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chosen location. We show that each game in this class possesses a pure Nash equilibrium whenever the
players’ utility functions satisfy the assumptions negative externality, decreasing marginal utility, continuity,
and Location-Symmetry. We also provide examples exhibiting that, if one of the assumptions is violated,
a pure Nash equilibrium may fail to exist.
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1. Introduction

We introduce a class of aggregative games that combines the
characteristics of finite games, such as congestion games, and
continuous games, such as Cournot oligopolies. As an example of a
game in this class, consider a multimarket oligopoly in which each
firm may offer a positive quantity on exactly one market only, but
is free to choose the market out of a set of feasible markets. This
situation arises, for instance, if governmental policies oblige each
firm to be engaged in at most one market at a time, e.g., by issuing
only a single license per firm. Mathematically, the restriction on
a single positive quantity renders the strategy space to be non-
convex. As a consequence, standard tools, such as fixed point
theorems a la Kakutani, are not directly applicable to establish the
existence of equilibria.

In this paper, we consider a general class of aggregative games
that includes multimarket oligopolies with licenses discussed
above as a special case. Formally, let A be a finite set of locations and
N = {1, ..., n} be a finite set of players. Each player is associated
with a non-empty subset A; C A of feasible locations and a non-
empty and compact interval of non-negative quantities Q; feasible
to her. In a strategy profile, each player i chooses simultaneously
both a feasible location a; € A; and a feasible quantity q; € Q;. We
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require that the utility of each player depends solely on the location
chosen, her own quantity, and the aggregated quantity of all other
players choosing the same location. It is a useful observation that
for such an aggregative game the utility of each player i in strategy
profile (a, q) = (a1, ..., an, q1, ..., qy) canbe represented by a set
of indirect utility functions v; , : Rog X Ryg — R,i € N,o € A;so
thatu;(a, Q) = vi(4i, £-iq(a, q)), where, for an arbitrary location
o € A,we denoteby {_;,(a,q) = ZjeN\{i}:aj:ﬁ q; the aggregated
quantity of all players except i on location o.

We impose the following four assumptions on the player’s
indirect utility functions. The first assumption, called “Negative
Externality”, requires that the indirect utility of a player does
not increase if the aggregated quantity of the other players on
the same location increases. Informally, the second assumption
“Decreasing Marginal Utility” requires that, for every player, the
marginal indirect utility function exists and decreases if both
the player’s quantity and the aggregated quantity of the chosen
location increase.! Third, we require that the indirect utility
functions of each player are continuous. The last assumption is
called “Location-Symmetry” and requires that, for each player i,
we have v;, = v;; forallo, T € A;.

We prove that aggregative games for which the indirect utility
functions satisfy “Negative Externality”, “Decreasing Marginal

1 Asa consequence of this assumption, players will lower their quantities when
their competitors raise their quantities. Thus, this assumption can also be seen as a
variant of “strategic substitutes” (Bulow et al., 1985; Dubey et al., 2006).
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Utility”, “Continuity”, and “Location-Symmetry” possess a pure
Nash equilibrium. To prove this existence result, we devise an
algorithm that computes a pure Nash equilibrium. Our algorithm
relies on iteratively computing a partial equilibrium on every
location separately using Kakutani’s fixed point theorem. Here,
a partial equilibrium is a strategy profile that is resilient against
unilateral quantity deviations. Given a partial equilibrium, the
algorithm selects a single player who can strictly improve and
computes for this player a best reply. After such a best reply it
recomputes a partial equilibrium and reiterates. We prove that a
player-specific aggregated quantity vector of the partial equilibria
lexicographically decreases in every iteration and, thus, the
algorithm terminates after a finite number of iterations. A perhaps
surprising property of our proof is that even though we iteratively
recompute a partial equilibrium - using Kakutani’s theorem as a
black box - there is enough structure of such a partial equilibrium
to prove that the algorithm terminates. For games with only
two players, we prove that the assumption “Location-Symmetry”
is not needed to guarantee the existence of an equilibrium,
i.e,, already “Negative Externality”, “Decreasing Marginal Utility”,
and “Continuity” of the players’ indirect utilities are sufficient to
yield the existence of a pure Nash equilibrium. To demonstrate the
usefulness of our results, we give concrete examples of games that
fit into our model: restricted multimarket oligopolies, congestion
games with variable quantities, and multiserver queuing games.
For all these examples, to the best of our knowledge, we establish
for the first time the existence of a pure Nash equilibrium.

1.1. Related work

Many works on the existence of Nash equilibria in strategic
games impose strong assumptions on the topological properties of
the players’ strategy sets. Most prominently, Nash’s famous exis-
tence result for equilibria in mixed extensions of finite games uses
the fact that the mixed strategy set of each player is the simplex
spanned by her pure strategies and, thus, a well-behaved convex
and compact subset of some Euclidean space. The existence of a
mixed equilibrium is then established via the fixed point theorems
of Kakutani (cf. Nash, 1950a) or Brouwer (cf. Nash, 1950b).? For
these fixed point arguments, however, the convexity of the (mixed)
strategy sets is crucial. We are interested in pure Nash equilibria in
this work, and, for our class of games, the strategy space of a player
is not necessarily convex.

A strategically equivalent game to ours with convex strategy
space can be obtained by taking the convex hull of the strategy
space and assigning sufficiently low utility values for infeasible
strategies. This method inevitably leads to games with discontin-
uous utility functions. There is a substantial body of literature on
discontinuous games that identifies conditions under which an
equilibrium exists (cf. Barelli and Meneghel, 2013, Bich, 2009, Car-
mona, 2009, 2011, Dasgupta and Maskin, 1986, McLennan et al.,
2011, Reny, 1999 and Simon, 1987). To the best of our knowl-
edge, the currently most general sufficient condition for the ex-
istence of an equilibrium is given by Barelli and Meneghel (2013)
using the concept of continuous security. In Appendix B.2, we show
that this condition is not satisfied for our class of games. It is also
straightforward to show that our games are not supermodular (see
Appendix B.3) which prevents us from the application of Tarski’s
fixed-point theorem or further comparative statics analysis (cf.
Amir, 1996, Milgrom and Roberts, 1990; Milgrom and Shannon,

2 Further generalizations of Kakutani's fixed point theorem to strategy spaces
that are non-empty, convex and compact subsets of Hausdorff locally convex
topological vector spaces can be found in Debreu (1952), Fan (1952), and Glicksberg
(1952).

1994, Roy and Sabarwal, 2010, Tarski, 1955, Topkis, 1979, 1998 and
Vives, 1990 for works in this field).

