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Abstract

We study the problem of computing a social optimum (minimum cost solution) in polymatroid
congestion games, where the strategy space of every player consists of the set of vectors in a player-
specific integral polymatroid base polyhedron defined on the ground set of resources. For general
non-decreasing cost functions we devise an Hrk-approximation algorithm, where rk is the sum of
the ranks of the player-specific polymatroids and Hrk denotes the rk-th harmonic number. The
main idea of our algorithm is to iteratively increase resource utilization in a greedy fashion and to
invoke a polynomial covering oracle that checks feasibility of every computed resource utilization.
The approximation guarantee is best possible up to a constant factor. As a special case, our result
(partially) settles an open problem of Ackermann et al. (H. Ackermann, H. Röglin, and B. Vöck-
ing. On the impact of combinatorial structure on congestion games. J. ACM, 55(6):1–22, 2008.
Section 2.2) where the complexity of computing a socially optimal solution for matroid congestion
games with non-decreasing cost functions is considered. Here, the approximation guarantee is best
possible up to a constant factor if the number of resources is polynomially bounded in the number
of players.
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1. Introduction

Congestion games have become a standard game-theoretic model describing the allocation of
exhaustible resources by selfish players. In the basic model of Rosenthal [19], there is a finite set of
players and resources and each player is associated with a set of allowable subsets of resources. A
pure strategy of a player consists of an allowable subset. Congestion on a resource is modeled by a
load-dependent cost function which is usually non-decreasing and solely depends on the number of
players using the resource. In the context of network games, the resources may correspond to edges
of a graph, the allowable subsets correspond to the simple paths connecting a source and a sink
and players choose minimum cost paths. Rosenthal proved in his seminal paper that congestion
games always admit a pure Nash equilibrium.

In this paper, we focus on so-called polymatroid congestion games, where the strategy space of
every player consists of the set of vectors in a player-specific integral polymatroid base polyhedron
defined on the ground set of resources. This can be viewed as a game in which every player chooses
a multiset of the resources rather than a subset. These games have numerous applications as
they include for instance matroid congestion games, singleton congestion games (uniform rank-
1 matroids) or spanning tree congestion games, where every player selects a spanning tree of a
player-specific subgraph of a given graph. We consider the problem of computing a minimum
cost solution in polymatroid congestion games. This problem is important for scenarios where a
central planner can implement a solution or when players collaborate. Additionally, minimum cost
solutions serve as building blocks for other cost-efficient solutions, e.g., as in [25], where a minimum
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cost solution is used for defining cost sharing protocols with low price of stability/anarchy. In fact,
Ackermann et al. [1, Section 2.2.] as well as von Falkenhausen and Harks [25, Section 5] state
as an open problem to characterize the computational complexity of computing a minimum cost
solution in matroid congestion games with non-decreasing cost functions, which is a special case
of the problem we consider in this paper (cf. Remark 2).

1.1. Our Results

We devise an Hrk-approximation algorithm, where rk is the sum of the ranks of the player-
specific polymatroids (the value of the polymatroid function on the entire set of resources) and
Hrk denotes the rk-th harmonic number. This approximation guarantee is best possible (up to a
constant factor) for algorithms with polynomial running time, unless NP ⊆ TIME(nO(log logn)).
As a byproduct we show that matroid congestion games are also Hrk-approximable in polynomial
time (cf. Remark 2), a result that partially settles an open problem of Ackermann et al. [1, Section
2.2.] as well as von Falkenhausen and Harks [25, Section 5]. For matroid congestion games, we
only leave a gap if rk is not polynomially bounded in n.

Our algorithm maintains data structures for target loads and preliminary cost-per-unit values
for every resource and its respective load. The algorithm iteratively increases the target loads on
the resources by selecting the resource (with corresponding target load) having the lowest cost
per unit. After this greedy choice, a covering oracle is invoked that checks whether or not there
exists a feasible strategy profile (a vector in the sum of the player-specific integral polymatroid
base polyhedra) covering the currently computed target loads. If the covering oracle returns a
feasible strategy profile, we update target loads and preliminary cost-per-unit values and proceed.
If the oracle returns infeasibility, we reduce the maximum target load for the selected resource
and proceed. Denoting the number of resources by m, pseudopolynomial running time in terms
of oracle calls follows as there are only m rk possible target loads and in each iteration a target
load is increased or a maximum target load is decreased. If rk is polynomial in the input size (as
is the case for matroids, arborescences, etc.) the algorithm runs in polynomial time. The oracle
itself can also be implemented in linear oracle time using an adaptation of the polymatroid greedy
algorithm.

