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1. Introduction
The ongoing globalization of markets over the past
decades accounts for an ever-increasing shipping vol-
ume of goods worldwide. In all industries, companies
operate facilities spread across the world to maximize
profitability, and procurement and distribution have
become global operations. The ensuing demand for
transportation has fostered the growth of huge interna-
tional logistics networks with the potential to increase
efficiency through economies of scale, pooling of orders,
and a global view on network layout.

The task of designing and operating such logistics
networks belongs to the broad realm of supply chain
management 4SCM5, “the management of flows between
and among all stages of a supply chain to maximize
total profitability” (Chopra and Meindl 2007, p. 6). As
this very general definition indicates, SCM addresses a
multitude of issues ranging from location, product, and
marketing decisions to the management of information
exchange and coordination across different stages of
the supply chain. Transportation planning in particular
occupies a central place in SCM, as transport and

storage of physical goods account for a significant
share of the operational cost in a supply network.

Because of the strong variance in lead times associ-
ated with the different decisions to be made in SCM, the
planning process is naturally structured hierarchically
in strategic, tactical, and operational levels (Simchi-Levi,
Kaminsky, and Simchi-Levi 2003). The work presented
in this paper is concerned with transportation planning
on the tactical level. Here, it is commonly assumed
that the supply chain is already in place: location and
product decisions have been made, and the general
design of the supply chain network is fixed. Typical
logistics decisions on the tactical level include the
amount of flow between the existing nodes of the
network, e.g., which customers to serve from which
warehouses or suppliers, how much inventory to keep
at which locations, and which transportation modes
and delivery frequencies to employ on the different
connections (Geunes and Pardalos 2003).

This paper proposes an approach to model and
solve the key tasks in tactical transportation planning
in an integrated fashion, explicitly including realistic
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transport tariffs and the tradeoff between inventory
cost and economies of scale in transportation.

1.1. Problem Description
We give a general description of the task we refer to as
tactical transportation planning and introduce some
terminology we will use throughout this paper. We con-
sider a network of facilities, which are of different
types, like production plants, warehouses, distribution
centers, or retailers. Some facilities have a supply of or
a demand for certain products, also known as commodi-
ties, which can be numerous and very different, e.g.,
in their mass, volume, or value. Facilities are joined
by transport relations, and on each transport relation,
different transport tariffs are available corresponding to
concurring offers of freight forwarders and available
transportation modes. Each transport tariff is charac-
terized by capacity restrictions and a cost function,
describing how much of a commodity (or of some
commodity mix) can be transported, and at which
cost. For example, a full truck load (FTL) tariff may
have a certain truck type’s payload and footprint as
capacity restrictions and incur a fixed charge cost. Some
facilities may be able to carry inventory, usually with a
commodity-dependent capacity and cost. Handling cost
may result from commodities passing through a facility,
such as a distribution center, regardless of whether
they are moved to inventory or not.

Quite commonly, transportation cost includes fixed-
charge costs for dispatching shipments, and the larger
a shipment, the lower the effective per unit shipping
cost. Hence, a key ingredient to successful tactical
planning in a logistics network is the efficient consolida-
tion of material flows, i.e., the combination of smaller
order amounts into larger shipments to utilize capacity
efficiently and enable economies of scale (Çetinkaya
2005). Consolidation may occur over space as well as
time. In spatial consolidation, material flows of different
origins are accumulated at one node and forwarded
jointly to the next. In temporal consolidation, material
is kept in inventory at a node for some time until
more flow arrives, thereby enabling a larger outbound
shipment. Because holding inventory also incurs cost,
there is a tradeoff to be considered here.

This interplay between inventory cost and different
transport tariffs necessitates a notion of time in plan-
ning. Since temporal details such as transport transit
times or demand deadlines are commonly postponed to
operational planning, the goal in tactical optimization is
a cyclic pattern of deliveries and inventory. The length
and structure of this pattern usually follows some
natural notion of rough timing, such as “once every
month,” “once every week,” or “once every day of
the week,” and in each slot of the pattern (e.g., each
month, week, or weekday), deliveries are dispatched
and inventories replenished or depleted.

All in all, the outcome of tactical transportation
planning as described here comprises

• The paths each commodity takes through the
network from its sources to its sinks, i.e., the total
amount of flow for each commodity on each transport
relation

• The transport tariffs employed on each transport
relation, together with an assignment of a commodity
mix to each of them

• A cyclic pattern in which transports are executed
for each tariff used on each transport relation, including
the amounts shipped for each commodity in each slot
of the pattern

• A pattern of inventory levels for each commodity
at each node, supporting the above transport patterns.

