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Robust Quantitative Comparative Statics for a Multimarket Paradox

TOBIAS HARKS, University of Augsburg
PHILIPP VON FALKENHAUSEN, Technical University Berlin

We introduce a quantitative approach to comparative statics that allows to bound the maximum effect of an
exogenous parameter change on a system’s equilibrium. The motivation for this approach is a well-known
paradox in multimarket Cournot competition, where a positive price shock on a monopoly market may
actually reduce the monopolist’s profit. We use our approach to quantify for the first time the worst-case
profit reduction for multimarket oligopolies exposed to arbitrary positive price shocks. For markets with
affine price functions and firms with convex cost technologies, we show that the relative profit loss of any
firm is at most 25%, no matter how many firms compete in the oligopoly. We further investigate the impact
of positive price shocks on total profit of all firms as well as on social welfare. We find tight bounds also for
these measures showing that total profit and social welfare decreases by at most 25% and 16.6%, respectively.
Finally, we show that in our model, mixed, correlated, and coarse correlated equilibria are essentially unique,
thus, all our bounds apply to these game solutions, as well.
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1. INTRODUCTION
Many economic settings can be modeled as strategic games (N, X, u), where N denotes
a set of players, X is the set of possible states of the games (all possible decisions by
all players), and u : X → RN denotes the players’ payoff functions, i.e., in state x ∈ X
player i receives payoff ui(x). Given an instance of such a model, there are parameters
that determine the precise values for N, X, and u. Comparative statics is concerned
with the effect of changes in these parameters on the equilibria of the game. Examples
of such changing parameters are exposure to international trade (Krugman [1980]
and Melitz [2003]) or a forced reduction of produced quantity (Gaudet and Salant
[1991]) (both affect the state space) or changes of the payoff functions via a demand
shift (Quirmbach [1988]), a cost shift (Février and Linnemer [2004]), or the introduc-
tion of export taxes/subsidies (Brander and Spencer [1985] and Eaton and Grossman
[1986]). A classical approach to comparative statics analysis uses the implicit function

This research was supported by the Deutsche Forschungsgemeinschaft within the research training group
“Methods for Discrete Structures” (GRK 1408). The research of the first author was supported by the Marie-
Curie grant “Protocol Design (nr. 327546)” funded within FP7-PEOPLE-2012-IEF.
Authors’ addresses: T. Harks, Institute of Mathematics, University of Augsburg, Germany. P. von Falken-
hausen, Institute of Mathematics, Technical University Berlin.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2167-8375/2016/10-ART3 $15.00
DOI: http://dx.doi.org/10.1145/2956580

ACM Transactions on Economics and Computation, Vol. 5, No. 1, Article 3, Publication date: October 2016.

http://dx.doi.org/10.1145/2956580
http://dx.doi.org/10.1145/2956580


3:2 T. Harks and P. von Falkenhausen

theorem1 (cf. Bulow et al. [1985]). This type of analysis, however, is restricted to
small (local) parameter changes, and, thus, does not allow for meaningful conclusions
if parameter changes happens to be discrete. Moreover, it requires knowledge of
the precise instantiation of the model (in contrast to knowing only some functional
forms of the models, e.g., utility functions are concave). A more recent approach to
comparative statics is based on the powerful machinery of lattice theory applicable
to supermodular games (see Amir [1996], Edlin and Shannon [1998], Milgrom and
Shannon [1994], Milgrom and Roberts [1990, 1994], Shannon [1995] and Topkis [1979,
1998], also Athey [2002], Quah [2007], and Vives [1990, 2005]). Common to all these
works is that they consider the monotonicity of effects, i.e., whether a certain objective
function increases or decreases with a parameter, but they do not quantify the effect.

Our approach is to capture the maximum possible effect that the change of a
parameter—shift of the inverse demand function, in our case—can have. This worst-
case approach exhibits both

(1) significance: are changes in a given parameter worth considering?
(2) robustness: how sensitive is the game to changes of a parameter?

Significance is a crucial motivation of both the analysis of an effect and discussion of
whether it can be put to use (à la “should a new tax be introduced?”). Robustness, on
the other hand, is important when there is uncertainty about the values of parameters
and when parameters change over time.

A Paradox in Multimarket Cournot Oligopolies. We apply our approach to the mul-
timarket oligopoly model introduced by Bulow, Geanakoplos, and Klemperer [1985].
They investigated how “changes in one market have ramifications in a second market”
and discovered that a positive price shock in a firm’s monopoly market can have a
negative effect on the firm’s profit by influencing competitors’ strategies in a different
market. This counterintuitive phenomenon led them to the classification of markets
in terms of strategic substitutes and strategic complements.2,3 Our article is about
rigorously quantifying profit effects induced by price shocks in multimarket Cournot
oligopolies.

Let us recall the example of two markets {1, 2} and two firms {a, b} given in Bulow
et al. [1985]. Firm a is a monopolist on market 1 and competes with firm b on market
2. Demand is infinitely elastic on market 1 for the constant price p1 = 50. On market
2, there is an affine price function given by p2(qa,2 + qb,2) = 200 − (qa,2 + qb,2), where
qa,2, qb,2 denote the quantities offered by the respective firms on market 2. Production
costs are symmetric and given by c(q) = 1/2q2, where q is the total quantity produced
by a firm.4 In the Cournot equilibrium, we obtain qa,1 = 0 and qa,2 = qb,2 = 50 and each
firm earns profits 3, 750.

Suppose now that market 1 experiences a positive price shock, raising its constant
price by five units to 55. The Cournot equilibrium changes to qa,1 = 8 and qa,2 = 47,
qb,2 = 51. Under this new equilibrium, firm b increases its profit to 3, 901.5 while firm 1

1The application of the implicit function theorem, for instance, in oligopoly models requires some regularity
assumptions, such as convexity and smoothness of cost and inverse demand functions (see the discussion in
Milgrom and Roberts [1994]).
2See Section VII in Bulow et al. [1985].
3In a market with strategic substitutes, more aggressive play by a firm leads to less aggressive play of the
competitors on that market; with strategic complements, more aggressive play results in more aggressive
play of the competitors.
4Bulow et al. [1985] assume additional fixed cost F > 0 to prevent firms from setting up multiple plants. Fixed
costs, however, do not change the resulting equilibria, assuming that the access to markets is exogenously
determined.
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obtains, after the price shock, a profit of 3, 721.5. As noted by Bulow et al., the “positive”
price shock to market 1 has hurt a, even though a sells more units than before and
receives on its monopoly market even at a higher price. The actual profit reduction for
firm a amounts to 0.76%. A natural question to ask is: how much can a firm lose from
a positive price shock on its monopoly market?

Robust Quantitative Comparative Statics. To address the aforementined question, we
propose a robust quantitative approach to comparative statics. We aim at quantifying
the maximum possible effect that the change of a parameter can have on a given set of
games.