1.2. Literature review

Computing a social optimum. Werneck et al. [26] studied the complexity of computing a social
optimum in spanning tree congestion games. For convex cost functions they devised an efficient
algorithm computing an optimal solution. Essentially, convex cost functions allow to linearize the
cost function and then to apply a greedy algorithm. Ackermann et al. [1] extended the work of [26]
by observing that the same idea is applicable to matroid congestion games still requiring that cost
functions need to be convex. For spanning tree games with non-monotonic cost functions, they
showed that computing a social optimum is NP-hard. The case of matroid congestion games with
general non-decreasing cost functions is posed as an open problem [1, Section 2.2.].

It should be noted that the positive results for convex cost functions were already implied by
previous works, perhaps not so obvious. Groenevelt [12] and Fujishige [9] presented polynomial time
algorithms to minimize a convex separable function over an integral polymatroid base polyhedron.
Since the matroid rank function is submodular, the strategy space for every player can equivalently
be represented as an integral polymatroid base polyhedron. Using that the sum of polymatroid base
polyhedra is again a polymatroid base polyhedron, the results of Groenevelt [12] and Fujishige [9]
thus already imply a polynomial time algorithm for computing a social optimum for matroid
congestion games with convex cost functions. For polymatroids with fixed costs for all resources,
Wolsey [27] showed that the greedy algorithm gives a logarithmic approximation. In contrast to
these works, we consider the case of arbitrary non-decreasing cost functions.

A special case of polymatroid congestion games is that of singleton congestion games (uniform
rank-1 matroids) with arbitrary non-decreasing cost functions. Harks and von Falkenhausen [15]
devised an Hn-approximation approximation algorithm for the social cost, where n is the number
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of players. Their algorithm is based on successive network flow computations on a suitably defined
capacitated graph. Moreover, they showed this result is essentially best possible up to a constant
factor, as they show that this optimization problem is hard to approximate within a factor of c log n
for any c < 1, a reduction we will extend for our hardness result (cf. Lemma 1).

Meyers and Schulz [17] classified the complexity of computing a social optimum for general
congestion games as well as network congestion games and differentiated between asymmetric and
symmetric strategy spaces. In the case of network congestion games, they also distinguished the
case in which all players share a common source. Regarding the cost functions, they differentiated
between five types: non-decreasing, convex non-decreasing, non-increasing, concave non-increasing,
and non-monotonic cost functions. For all combinations of strategy spaces and cost functions they
established the complexity of finding the social optimum. Most of the resulting problems are
inapproximable to any finite factor. In particular, the asymmetric case with non-decreasing costs
is not approximable to any finite factor. Very recently, Roughgarden [20] studied the impact of
the computational complexity of computing socially optimal solutions on the price of anarchy. He
derived a reduction that translates inapproximability results to corresponding lower bounds on
the price of anarchy. In the context of congestion games, he derived stronger inapproximability
bounds for Rosenthal’s congestion model involving polynomial cost functions (with non-negative
coefficients).

Computing a socially optimal profile has also been studied in the congestion model of Milch-
taich [18], where resource costs are player-specific. Chakrabarty et al. [4] proved that the social
optimum is inapproximable within any finite factor, unless P = NP . They exhibited some special
cases in which a minimum cost solution can be found in polynomial time, e.g. when the number
of strategies is bounded. Blumrosen and Dobzinski [3] considered the problem of maximizing wel-
fare instead of minimizing costs and presented an 18-approximation for this problem. Assuming
non-decreasing cost functions, they improved the approximation guarantee to e

e−1 . De Keijzer
and Schäfer [6] studied congestion games with positive externalities, where players benefit from
other players choosing the same resource. They showed even very special cases of the problem are
NP-hard and provided several approximation algorithms.