Closer to our work, Dubey et al. (2006) considered a class of
games, for which the strategy set of each player is a compact
and possibly non-convex subset of the non-negative real line, and
the utility of each player depends only on her own strategy, and
the sum of the others’ strategies. They derived the existence of
a pure Nash equilibrium assuming that there exists a selection
from the best reply correspondence of each player, which is non-
increasing or non-decreasing in the aggregated strategy of the
other players.> This assumption is met, e.g., by Cournot oligopolies.
Jensen (2010) generalized the work of Dubey et al. and Kukushkin
as he allows for higher dimensional strategy sets. In Jensen’s
model, the utility of each player only depends on her own strategy
and a one-dimensional aggregate of the strategies of the other
players. In particular, the aggregate is independent from the own
strategy. This is in contrast to our model where the utility of a
player depends on the chosen location, her own quantity, and
the aggregated quantity of all other players that choose the same
location.

Very recently, Martimort and Stole (2011) presented several
characterizations of equilibria in aggregative games which lead,
however, not directly to existence results. Only for special cases
(such as affine utilities) they establish sufficient conditions for the
existence of an equilibrium.

An extended abstract of this paper appeared in the Proceedings
of the 5th Workshop on Internet and Networks Economics (Harks
and Klimm, 2011a).

1.2. Paper outline

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce our basic model of an aggregative game and
the assumptions that we impose on the players’ utility functions.
In Sections 3.1 and 3.2, we provide our main results for the exis-
tence of a pure Nash equilibrium in games with an arbitrary num-
ber of players and two-player games, respectively. In Section 3.3,
we discuss how the assumptions “Continuity” (CON) and “Loca-
tion-Symmetry” (LOC) can be weakened. In Section 4, we demon-
strate the usefulness of our results by giving several applications
that fit into our model. In Appendix A, we complement our results
and show that if one of our assumptions on the indirect utility func-
tions is violated, then there is a game without a pure Nash equilib-
rium. In Appendix B, we discuss the relationship of our existence
result to known results for potential games, discontinuous games,
and supermodular games.

2. The model

Let A be a finite set of locations and let N = {1,...,n} be a
finite set of players. For each playeri € N we are given a closed
interval Q; = [oy, w;] € R of feasible quantities and a subset
A; C A of feasible locations. A strategy of player i is a tuple (a;, q;)
where q; € A; is a feasible location and q; € Q; is a feasible quantity
for player i. A strategy profile of the game is a tuple (a, q) where
a = (ay,...,a) is the location profile and ¢ = (qq, ..., qy) is
the quantity profile. Note that for |A;] > 1, embedding A; into N
renders the strategy space S; = A; x Q; into a non-convex subset of
Rio. For a location ¢ € A, and a strategy profile (a, q), we denote
by ¢, (a, q) = ZjeN:Gj:a q; the aggregated quantity on location o

3 See also Kukushkin (1994, 2004) for related results on the existence of
equilibria and the convergence of improvement dynamics in finite non-convex
games satisfying strategic complementarities and substitutes.
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and by ¢_;,(a,q) = ZjeN\{i]:aj:a qj the aggregated quantity of all
players except i on location o.

Throughout this paper, we assume that games are aggregative,
i.e., the utility of player i under strategy profile (a, q) depends
solely on the location a;, the quantity g; chosen by player i, and
the aggregated quantity of other players with the same location
£_iq(a, q). For each player i and each of her feasible locations
o € A; we represent her utility by an indirect utility function
Vio : Ryp X Ryo — R. The utility of player i under strategy profile
(a, q) is then defined as u;(a, q) = vjq(qi, {—iq,(a, q)). Given a
strategy profile (a, q) a strategy (a;, q;) € S; is a better reply of
player i to (a, q) if ui(a}, a_i, ¢}, q—)) > ui(a, q); it is a best reply
if ui(a}, a_i, q}, q—) > wi(a}’, a_;, q/, q—) for all (a/, q/) € S;. The
strategy profile (a, q) is a pure Nash equilibrium if, for all players i,
the strategy (a;, q;) is a best reply to (a, q).

We make the following four assumptions on the indirect utility
functions v; , of player i and location o € A;. The first assumption
is called “Negative Externality” and requires that the indirect
utility of every player increases as the aggregated quantity of other
players with the same location decreases.

Assumption 1 (Negative Externality (EXT)). For alli € N, o € A;
and x € Q;, the indirect utility function v; , (x, -) is non-increasing
in the second entry, i.e., v, (X,¥) > vi,(x,y) forally,y’ € Ry
withy <y'.

This assumption is natural when players compete over
scarce resources to satisfy their quantity and has been made
explicitly or implicitly in various contexts ranging from Cournot
oligopolies (Cournot, 1838; Johari and Tsitsiklis, 2005) and
Cournot oligopsonies (Naylor, 1994; Tirole, 1988) to traffic and
communication networks (Beckmann et al., 1956; Haurie and
Marcotte, 1985; Kelly et al., 1998), and biology (Milinsky, 1979).

The second assumption is called “Decreasing Marginal Utility”
and requires that, for each player with a non-trivial interval of
feasible quantities, the marginal indirect utility function exists and
decreases if the player’s quantity and the aggregated quantity of
the chosen location increase.

Assumption 2 (Decreasing Marginal Utility (DMU)). For alli € N
with o; < w; and o € A;, the indirect utility function v; (-, -)
is piece-wise continuously differentiable in the first entry and
satisfies

O Vi (%, y) > 3 vie (X, YY) (1)

forall x € [a;, w;), X € (o, wi] withx < ¥ andx+y < x' + Y/,
where at least one of the two inequalities is strict.

In the above assumption, we denote by 8; v; , and 3, v; , the right
and left partial derivatives of v; , with respect to the first entry,
respectively.

The assumption “Decreasing Marginal Utility” implies in
particular that v; , is concave in the first entry.* Further, it requires
that player i’s marginal utility function strictly decreases if both the
player’s own quantity and the aggregated quantity on a location
increases (and one of these quantities increases strictly). As a
consequence, in a game that satisfies this assumption, players will
lower their quantities when other players increase their quantities
and, thus, “Decreasing Marginal Utility” can be interpreted as a
form of “strategic substitutes” in the sense of Bulow et al. (1985)
and Dubey et al. (2006). We remark that if for some i € N it holds

4 In telecommunication networks, strict concavity of the utility function in the
quantity is justified by application-specific characteristics such as the rate-control
algorithm used in common congestion control protocols (cf. Kelly et al., 1998;
Shenker, 1995).

that «; = wj, then “Decreasing Marginal Utility” is by convention
satisfied.

As a third assumption, we require that the indirect utility
functions are continuous.

Assumption 3 (Continuity (CON)). For alli € N and o € A; the
indirect utility function v; , is continuous.

It is worth noting that we need this assumption only to prove
that, for each location profile a = (ay, ..., a,), there are quantities
q = (q1, ..., qn) such that no player can improve her utility by
unilaterally changing the demand while leaving the location fixed;
see Proposition 5. While continuity (together with decreasing
marginal utility) is clearly sufficient for the existence of such partial
equilibria (as we term such strategy profiles), we may slightly
generalize our results by replacing the continuity assumption with
any other assumption that guarantees the existence of such partial
equilibria. This is discussed more formally in Section 3.3.