Again, note that in tactical planning, the aim is not to
use the results to operate the logistics network directly,
as this is the subject of operational planning. Rather,
tactical optimization intends to aid with decisions
that have to be made with some lead time, providing
the framework for efficient operation: How much
throughput capacity needs to be reserved at certain
distribution centers? Which logistics provider should
be cooperated with on which network connections,
and which available tariffs will be employed on what
volume of commodities? Hence, the main purpose of
many details in tactical modeling is not primarily to
reflect operational reality, but much more to yield a
realistic assessment of operational cost in the framework
provided.

1.2. Our Contribution and Overview of the Paper
In §2, we propose a new model for the optimization of
transportation networks on the tactical level. In our
model, different commodities are flexibly characterized
in terms of their properties (like mass, volume, and
value), and a choice of many different transportation
modes and tariffs is naturally incorporated, with capac-
ities and costs accurately reflecting the properties of the
(mix of) commodities transported. Moreover, our model
includes the possibility for flexible, cyclic delivery pat-
terns on each network connection, accurately modeling
the tradeoff between inventory cost and economies
of scale in transportation. Although we assume that
location decisions have been made and facilities are
already in place, the main decision variables of our
model include the flow paths of commodities through
the network, the transportation tariffs, and inventory
levels. Using several graph-based gadgets, we are able
to formulate our problem as a network design problem.
Note that in contrast to the broad literature on classical
network design problems (see §1.3 for concrete pointers
to the literature), our formulation integrates different
realistic transportation tariffs, cyclic delivery patterns,
and inventory costs all in one model.

The resulting network design problem can be nat-
urally formulated as a mixed-integer programming
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(MIP) model, but the precise replication of complex
tariff structures (via the previously mentioned gadgets)
leads to a drastically increased number of variables,
putting basic MIP approaches out of reach (at least for
instances arising in practice). We identify the problem
of selecting optimal tariffs on a single transport relation
as an important subproblem that is crucial in speeding
up the solution process: to identify cost-efficient paths,
our algorithms need good and fast estimates on the
cost incurred in sending a particular amount of flow
along a transport relation. These cost estimates are
performed very frequently (easily more than a million
times during the optimization of a single network) and
therefore need to be carried out even faster. In §3, we
propose different algorithms that provide an efficient
balance of accuracy and speed for solving this NP-hard
subproblem.

In §4, we propose a local search heuristic that
employs local changes on a path decomposition of flow
in the network using the previously mentioned tariff
selection subroutines. In contrast to many local search
heuristics known in the literature (that either work
directly on the design variables or reroute the flow of a
single commodity only), our approach applies a neigh-
borhood search based on path decomposition of flow
and rerouting multiple commodities simultaneously.
To obtain good initial solutions for our local search
heuristic, we provide two successive shortest path
type algorithms. The first method is designed with
an emphasis on speed and low memory requirement
and is able to generate solutions of reasonable quality
for even the largest instances in a short time. The sec-
ond is more accurate in cost estimation and therefore
is used as the central subroutine in our local search
improving moves. By forbidding certain paths (e.g.,
direct connections) and linearizing costs we further
tune the initial solutions toward a high level of flow
consolidation that will eventually be disaggregated by
the local search heuristic.

In §5, we complement our heuristic approach using
MIP techniques. As the plain MIP formulation intro-
duced earlier is not suited for solving reasonably sized
real-world instances because of enormous problem
sizes, we propose an aggregated formulation that con-
siderably reduces model size and still yields good dual
bounds. We combine this with efficient preprocessing
techniques to tighten the relaxation and a postprocess-
ing step to improve solution quality. Combining the
linear programming (LP) relaxation of this strengthened
and aggregated formulation with the tariff selection
heuristics mentioned earlier yields a third way of con-
structing initial solutions for our local search procedure,
which shows best final results on average.

In §6, we evaluate the performance of our different
algorithmic approaches on a library of real-world
instances provided by our project partner 4flow AG, a

logistics consultancy company. The test set consists
of case studies from the automotive, chemical, and
retail industries with up to thousands of locations and
hundreds of commodities. We can prove that most of
our solutions are within a single-digit percentage of
the optimum and that our modeling and algorithmic
techniques yield a cost reduction of more than 10%
over the current status quo, which could result in an
annual savings of several million euros.

1.3. Related Work
Mathematical optimization for logistics problems has
been a vast field of research for several decades. We give
an overview over models and algorithms for tactical
transportation planning.

1.3.1. Models for Transportation Planning. An
excellent overview of network-based optimization
techniques for SCM is given by Geunes and Pardalos
(2003). The authors review articles dealing with strategic
as well as tactical and operational planning.