Computing equilibria. In the past decade the computational complexity to find a pure Nash equi-
librium (PNE) in congestion games has been studied extensively. Ackermann et al. [1] proved that
for congestion games with non-decreasing cost functions, matroids are the maximal property on
the strategy space of every player that guarantees that best responses for players converge to a
PNE in polynomial time. Fabrikant et al. [7] showed that a PNE can be found in polynomial time
in symmetric network congestion games with non-decreasing cost functions. However, for general
network games with non-decreasing cost functions, finding a PNE is PLS-complete [7]. These re-
sults have been strengthened to hold even when the cost functions are non-decreasing and linear [1].
Also finding α-approximate PNEs in congestion games is PLS-complete for any α > 1 [22].

If the strategy space is restricted to symmetric singleton congestion games, the best Nash
equilibrium can be found in polynomial time for any cost function [16]. Sperber [23] showed that
both the best and the worst PNE can be found in polynomial time for non-decreasing cost functions
with a greedy algorithm. However, she proved that on series-parallel graphs this is NP-hard, except
in the case of finding the best PNE in a 2-player game. Also the setting in which the social cost is
not determined by the sum of the costs but by the maximum cost (makespan social cost) has been
studied. In this setting, the worst PNE can be found in series-parallel graphs, however, finding the
best PNE is NP-complete [11]. Another related class of games are so-called bottleneck congestion
games, in which the total cost of a player is not the sum but the maximum of the costs of the
resources he chose. Harks et al. [13] devised an algorithm computing PNEs (even strong equilibria)
which relies on the idea of a strategy packing oracle, which is similar to the strategy covering oracle
in this paper. They also maintain target loads that are iteratively updated, and they also use that
for matroids, this strategy packing oracle can be implemented in polynomial time.
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2. The Model

2.1. Congestion Models

A congestion model is given by the tuple M = (N,R,B, (cr)r∈R), where N = {1, . . . , n} is a
non-empty, finite set of players and R = {1, . . . ,m} is a non-empty, finite set of resources. Every
player i ∈ N chooses a pure strategy bi ∈ NR from a non-empty bounded integral polyhedron
Bi ⊆ NR (which can be seen as a non-empty, finite collection of multisets). We denote the set of
joint strategy profiles by the Minkowski sum of the polyhedra B = B1 + . . .+Bn. Given a strategy
profile b ∈ B, we define the load of a resource r ∈ R as br, which is the r-th component of the
vector b. All resources r ∈ R have a load-dependent cost function cr : N→ N. Abusing notation,
we write cr(b) = cr(br) for all b ∈ B. We assume for all r ∈ R that cr(0) = 0 and cr(i) ≥ cr(j)
whenever i ≥ j. We denote the social cost by C(b) =

∑
r∈R cr(b).

2.2. Polymatroid Congestion Models

A function f : 2R → N is called submodular if f(U) + f(V ) ≥ f(U ∪ V ) + f(U ∩ V ) for all
U, V ⊆ R. It is called monotone if f(U) ≤ f(V ) for all U ⊆ V , and normalized if f(∅) = 0. A pair
(R, f) is an integral polymatroid if f : 2R → N is submodular, monotone and normalized. f is then
called an integral polymatroid rank function and the associated integral polyhedron is defined as

Pf :=
{
b ∈ NR | b(U) ≤ f(U) ∀U ⊆ R

}
,

where we define the load on a set U of resources as b(U) =
∑

r∈U br (note that b(∅) = 0). Given the
integral polyhedron Pf and the integer rk = f(R), which we refer to as the rank of the polymatroid,
the corresponding integral polymatroid base polyhedron is

Bf (rk) :=
{
b ∈ NR | b(U) ≤ f(U) ∀U ⊆ R, b(R) = rk

}
.

To obtain a polymatroid congestion model, we associate an integral polymatroid rank function
fi with every player i ∈ N , we denote fi(R) = rki and let rk =

∑
i∈N rki. We denote the Minkowski

sum of the polyhedra by Bf (rk) :=
∑

i∈N Bfi(rki) and from [21, Theorem 44.6] we know that this
is also an integral polymatroid base polyhedron.

