources not possessing a PNE. We modify this construction to obtain a directed network congestion game
with variable demands not possessing a PNE. First, we define the players’ sets of feasible demands setting
�1 = �1 = x, �2 = y, and �2 = y + �. Next, consider the network game shown in Figure 4(b). Because the cost
player 2 experiences on the edge 4w21 v25 is bounded by maxz∈6y1 y+�7 g4z5c4z5 and the cost functions are strictly
positive, we can make the path Pm′ sufficiently long such that the unique strategy of player 2 containing Pm′ is
strictly dominated.

Our goal is to enforce player 2 to use the demand y when on her left path u2 → w1 → w2 → v2 and the
demand y + � when on her right path u2 → w3 → w4 → v2. As in Lemma 5 this can be achieved by adding
additional resources to every strategy of player 2, where the additional resources contained in the left path are
used by an additional third player. Thus, for k ∈ �, we add additional paths Rk

1, Rk
2 containing k additional

edges. We also add a third player associated with the source-sink pair 4u31 v35 whose only strategy is to follow
the paths u3 →w1 → v3.

Along the same chain of reasoning as in Lemma 5, we can choose k large enough and an appropriate utility
function of player 2 such that player 2 always uses the demand y when allocated on her left path and the demand
y+ � when allocated on her right path. Then, using that the network congestion game with resource-dependent
demands has no PNE implies that also the network congestion game with variable demands does not possess a
PNE. �

We obtain the following result analogously to Theorem 6.

Theorem 11. Let C 6= � be a set of continuous functions and let g be a scaling function. Then, the following
are equivalent:

(1) C is consistent for g-scaled directed-network congestion games with variable demands.
(2) Exactly one of the following two statements holds:

(a) C only contains homogeneously exponential functions of type c4x5= ace
�x, where ac ∈�>0 may depend

on c, and � ∈�>0 must be equal for all c ∈C;
(b) g4x5≡ x, and C only contains affine functions of type c4x5= acx+ bc, where ac ∈�>0, bc ∈�≥0.
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7. Conclusions. We considered the fundamental problem of the existence of pure Nash equilibria and the
AFIP in congestion games with variable demands. Several characterizations of the cost structure with respect
to the existence of a PNE and the AFIP have been obtained. Since games with variable demands are general
enough to closely capture many elements of practical applications, we are confident that our results help to
understand the behavior of myopic play in real systems.

Although this paper addressed the existence of a PNE and the approximate finite improvement property with
respect to the cost structure (without constraints on the strategy spaces and the utility functions), it is natural
to ask for combinatorial properties of the strategy spaces that ensure the existence of pure Nash equilibria for
general cost functions. In light of the positive result of Ackermann et al. [1] for weighted congestion games
on matroids, particularly congestion games with variable demands where the set of feasible allocations of every
player form the basis of a matroid are a promising avenue for future work. Alternatively, one can restrict the
set of feasible utility functions (e.g., assume linear functions) and ask for the existence of a PNE. Also, as for
weighted congestion games, the case of symmetric strategy spaces is not well understood.

Another interesting research direction is to investigate the prices of anarchy and stability in congestion games
with variable demands. In particular, it would be very interesting to compare the prices of anarchy and stability of
congestion games with variable demands and unrestricted demands with known results for weighted congestion
games.

As shown in this paper, the concept of essential improvement moves may help to show the existence of pure
Nash equilibria in games that do not admit a potential function. It would be interesting to see this technique
being applied to further classes of games for which the FIP does not hold but where it is conjectured that a PNE
exists (as, e.g., in weighted singleton congestion games with player-specific linear cost functions; see Gairing
et al. [10] and Georgiou et al. [11]).
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