In one of the earliest optimization models for SCM,
Geoffrion and Graves (1974) model a multicommodity
network with several plants, possible distribution cen-
ter locations, and demand zones on the strategic level.
Although the model incorporates fixed location costs,
as well as upper and lower bounds on the throughput
of a distribution center, it does not consider inventory
decisions and assumes transportation costs to be lin-
ear. The resulting MIP model is solved using Benders
decomposition. A strategic optimization model that
incorporates the interdependence of location, trans-
portation, and inventory decisions is described by
Jayaraman (1998). Here, different transportation modes
can be chosen for each connection in the network. Each
mode is associated with a commodity-dependent per
unit cost and a delivery frequency. Keeping inventory at
a plant or warehouse incurs per unit inventory cost,
and the amount of inventory held results from the
delivery frequencies of the outbound transportation
modes used. Note that this still captures temporal
consolidation rather coarsely, as theoretically, trans-
portation modes with low delivery frequency could
also carry low shipping volume, making their assumed
low per-unit cost unrealistic. The model is solved using
standard MIP solvers.

The above networkwide SCM models are focused
on strategic planning and incorporate location deci-
sions, but the tactical and operational tradeoff between
transportation and inventory cost lies at the heart
of dynamic lot-sizing in inventory theory. In the basic
version of dynamic lot-sizing introduced by Wagner
and Whitin (1958), different demands for a commodity
at one facility need to be met in multiple periods.
In each period, an arbitrary amount can be ordered
at fixed per order cost, whereas per unit inventory
cost is incurred. The goal is to determine the amount
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ordered in each period such that all demands are met
on time and the sum of order and inventory costs are
minimized. This basic model has been extended in
many ways since that study, and most variants are
computationally hard; see, e.g., Jans and Degraeve
(2007) for an overview. The practical importance of
considering the tradeoff between transportation and
inventory cost is highlighted impressively by Burns
et al. (1985) and Blumenfeld et al. (1987); these authors
were able to reduce logistics costs by 26% in a case
study for General Motors.

Generalizing lot-sizing to networks with multiple
stages brings it closer to the requirements of tactical
transportation planning. The first such model was
introduced by Clark and Scarf (1960) and further devel-
oped by Afentakis, Gavish, and Karmarkar (1984) and
Afentakis and Gavish (1986). An overview of more
recent works can be found in Stadtler (2003). Most of
these models, however, still make rather restrictive
assumptions on the structure of the network consid-
ered and transportation costs incurred. Moreover, the
quantity of material flowing between node pairs is
fixed a priori in all lot-sizing models, so the possibility
for more spatial consolidation at hubs is effectively
ignored.

Kempkes, Koberstein, and Suhl (2010) propose a
general model for the integrated operational planning
of external and internal logistics of the last two stages
of a supply chain. In their model, all costs depend
on the usage of resources, like mass or volume; this
dependence can be piecewise constant as well as lin-
ear and may involve multiple resources. Planning
occurs over multiple noncyclic periods, and inven-
tory cost is taken into account. The authors devise a
flow-based construction heuristic to generate an initial
feasible solution that is passed to a standard MIP solver.
To introduce all details necessary for realistic opera-
tional planning, their model even allows for logical
relations between different resources; however, this
significantly increases the algorithmical challenge of
solving large-scale instances. Accordingly, their solution
approaches are validated on relatively small instances
involving only five planning periods with networks of
up to 25 nodes, several hundred edges, and up to 100
commodities.

In a more tactical context, Schöneberg, Koberstein,
and Suhl (2010) propose a similar resource-based model
for optimizing the choice of delivery profiles in area
forwarding-based networks. In such networks, suppliers
are grouped into areas and each area is equipped
with a consolidation center run by a logistics carrier.
The main decision variables are the choices from a fixed
set of delivery profiles for each supplier and the use of
vehicles on the main legs (i.e., the connections between
consolidation centers and the target). The authors pro-
pose a solution method that first decomposes the model

by fixing certain decisions for each possible delivery
profile and then generates an initial feasible solution
for the MIP solver using a two-phase construction
heuristic. The approach is evaluated in the logistics
network of a German truck manufacturer, achieving
cost savings of up to 36% in individual areas.

The model introduced in this paper, as well as the
models by Kempkes, Koberstein, and Suhl (2010) and
Schöneberg, Koberstein, and Suhl (2010), are based on
capacitated network design formulations (see §1.3.2).
An alternative approach to modeling nonlinear trans-
portation tariffs are concave-cost network flows; see
Guisewite and Pardalos (1990) for a survey. Note
also that all three models mentioned above include
the possibility of concave cost functions (see §2.4.2
how they can be modeled in the context of the
present work).