We define a polymatroid congestion model M = (N,R,Bf (rk), (cr)r∈R) as a congestion model,
where every player i ∈ N chooses an element bi ∈ Bfi(rki). In this polymatroid congestion model
we want to find a vector b = b1 + . . .+ bn ∈ Bf (rk) that minimizes the normalized monotone cost
function C(b) =

∑
r∈R cr(b).

We remark that polymatroid congestion games were recently introduced by Harks et al. [14].
In contrast to their model, we do not allow that cost functions are player-specific, but we do allow
general non-decreasing cost functions instead of convex cost functions.

2.3. Computing Minimum Cost Strategy Profiles

We study the problem of computing an optimal strategy profile minimizing the social cost.
Formally, we arrive at the following combinatorial optimization problem.

Problem 1. Find Optimal Strategy Profile

Input: A polymatroid congestion model M = (N,R,Bf (rk), (cr)r∈R).

Objective: Find minb∈Bf (rk) C(b).
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3. A logarithmic approximation

Before we present our approximation algorithm, we derive the following hardness result. The
reduction is based on [15, Theorem 7.1], where the hardness of computing an optimal strategy
profile for singleton congestion games is shown.

Lemma 1. Problem 1 is strongly NP-complete and there are no c log rk approximation algorithms
for any c < 1, unless NP ⊆ TIME(nO(log logn)).

Proof. We reduce from the Hitting Set problem. An instance of Hitting Set consists of a set
C of n subsets (Ci)i∈N over a finite ground set of elements E. A hitting set is a subset F ⊆ E such
that F contains at least one element of every Ci ∈ C. The goal is to select a minimum cardinality
hitting set.

Given an instance (E, C) of Hitting Set, we construct a polymatroid congestion game M
as follows. First construct the game M′ by identifying E with R, and defining the submodular,
monotone, normalized function fi for all i ∈ N as follows: fi(S) = 1 if S ∩ Ci 6= ∅ and fi(S) = 0
otherwise. We let cr(0) = 0 and cr(j) = 1 for all r ∈ R and j ∈ N .

From this game M′, we construct another polymatroid congestion game M with one player,
whose integral polymatroid base polyhedron is the Minkowski sum of the polyhedra in M′, i.e.
Bf (rk) =

∑
i∈N Bfi(rki). Note that rk1 = rk = n.

By construction, there is a hitting set of cardinality k if and only if there is a vector b ∈ Bf (rk)
with C(b) ≤ k inM. Therefore, if we can approximate the social optimum inM within a factor of
c log(rk) for some constant c, we can approximate the Hitting Set instance within c log(n). The
lemma now follows from the fact that the Hitting Set problem is equivalent to the Set Cover
problem [2], for which there are no polynomial time c log n-approximation algorithm for any c < 1
unless NP ⊆ TIME(nO(log logn)) [8].

Now we present our algorithm (see Algorithm 1). Intuitively, for every player i we want to
distribute rki units over the resources such that the resulting multiset of resources corresponds to
a vector bi ∈ Bfi(rki). Overall, this leads to a distribution of rk units over the resources such that
b = b1 + . . .+ bn ∈ Bf (rk). The idea is to incrementally increase the number of units distributed
over the resources in a greedy fashion. Initially, we start with an empty distribution, i.e., the load
on every resource is zero. Then, we will iteratively increase the load on some resource r ∈ R to
some desired target load denoted by tr ∈ N (initially tr = 0 for all r ∈ R). To make sure that
the sum of the target loads does not exceed rk, we set upper bounds tmax

r on the target loads that
are initially set to tmax

r = rk for all r ∈ R. In every iteration, we select a resource r ∈ R and a
target load between tr +1 and tmax

r minimizing the cost per unit, which is defined via the following
function:

h : R× ([tr + 1, tmax
r ] ∩ N)→ R; h (r, j) =

cr (j)− cr (tr)

j − tr
. (1)

Let (r∗, j∗) be a minimizer of h. To check whether or not it is possible to distribute j∗ − tr∗

additional units on resource r∗, or equivalently, to increase the target load tr∗ to j∗, we call a
strategy covering oracle denoted by O (R,B, (tr)r∈R) (cf. Definition 1). This oracle checks if there
is a strategy profile covering the current target loads, that is, if there is a b = b1+. . .+bn ∈ Bf (rk)
satisfying br ≥ tr for all r ∈ R. It is similar to the strategy packing oracle from [13].