Following the framework of Milgrom and Roberts [1994], we denote by G a class of
models or games describing the information set of what the modeler knows about the
economic environment. Suppose there is an objective function f : G → R (e.g., welfare
of the unique equilibrium outcome) to evaluate these games and denote for any G ∈ G
by !G all parameter changes that are to be considered. We express the effect of a
parameter change δ ∈ !G on a game G ∈ G (assuming for the moment f (G) $= 0) as the
value

γ f (G, δ) = f (G(δ))
f (G)

,

where G(δ) ∈ G denotes the changed game. For f (G) = 0, we set γ f (G, δ) = 1, if
f (G(δ)) ≥ 0, and γ f (G, δ) = −∞, if f (G(δ)) < 0. The maximum possible effect across all
games in G and their respective parameter changes !G is then defined as

γ f (G,!G) = inf
G∈G

inf
δ∈!G

γ f (G, δ).

Note that if we are interested in the opposite direction of f we can replace the infima
with suprema in the above definition.

Quantifying γ f (G,!G) can expose the significance and robustness of the effect of
parameter changes, contrasting comparative statics analysis that only reveals the
monotonicity, as outlined above. Besides a quantitative instead of a qualitative result,
there are further key differences to prevailing comparative statics approaches:

In practice, the economic model, including the endogenous variables and parameters,
may not be known precisely but only approximately by knowing some functional prop-
erty of the relations of endogenous variables or the space of parameters.5 The nature of
a worst-case analysis, such as the proposed robust quantitative comparative statics, is
that it provides results across a class of games G described, for example, by functional
properties (e.g., any convex cost technologies in our case) and a set !G of parameter
changes. Both G and !G need to be chosen reasonably to yield a meaningful result (any
combination of positive price shocks, in our case). This is contrasted by the assumption
of perfect knowledge of all elements of the precise instance G, including the precise
parameter change δ common to most existing approaches in comparative statics, e.g.,
those based on the implicit function theorem.

Our Results. We conduct robust quantitative comparative statics analysis for mul-
timarket oligopolies with affine price functions and convex cost technologies of firms,
a class of games that contains the above example. We consider positive price shocks
as parameter changes and three different objective functions: the individual profit of a
firm, total profit measured by summing up the firm’s profits, and social welfare defined
by integrating the price functions and subtracting the firm’s costs. We find that both

5Milgrom and Roberts [1994] refer to the set of possible instantiations of the model as a class of models, or
the context “representing what the modeler knows about the economic environment.”
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profit and total profit can be reduced at most 25% by a positive price shock. For profit,
we give the bound as a function of the number of firms, showing, e.g., that in the two
firm case, the profit reduction is a most 6.25%. Social welfare, on the other hand, can
only be reduced by up to 16.7% by a positive price shock. These results immediately
extend to negative price shocks, as any negative price shock can be seen as taking back
a positive price shock. The profit and welfare gain from a negative price shock is no
more than 33.4%, and the social welfare can increase by up to 20%. Our results give
the first robust quantitative comparative statics result of an important paradoxical
phenomenon previously only qualitatively analyzed. We further show that for the con-
sidered model, the mixed, correlated, and coarse correlated equilibria are essentially
unique, thus, all these worst-case bounds apply to these solution concepts as well.

Each of our upper bounds is complemented by an instance that actually attains the
worst-case ratio. We demonstrate that worst-case instances are quite generic in the
sense that only a set of rather non-restrictive properties needs to be satisfied. Thus, a
common criticism of worst-case analysis that isolated special cases lead to unrealistic
objective function values does not apply to our setting. If linearity of price functions (or
convexity of cost functions) are relaxed, our bounds do not hold anymore. For concave
price functions (assuming still convex cost functions), we give an example in which the
profit of a firm is eliminated after a positive price shock. For non-convex cost functions,
we sketch a similar example.

Example Application. Profit gains from negative price shocks can occur in interna-
tional trade, as noted by Bulow et al. [1985, Sec. VI (C)]. Consider two markets located
in separate countries with convex cost technologies, one of which is a monopoly market
for firm a. A tax change in the country of the monopolist can be considered a price
shock. A government may decide to increase domestic taxes in order to increase firm
a’s profitability in the foreign market. Our results imply that this positive effect can
indeed be significant as it may increase the profitability by up to 33% of current profits.

2. RELATED LITERATURE
Comparative statics has long been used to understand how a system is affected by
changes of underlying parameters (see Dixit [1986] for an overview).

Since Bulow et al. [1985] introduced the concepts of strategic substitutes and strate-
gic complements, a considerable amount of research has used comparative statics to
investigate situations where strategic substitutes or complements occur. Notably, Bran-
der and Spencer [1985] found that an export subsidy can increase welfare in Cournot
competition with strategic substitutes (although they do not name the concept). Eaton
and Grossman [1986] extended this model to a two-stage game, where first, govern-
ments set policies, and then, firms engage in competition. Gaudet and Salant [1991]
looked at how a forced marginal change of production quantity for a subset of firms
impacts profit in a situation with strategic substitutes. Février and Linnemer [2004]
gave a decomposition of price shocks in Cournot oligopoly into an average effect com-
mon to all firms and a heterogeneity effect that is firm-specific. Acemoglu and Jensen
[2013] present a framework for comparative statics results for a superclass of Cournot
oligopoly called aggregative games (see also Corchón [1994] and Kukushkin [1994]).

Worst-case perspectives have a long tradition in the analysis of performance guar-
antees of algorithms (cf. Williamson and Shmoys [2011]). With the introduction of
concepts like the “price of anarchy,” (cf. Koutsoupias and Papadimitriou [1999]) they
have found their way into economics and game theory (a good overview on the inter-
section of computer science and economics is given in the textbook Nisan et al. [2007]).
By now, there is a large body of literature quantifying the worst-case efficiency loss of
equilibria (cf. Roughgarden and Tardos [2002], Johari and Tsitsiklis [2004], and Correa
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et al. [2004]) and, in particular, in models related to Cournot competition (cf. Anderson
and Renault [2003], Farahat and Perakis [2009, 2011], Guo and Yang [2005], Johari
and Tsitsiklis [2005], Kluberg and Perakis [2012], and Tsitsiklis and Xu [2013, 2012]).
All these works follow the “price of anarchy” methodology, where some performance
measure of an equilibrium outcome (e.g., total profit and/or social welfare) is com-
pared with a corresponding optimal solution, maximizing the respective performance
measure. There is a conceptual difference of our approach compared to these previous
worst-case approaches: while in approximation algorithms and price of anarchy one
compares an optimum to a solution that is returned by an algorithm or that is an
equilibrium, we maintain an equilibrium concept and compare the equilibrium of an
instance with that of a perturbed instance. Of course, in our setting, a bound on the
price of anarchy (with respect to a specific welfare function) translates to a bound on
the worst-case effect of a parameter change as long as the optimal welfare increases
with the parameter change (which is true in our case). However, the price of anarchy in
cournot oligopolies, e.g., for total welfare (involving affine price functions and convex
costs) is known to be 4/(3 + n), where n is the number of firms (cf. Harks and Miller
[2011] and Moulin [2008]). Also, for social welfare, the known bound of 2/3 (cf. Jo-
hari and Tsitsiklis [2005]) does not give tight bounds for our setting. In the context of
multimarket Cournot oligopoly, to the best of our knowledge, we derive, for the first
time, a worst-case quantification of a parameter change previously only qualitatively
described by comparative statics.