The next assumption “Location-Symmetry” imposes that play-
ers have no a priori preferences over locations, i.e., each player’s
utility is solely defined by her own quantity and the aggregated
quantity of the chosen location and not by the identity of the loca-
tion itself.

Assumption 4 (Location-Symmetry (LOC)). For alli € N, we have
Vie = Vi, forallo, T € A

Note that “Location-Symmetry” does not require symmetry
among players, i.e., we still allow v; # vj for i # j. We only require
that every player is indifferent between any two feasible locations
as long as their own quantity and the aggregated quantity on
these locations is equal. Clearly, “Location-Symmetry” is the most
restrictive and controversial assumption. We show, however, that
without Location-Symmetry, there are games without a pure Nash
equilibrium. It should be noted, that for our main result to hold,
we can slightly weaken “Location-Symmetry” by only requiring
that the player-specific indirect utility functions are only equal up
to location-specific shifts on the resources. This result is formally
proven in Section 3.3.

3. Existence of pure Nash equilibria

We give two existence results for pure Nash equilibria in ag-
gregative games. We first show that aggregative games satisfy-
ing the assumptions “Negative Externality” (EXT), “Decreasing
Marginal Utility” (DMU), “Continuity” (CON), and “Location-
Symmetry” (LOC) always possess a pure Nash equilibrium. For ag-
gregative games with only two players, we prove the existence
of a pure Nash equilibrium under the weaker assumption that
only Continuity (CON), Negative Externality (EXT) and Decreasing
Marginal Utility (DMU) are satisfied. In Appendix A, we show that
if any of the assumptions is dropped, then there are instances with-
out a pure Nash equilibrium.

To prove our results, we introduce the concept of a partial equi-
librium. The strategy profile (a, q) is called a partial equilibrium, if
ui(a, q) > ui(a, q;, q—;) foralli € N and q; € Q;. Using Kakutani’s
fixed point theorem, it follows that under assumptions CON and
DMU for every location profile a € A, there exists a partial equilib-
rium of the form (a, q).

Proposition 5. Let G be an aggregative game for which the indirect
utility functions satisfy CON and DMU. Then, for every location profile
a, there exists a quantity profile ¢ = (qy, . . ., qn) with q; € Q; for all
i € N such that (a, q) is a partial equilibrium.



214 T. Harks, M. Klimm / Journal of Mathematical Economics 61 (2015) 211-220

Proof. Let abe an arbitrary location profile. Consider the restricted
game G with A; = {a;}. In G, the strategy space of each player
reduces to the convex and closed interval Q; € R.. Using CON and
DMU, the utility function of each player is continuous and concave.
By Kakutani’s fixed point theorem, a pure Nash equilibrium q of G
exists and, by construction, (a, q) is a partial equilibrium of G. O

Remark 6. The existence of a partial equilibrium can be derived
under weaker assumptions than CON and DMU on the utility
functions, e.g., those required in Jensen (2010) and Dubey et al.
(2006).

The following lemma will be important throughout this paper.
It expresses the first-order optimality conditions of a partial
equilibrium. The proof is straightforward and left to the reader.

Lemma 7. Let G be an aggregative game for which the indirect utility
functions satisfy DMU, and let (a, q) be a partial equilibrium of G.
Then, for alli € N with a; < w; the following conditions hold:

1. 0 vig (g1, L-iq;(a, @) < 0, if gi < wy.
2. 97 i (g1 £-ig(a, Q) > O, if g > .

Foralocationo € A, we define the active set onlocation o under
strategy profile (a, q) as N, (a, q) = {i € N : a; = o}. We need the
following lemma.

Lemma 8 (Uniqueness Lemma). Let G be an aggregative game for
which the indirect utility functions satisfy DMU, and let (a, q) and
(d', q') be two partial equilibria of G. Then, the following holds:

1. ¢,(a,q) = £L,(d, q) forallo € Awith N, (a, q) = N,(d, q').
2. Ly(a,q) < l,(d,q) foralloc € Awith N, (a,q) C N, (d, ¢).

Proof. It suffices to prove 2. If, for a strategy profile (a, q), we have
N, (a, q) = @, then £, (a, q) = 0 and there is nothing left to show.
For the sake of a contradiction, suppose that there is a location
o € Awith ¢,(a,q) > £,(d,q) and @ # N,(a,q) € N,(d, q).
This implies the existence of a player i € N, (a, q) with ¢; > q.
In particular, we have w; > ¢q; > qlf > «;. The conditions of
Lemma 7 for a partial equilibrium give d; v (i, £—i. (a, q)) > 0
and ;v (g, £—i.0 (@', q')) < 0. We get

0> 3 vio(q), t-ix(d, q)) T 3y Vio (i, L—io (a, @)

a contradiction. The strict inequality is based on the assumption
DMU using q; < g;and £,(d’, q') < €,(a,q). O

3.1. Multiplayer games

We are now ready to prove the existence of a pure Nash equi-
librium in aggregative games with an arbitrary number of players.
We claim that the following iterative Contraction-Switching pro-
cedure converges to a pure Nash equilibrium after a finite number
of iterations.

1. Start with an arbitrary strategy profile (a, q).

2. Contraction phase: Compute a partial equilibrium (a, q).

3. Switching phase: If there is a player i with a better reply to
(a, ), pick a best reply (a;, ;). set (a, q) = (a}, a_;, q;, G—;) and
proceed with 2. Else, return (a, q).

In Step 2, we actually call an oracle that takes as input a strategy
profile (a, q) and returns a partial equilibrium of the form (a, ¢). By
Proposition 5, this is always possible.

In the following, we show that this procedure ends after finitely
many steps (involving finitely many calls of the oracle) and outputs
a pure Nash equilibrium. The following properties are the key to
prove that the Contraction-Switching procedure terminates.

Lemma9. Let G be an aggregative game for which all indirect
utility functions satisfy EXT, DMU, and LOC. Let (a, q) be a partial
equilibrium of G, let (a,q}) be a best reply of player i with
ui(a, a_i, q;, q—) > u;(a,q) and let (a;, a_;, §i, 4—;) be a partial
equilibrium. Then, the following properties hold:
1. Za; (a;, ai, q;, q—i) < £q;(a, q) (Switching Property)
2. Ly (aj, a_y, Gi, G—;) < £y (a}, a_y, q;, 9—;) (Contraction Property)
3. Za:. (a;, a_, Gi, G—i) < Ka;. (a, g) (Monotonicity Property).
Proof. We begin proving the switching property. For the sake
of a contradiction, assume £, (a}, a_;, q;, q—i) > £q(a, q). We
distinguish the following three'cases:

First case g; > g;: As (a, q) is a partial equilibrium and q; < q; <
wj, by Lemma 7, we have 0 > 9, v; o, (gi, £—i q,(a, 9)). We calculate
0 >

a;— Vi,q; (Qi, Zfi,a,- (av Q))
DM

U, ,
> 3 via (47 €oig (@), 0=, 47, 4-0))

LOC — / /
= O vig (5 g (@), azi 47, 4-)

> 0,
which gives a contradiction. The second inequality follows from
the assumption DMU. The last inequality stems from the facts that
(a;, q;) is a best reply of player i and that q; > q; > «;.