Throughout the paper, for two vectors x,y ∈ Nm, we use x ≥ y in the sense xi ≥ yi for all i,
and for convenience we write x({1, . . . , i}) =

∑i
j=1 xj .

Definition 1. Strategy covering oracle O (R,B, (tr)r∈R)

Input: A finite set R with target loads tr ∈ N for all r ∈ R and an integral polyhedron
B ⊆ NR.
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Output: A vector b ∈ B such that b ≥ t, or the information that no such vector exists.

If the answer of the oracle is negative, it is not possible to increase the load on resource r∗ to
j∗. We set tr∗ back to its old value and update tmax

r∗ to j∗ − 1, because this target load j∗ was too
high for this resource. On the other hand, if the answer is affirmative, we keep the increased target
load j∗ on r∗, and for all r ∈ R we update tmax

r to min
{
tmax
r , tr + rk−

∑
r′∈R tr′

}
to avoid target

loads whose sum exceeds rk. We also update the values for h according to Equation (1). We then
continue this procedure by finding a new minimizer of h and calling the oracle again. Note that in
every iteration we increase the lower bound tr∗ or decrease the upper bound tmax

r∗ , thus, the domain
of h becomes strictly smaller in every iteration. Indeed, once we have

∑
r∈R tr = rk and the oracle

outputs a vector b ∈ Bf (rk) that meet these target loads, the algorithm terminates. The vector b
can be decomposed in a vector for every player. For a formal description see Algorithm 1.

Algorithm 1: Algorithm for the polymatroid congestion model and game

Input: A polymatroid congestion model M = (N,R,Bf (rk), (cr)r∈R)
Output: A vector b ∈ Bf (rk)

1 b← 0;
2 tr ← 0 and tmax

r ← rk for all r ∈ R;
3 while

∑
r∈R tr < rk do

4 Choose (r∗, j∗) ∈ argminr∈R,j∈[tr+1,tmax
r ] h(r, j);

5 temp← tr∗ ;
6 tr∗ ← j∗;
7 if O (R,B, (tr)r∈R) = b′ then
8 b← b′;

9 tmax
r ← min

{
tmax
r , tr + rk−

∑
r′∈R tr′

}
for all r ∈ R;

10 Update h(r∗, j) for all j ∈ [tr∗ + 1, tmax
r∗ ] as in Equation (1);

11 else
12 tr∗ ← temp;
13 tmax

r∗ ← j∗ − 1;

14 return b;

The following lemma shows that the strategy covering oracle can be implemented in linear
oracle time for our polymatroid congestion model.

Lemma 2. If B is an integral polymatroid base polyhedron, then the strategy covering oracle can
be implemented in time O(mQ), where Q is the complexity of the value giving oracle that returns
f(U) for any U ⊆ R.

Proof. See Algorithm 2 for a formal description, which is an adaptation of the polymatroid greedy
algorithm (see e.g. [21, Theorem 44.3]).

There exists a vector b ∈ Bf (rk) such that b ≥ t if and only if t ∈ Pf (rk) =
∑n

i=1 Pfi(rki). To
check this membership, we start at y = 0 ∈ Pf (rk) and iteratively increase yi to tri . Following the
proof of [21, Theorem 44.3] we know that after iteration i, y ∈ Pf (rk) if and only if y({1, . . . , i}) ≤
f({1, . . . , i}). After m iterations y = t, hence t ∈ Pf (rk) and the target loads are feasible. If at
some point y({1, . . . , i}) > f({1, . . . , i}), the target loads are infeasible.

To extend the target loads to a strategy profile (i.e. a vector b ∈ Bf (rk)), we define the
function g(U) = f(U)− t(U) for all U ⊆ R (for the implementation of the algorithm we only need
g({1, . . . , i}) for all i). We claim, and this is easy to check, that g is an integral polymatroid rank
function with g(R) = rk − t(R). Hence we can find a vector z ∈ Bg(g(R)) using the polymatroid
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greedy algorithm. Define b = t + z. By construction b(U) = t(U) + z(U) ≤ t(U) + f(U)− t(U) =
f(U) for all U ⊆ R, so b ∈ Pf (rk). Similarly, b(R) = rk and hence b ∈ Bf (rk). As z ≥ 0 we have
b ≥ t and the proof is complete.