There are works in theoretical computer science and mathematics that quantify the
effects of a parameter change, albeit for different settings. Prominent examples include
the analysis of the famous Braess paradox, where a limit on the decrease in a network’s
performance when additional links are added is shown (cf. Korilis et al. [1999], Lin et al.
[2011], Roughgarden [2006], and Valiant and Roughgarden [2010]).

3. MULTIMARKET COURNOT OLIGOPOLY MODEL
In this section, we introduce the specific model for which we investigate robust quanti-
tative comparative statics. As outlined earlier, the three ingredients for such analysis
are a set of games G; for each such game G ∈ G, a set of feasible parameter changes
!G; and an objective function f : G → R to evaluate the games.

Class of games G. We consider multimarket oligopolies defined as follows: In a game
G ∈ G, a set N of n firms competes in a set of markets M. Each firm i ∈ N has access to
some subset Mi ⊆ M of these markets. A strategy of a firm i is to choose non-negative
production quantities qi,m for all markets m ∈ Mi that it serves. We set qi,m = 0 for any
market not served by firm i and denote the total quantity of firm i by qi =

∑
m∈M qi,m.

Correspondingly, the total quantity on any market m is denoted by qm =
∑

i∈N qi,m.

ASSUMPTION 1. The price of a market is an affine function of the total quantity pro-
duced, i.e., if on market m ∈ M a quantity qm is produced, the price is pm(qm) = sm−rmqm,
where sm > 0 is an initial positive price and the coefficient rm > 0 describes how the
price decreases as the total quantity is increased.

We sometimes denote the price function on a market simply by pm(q).

ASSUMPTION 2. Firm i’s cost for producing the quantity qi is given by the function ci(qi)
which we assume to be non-decreasing, convex, and differentiable in qi with ci(0) = 0.

Given production quantities for all firms, the utility of firm i is defined as

ui(q) :=
∑

m∈M

pm(qm)qi,m − ci(qi).
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In a Cournot equilibrium, firms choose their quantities so as to maximize their utility.
Particularly, in a Cournot equilibrium q, no firm can increase its utility by unilaterally
deviating to a different strategy, i.e., ui(q) ≥ ui(q′

i, q−i) for all strategies q′
i available

to firm i. As the games introduced earlier involve convex and compact strategy spaces
together with quasi-concave utilities, standard fixed-point arguments of type Kakutani
(cf. Debreu [1952], Fan [1952], Glicksberg [1952], and Kakutani [1941]) imply the exis-
tence of an equilibrium. Note that compactness of the strategy space can be guaranteed,
because for every firm and every market there exists a maximum quantity at which the
market price goes down to zero, eliminating the firm’s profit. Thus, one can effectively
bound all quantities by a finite value. As shown in Section 4, the assumptions on the
price and cost functions further imply that there is a unique equilibrium.

We denote the marginal revenue of firm i on market m by

πi,m(qi,m, q−i,m) =
∂

(
pm(qi,m + q−i,m)qi,m

)

∂qi,m
= pm(qm) − rmqi,m,

where q−i,m is the quantity sold by firms j $= i. The marginal cost is c′
i(qi), and we will

often write πi,m(q) and c′
i(q). In an equilibrium x, the marginal revenue of any served

market m equals the marginal cost: πi,m(x) = c′
i(x) for all i ∈ N with xi,m > 0.

Parameter changes !G. The parameter changes analyzed are positive shocks to the
price functions: on every market mof a game G ∈ G, the price increases by some amount
δm ≥ 0 such that pδ

m(qm) = pm(qm)+ δm. We denote the set of feasible parameter changes
as !G := R|M|

≥0 , where |M| is the number of markets in G.

Objective functions f . The games in G have unique Cournot equilibria (as shown in
Section 4 and Section 6), and our three objective functions are equilibrium firm profit,
equilibrium total profit, and equilibrium social welfare. Given a game G and a price
shock δ, we denote the unique equilibrium of G by x and the unique equilibrium of G(δ)
by y.

(1) Firm profit: the profit of an individual firm is ui(q) =
∑

m∈M pm(qm)qi,m − ci(qi) and
we minimize across the firms of a game to obtain an overall measure:

γ u(G, δ) := min
i∈N

uδ
i (y)

ui(x)
.

(2) Total profit: we consider utilitarian welfare, i.e., the sum of the profits of all firms
U (q) :=

∑
i∈N ui(q), such that

γ U (G, δ) := U δ(y)
U (x)

.

(3) Social welfare: this measure assumes that the price function of a market expresses
the marginal value that the buyers in the market have from additional quantity of
the good. We denote S(q) :=

∑
m∈M

∫ qm
0 pm(z)dz −

∑
i∈N ci(qi), such that

γ S(G, δ) := Sδ(y)
S(x)

.

While the first measure has been analyzed by Bulow et al. [1985], the second two mea-
sures have been used, among others, by Anderson and Renault [2003], Ushio [1985],
and Tsitsiklis and Xu [2013]. For each measure, we strive to provide a infimum bound
across all multimarket Cournot games in G and price shocks !G combined with concrete
games that converge to this bound. The following example instance exhibits the basic
intuition for the quantitative analysis in Sections 4 and 5.
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Example Instance. Consider a game with two markets. Market 1 is served only
by a monopolist (denoted as firm a), while all firms compete in market 2. Given a
positive price shock on market 1, firm a will reduce its quantity on market 2 in favor
of selling more on its more profitable monopoly market (see Figure 1(a)). In effect, the
competitors’ marginal revenue strictly increases and leads to a new equilibrium in
which these competitors increase their quantities (see Figure 1(b)). Markets in which
a less aggressive play of one firm leads to a more aggressive play of competitors are
called markets with strategic substitutes (see Bulow et al. [1985]). The more aggressive
competition experienced by firm a in market 2 reduces its profit below the original level;
or said differently, after the price shock, a part of firm a’s quantity on market 2 has
been substituted by the competitors (see Figure 1(c)).

Negative Price Shocks. While we restrict our analysis to positive price shocks, the
results immediately extend to negative price shocks. If, for example, a subsidy (i.e.,
a positive price shock) causes the equilibrium to shift such that the firms’ profits
decrease, then taking back the subsidy (i.e., a negative price shock) will restore the old
equilibrium and, thus, increase the firm’s profits. In this sense, the two effects are dual:
any negative price shock can be seen as taking back a positive price shock, and the
profit gain from the negative price shock is equal to the profit loss from positive price
shock. This is true for any objective function f and, denoting negative price shocks to
a game by !−

G , we have γ f (G,!−
G ) = (γ f (G,!G))−1.

4. MAXIMUM PROFIT LOSS OF AN INDIVIDUAL FIRM
We use robust quantitative comparative statics to investigate the worst-case profit loss
of a firm from a positive price shock as expressed by γ u(G,!G).