Second case q; = ¢;: This implies E,,-,alg(ag, a_i, g, q—i) >
£_;q(a, q), hence, using the assumptions LOC and EXT, we obtain

ui(al/‘a a—i, q:v q—i) = vi,a; (qiv z71',11; (al/V a—i, q;7 q—i))

Loc ’

= vi,ai (q,‘a g—i,a; (a;7 a—i, q:7 Q—i))
EXT

g Ui.al- (qi7 e—i,ai (as q))

= ui(a, q).
We derive that player i does not strictly improve her utility, a
contradiction.

Third case q; < g;: Observe that E_,-’axg(ag,a_,-,qlf,q_,') >
£_iq(a, q) as q; < g;. Consider the strategy (a;, q;) of player i. We
obtain
qi, —iq (@i, a_i, 4}, g—))
a4, —iq;(a, Q)

g, _iq(a, Q)

!
ui(a;, a_, q;, 4—i) = Vig

|
&
2
—_ o~

> vig (4 Coiq (@, asi, 47, 4-0)
= u(a, a_i, q;, 4-i)
> ui(a, q),
where the first inequality uses EXT and the second inequality uses
the assumption that (a}, g;) is a better reply of player i. Thus, (a, q)
is not a partial equilibrium and we reach a contradiction.
We proceed to prove the Contraction Property. For the sake
of a contradiction, let us assume that ﬁal{ (@, a_i, Gi, G—i) >

Eﬂx{ (a;, a_i, q;, q—;). Then, at least one of the following two cases
holds: Either g; > ¢ or there is another player j €
Nal((a,f,a,,-,ﬁi,?],i)\{i} with §; > ¢. If g > ¢}, we have
3 viq (dis ¢-i0 (@}, a-i, 4}, q-)) < Ousing the fact that (], ) was
a best reply of player i and that q; < ¢; < w;. By DMU, we then
obtain

0 > & vig(d € iq(@, ai g, q-))

DMU _ _ ~ ~ o~
> 9 Vi (G i (@), a2, G G-0)

>Oa
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a contradiction. The last inequality stems from the fact that
(a;, a_;, G, G—;) is a partial equilibrium and §; > q; > ;.
If there is, on the other hand, j € Ny (a;, a_;, Gi, q—)\{i} with

g > ¢q;, then we have 0 > ajvj,a; (aj. . a, q)) as (a, q) was
a partial equilibrium and ¢; < ¢; < w;. We then get the same
contradiction as for player i.

The monotonicity property follows directly from Lemma 8 (2).

O

We are now ready to state and prove our main result.

Theorem 10. For aggregative games, assumptions CON, EXT, DMU
and LOC yield the existence of a pure Nash equilibrium.

Proof. Using the previous lemmata, we proceed to prove that the
Contraction-Switching procedure terminates for any given starting
profile (a, q). First notice that there are only finitely many location
profiles a = (a;);en as both the number of players and the number
of locations is finite. We show that each possible location profile is
visited at most once in the Contraction-Switching procedure.

To this end, we consider for a strategy profile (a, q), the vector
L@, q) = (L@, Dien = (€q(a, @), We shall prove that
£L(a, q) strictly decreases with respect to the sorted lexicographical
order <|ey that is defined as follows: For two vectorsu, v € R;O we
say that uis sorted lexicographically smaller than v, written u <jex v,
if there is an index k € {1, ..., n} such that uy4 = vy for all
i < kand u;x < vy where 7 and v are permutations that
sort u and v non-increasingly, i.e., Ur(1y > Ur2) = -+ > Uy@m) and
Vy(y 2 Vy) 2 2 Vy@m-

To see that £(a,q) decreases with respect to the sorted
lexicographical order, let (a, q) be an arbitrary strategy profile
and let (a;, q}) be a best response of player i as computed in
Step 3 in the algorithm. Denote by (a}, a_;, §) a partial equilib-
rium. For every player j € N\(Ng(a,q) U Ny (a, q)) we have
£Lij(a,q) = £Lj(a;, a_;, q;, q_;). The Switching Property proven in
Lemma 9 ensures that the aggregated quantity on the new lo-
cation a; stays strictly below that of the old location g;, thus,
Li(a, a_i, q;, q—) < Li(a, q). The Contraction Property ensures
that, after the new set of players on the new location a] settles to a
partial equilibrium, the aggregated quantity will not increase, i.e.,
Lila, a-,q) < L@}, a-i, q;, g for all j € Ny(aj, a—;, g). This
implies £(a}, a_;, §) < Li(a, q) forallj Ny (a;, a_;, q). By the
Monotonicity Property we have £;(a}, a_;, §) < <Li(a, q) for all
Jj € Ng(a;, a_;, g). Thus, the entry £;(a, q) of player i strictly de-
creases to «£;(a;, a_;, ) and none of the changed entries becomes
larger than £;(a, q), hence, the whole vector lexicographically de-
creases after every iteration of the Contraction-Switching proce-
dure. This fact, together with the uniqueness of the aggregated
quantity vector proven in Lemma 8, implies that the algorithm
never visits the same location profile twice and, thus, terminates
after finitely many steps. 0O

Remark 11. From a methodological point of view, the proof of
Theorem 10, i.e., the convergence of the contraction-switching
process, combines Kakutani’s fixed-point theorem (which is in
general applicable to strategy spaces that are non-empty, convex
and compact subsets of Hausdorff locally convex topological vector
spaces) with a combinatorial argument using a lexicographical
potential function (which is usually applicable to finite discrete
strategy spaces).

3.2. Two-player games

We now consider aggregative games with only two players.
For this class of games we show that the assumptions CON,

EXT and DMU are enough to guarantee the existence of a pure Nash
equilibrium.

Theorem 12. For two-player aggregative games, assumptions CON,
EXT and DMU yield the existence of a pure Nash equilibrium.

Proof. We shall prove that the following procedure computes a
pure Nash equilibrium. Start with the empty strategy profile for
player 2 (or simply remove player 2 from the game) and let player 1
choose a strategy (a;, q;) that maximizes her utility. Then, let
player 2 enter the game and choose a best reply (a3, ¢2) to (ai, q1).
Ifa, # a,, we have reached a pure Nash equilibrium as EXT implies
that player 1 has no interest in switching to location a,. We proceed
to analyze the remaining case a;, = a. Let 0 = a; and let
(0,0, {1, q2) be a partial equilibrium. We first show that q; < q;.
For the sake of a contradiction, suppose q; > ;. Because q; <
g1 < wi, we have 97 v1,,(q1,0) < 0 as (o, q1) was a strategy
maximizing the utility of player 1 assuming that player 2 is not
present in the game. On the other hand, we have 3, v1 ,(q1, §2) >
0asq; > ¢ > a7 and (0,0, (1, q2) is a partial equilibrium.
Using DMU, we obtain 0 > 9 v1,(q1,0) > 9; v1.5(q1,G2) > 0,
a contradiction. Next, we show u, (o, 0, G1, G2) > Uy (0, 0, q1, G2)-
To see this, note that

uy(0,0,01,q2) = V26(q2, G1) > v2,6(q2, G1)
EXT
> V2,0(q2, q1)
= uz(as o,q1, qz)a

where the first inequality uses the fact that (¢, o, G1, G) is a partial
equilibrium and the second inequality stems from the assumption
EXT and the fact that §; < q.