In contrast to the model of Kempkes, Koberstein,
and Suhl (2010), our approach focuses exclusively on
transportation planning. Thus, it does not consider
globally interdependent resources, making it possible
to encapsulate tariff selection in a local subproblem
and allowing for larger transportation networks to be
solved. It also differs from the model by Schöneberg,
Koberstein, and Suhl (2010), which employs delivery
profiles to model replenishment cycles, whereas the
present paper is concerned with dynamic planning and
also allows for more general networks with multiple
levels of intermediate hubs instead of two-layered area
forwarding-based networks.

1.3.2. Capacitated Network Design. Although net-
work flow seems to be the dominant aspect in logistics
network optimization, the fixed-cost nature of transport
tariffs brings in network design decisions: we have to
install sufficient capacity in the network such that all
flow can be routed. In the literature, such mixtures of
network flow and network design are referred to as
capacitated network design or fixed-charge network flow and
are widely used for models not only in logistics but
also in telecommunications and infrastructure planning
(see the surveys by Magnanti and Wong 1984 and
Crainic 2000).

Most capacitated network design problems are very
hard to solve both in theory and in practice. In fact,
the model presented in this paper generalizes several
problems that are not only NP-hard but even highly
inapproximable from a theoretical point of view, e.g.,
the single-pair version of the capacitated survivable
network design problem, for which Chakrabarty et al.
(2011) showed that it does not even permit an approx-
imation factor of 2log1−�4n5 for any � > 0 (unless all
problems in NP can be solved in quasipolynomial
time). Furthermore, NP-hardness still holds for very
basic and sparse classes of networks like so-called
series-parallel graphs because a version of the multiple

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks et al.: An Integrated Approach to Tactical Transportation Planning
Transportation Science, Articles in Advance, pp. 1–22, © 2014 INFORMS 5

Steiner subgraph problem (Richey and Parker 1986)
can be reduced to our model.

This intrinsic hardness, combined with the enormous
size of instances encountered in practical applications
from logistics contexts, leaves little hope for exact solu-
tion approaches that run in acceptable time. Therefore,
fast combinatorial heuristics appear to be the method
of choice. The current state of the art is mainly built on
specialized tabu search procedures. Crainic, Gendreau,
and Farvolden (2000) proposed a tabu search proce-
dure based on a neighborhood in the multicommodity
flow polytope. Their algorithm was later adapted for
parallelization by Crainic and Gendreau (2002). A dif-
ferent neighborhood for tabu search was introduced by
Ghamlouche, Crainic, and Gendreau (2003), operating
on the network design and modifying it along cycles.
The same authors refine this procedure by supplement-
ing it with a path-relinking technique (Ghamlouche,
Crainic, and Gendreau 2004).

A different approach for solving fixed-charge network
flow problems is constituted by slope scaling. The slope
scaling procedure, first proposed by Kim and Pardalos
(1999) for single-commodity fixed-charge network flow,
iteratively solves the min-cost flow problem arising
from linearizing the fixed costs according to the current
solution. Crainic, Gendron, and Hernu (2004) generalize
this technique to multicommodity capacitated network
design and augment it by Lagrangian perturbation and
intensification/diversification mechanisms based on a
long-term memory.

All algorithms referenced above are designed for
general capacitated network design problems and have
been successfully tested on a standard benchmark
set of randomly generated instances of moderate size
with at most 100 nodes and 400 edges, introduced by
Crainic, Gendreau, and Farvolden (2000).

1.3.3. MIP Approaches to Network Design. Sev-
eral exact solution techniques for capacitated net-
work design have been studied; see, e.g., the
survey by Costa (2005). These techniques range from
Lagrangean relaxation over column generation to Ben-
ders decomposition.

Kliewer and Timajev (2005) integrate cover inequali-
ties and local cuts in a Lagrangean-based lower bound,
whereas Frangioni and Gendron (2009) study a 0-1-
reformulation for piecewise linear costs and show the
computational benefits of strong linking inequalities.
Chouman, Crainic, and Gendron (2011) present lifting
procedures for strong capacity and network cutset inequal-
ities for fixed-charge network flow problems. Another
promising technique to solve capacitated network
design problems is to apply a Benders decomposition;
see, e.g., Costa (2005), Cakir (2009). Costa, Cordeau,
and Gendron (2009) show the relation between different
classes of inequalities. In particular, the authors explain
how the inequalities from (nonextreme) dual rays of
the Benders framework and cutset inequalities can

be strengthened via shortest path computations to
become metric inequalities. To improve the running
times, Fischetti, Salvagnin, and Zanette (2010) propose
to find a minimal infeasible subsystem. They show
that this idea can be integrated into the subproblem
heuristically.