THEOREM 4.1. Given a game G with n firms, no firm loses more than a (n−1)2

4n2 fraction
of its profit from a price shock (δm)m∈M with δm ≥ 0 for all m ∈ M,

γ u(G, δ) ≥ 1 − (n − 1)2

4n2 ≥ 3
4

.

This is our main result. It shows that no firm loses more than 25% of current profits.
This bound is robust in the sense that it holds for an entire class of games and parame-
ters; that is, in order to arrive at this bound, the modeler only needs to know that price
shocks are non-negative, inverse demand functions are affine, and cost technologies
are convex.

To prove the statement, we first establish uniqueness of equilibria and that a price
shock δ ≥ 0 causes the price on every market to increase, and that in this favorable
setting, every firm increases its total quantity. Using these insights into the effect of
the price shock, for any given firm i, we can identify a market where this firm suffers
the relatively strongest loss and use this to bound uδ

i (y)
ui (x) . This proves the theorem, as

γ u(G, δ) is the minimum of this fraction across all firms. The following lemma follows
easily by the fact that our games are exact (concave) potential games over a convex and
compact strategy space (see Monderer and Shapley [1996]). We give here an alternative
combinatorial proof and some of the ideas will be used later on.

LEMMA 4.2 (UNIQUENESS OF EQUILIBRIA). Let x and y be equilibria of some game G.
Then x = y.

PROOF. As a first step of the proof, we show that on every market m, xm = ym. Let
M+ := {m ∈ M : xm < ym} and assume for a contradiction that M+ $= ∅. Then, there is a
firm i with

∑
m∈M+ (yi,m − xi,m) > 0 and a market m ∈ M+ with yi,m > xi,m ≥ 0. It follows

from the equilibrium definition that in y firm, i’s marginal cost and marginal revenue
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Fig. 1. Example instance with two markets.
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on m are equal, i.e.,

c′
i(yi) = pm(ym) − rmyi,m < pm(xm) − rmxi,m ≤ c′

i(xi), (1)

where we used that pm(ym) < pm(xm) because m ∈ M+. From c′
i(yi) < c′

i(xi), it follows
that

yi < xi. (2)

Also, for all markets m′ ∈ M, where yi,m′ < xi,m′ , it follows again from the equilibrium
definition that

pm′(ym′ ) − rm′ yi,m′ ≤ c′
i(yi) < c′

i(xi) ≤ pm′ (xm′) − rm′ xi,m′ ,

and hence, pm′ (ym′) < pm′(xm′ ), i.e., m′ ∈ M+. Then, we find a contradiction as

0 > yi − xi =
∑

m∈M

(yi,m − xi,m) >
∑

m∈M+

(yi,m − xi,m) > 0.

Here, we can limit the summation from all m ∈ M to m ∈ M+ because we found that
m′ ∈ M+ for all markets with yi,m′ < xi,m′ .

As the next step of the proof, we use xm = ym for all m ∈ M to show xi,m = yi,m for all
firms i. For a contradiction, assume there are i ∈ N and m ∈ M such that xi,m < yi,m.
Then, we can again apply Inequality (1) to obtain yi < xi and there must be some
market m′ ∈ M with yi,m′ < xi,m′ , which leads with the same reasoning to xi < yi, a
contradiction. Altogether, x = y.

We now show that the prices on all markets increase after the positive price shock.

LEMMA 4.3. Let x and y be equilibria of a game G before and after a price shock
(δm)m∈M with δm ≥ 0 for all m ∈ M. Then, on all markets m ∈ M, the price in y is higher
than in x, that is, pδ

m(ym) ≥ pm(xm).

PROOF. While in the proof of Lemma 4.2 we compared two equilibria of the same
game, we now compare the equilibria before and after the price shock. The analysis
remains largely unchanged: if we denote by M+ := {m ∈ M : xm + δm

rm
< ym} the set of

markets where the price decreases, then M+ $= ∅ still implies that there is some firm
i with

∑
m∈M+ (yi,m − xi,m) > 0 and yi < xi, as in Inequality (2), leading to the same

contradiction as before. It follows that M+ = ∅, i.e., pδ
m(ym) ≥ pm(xm) for all m ∈ M.

Given increasing prices, all firms increase their quantity.

LEMMA 4.4. Let x and y be equilibria of a game G before and after a price shock
(δm)m∈M with δm ≥ 0 for all m ∈ M. Then, each firm i ∈ N produces more in y than in x,
yi ≥ xi.

PROOF. Assume there is i ∈ N with yi < xi. Then

πδ
i,m(y) ≤ c′

i(yi) ≤ c′
i(xi) = πi,m(x)

on every market m ∈ M with xi,m > 0. With pδ
m(ym) ≥ pm(xm), as found in the previous

lemma, it follows that yi,m ≥ xi,m on every market with xi,m > 0, a contradiction to
yi < xi. Hence, xi ≤ yi for all i ∈ N.

We now show that whenever a firm sells more quantity on every market in the new
equilibrium, then also the firm’s profit increases.

LEMMA 4.5. Let x and y be equilibria of a game G before and after a price shock
(δm)m∈M with δm ≥ 0 for all m ∈ M. If for a firm i ∈ N it holds that yi,m ≥ xi,m for all
m ∈ M, then ui(x) ≤ uδ

i (y).
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PROOF. Recall that for every market m with xi,m > 0 (or yi,m > 0), we have

pm(xm) − rmxi,m = c′
i(xi)

pδ
m(ym) − rmyi,m = c′

i(yi).

Thus, we get

uδ
i (y) − ui(x) =

∑

m∈M

pδ
m(ym)yi,m − pm(xm)xi,m − ci(yi) + ci(xi)

= c′
i(yi)yi − c′

i(xi)xi +
∑

m∈M

rm
(
y2

i,m − x2
i,m

)
− ci(yi) + ci(xi)

≥ c′
i(yi)yi − c′

i(xi)xi − ci(yi) + ci(xi), (3)

where we used in Inequality (3) that (by assumption) yi,m ≥ xi,m for all m ∈ M. Finally,

c′
i(yi)yi − c′

i(xi)xi − ci(yi) + ci(xi) = c′
i(yi)(yi − xi) + c′

i(yi)xi − c′
i(xi)xi − ci(yi) + ci(xi)

≥ c′
i(yi)(yi − xi) − ci(yi) + ci(xi) ≥ 0,

where we use that yi ≥ xi and the assumption that ci is convex.

We are now ready to prove the main theorem.

PROOF OF THEOREM 4.1. Let G be a game with n firms. We show that for any given
firm i, the inequality uδ

i (y)
ui (x) ≥ 1 − (n−1)2

4n2 holds. The theorem follows because γ u(G, δ) is
the minimum of this quantity across all firms.