Using that uy(o, 0, 1, G2) > Uy(o, 0, q1, q2) and that (o, q3)
was a best reply of player 2, there is no better reply of player 2
to (0,0, q1, ). If player 1 does not want to deviate as well, we
have reached a pure Nash equilibrium. Thus, the only remaining
case is that player 1 deviates profitably to a best reply (a}, q) with
a; # o.Then, let (o, q,) be a best reply of player 2 to (a, q}).
Using EXT, we derive that player 2 does not want to leave location
o as (o, qz) was a best reply to (o, q1). Furthermore, as shown
in Lemma 8, g, > G, which implies that player 1 does not want
to switch back to location o and we have reached a pure Nash
equilibrium. 0O

3.3. Weakening of the assumptions

The Continuity assumption CON is only needed in Proposition 5
to establish the existence of partial equilibria. Thus, it is straightfor-
ward to replace it by the weaker assumption “Consistency” (CON’)
that is defined below.

Assumption 13 (Consistency (CON’)). For every location profile a,
there exists a quantity profile ¢ = (qy, . .., g,) with ¢; € Q; for all
i € N such that (a, q) is a partial equilibrium.

The Location-Symmetry assumption LOC can be replaced by
the weaker assumption LOC’ that is defined below.

Assumption 14 (Location-Symmetry’ (LOC’)). There is a non-
negative vector (ty)sea € R';\(‘) such that vis(qi, tc +y) =
Vir(qi, t; +y)forallie N,o,7 € A, qi € Q;,y € Ryp.

While in LOC it is required that for every player i, the indirect
utility functions are all equal across locations, i.e., vi, = v;, for
all o, T € A, the weaker assumption LOC’ only requires that the
indirect utility functions for two different locations must be equal
up to location-specific non-negative shifts in the second entry of the
indirect utility functions.

We proceed to show that we can replace CON by CON’, and
LOC by LOC’ in Theorem 10 and still get the existence of a pure
Nash equilibrium.
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Corollary 15. For aggregative games, assumptions EXT, DMU, CON’,
and LOC yield the existence of a pure Nash equilibrium.

Proof. As for the replacement of CON with CON’ note that
the Contraction-switching procedure is still well-defined and
terminates as proven in Theorem 10.

As for the replacement of LOC with LOC’, let G be an aggregative
game satisfying CON’, EXT, DMU and LOC’ and, for each location
o € A lett, > 0 be as required in the definition of LOC'. For
each 0 € A we introduce an auxiliary player i, with A;, = {o}
and Q;, = {t,}. For each player i of the original game G we define
new indirect utility functions v; , (x,y) = vis(x,y — t,) for all
o € A,x € Q;,y € Ry. The auxiliary players have a constant
utility function. Adding the auxiliary players, we obtain a new
game G that satisfies CON’, EXT, DMU and LOC and has the same
utilities for the original players as in the original game. Theorem 10
establishes that the thus constructed game possesses a pure Nash
equilibrium. O

4. Applications

We now present a series of examples that belong to the class of
aggregative games introduced in this article.

Restricted multimarket oligopoly. Consider a multimarket oligopoly
as proposed by Bulow et al. (1985), where a set of firms is
engaged in a set of markets.” The strategy of firm i is to choose
a production quantity q;, for each market o. All markets are
associated with an inverse demand function that maps the total
production quantity on that market to the respective market
price. The utility of each firm equals the profit from selling the
produced goods on the markets minus the production costs. Under
mild assumptions on the inverse demand and cost functions,
the existence of an equilibrium follows from Kakutani’s fixed
point theorem (cf. Kakutani, 1941). There are situations, however,
where firms cannot be engaged in all markets simultaneously. For
instance, governmental restriction policies may oblige each firm
to be engaged in at most one market at a time, e.g., by issuing a
license per firm (cf. Stahler and Upmann, 2008). Alternatively, the
firms’ short-term assets may only suffice to serve one market. In
these situations, a strategy of a player is to select one market and
a production quantity for that market.

Let A be a set of markets each endowed with a non-increasing
inverse demand function P,, o € A. In each strategy profile, each
player chooses both a market a; out of a player-specific set A; C A
of feasible markets and a production quantity q; € [«;, w;] for the
chosen market. Given a strategy profile (a, q), the utility of player i
is then defined as uj(a, q) = Py, (£q;(a, @) gi — Ci(g;). We call this
class of games restricted multimarket oligopolies.

We obtain the following result as a corollary of Theorems 10
and 12.

Corollary 16. Restricted multimarket oligopolies on markets with
identical and continuous, non-increasing and strictly concave inverse
demand functions and continuous, non-decreasing and convex
production cost functions possess a pure Nash equilibrium.

For games with two players a pure Nash equilibrium exists even if
the inverse demand functions are not identical.

Proof. One can easily verify that assumptions CON, EXT and
LOC are satisfied. Therefore, we here only check DMU. First
note that by continuity and concavity/convexity of the market
price/cost functions, for alli € N and o € A, the left and right

5 See also Topkis (1998, Section 4.4.3) for a generalization.

derivatives of the indirect utility function v;, exist and have the
form

Oy Vio(X,Y) =0 Po(x+Y) X+ Py(x+y) — 3 Ci(x)
A Vio(X,y) =0 P (x+y) - X+ Pr(x+y) — 3T Ci(x).

Leti € N and o € A; be arbitrary and let x, X' € Q; and
¥,Y € Rygbesuchthatx < ¥ andx +y < X' + y/, where at
least one inequality is strict.

If the second inequality is strict, i.e., x +y < X' + ¥/, we obtain

3 P, (x+y) > 3 P, (X +Y),

see Webster (1994, Theorem 5.1.3) for a reference. If, on the other
hand, the first inequality is strict, i.e., x < x, we use that

0P, (x+y) <3 Py(x+y) <0

as P, is non-increasing and strictly concave. Thus, in both cases, we
obtain

TP, (x+y) - x> P,(xX +y)-x.

Together with the convexity of C; and the assumption that P, is
non-increasing, this implies that DMU is satisfied. The result then
follows from Theorems 10 and 12. O

Congestion games with variable quantities. The class of congestion
games is a well-studied class of games introduced by Rosenthal
(1973). Because congestion games with weighted players and/or
player-specific costs may fail to have pure Nash equilibria® many
authors focused on singleton strategies. In such a game, a pure
Nash equilibrium is guaranteed to exist even when players are
weighted (Andelman et al., 2009; Even-Dar et al., 2007; Fotakis
et al., 2002; Harks et al., 2012; Rozenfeld and Tennenholtz, 2006)
or costs are player-specific (Konishi et al., 1997; Milchtaich, 1996).
However, games with weighted players and player-specific costs
need not possess a pure Nash equilibrium (Milchtaich, 1996).