These works indicate that the scope of tractable
instance sizes for these methods is roughly limited to
30 nodes, 500 edges, and 200 commodities; i.e., for the
few larger instances reported on, the provable gaps on
solution quality exceed single digits.

2. Mathematical Model
Our model, which we call TTP for tactical transporta-
tion planning, is at its heart based on multicommodity
network flow, with both linear and fixed-charge costs
on the edges. However, we extend the standard con-
cepts of capacity and cost to more generality in order
to reflect the requirements of logistics modeling more
precisely. Moreover, we expand the underlying network
significantly to model delivery patterns, inventory
effects, and complex transport tariffs. We detail all of
these features in the following sections.

2.1. Pattern Expansion
The tradeoff between minimizing inventory cost and
taking advantage of the economies of scale in trans-
portation is of key importance in tactical logistics
planning. Temporal and spatial consolidation effects
regularly determine which tariff is most suitable on a
connection. Consequently, even the decision of which
path in the network is most efficient for a commodity
may ultimately depend on temporal delivery patterns.
As tactical planning defines the environment for opera-
tional planning that will take place repeatedly over
time, a solution should be a cyclic pattern for dis-
patching deliveries and replenishing and depleting
inventories. To integrate temporal and spatial consoli-
dation with cyclic delivery patterns, we introduce the
notion of pattern-expanded networks.

A pattern-expanded network denoted by G has two
main components. The first is the base network B, which
comprises the physical entities of the transport network:
facilities (or nodes) together with corresponding trans-
port relations between facilities. The second parameter is
a cycle length F defining the number of time slots (e.g.,
7, 30, or 356 days) available in a period. The pattern-
expanded network G is now obtained from B and F by
introducing F copies of B denoted by B11 0 0 0 1BF and
connecting copies of each node of every two adjacent
networks Bi and Bi+1 by directed holdover edges (the
direction is from nodes in Bi to those in Bi+1). Moreover,
the nodes of the last copy BF are also connected by
holdover edges to their corresponding copies in the
first copy B1, thus giving a cyclic network structure.
If commodities are sent along holdover edges from
BF to B1, this corresponds to storing commodities at

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks et al.: An Integrated Approach to Tactical Transportation Planning
6 Transportation Science, Articles in Advance, pp. 1–22, © 2014 INFORMS

the corresponding nodes at the end of a cycle to the
beginning of the next cycle. Costs can be associated
with holdover edges modeling inventory costs. In the
following, we will not differentiate between holdover
edges and transport edges. We denote the set of nodes
in the pattern-expanded network by � and the set of
all edges (also called transport relations) of � by �.

We illustrate this cyclic construction with an example.
Consider the base network in Figure 1(a) involving two
source-sink pairs �s1� t1� and �s2� t2�. In this example,
we chose F = 3; i.e., transports may occur only in
three time slots, e.g., three days a week. The pattern-
expanded network now involves the three copies of
the base network and the additional holdover edges,
as illustrated in Figure 1(b).

2.2. Commodities and Properties
Commodities in a logistics network can be very
diverse—e.g., in their size, weight, or value—and logis-
tics costs and transport capacities cannot be realistically
assumed to be oblivious to this diversity and the result-
ing interdependencies when mixing commodities in
transport. We introduce the concept of flexible properties
to characterize commodities. A set of commodities K
and a list of relevant properties P are parameters of our
model. Each commodity i ∈K is assigned a per unit
extent �ij for each property j ∈ P . The main motivation
for introducing these properties is that transportation
costs (introduced in §2.3) will mostly depend on the
total extent of each property of a commodity mix
(rather than the specific type of commodities itself),
thus reflecting the effects of consolidating goods for
utilizing vehicle capacities more efficiently.

In the following, a mix of commodities will be
denoted by a commodity vector x ∈�K

+
, and the aggregated

properties of such a mix x are expressed by ��x� ∈�P
+

with �j�x� �=
∑

i∈K �ijxi.

s1

s2

t1

t2

(a) Base network (b) Pattern-expanded network

Figure 1 Network Expansion
Notes. Base network with associated pattern expanded network. Dashed edges denote holdover edges.

Each node in the pattern expanded network may
have a supply of, or a demand for, certain commodities.
These supplies and demands are expressed by a balance
vector b�v� ∈�K for each node v ∈� (note that these
values might be different even for distinct copies of
the same node in the base network). A node with a
supply (bi�v� > 0) of a certain commodity i ∈K is called
a source of i; a node with a demand (bi�v� < 0) is called
a sink of i. The goal is to transport all supplies from
the sources to the sinks, satisfying all demands.