We denote by M− := {m ∈ M : yi,m < xi,m} the set of markets where firm i decreases
its quantity after the price shock and similarly by M+ := M \ M− the set where i
increases its quantity after the price shock. Note that by Lemma 4.5 we can assume
that M− $= ∅, since otherwise, we obtain already uδ

i (y) ≥ ui(x).
We assume that the markets are indexed such that market 1 is a solution to

argmin
m∈M−

(pδ
m(ym) − c′

i(xi))xi,m − rmyi,m(xi,m − yi,m)
(pm(xm) − c′

i(xi))xi,m
. (4)

Note that the denominator of the aforementioned fraction is always positive, as any
market m ∈ M− has a non-zero quantity xi,m > 0, and thus, by the first order equilibrium
condition, also pm(xm) > c′

i(xi).
We find the following relations that will be helpful later on: The quantity added in

markets in M+ corresponds exactly to the quantity taken away from markets in M−

and the additional quantity yi − xi, i.e.,
∑

m∈M+

yi,m − xi,m =
∑

m∈M−

xi,m − yi,m + yi − xi. (5)

Also, the price in markets m ∈ M+ in y is related to the marginal cost, i.e.,

pδ
m(ym) ≥ pδ

m(ym) − rmyi,m = πδ
i,m(y) = c′

i(yi), (6)

which, in turn, is related to the price on markets m ∈ M−, i.e.,

c′
i(yi) ≥ πδ

i,m(y) = pδ
m(ym) − rmyi,m. (7)

As the cost function is convex,

c′
i(yi)(yi − xi) ≥ ci(yi) − ci(xi). (8)
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We combine the above to a statement that relates the profit of quantity added to M+

to the profit lost by reducing quantity in M−,
∑

m∈M+

pδ
m(ym)(yi,m − xi,m)

(6)
≥

∑

m∈M+

c′
i(yi)(yi,m − xi,m)

(5)
≥

∑

m∈M−

c′
i(yi)(xi,m − yi,m) + c′

i(yi)(yi − xi)

(7),(8)
≥

∑

m∈M−

(pδ
m(ym) − rmyi,m)(xi,m − yi,m) + ci(yi) − ci(xi). (9)

We further assume that uδ
i (y)

ui (x) < 1, as we are interested in worst-case instances and
our lower bounds show that such instances exist. Note that for a fraction with value less
than 1, subtracting the same amount from both numerator and denominator decreases
the value of the fraction. We estimate

uδ
i (y)

ui(x)
=

∑
m∈M− pδ

m(ym)yi,m +
∑

m∈M+ pδ
m(ym)yi,m − ci(yi)∑

m∈M− pm(xm)xi,m +
∑

m∈M+ pm(xm)xi,m − ci(xi)
(9)
≥

∑
m∈M− pδ

m(ym)xi,m − rmyi,m(xi,m − yi,m) +
∑

m∈M+ pδ
m(ym)xi,m − ci(xi)∑

m∈M− pm(xm)xi,m +
∑

m∈M+ pm(xm)xi,m − ci(xi)

≥
∑

m∈M− (pδ
m(ym) − c′

i(xi))xi,m − rmyi,m(xi,m − yi,m) +
∑

m∈M+ (pm(xm) − c′
i(xi))xi,m∑

m∈M− (pm(xm) − c′
i(xi))xi,m +

∑
m∈M+ (pm(xm) − c′

i(xi))xi,m
(10)

≥
∑

m∈M− (pδ
m(ym) − c′

i(xi))xi,m − rmyi,m(xi,m − yi,m)∑
m∈M− (pm(xm) − c′

i(xi))xi,m
(11)

(4)
≥

(pδ
1(y1) − c′

i(xi))xi,1 − r1yi,1(xi,1 − yi,1)
(p1(x1) − c′

i(xi))xi,1
. (12)

In Inequality (10), we use that the cost function is convex, and hence, −ci(xi) ≥∑
m∈M −c′

i(xi)xi,m, and in Inequality (11), that the price in a market with positive quan-
tity is at least the marginal cost, i.e., pm(xm) ≥ c′

i(xi) for a market with xi,m > 0.
We now further examine the relation of pδ

1(y1), p1(x1), and c′
i(xi). For any firm j $= i

that has increased its quantity on market 1, i.e., yj,1 > xj,1, we get

p1(x1) − r1xj,1 = π j,1(x) ≤ c′
j(xj) ≤ c′

j(yj) = πδ
j,1(y) = pδ

1(y1) − r1yj,1;

that is,

r1(yj,1 − xj,1) ≤ pδ
1(y1) − p1(x1). (13)

Then, considering
∑

j:yj,1>xj,1
(yj,1 − xj,1) + yi,1 − xi,1 ≥ y1 − x1, we can rather precisely

observe how the price on market 1 changes with the price shock.

pδ
1(y1) = p1(x1) + δ1 − r1(y1 − x1) ≥ p1(x1) + r1(xi,1 − yi,1) − r1

∑

j:yj,1>xj,1

(yj,1 − xj,1)

(13)
≥ p1(x1) + r1(xi,1 − yi,1) − (n − 1)(pδ

1(y1) − p1(x1)),

as there are at most n − 1 firms with yj,1 > xj,1. This can be rearranged to

pδ
1(y1) ≥ p1(x1) + r1

n
(xi,1 − yi,1). (14)
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3:12 T. Harks and P. von Falkenhausen

Observe further that xi,1 > 0 because market 1 is in M− and, hence,
p1(x1) − r1xi,1 = πi,1(x) = c′

i(xi). (15)
We continue the proof from Inequality (12),

uδ
i (y)

ui(x)
(12)
≥

(pδ
1(y1) − c′

i(xi))xi,1 − r1yi,1(xi,1 − yi,1)
(p1(x1) − c′

i(xi))xi,1

(14)
≥

(p1(x1) − c′
i(xi))xi,1 + r1

n (xi,1 − yi,1)xi,1 − r1yi,1(xi,1 − yi,1)
(p1(x1) − c′

i(xi))xi,1

= 1 +
r1( 1

nxi,1 − yi,1)(xi,1 − yi,1)
(p1(x1) − c′

i(xi))xi,1

(15)= 1 +
( 1

nxi,1 − yi,1)(xi,1 − yi,1)
x2

i,1

≥ 1 − (n − 1)2

4n2 = 3
4

+ 2n − 1
4n2 .

4.1. Lower Bound
To show that the bound of the previous theorem is tight, we construct a simple instance
with matching profit loss.

PROPOSITION 4.6. For any n, there is a game G with n firms where a positive price
shock decreases the profit of some firm a by a factor (n−1)2

4n2 ; that is,

γ u(G, δ) = 1 − (n − 1)2

4n2 .

PROOF. The instance has two markets M = {1, 2} and there are n firms. All firms
serve market 2, while market 1 is only served by some firm a ∈ N. We fix the price on
market 1 before the price shock to 0; i.e., p1 = 0 and r1 = 0. On market 2, the price
is p2(q2) = 2 − q2, where q2 is the total quantity sold in market 2. The cost of firm
a for any total quantity qa = qa,1 + qa,2 is 0 if qa ≤ 2

n+1 ; for any larger quantity, the
cost is prohibitively high. Note that although we treat the cost function of firm a as a
(non-differentiable) step function, we can also use differentiable and convex functions
approximating this step function within any precision leading to the same bound (up
to the selected precision). For firms i $= a, the cost is always 0.