Congestion games with weighted players and player-specific
costs are a special case of the class of aggregative games introduced
in this article. For each player i, the set of feasible quantities q; =
{q;} is contracted to a single point q; € R.( and the indirect
utility function is defined as v;q(a, 9) = —¢iq (€q(a, q)), where
g : Rso — Ris a player-specific cost function. It is not hard to
see that this class of games satisfies EXT if all cost functions are
non-decreasing and LOC if ¢;, = ¢j; foralli € Nando, 1 €
A;. The assumptions “Decreasing Marginal Utility” and DMU and
“Consistency” (CON’) are trivially satisfied as no player has a non-
trivial interval of feasible quantities.

We obtain the following immediate corollary of Theorem 10.

Corollary 17. Weighted congestion games with non-decreasing
player-specific costs that are identical per player possess a pure Nash
equilibrium.

For two-player games, we can refer to Theorem 12 instead and,
thus, the assumption that player-specific costs are identical per
player can be dropped. This existence of a pure Nash equilibrium
in two-player congestion games with player-specific costs has
already been shown by Milchtaich (1996).

The assumption that the quantity of each player is fixed seems
unrealistic for applications in which the quantity is reduced in
reaction to high congestion. In congestion games with variable
quantities, each player may adapt her quantity depending on the

6 See the counterexamples given in Libman and Orda (2001) for weighted
congestion games and Milchtaich (1996, 2006) for games with player-specific costs.
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level of congestion of the resources.” The incentive of each player i
to use high quantities is stimulated by a player-specific reward
function U; : R.o — R that defines the reward received from the
chosen quantity. Given a strategy profile (a, q), the utility of player
i is defined as u;(a, q) = Ui(q) — ¢iq;({q(a, q)). The following
observations establish the existence of a pure Nash equilibrium in
games with strictly concave rewards and strictly convex costs as
a direct corollary of Theorems 10 and 12. The proof uses similar
arguments as in the proof of Corollary 16 and is omitted.

Corollary 18. Congestion game with variable quantities and player-
specific costs functions possess a pure Nash equilibrium if all reward
functions are continuous, non-decreasing and concave and, for
each player, the player-specific costs functions are continuous, non-
decreasing, strictly convex and identical.

For games with two players a pure Nash equilibrium exists even
if the cost functions of each player i are not identical among the
resources.

Queuing games

Consider m parallel M/M/1 queues served in a first-come-
first-served fashion. There are n players with independent Poisson
arrivals, where the arrival rates are denoted by qy, ..., g,. Every
queue j has a single server with exponentially distributed service
time with mean 1/, u; > 0. A strategy of each player is to choose
a single server a; and to adjust her sending rate g; to the queue of
that server.®

For each player, there is a tradeoff between her sending rate and
the average experienced delay. Assuming that the server does not
drop packets the sending rate equals the throughput and, thus, the
delay can be computed as

1 _ 1
I"Lﬂ,' - Z QJ Mﬂ,‘ - Zai (a5 Q) .

JjeN:aj=a;

Da,- (aa q) =

For a player-specific parameter 6; € (0, 1] that trades off through-
put against delay, the utility function of player i is defined as’

ui(a, @) = viq(qi, €-iq(a, q))
__a
’ Da,- (a7 q)
= q:’I (Mai - Eai (aa Q))

Korilis and Lazar (1995) showed the existence of a pure Nash equi-
librium assuming a compact and convex strategy space in which
rates may be fractionally assigned to servers. Our model imposes
the combinatorial condition of using only a single server among a
set of servers. The following simple consequence of Corollary 15
shows the existence of pure Nash equilibria under this condition.

Corollary 19. Games on parallel M/M/1 queues possess a pure Nash
equilibrium.

7 This class of games has been introduced in previous work (Harks and Klimm,
2011b), where we considered a model in which players choose a quantity and
an arbitrary subset of locations (among a given set of subsets). We showed that
only affine or certain exponential cost functions yield the existence of a pure Nash
equilibrium. We did not study, however, the case of player-specific costs.

8 Note that the case of fractional assignments to the servers has been well studied
by previous works, cf. Korilis and Lazar (1995), Gai et al. (2011) and references
therein. In our model every player selects a single server among a player-specific
set of admissible servers. This requirement is crucial for time-critical applications,
because splitting data streams across several servers leads to packets arriving out
of order and packet jitter due to different server delays.

9 Asitis common in queuing theory, u;(a, q) = —00, if £, (a, q) > p%.

Proof. We check that assumptions CON, EXT, DMU and LOC’ are
satisfied. Corollary 15 then implies the result. For CON and EXT this
is trivial. As for DMU, let o € A; be arbitrary and let x, ' € Q; and
¥,y € Ryowithx +y < ¥ +y and x < X/, where one of the
inequalities is strict. We calculate

dvio X, y) = X" (uy — (x +y)) — &7
> 0:() (e — X +y)) — K)
= 8xvi,a (X/’ y),

proving that DMU is satisfied.
Condition LOC’ is satisfied as, for any two servers i, j, there are
G > Owith 1/(i +6) = 1/Gy +t). O

5. Conclusions

We presented a novel class of aggregative location games in
which a strategy of a player consists of a finite choice (i.e., choosing
one location out of a finite set of locations) and a continuous choice
(i.e., choosing a non-negative quantity out of a compact interval)
which renders the set of strategies non-convex. As our main
result, we proved the existence of a Nash equilibrium provided
that the players’ utility functions satisfy the assumptions CON,
EXT, DMU and LOC. We further demonstrated that our existence
result has applications in different areas ranging from restricted
multimarket Cournot oligopolies to multiserver queuing games.

To prove this result, we combined a combinatorial argument
using a potential function with a fixed-point argument (that is
usually applied to concave utility games with convex and compact
strategy sets). We hope that this combination of tools from
combinatorial and continuous convex games, respectively, may
prove to be useful for other classes of games exhibiting both finite
and continuous choices.

Several issues remain that deserve further attention. An
interesting open question is to weaken our assumptions. In
particular, the assumption DMU is closely related to the general
concept of strategic substitutes/complements and it would be
interesting if our existence result continues to hold for milder
assumptions related to strategic substitutes or complements.