Denoting the complexity of the value giving oracle for the function f by Q, the running time
of both the membership check and the extension is O(mQ).

Algorithm 2: Strategy covering oracle for polymatroid congestion games

Input: An integral polymatroid base polyhedron B and a vector t
Output: A vector b ∈ B such that b ≥ t, or the information that no such vector exists.

1 y← 0;
2 for i = 1 to m do
3 yi ← tri ;
4 if y({1, . . . , i}) > f({1, . . . , i}) then
5 return “Infeasible target loads”

6 z← 0 and g(∅)← 0;
7 for i = 1 to m do
8 g({1, . . . , i})← f({1, . . . , i})− t({1, . . . , i});
9 zi ← g({1, . . . , i})− g({1, . . . , i− 1});

10 return t + z;

We now prove the following theorem.

Theorem 1. Algorithm 1 is an Hrk-approximation algorithm for Problem 1 that runs in time
O(m2 rk2Q), where Q is the complexity of the value giving oracle that returns f(U) for any U ⊆ R.

We show this using the following two lemmata. For the proof of the next lemma, we need the
following well-known property of polymatroids (cf. [9, Theorem 3.27] and the text following [21,
Theorem 44.6]).

Property 1. Let Pf (rk) be an integral polymatroid polyhedron. For any two vectors b,b′ ∈ Pf (rk)
and any element r ∈ R with br > b′r, there exists an element r′ ∈ R with b′r′ > br′ such that
b−χr +χr′ ∈ Pf (rk). Here, χr is the m-dimensional unit vector corresponding to resource r ∈ R.

Lemma 3. Let b be the output of Algorithm 1 and let b∗ be the set of bases minimizing C(b∗).
Then C(b) ≤ HrkC(b∗).

Proof. Consider iteration k of Algorithm 1, indexed by the while loop. We denote the target load
of a resource r at the start of this iteration by tkr . In this iteration, we update every target load
to tk+1

r , which is only different from tkr for one resource r∗ (in our analysis we may disregard
iterations in which we do not increase tr∗ but decrease tmax

r∗ ). Denote the increase in the target
loads in iteration j by nj =

∑
r∈R t

j+1
r − tjr and denote the remaining units to distribute over the

resources at the beginning of iteration k by n̄k = rk −
∑k−1

j=1 nj . Denote the strategy profile at

the start of this iteration, returned by the oracle in the previous iteration, by b̄k = b̄1
k + . . .+ b̄n

k

(initially b̄i
0 = 0 for all i).

Claim 1. There exists a vector b̂ = b̂1 + . . .+ b̂n such that tkr ≤ b̂r ≤ max{b∗r , tkr} for all r ∈ R.

Before proving this claim, we show how the lemma follows from it. The analysis is based on
the cost-effectiveness of our greedy choice in the algorithm, e.g. as in [24, Chapter 2]. Consider
the quantity ∆k = C(b̂)−

∑
r∈R cr(tkr ). Using monotonicity of the cr, we obtain

∆k ≤
∑
r∈R

(
max

{
cr(b∗), cr(tkr )

}
− cr(tkr )

)
≤ C(b∗) .
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Note that (r∗, tk+1
r∗ ) is a minimizer of the preliminary cost-per-unit in iteration k, and in particular,

the sequence of per-unit cost of the load increments in Algorithm 1 is non-decreasing. Also note
that ∆k is the cost of one possible extension from the target loads in iteration k to a strategy
profile. Hence, the average cost of one resource in ∆k is at least the average increase in cost of one
resource in iteration k, and we have∑

r∈R cr(tk+1
r )− cr(tkr )

nk
=
cr∗(t

k+1
r∗ )− cr∗(tkr∗)

nk
≤ ∆k

n̄k
≤ C(b∗)

n̄k
.