The Cournot equilibrium x of this game can be found through convex optimization.
In the equilibrium, no quantity is sold on market 1, and on market 2, xa,2 = xi,2 = 2

n+1 .
Firm a’s profit is ua(x) = (2 − n 2

n+1 ) 2
n+1 = 4

(n+1)2 .
A price shock that increases the price on market 1 to n−1

n2 leads firm a to shift to
market 1. In the new equilibrium y, ya,1 = n−1

n(n+1) , ya,2 = 1
n, and yi,2 = 2n−1

n2 . The profit of
firm a is

ua(y) =
(

2 − 1
n

− (n − 1)
2n − 1

n2

)
1
n

+ n − 1
n2

n − 1
n(n + 1)

= 3n − 1
n2(n + 1)

.

Then, the ratio of profit before and after the price shock is

γ u(G, δ) = ua(y)
ua(x)

= (3n − 1)(n + 1)
4n2 = 1 − (n − 1)2

4n2 .
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Remark 4.7. Note that this lower bound is quite generic in the sense that such an
instance can be constructed for any price function on market 2, and any linear cost
function for competitors i $= a. In general, the profit loss of a firm can be large when
it has a strongly convex cost function, such that a positive price shock in one market
causes it to decrease quantity in another market and when this is met by competitors
with linear (or not “too convex”) cost functions.

4.2. Non-Convex Cost
If we abandon Assumption 2, i.e., allow non-convex cost functions, we possibly lose
uniqueness of equilibria and we would have to redefine our objective function, e.g.,
involving equilibrium selection.6 Moreover, one can easily construct examples where a
positive price shock completely eliminates the profit of a firm in all equilibria. If, e.g.,
fixed costs are allowed, in the example of Bulow et al. [1985], one can set the fixed
cost of the monopolist equal to their revenue after the price shock using the fact that
fixed costs do not change the equilibria of the game as long as non-negative profits are
guaranteed. Similar examples are possible if we mix between economies of scale and
diseconomies of scale among firms’ cost technologies.

4.3. Concave Inverse Demand Functions
Relaxing Assumption 1 toward concave prices reveals another counterintuitive phe-
nomenon: Very small price shocks may decrease the profit of a firm by an arbitrary
amount. Consider the class H ⊇ G of games that allows for concave inverse demand
functions. We obtain the following value for γ u(H,!H).

PROPOSITION 4.8. For any k ≥ 4, there is a game with only two markets and concave
price functions such that the profit ratio of one of the firms before and after a positive
price shock is less than 2

k . Thus, γ u(H,!H) = 0.

PROOF. Fix some k ≥ 4. We construct a game G ∈ H to fulfill the aforementioned
claim. The firm whose profit ratio we observe, denoted by a, has cost ca(qa) = 0 for
quantities qa ≤ 1 and prohibitively high cost for larger quantities. All other firms i $= a
have cost ci(qi) = qi for any quantity.

Market 1 is only served by firm a and has constant price p1(q1) ≡ 0. Market 2 is served
by all firms and has a concave price function satisfying p2(1) = 1 with p′

2(1) = −1 and
p2(1 + 1

k ) = 1 − 2
k with p′

2(1 + 1
k ) = −k.

The initial equilibrium x of this game is xa,1 = 0, xa,2 = 1, and xj,2 = 0 for all
j $= a. To verify this, observe that marginal revenue and cost of firm a are all equal, as
πa,1(x) = 0, πa,2(x) = 1 − 1 = 0, and c′

a(x) = 0, as well as for competitors j $= a, we have
π j,2(x) = 1 = c′

j(x).
Let the price shock be δ1 = 1

k and δ2 = 3
k . The new equilibrium is ya,1 = 1 − 1

k ,
ya,2 = 1

k , and yj,2 = 1
k2 for all competitors j $= a. We, again, verify πδ

a,1(y) = 1
k , πδ

a,2(y) =
1 + 1

k − k1
k = 1

k which are equal and greater than 0. For competitors j $= a, πδ
j,2(y) =

1 + 1
k − k 1

k2 = 1 = c′
j(y).

We calculate the profit of firm a in both equilibria: ua(x) = 1, and thus,

γ (G, δ) = uδ
a(y) = pδ

1(y)ya,1 + pδ
2(y)ya,2 − ca(y)

= 1
k

(
1 − 1

k

)
+

(
1 + 1

k

)
1
k

= 2
k
.

6Cournot equilibria continue to exist for non-convex costs if inverse demand functions satisfy rather mild
assumptions (see, e.g., Novshek [1985], Amir [1996], and Roberts and Sonnenschein [1976]).
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5. EFFECT OF PRICE SHOCKS ON AGGREGATES
Theorem 4.1 shows that an individual firm can lose no more than 25% of its profit as a
result of a positive price shock. The lower bound, however, had the property that one
firm loses, but all competitors gained in their total profits. In this section, we study
effects of price shocks on aggregate measures: the total profit and the social welfare.

5.1. Total Profit
Our first result showed that each firm may not lose more than 25% of current profits.
By the definition of γ u(G, δ), it follows that the same holds true for total firm’s profits;
that is, γ U (G, δ) ≥ γ u(G, δ) ≥ 3/4 for any game G. More interestingly, we show an
instance where this loss is actually attained, and, thus, γ U (G, δ) = γ u(G, δ).

PROPOSITION 5.1. There is a game G ∈ G with n firms, where a positive price shock δ

decreases the equilibrium total profit by a (n−1)2

4(n2+n−1) fraction of the original total profit,
that is, by almost 25% for instances with many firms; that is

γ U (G, δ) ≤ 1 − (n − 1)2

4(n2 + n − 1)
→n→∞

3
4

.

PROOF. The game is similar to that from that proof of Proposition 4.6, except that
firm a can produce a quantity of qa ≤ 1 at cost 0, and its competitors i $= a have a
per-unit cost of 1, i.e., the cost is ci(qi) = qi.

The Cournot equilibrium x of this game can be found through convex optimization.
In the equilibrium, no quantity is sold on market 1, and on market 2, xa,2 = 1 and
xi,2 = 0 for all i $= a. The equilibrium total profit is U (x) = 1.

A price shock that increases the price on market 1 to δ = n2−1
2(n2+n−1) leads firm a

to shift to market 1. In the new equilibrium y, ya,1 = n2−n
2(n2+n−1) , ya,2 = n2+3n−2

2(n2+n−1) , and
yi,2 = n−1

2(n2+n−1) for all i $= a. The new equilibrium total profit is

U δ(y) = δya,1 +



2 −



ya,2 +
∑

i $=a

yi,2











ya,2 +
∑

i $=a

yi,2



 −
∑

i $=a

yi,2

= 3n2 + 6n − 5
4(n2 + n − 1)

.

5.2. Aggregate Social Welfare
We now consider the effect of price shocks on social welfare defined as

S(q) =
∑

m∈M

∫ qm

0
pm(z)dz −

∑

i∈N

ci(qi) =
∑

m∈M

(
smqm − rmq2

m

2

)
−

∑

i∈N

ci(qi). (16)

The first term in the aforementioned definition of S(q) measures the value that the
buyers in the market have of the goods, while the second term simply sums up total
production cost. Social welfare has been considered before, among others, by Anderson
and Renault [2003], Ushio [1985], and Tsitsiklis and Xu [2013]. For a given game G,
we want to bound the ratio γ S(G, δ) = Sδ (y)

S(x) .