2.3. Transport Tariffs
When shipping goods on a transport relation, different
transport tariffs are available. For each transport relation
R ∈� we denote by T �R� the set of available tariffs for
transporting a flow of commodities from start�R� to
end�R�. Each such tariff t ∈ T �R� is associated with a
cost function Ct� �

K
+
→�+. We also assume that all cost

functions fulfill the economies of scale principle, i.e.,

Ct�a+ b�≤Ct�a�+Ct�b�
 (1)

A solution of our model consists of a multicommodity
flow in the pattern-expanded network satisfying all
demands, together with an assignment of the flow on
each transport relation to the tariffs available on this
relation. More formally, let x�R� ∈�K

+
denote the total

(multicommodity) flow to be shipped on transport
relation R ∈�, and let x�t� ∈�K

+
denote the amount of

flow transported using tariff t ∈ T �R�. Then our goal is
to find an optimal solution to

min
∑

R∈�

∑

t∈T �R�

Ct�x�t��

s.t.
∑

R∈	+�v�

xi�R�−
∑

R∈	−�v�

xi�R�=bi�v� ∀v∈� �∀i∈K�
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∑

t∈T 4R5

xi4t5= xi4R5 ∀R ∈R1 ∀ i ∈K1

x4t5≥ 0 ∀ t ∈ T 4R51 ∀R ∈R1

where �+4v5 and �−4v5 denote the sets of outgoing and
incoming arcs of node v, respectively.

We will now present a set of cost functions that covers
most tariffs occurring in today’s logistical applications.
In §2.4, we will show how all of these cost functions
can also be modeled in a unified form as a capacitated
network design problem.

Linear costs. In many logistical applications, com-
modity-dependent linear costs of the form

C4x5=
∑

i∈K

ci · xi

with cost rates ci ∈ �+ for each commodity occur,
e.g., in the form of handling costs, in-stock and in-
transit inventory costs and simple linear tariffs without
interdependencies of the transported commodities.

Maximum over multiple cost rates. Tariffs can also
be specified as the maximum over varying cost rates
for distinct properties, i.e., when sending a shipment
that rate applies for which the cost is highest. More
formally, with cj being the cost rate for property j , the
cost function is given as

C4x5= max
j∈P

{

cj ·
∑

i∈K

�ijxi

}

0

Note that, in contrast to the linear costs described in
the preceding paragraph, these maximum cost func-
tions capture the effect of cost savings when mixing
commodities of different dimensions, e.g., light but
voluminous with heavy but compact ones.

Property-dependent piecewise constant costs. Many tar-
iffs, such as those offered by most FTL carriers and
some less than truck load (LTL) carriers, are based on
piecewise constant cost functions; i.e., they are specified
by a cost c ∈ �+ and a capacity vector � ∈ �P

+
for a

single shipment, yielding the function

C4x5= c · max
j∈P

⌈

�j4x5/�j

⌉

0

In practice, logistics carriers offer groups of such tariffs
realizing different levels of discounts for higher ship-
ment volumes. We will see in §3 that finding the most
cost-efficient combination of such tariffs for a given
shipment volume is already an NP-hard problem.

Of course, linear and fixed costs can also occur at the
same time, e.g., to model a transport to a distribution
center that incurs a fixed cost for transportation and a
linear cost for handling the incoming shipment at the
distribution center. We thus also allow the combination
of these two cost types.

Incremental discount costs. We consider a tariff with
varying cost rates, depending on a single property.
The cost rates are specified on intervals and decrease
with increasing size of shipment, resulting in a piece-
wise linear and concave cost function; see Table 1
for an illustration. Formally, we label the intervals
from 0 to L. For each l ∈ 6L7, let c4l5 ∈�+ be the cost
rate on the interval 6�4l5

j 1�
4l+15
j 5 for the fixed property

j ∈ P , with 0 =�
405
j <�

415
j < · · ·<�

4L5
j <�

4L+15
j = � and

c405 > c415 > · · ·> c4L−15 > c4L5. Then the cost function is

C4x5=

L
∑

l=0

c4l5 · min
{

�
4l+15
j −�

4l5
j 1 4�j4x5−�

4l5
j 5+

}

0

All-unit discount costs. Again we consider linear cost
rates in some property j ∈ P with several levels of
decreasing per unit cost rates. Different from the above,
however, a cost rate applies to the entire transport
volume as long as it lies within the corresponding
interval. To ensure monotonicity, a cost cap applies
whenever the cost with respect to the current rate
exceeds the cost at the beginning of the next level—this
corresponds to the common practice of declaring higher
volumes than are actually transported in such cases
(Chan et al. 2002). See Table 1 for an illustration of the
resulting cost function. Formally, if cost rate c4l5 for
l ∈ 6L7 is applicable starting from transport volume �

4l5
j

on, the cost function is

C4x5= min
l∈6L7

(

c4l5 · max8�j4x̃51�
4l5
j 9
)

0

2.4. Reformulation as Capacitated
Network Design

We will now provide a different perspective to the
model presented in the previous section. We introduce
the concept of containers to model the different types of
tariffs in a way that leads to a unifying description of
the above model as a fixed-charge multicommodity
flow problem. A natural formulation as a mixed-integer
program can easily be obtained from this description,
making it accessible to MIP-based solving techniques,
whereas its compact structure effectively demonstrates
the degree of mathematical uniformity achieved in
modeling.