We have not addressed the complexity of computing an
equilibrium in our model. It seems that our proof cannot directly
be used to obtain an efficient (polynomial time) algorithm since
we use as a subroutine Kakutani’s fixed-point theorem which is
(in general) as hard as computing a Brouwer fixed-point. The latter
problem is known to be PPAD-hard, see Daskalakis et al. (2009).
Also questions related to the (worst-case) quality of equilibria are
left for future research.
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Appendix A. Violation of assumptions

In this section, we show that if one of the assumptions EXT,
DMU CON, and LOC is violated, the existence of a pure Nash equi-
librium is not guaranteed anymore. In the following four sections,
we construct aggregative games satisfying all assumptions but one
and show that they do not possess an equilibrium.
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A.1. Violation of negative externalities

There are two players N = {1, 2} and two locations A = {o, 7}
feasible to both players. Both players have fixed quantities Q; =
{1}, Q2 = {2}. The players’ indirect utility functions are defined as

1, ify=0,
Uf,K(X7y) = 27 lf.y = 17
0, ify=2,

foralli € N, x € A.The indirect utility functions satisfy DMU,
CON, and LOC, but not EXT, and are constructed such that player
2 prefers sharing a location with player 1 over being alone on a
location, while player 1 prefers to be alone. Thus, the game has no
pure Nash equilibria.

A.2. Violation of decreasing marginal utility

We now turn to the assumption DMU. It is well known that
Cournot games (even with two players and a single market) may
fail to possess a pure Nash equilibrium for (general) non-concave
inverse demand functions. These games satisfy the assumptions
CON, EXT and LOC, but not DMU. For the sake of completeness, we
recall the example of such a game presented by Novshek (1985).

There are two players N = {1, 2} competing in a single market
o.The inverse demand function P is defined as

2 —x, if x € [0, 0.99]
8219 19 ) 100
— — ——x, ifxe(0.99, —
8119 8119 19
P(x) = { 10,019 . 100 100, 19
—100x, ifxe | —,
19 19 19
) 100, 19
0, ifx € , 00
19

and the cost functions of players 1 and 2 are defined as C;(x) =
$xand Gy(x) = 331, respectively. The utility of each player i
equals her own quantity multiplied with the price given by the
inverse demand function, i.e., u;(a, q) = q;P(q1 + q2). As there is
only one market the game satisfies LOC. As the inverse demand
function is non-increasing assumption EXT is satisfied. Novshek

(1985) shows that a pure Nash equilibrium does not exist.

A.3. Violation of continuity

If we abandon continuity of the indirect utility functions, there
exist examples in which a pure Nash equilibrium may fail to exist,
even for the simple case of only one player. To see this, consider a
single player i with a single location . The set of feasible quantities
is given as [«;, w;] = [0, 1] and the indirect utility function equals
vio(x,¥) = /% ifx < 1, and 0, otherwise. The indirect utility
function satisfies EXT, LOC and DMU, but violates CON. The game
does not have a pure Nash equilibrium, since the player may always
improve her utility by slightly raising her quantity (as long as the
quantity is smaller than 1).

We proceed to construct a game violating LOC that has no pure
Nash equilibrium. The game we derive involves three players. As
shown in Theorem 12, having three players is actually necessary
for a counterexample since games with two players (satisfying only
DMU, EXT, and CON) always possess a pure Nash equilibrium.

A.4. Violation of Location-Symmetry

We are given three players N = {1, 2, 3} and two locations
A = {o, t} that are feasible to all players. The feasible quantity

u((o,1), (0,2), (0,1)) u((e, 1), (1,1), (o, 1))
=(€,10 + V2¢,¢€) = (106,21 +¢,12 + ¢)
| !
u((7,3), (0,2), (0, 1)) u((r,3), (1,1), (0, 1))
= (10v/3¢, 11 + V2¢,6 + €) = (9++Be, 12+ ¢,18 +¢)

-

u((0,1), (0,2), (1, 4)) u((0,1), (7,1), (,4))
= (5e, 11 + v/2¢, 17 + 2¢) = (15+¢€,9+¢€,13 + 2¢)
| !

u((T, 3),(0,2), (1, 4)) u((T, 3), (7, 1), (7, 4))
= (6 + /3¢, 12 + V/2¢,5 + 2¢) = (5++3e, 6,1+ 2¢)

-—

—

Fig. A.1. Finite subset of the strategy space of a game violating LOC as constructed
in Appendix A.3. Arcs correspond to a better reply of a player. Note that for every
strategy profile there is a player that has a better reply and, thus, the game does not
have a pure Nash equilibrium.

intervalsare Q; = [1, 3],Q; = [1,2]and Q3 = [1, 4]. Lete = 1/4.
The players’ indirect utility functions are defined as follows:

—3x+ 18 — 5y, ifxk =0,
Vi (X, y) = €v/x + x+7—y Y ifc =1
x+10—y, ifk =0,
V2 (X y) = ev/x+ _X+22X3y ifi =1
—x+19—6y, ifk =o0,
V3 (%, Y) = ev/X + x+13—4yy ifk =1

The thus defined aggregative game satisfies EXT, DMU, and CON.

The marginal utility dxv1,q, (ql, £_iq (a, q)) of player 1is always
negative if a; = o and positive if a; = t. We conclude that for any
pure Nash equilibrium (a*, g*) of G we have g = 1,ifa; = o
and q7 = 3, if a; = 7. With the same arguments we derive that
g, = 2,ifay = o,andq; = 1,ifay, = Traswellasqj = 1if
a3 = o and g5 = 4if a3 = 7. This observation allows us to restrict
the search space for a pure Nash equilibrium to 8 strategy profiles,
i.e., one strategy profile for each of 8 possible location profiles a.
One verifies easily that none of these is a pure Nash equilibrium,
see Fig. A.1 for an illustration.

Appendix B. Relationship to Other Models

The following remarks discuss the relationship of our model
to potential games (Monderer and Shapley, 1996), supermodular
games (Topkis, 1979, 1998) and games with discontinuous utilities
(Reny, 1999; Bich, 2009; Carmona, 2009, 2011; McLennan et al.,
2011; Barelli and Meneghel, 2013).

B.1. Relationship to potential games

We proceed to show that, although the proof of Theorem 10
uses the fact that a certain lexicographical order decreases,
the games considered in this work are not potential games, in
general.'®

To illustrate this fact, we give an example of such a game
involving three players N = {1, 2, 3} with feasible quantities
Q: = @ = Q3 = [1,5] and two locations A = {o, 7} feasible
to all players. Let e = 1/4. For all « € A the players’ indirect utility
functions v; , are defined as

V1. (X, y) = €+/x + min{x, 3} — max{0, y — 2},
UZ,K (X, .V)

10 game is a potential game if it admits a generalized ordinal potential function,
cf. Monderer and Shapley (1996) for a definition.
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u((o,1),(7,2), (0,1))
=(1+e€1+2¢1+€)
t
u((7,3),(7,2), (0,1))
= (\/§€,1+\/§€,1+6)

u((‘r, 3), (¢,5), (o, 1))
= (2\/56, \/ge, 1+ e)

[

u((o, 1), (0,5), (7, 4)) u((e,1), (7,2), (1,4))
= (=3 +¢€,/5¢,2) = (1+e—1+2¢2+ 2€)
|

u((r,3), (0,5), (1, 4))
= (—2 + /3¢, /5, 26)

Fig. B.2. Cycle of better replies in an aggregative game satisfying CON, EXT,
DMU and LOC as constructed in Appendix B.1.