THEOREM 5.2. Given a game G, a positive price shock δ can decrease the social welfare
by at most a factor 1

6 ; that is,

γ S(G, δ) ≥ 5
6

.
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Before we prove the theorem, we characterize y with the following variational inequal-
ity. Variational inequalities have been used before, e.g., in the context of characterizing
equilibria (cf. Dafermos [1980] and Haurie and Marcotte [1985]) and for bounding the
price of anarchy (cf. Correa et al. [2004], Cominetti et al. [2009], Correa et al. [2008],
Harks and Miller [2011], Harks [2011], Roughgarden [2002], and Roughgarden and
Schoppmann [2011]).

LEMMA 5.3. Let y be the equilibrium for the game with price shock δm ≥ 0, m ∈ M,
and let x be the original equilibrium. Then, for all i ∈ N, it holds

∑

m∈Mi

(sm + δm − rmym − rmyi,m − c′
i(yi))(xi,m − yi,m) ≤ 0. (17)

PROOF. For every firm i, given the equilibrium quantities y−i of its competitors, the
problem

max
qi,m≥0,m∈Mi

ui(qi, y−i)

is a convex program. Thus, at an optimal solution (yi,m)m∈Mi , the gradient ∇ui(y) only
decreases along any feasible direction. In particular, (xi,m − yi,m)m∈Mi is a feasible
direction.

We now bound the welfare gained at x.

LEMMA 5.4.

S(x) ≥
∑

i∈N

∑

m∈M

3
2

rmx2
i,m. (18)

PROOF. Note that x is an equilibrium for the unperturbed game. In particular, the
first order necessary optimality conditions for each firm hold:

sm − rmxm − rmxi,m = c′
i(xi) for all xi,m > 0. (19)

We combine this with the definition of the welfare of Equation (16),

S(x) =
∑

m∈M

(
smxm − rmx2

m

2

)
−

∑

i∈N

ci(xi)

≥
∑

m∈M

(
smxm − rmx2

m

2

)
−

∑

i∈N

c′
i(xi)xi (20)

(19)=
∑

m∈M

(

smxm − rmx2
m

2
−

(

smxm − rm(xm)2 − rm
∑

i∈N

(xi,m)2

))

=
∑

m∈M

rmx2
m

2
+

∑

i∈N

∑

m∈M

rmx2
i,m ≥

∑

i∈N

∑

m∈M

3
2

rmx2
i,m.

Here, Inequality (20) follows by the convexity of ci and ci(0) = 0. Finally, x2
m =(∑

i∈N xi,m
)2 ≥

∑
i∈N x2

i,m.

We now prove the theorem.

PROOF OF THEOREM 5.2. We establish the difference between Sδ(y) and S(x) through
Equation (16) and the fact that ci(yi) − ci(xi) ≤ c′

i(yi)(yi − xi) as the cost functions are
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convex, and yi ≥ xi, as shown in Lemma 4.4.

S(x) = Sδ(y) +
∑

m∈M

(
smxm − (sm + δm)ym − rm

2
(
x2

m − y2
m
))

+
∑

i∈N

(ci(yi) − ci(xi))

≤ Sδ(y) +
∑

m∈M

(
(sm + δm)(xm − ym) − rm

2
(
x2

m − y2
m
))

+
∑

i∈N

(c′
i(yi)(yi − xi)).

Subtracting the variational Inequality (17) summed up across all firms i ∈ N allows to
simplify the term.

S(x) ≤ Sδ(y) +
∑

m∈M

(

−rm

2
(x2

m + y2
m) + rmymxm + rm

∑

i∈N

yi,m(xi,m − yi,m)

)

= Sδ(y) +
∑

m∈M

rm

(

−1
2

(xm − ym)2 +
∑

i∈N

yi,m(xi,m − yi,m)

)

≤ Sδ(y) +
∑

m∈M

rm
∑

i∈N

x2
i,m

4
≤ Sδ(y) + 1

6
S(x). (21)

Here, we used for the first inequality in (21) that (xm−ym)2 ≥ 0 and that yi,m(xi,m−yi,m) ≤
x2

i,m
4 . The final step applies the result of Lemma 5.4.

We can use the construction of Proposition 5.1 to obtain a matching lower bound.

PROPOSITION 5.5. There is a game G with many firms where a positive price shock
decreases the social welfare by 1/6 ≈ 16.6%; that is,

γ S(G, δ) n→∞→ 5
6

.

PROOF. Note that S(q) = U (q) + 1
2

∑
m∈M rmq2

m. We use the instance and equilibria
from Proposition 5.1 and find S(x) = U (x) + 1

2 12 = 3
2 and

S(y) = U (y) + 1
2



ya,2 +
∑

i $=a

yi,2




2

= 10n4 + 22n3 − 7n2 − 24n + 11
8(n2 + n − 1)2

n→∞→ 5/4.

Combined, this approaches γ S(G, δ) n→∞→ 5
4

2
3 = 5

6 .

6. EXTENSION TO COARSE CORRELATED EQUILIBRIA
In this section, we extend our results to a broader set of equilibrium concepts, includ-
ing mixed, correlated, and coarse correlated equilibria. It is well known that mixed
equilibria are a subset of correlated equilibria which itself is a subset of coarse cor-
related equilibria. We derive a structural result, showing that for our model, coarse
correlated equilibria are essentially unique. While for the class of strictly concave po-
tential games (which includes our class of games), uniqueness of correlated equilibria
is already implied by the result of Neyman [1997]7, our uniqueness result extends to
coarse correlated equilibria. It is worth noting that there exist strictly concave (even
quadratic) potential games that allow for multiple coarse correlated equilibria (see

7The uniqueness result of Neyman for correlated equilibria has later been generalized to general concave
games, satisfying Rosen’s [Rosen 1965] sufficient condition for uniqueness (see Ui [2008]).
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the recent results by Moulin et al. [2014a, 2014b]). We first define coarse correlated
equilibrium (cf. Moulin and Vial [1978] and Roughgarden [2009]).

Definition 6.1 (Coarse Correlated Equilibrium). Given a strategic game (N, X, u), a
probability distribution σ : X → [0, 1] is a coarse correlated equilibrium if for every
player i ∈ N,

Ex∼σ [ui(x)] ≥ Ex∼σ [ui(yi, x−i)]

for all pure strategies yi ∈ Xi.

THEOREM 6.2. For a (multimarket oligopoly) game G, let x be a random variable
drawn from the game’s strategy space, and let x̄ = E[x] be its expected value. Then,
the distribution of x is a coarse correlated equilibrium if and only if x̄ is a pure Nash
equilibrium, xm

a.s.= x̄m on every market m ∈ M, and ci(x̄i) = E[ci(xi)] for every firm i ∈ N.
In that case, also ui(x̄) = E[ui(x)], U (x̄) = E[U (x)], and S(x̄) = E[S(x)].

We prove the theorem in four lemmata. We always denote by x a random variable
drawn from X with x̄ = E [x].