We first present the alternative formulation of the
model to its full extent and then show the equivalence
to the formulation in the previous section by describing
how different cost functions can be modeled using
containers.

2.4.1. The Tariff-Expanded Network. For each
tariff on a transport relation, we introduce a gadget
consisting of edges, which connects the start node
of the relation with its end node. On each edge, a
certain type of container is available, and capacities
can be installed on the edge in increments of this
container type. After replacing all transport relations in
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Table 1 Modeling Complex Transport Tariffs with Containers

Tariff Cost Gadget

Incremental discount (piecewise linear concave)

�j(x)

Cost
C (l )

b(l )

C(x) = min C (l )(x)
l∈[L]

C (l )(x) := c(l )�j(x) + b(l )

Minimum modeled
by parallel edges

e0

...el

eL

...

c(el) = b(l )

ci(el) = �ij c
(l )

All-unit discount

Cost

�j(x)

�(l )

C(x) = min C (l )(x)
l∈[L]

C (l )(x) := c(l ) · max{�j(x), �(l )}

e
e�

e��

e e� e��

c c(l )�(l ) 0 0

ci 0 �ijc
(l ) 0

�j ∞ ∞ �(l )

Minimum modeled
by parallel gadgets

the pattern expanded network by the corresponding
gadgets for their tariffs, we obtain the tariff-expanded
network G= �V �E� consisting of the nodes of the pattern-
expanded network, the additional nodes introduced in
the gadgets, and the edges introduced in the gadgets.

Each container of edge e has a capacity for every
property. A solution to the container-based formulation
of our model specifies for each edge e the (integer)
number of containers y�e� installed at e together with
the edge flow values xi�e� for each commodity i. For
each property, the capacity installed at e must be
sufficient to transport the flow. More formally, recall
that �ij denotes the per unit extent of commodity i
w.r.t. property j . Let �j�e� be the corresponding capacity
of a container at edge e. Then the capacity constraints

∑

i∈K

�ijxi�e�≤ �j�e�y�e� ∀ j ∈ P (2)

must hold at every edge e ∈ E. Moreover, an upper
bound u�e� on the number of containers installed on
an edge e may be specified.

In a feasible solution, the multicommodity flow x
has to satisfy all demands. We extend the node bal-
ances introduced for the nodes in the pattern-expanded
network by setting the balances for all nodes artificially

introduced by tariff expansion to zero for each com-
modity. We thus obtain the flow conservation constraints

∑

e∈	+�v�

xi�e�−
∑

e∈	−�v�

xi�e�= bi�v� ∀ i ∈K (3)

that must be valid at every node v ∈ V of the tariff-
expanded network.

For each container installed at e, a fixed cost c�e� has
to be paid. Flow sent along e may furthermore incur
a commodity-dependent linear cost ci�e� (which may
naturally be used to model property-dependent linear
costs as well). Thus, the total cost of a solution is

∑

e∈E

(

c�e�y�e�+
∑

i∈K

ci�e�xi�e�

)




Putting all of this together, the fixed-charge multi-
commodity flow problem resulting from the container
formulation can be directly formulated as an MIP.

min
{

∑

i∈K

∑

e∈E

ci�e�xi�e�+
∑

e∈E

c�e�y�e�

}

s.t.
∑

e∈	+�v�

xi�e�−
∑

e∈	−�v�

xi�e�= bi�v� ∀v ∈ V � i ∈K�
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∑

i∈K

�ijxi4e5≤ �j4e5y4e5 ∀ e ∈ E1 j ∈ P1

y4e5≤ u4e5 ∀ e ∈ E1

xi4e5 ∈�+1 y4e5 ∈�+ ∀ e ∈ E1 i ∈K0

Note that a flow in the tariff expanded network
(i.e., on edges) can be transformed into a flow in the
pattern expanded network (i.e., on transport relations)
by setting x4t5 to be the amount of flow going from
start4R5 to end4R5 through the gadget corresponding
to t, which corresponds to the total amount shipped
using this tariff.