X
3~ max{0, 2y — 10}, ifx € [0, 2],
_ x—2
=evx+ 5 +1-max{0.2y — 10}, ifxe 2.5]
2 — max{0, 2y — 10}, ifx > 5,
v3,K(X7y)
x — max{0, 2y — 12}, ifx e [0, 1],
x—1 .
=eJ/x+ 3 +1—max{0,2y — 12}, ifxe (1,4],
2 — max{0, 2y — 12}, ifx > 4.

The game satisfies EXT, DMU, CON, and LOC. Consider the closed
sequence of strategy profiles

y = (((@.0.(1.2), (0. D). (. 1. (.2, (z.4),

(6. 1), (0.5), (., 4), (. 3), (0,5), (x, 4),
((.3), (0,5), (0, 1)), ((x,3), (x,2), (0, 4),

(0. 1. (7.2). @, 1))).

One verifies easily that along this sequence there is always one
player that improves switching to the next strategy profile, cf.
Fig. B.2. As a consequence, this game does not possess a potential.

B.2. Relationship to games with convex strategy spaces and discontin-
uous utility functions

In this section, we discuss the relationship of our class of games
to certain classes of games involving convex strategy spaces and
discontinuous utility functions (cf. Barelli and Meneghel, 2013,
Bich, 2009, Carmona, 2009, 2011 and McLennan et al., 2011).
The players’ strategic behavior in our class of games can be
reproduced by a game with convex strategies and discontinuous
utility functions by simply replacing the players’ non-convex
strategy sets by their convex hull and assigning a sufficiently low
number to the players’ utilities for strategies outside the players’
original strategy space. In this section, we show that prevailing
existence results (in particular the notion of “continuous security”
introduced by Barelli and Meneghel, 2013) do not apply to the
games obtain obtained from such a transformation, and, thus, our
existence result is independent from those in the literature on
discontinuous games.

To this end, consider the following game with two players N =
{1, 2} and two locations A = {0, 7} feasible to both players. The set
of feasible quantities to both players is Q; = Q, = {1} and their
utilities are defined by the following indirect utility functions:

ve(X,y) =1, v (X%,y)=1—y

forx = landally € R, and k € A. When convexifying the
players’ strategies, we obtain a new game with strategy sets S; and

S,. The set of strategies S; of each player i is identified with the
interval [0, 1], where strategy s; = 0 corresponds to using location
o, while strategy s; = 1 corresponds to location 7. If s; € (0, 1),
we consider player i as “not in the game” and assign her a utility
of —1. We claim that the convexified game with strategies sets
S1 = S, = [0, 1] is not continuously secure at (0,0) € S; X S, in
the sense of Barelli and Meneghel (2013, Definition 2.1). Note that
(0, 0) is not an equilibrium as player 2 may improve by deviating
to location t. For the sake of a contradiction, suppose that (0, 0) is
continuously secure, i.e., there is an open neighborhood V of (0, 0)
and, for each player i,a value «; € R and a non-empty valued upper
hemicontinuous correspondence ¢ : V — S with

1. ¢i(y) C Bi(a,y) foreveryi € {1,2}and everyy € V,
2. foreachy € V thereisi € {1, 2} with y; € conv(B;(w;, ¥)),

where Bi(a;,y) = {yi € S ui(yi, x—j) > o). First,
note that w; < 1 as By(aq, (0,0)) = @, otherwise. This im-
plies S; = conv(B;(a1, (0, 0))). From B;(o3, (0,0)) # < and
conv(B; (w3, (0, 0))) # S, we derive that o, € (0, 1] and it is with-
out loss of generality to assume oy = 1/2.

Next, let ¢ > 0 be such that (¢,0) € V. Since S; =
conv(Bq (1, (0,0))) = conv(By(xy, (€, 0))) it is necessary that
0 ¢ conv(B,(ay, (€,0))), but we have conv(B, (a3, (€,0))) =
conv({0, 1}) = S,, which is a contradiction. We derive that the
game is not continuously secure. However, the original (not con-
vexified game) satisfies all our assumptions and, thus, has a pure
Nash equilibrium.

B.3. Relationship to supermodular games

We show that the existence results of Topkis (1979, 1998) for
supermodular games are unrelated to ours. Let G be an aggregative
game and let A; and Q; denote the set of locations and quantities
available to each player i, respectively. Under the additional
assumption that A C R the joint strategy space X;cy(Ai X qi)
forms a lattice with respect to the usual component-wise order.
We proceed to show that, nonetheless, the games considered in
this work are not supermodular games, in general, and, thus, the
existence results of Topkis (1979, 1998) do not apply. In fact, we
show that for an aggregative game as considered in this paper
to be contained in the class of supermodular games the indirect
utility function of each player i has to additionally satisfy the law
of constant differences, i.e., vi s (x,y) — Vis (X, y) = vie(x,¥) —
vio(,y) forallx,x € Q;,y,y € Ryp,ando € A;.

To see this, consider a three-player game with N = {1, 2, 3},
A={1,2},A; = {1}, A, = {2}, A5 = {1, 2},and Q; = [0, 1] for all
i € N.Letx,x € [0, 1] with x < x’ be arbitrary and consider the
strategies s3 = (2, x) and s; = (1,x’) as well as the component-
wise minimum and maximum of these two strategies sg“i“ =(1,x)

and sj** = (2, X'), respectively. The supermodularity'' of the third
player’s utility function requires
us(s3, s—3) + us(sy, 5_3) < U3(5r3mn» s_3) + u3(s5%, s_3) (B.1)

for all s_3 € S_3. For arbitrary y, y’ € [0, 1] consider the strategies
s1 = (1,y) and s, = (2, y) of players 1 and 2, respectively. From
(B.1), we obtain

U3,2(X, £_3(s3, 5—3)) + v3,1 (X, €_3,1(s5, 5—3))
<31 (x, €15, 523)) 4+ v32(X, €25(57™, 5_3)),
or, equivalently,

V32X, ¥) +v31(X,Y) <vsa(x,y) + 32X, y). (B.2)

11 gee Topkis (1998, Section 2.6) for a definition.



220 T. Harks, M. Klimm / Journal of Mathematical Economics 61 (2015) 211-220

Considering the strategies s; = (1, y) and s, = (2, ') instead, we
obtain analogously to (B.2) that

v32(%, ) +v31(X,y) <v3(x,y) +v32(X,Y). (B.3)

Recall that v3 1 = v3 by LOC. Then, inequalities (B.2) and (B.3)
imply v35(%,y) — v3,(X,y) = v3,(x,¥) — v3,(x,y") for all
o € {1, 2}, as claimed. Assuming that the players’ indirect utility
functions have constant differences, the existence of a pure Nash
equilibrium follows from Topkis (1979, 1998).
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