Using that b̄0 = 0 and cr(0) = 0 for all r ∈ R, this yields

C(b) =
∑
k

(∑
r∈R

cr(tk+1
r )− cr(tkr )

)
≤
∑
k

nk
n̄k
C(b∗)

=
∑
k

nk∑
l≥k nl

C(b∗) =
∑
k

nk∑
j=1

1∑
l≥k nl

C(b∗)

≤
∑
k

nk∑
j=1

1∑
l≥k nl − j + 1

C(b∗) = HrkC(b∗) .

It remains to prove Claim 1.

Proof of Claim 1. Set b̂ = b̄k and consider a resource r such that b̂r > max{b∗r , tkr}. We call such

a resource overloaded. Then by Property 1 for Pf (rk) there exists a resource r′ with b∗r′ > b̂r′ such

that b̂′ = b̂− χr + χr′ ∈ Pf (rk). Replace b̂ by b̂′.

We continue this procedure until there is no overloaded resource anymore. Indeed, as b∗r′ > b̂r′

we know r′ is not overloaded in b̂′. Hence, the total overload
∑

r∈R max{b̂r − max{b∗r , tkr}, 0}
becomes strictly smaller after every replacement. As this quantity is non-negative, this procedure
ends and at some point there will not be an overloaded resource anymore. Because it is possible
to cover the target loads tkr , we know tkr ≤ b̂r ≤ max{b∗r , tkr} for all r ∈ R.

Lemma 4. Algorithm 1 runs in time O(m2 rk2Q), where Q is the complexity of the value giving
oracle that returns f(U) for any U ⊆ R.

Proof. The number of iterations (of the outer while loop) is upper bounded by m rk. In every
iteration we need to find the minimizer of at most m rk values and then we call the strategy
covering oracle, which runs in time O(mQ) by Lemma 2. So the total running time of Algorithm
1 is O(m2 rk2Q+m2rkQ) = O(m2 rk2Q).

This concludes the proof of Theorem 1.

Remark 1. The algorithm is polynomial if we assume that rk is polynomial in the input size, which
is the case for special cases such as matroids and graphical polymatroids (arborescences). In par-
ticular, for graphical polymatroids, the oracle can be implemented in time O(|V |2m log(|V |2/m))
[10, Theorem 7.1] (where |V | is the number of vertices in the graph underlying this graphical
polymatroid), and we obtain a running time of O(m3 rk2 |V |2 log(|V |2/m)). However, for general
polymatroids, the running time is pseudopolynomial.

Remark 2. As the rank function of a matroid is normalized, monotone and submodular, we obtain
a polynomial time Hrk-approximation algorithm for matroid congestion games. In these games,
players choose subsets rather than multisets of the resources and therefore rk ≤ nm, implying
a polynomial running time. To be more precise, for matroid congestion games, the number of
iterations is upper-bounded by nm and in every iteration we find the minimizer of at most nm
values. Using the idea of Cunningham [5], Harks et al [13] proved that their strategy packing oracle
can be implemented in time O(n1.5 rkQ), where Q is the maximum complexity of the independence
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oracles of the matroids1. A similar proof also works for our strategy covering oracle and we leave
the details to the reader. In particular, the algorithm already provides the decomposition of the
strategy profile into player-specific bases (Bi)i∈N . The running time of the algorithm for matroid
congestion games is thus O(n2m2 + n2.5m rkQ) = O(n3.5m2Q).

However, a comment on the tightness of our approximation guarantee for matroid congestion
games is in order. These games are c log n-inapproximable for any c < 1 by a reformulation of [15,
Theorem 7.1] into our context, but this cannot be strengthened to a c log rk hardness result as in
Lemma 1 as the construction of gameM fromM′ cannot be mimicked within the matroid setting.
Thus, as log rk ≤ log n + logm, the gap between our approximation guarantee and the hardness
result is a constant factor and an additive error of logm. This is a constant gap if m = poly(n).
However, if m 6= poly(n), the gap between the inapproximability and the performance guarantee
of our algorithm is not constant and the approximation complexity of the problem is yet to be
settled exactly.

Acknowledgements. We thank Rico Zenklusen for his contribution to Lemma 2, Rudi Pendavingh
and Jorn van der Pol for their contribution to the matroid version of this lemma, and an anonymous
reviewer for his helpful comments.
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