LEMMA 6.3. If the distribution of x is a coarse correlated equilibrium, then x̄m
a.s.= xm

and, thus, pm(x̄m) a.s.= pm(xm) on every market m ∈ M.

PROOF. For a coarse correlated equilibrium by definition,

E[ui(x)] ≥ E
[
ui(x̄i, x−i)

]

= E




∑

m∈Mi

pm(x̄i,m + x−i,m)x̄i,m − ci(x̄i)





=
∑

m∈Mi

E[pm(x̄i,m + x−i,m)]x̄i,m − ci(x̄i)

=
∑

m∈Mi

pm(x̄m)x̄i,m − ci(x̄i) = ui(x̄), (22)

where Equation (22) holds because the price functions are affine. Then, using that the
cost is convex, and hence, ci(x̄i) ≤ E[ci(xi)],

∑

m∈M

E[pm(xm)xm] =
∑

i∈N

E[ui(x) + ci(xi)]

≥
∑

i∈N

ui(x̄) + ci(x̄i)

=
∑

m∈M

pm(x̄m)x̄m. (23)

However, the markets’ price functions are affine, hence, pm(xm)xm is concave yielding

E[pm(xm)xm] ≤ pm(x̄m)x̄m. (24)

Combining (23) and (24) implies that the quantity (and thus, also the price) on every
market is almost surely constant, that is, xm

a.s.= x̄m.

LEMMA 6.4. If the distribution of x is a coarse correlated equilibrium, then ci(x̄i) =
E[ci(xi)] for every firm i ∈ N.
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PROOF.

E[ui(x̄i, x−i)] =
∑

m∈Mi

E[pm(x̄i,m + x−i,m)]x̄i,m − ci(x̄i)

=
∑

m∈Mi

E[pm(xm)xi,m] − ci(x̄i) (25)

= E[ui(x)] + E[ci(xi)] − ci(x̄i),

where in Equation (25), we use that pm(xm) is almost surely constant. As the distribu-
tion of x is a coarse correlated equilibrium, i.e., E[ui(x̄i, x−i)] ≤ E[ui(x)], and the cost
functions are convex, i.e., ci(x̄i) ≤ E[ci(xi)], we obtain ci(x̄i) = E[ci(xi)].

Note that from Lemma 6.3 and Lemma 6.4, it follows that if the distribution of x is
a coarse correlated equilibrium, ui(x̄) = E[ui(x)], U (x̄) = E[U (x)], and S(x̄) = E[S(x)].

LEMMA 6.5. If the distribution of x is a coarse correlated equilibrium, then x̄ is a pure
Nash equilibrium.

PROOF. Having shown that on every market pm(x̄m) a.s.= pm(xm), and for every firm
ci(x̄i) = E[ci(xi)], we find that

ui(x̄) =
∑

m∈Mi

pm(x̄m)x̄i,m − ci(x̄i)

=
∑

m∈Mi

E[pm(xm)xi,m] − E[ci(xi)]

= E[ui(x)].

For every alternative strategy yi ∈ Xi, the fact that the distribution of x is a coarse
correlated equilibrium gives

E[ui(x)] ≥ E[ui(yi, x−i)],

and because the price functions are affine, we can use the linearity of expectation to
find

E[ui(yi, x−i)] =
∑

m∈Mi

E[pm(yi,m + x−i,m)]yi,m − ci(yi) = ui(yi, x̄−i).

Combining the above, ui(x̄) ≥ ui(yi, x̄−i).

LEMMA 6.6. Let x be distributed such that x̄ = E [x] is a pure Nash equilibrium and
xm

a.s.= x̄m on every market m ∈ M and ci(x̄i) = E[ci(xi)] for every firm i ∈ N. Then, the
distribution of x is a coarse correlated equilibrium.

PROOF. As mentioned earlier, E[ui(x)] = ui(x̄) and ui(yi, x̄−i) = E[ui(yi, x−i)] for all
players i and strategies yi ∈ Xi. Also, ui(x̄) ≤ ui(yi, x̄−i) because x̄ is a pure Nash
equilibrium. Consequently, E[ui(x)] ≤ E[ui(yi, x−i)]; that is, the distribution of x is a
coarse correlated equilibrium.

Remark 6.7. For the special case of one market and two firms (duopoly), the unique-
ness result stated in Theorem 6.2 is implied by a result of Gerard-Varet and Moulin
[1978], where locally improvable strategies via coarse correlation are characterized for a
class of two-player games that includes the case of one market, two firms, affine prices,
and convex costs. For general n-player games, however, not much is known regarding
sufficient conditions for uniqueness of coarse correlated equilibria [Moulin 2015].
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For our robust quantitative comparative statics analysis, we obtain that all our
results carry over to mixed, correlated, and coarse correlated equilibria.

COROLLARY 6.8. Given a game G and a price shock δm, m ∈ M with δm ≥ 0 for all
m ∈ M. It holds that

(1) γ u(G, δ) ≥ 3/4
(2) γ U (G, δ) ≥ 3/4
(3) γ S(G, δ) ≥ 5/6,

even if in the definition of γ t(G, δ), t ∈ {u,U, S} mixed, correlated, or coarse correlated
equilibria are considered.

Remark 6.9. While our efficiency bounds are robust in the sense of Roughgarden
[2009] (translating to a broader set of equilibrium concepts), our bound in Theorem 4.1
is not derived based on local smoothness arguments, as used in Roughgarden and
Schoppmann [2011]. In fact, in Roughgarden and Schoppmann [2011], examples are
shown (in the context of atomic splittable congestion games), in which coarse correlated
equilibria perform strictly worse than correlated equilibria.

7. CONCLUSIONS
Bulow et al. [1985] showed that for multimarket oligopolies, a positive price shock can
reduce a monopolist’s profit. We directed a quantitative approach at their setting to
provide an understanding of the significance and robustness of this effect. Our results –
a positive price shock can reduce a profit by 25% and a negative price shock can increase
profit by 33% – imply that the effect may be significant. For example, the possible 33%
increase in profit may be enough for a government to consider imposing a domestic
sales tax in order to force domestic companies to compete more aggressively abroad.
For a market participant, on the other hand, our results imply that equilibrium profit
is robust in the sense that no more than 25% of current profit is lost in case of a positive
price shock. We further showed that social welfare is more robust against positive price
shocks: the worst-case loss is bounded by 16.6%.

There are several natural extensions of our model:

—How does the bounds change, assuming non-linear price functions or bounded price
shocks?

—What can be said for more complicated market structures (nested in a graph), as
considered recently by Correa et al. [2014a, 2014b]?

—What can be said for general aggregative games with strategic substitutes, as con-
sidered by Acemoglu and Jensen [2013]?

—Bulow et al. show, qualitatively, a similar paradoxical effect for markets with strate-
gic complements and joint economies of scale. Here, a quantification remains open.
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José R. Correa, Roger Lederman, and Nicolás E. Stier Moses. 2014b. Sensitivity analysis of markup equilibria

in complementary markets. Oper. Res. Lett. 42, 2 (2014), 173–179.
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