The gadget of each tariff t will be designed to model
its cost function Ct in the sense that the cost incurred by
the flow in the gadget (in terms of required container
capacity and linear costs) equals Ct4x4t55. Therefore, the
total cost of the solution in the tariff-expanded network
equals the cost of the flow in the pattern-expanded
network.

2.4.2. Modeling Tariffs with Containers. We now
proceed to explain how containers can be used to
accurately model the different types of transportation
tariffs introduced in the previous section; see Table 1
for an overview of the more complex gadgets.

Modeling linear and piecewise constant costs. It is
clear that both commodity-dependent linear costs
and property-dependent piecewise constant costs are
directly captured by the container concept. Linear
costs are part of the definition, and piecewise constant
tariff groups can be directly modeled by introducing
a bundle of parallel edges, one for each tariff in the
group. The container on each edge takes the capacity
and cost of the corresponding tariff.

Modeling the maximum over multiple cost rates. To
model the maximum over multiple cost rates we need
to introduce fractional containers to the model; i.e., the
variable y4e5 corresponding to the number of installed
copies of such a container can be fractional. We use
a single gadget edge for each tariff that corresponds
to a maximum over multiple cost rates cj with j ∈ P .
We set the cost to c4e5= 1 and the capacity �j4e5= 1/cj
for each j ∈ P . Sending a flow of x4e5 through this
edge requires y4e5 to be set to maxj∈P 8�j4x4e55/�j4e59,
which is equal to the cost function by choice of �j4e5.
Note that introducing such fractional containers does
not have a significant impact on the complexity of
the model. For the sake of simplicity, we will assume
throughout this work that all containers have to be
installed in integral increments.

Modeling incremental discounts. Piecewise linear con-
cave functions arising from incremental discount tariffs
can be interpreted as the minimum of several affine
linear functions. Again denoting the linear segments of

the function by 0 to L with cost rates c4l5 and break
points �4l5, we define

C 4l54x5 2= c4l5�j4x5+ b4l5 with

b4l5 2=
l−1
∑

k=0

4c4k5 − c4l554�
4k+15
j −�

4k5
j 5

for l ∈ 6L7. It is easy to verify that Ct4x5= minl∈6L7C
4l54x5;

see Table 1 for an illustration. We now introduce a
gadget of L+ 1 parallel edges e01 0 0 0 1 eL with c4el5= b4l5

and ci4el5=�ijc
4l5. Sending flow along edge el incurs

the cost C 4l5, and an optimal solution will always send
flow along that edge, which achieves the minimum
cost for the transported amount.

Modeling all-unit discounts. Note that functions of
the form c4l5 · max8�j4x51�

4l59 can be modeled by the
following gadget; also see the corresponding figure in
Table 1. We introduce a series-parallel graph, consisting
of a single edge e followed in series by two parallel
edges e′ and e′′. We set the fixed costs c4e5= c4l5�4l5 and
c4e′5= c4e′′5= 0 and the linear costs ci4e5= ci4e

′′5= 0 and
ci4e

′5= �ijc
4l5 for all i ∈K. Capacity �j4e

′′5 is set to �4l5;
all other capacities are left infinite, and we let u4e′′5= 1
so that only one container can be installed on e′′, and
the number of containers remains unbounded for all
other edges. Now, all-unit discount tariffs, which can
be represented as the minimum of such functions, can
be modeled by introducing several of these gadgets in
parallel.

Remark. We close this section by pointing out two
more general concepts that our model implicitly cov-
ers. First, the TTP model includes the possibility of
omitting some holdover edges or even some transport
edges of the base network in individual time slots, in
order to model restricted operation times of transporta-
tion services or hubs. The second concept is abstract
aspects of commodities, such as “needs cooling,” “is
hazardous,” and similar features restricting the trans-
portation. These can be modeled by introducing a
corresponding property, letting the respective commodi-
ties receive a strictly positive extent in this property
and accordingly adjusting container capacities.

3. Tariff-Selection Subproblem
Although containers constitute a versatile tool to model
various transport tariffs, as described in §2.3, the use of
elaborate gadgets significantly increases the number of
edges in an instance of our model. Different solution
algorithms may or may not be able to cope well with
this challenge. In this section, we describe an approach
to curb the effects of model blowup that results from
tariff gadgets by encapsulating tariff selection decisions
in a subordinate optimization problem, that we call
the tariff selection (TS) subproblem. Although some of
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our algorithms for TTP introduced in §§4 and 5 will
operate directly on tariff gadgets as introduced in §2.3,
others will solve TS repeatedly, possibly very often
for each transport relation, while computing a flow
pattern for all commodities through the network.

In contrast to the global perspective of the TTP model,
TS constitutes a local decision limited to a single trans-
port relation R ∈R: Given a fixed vector x̄4R5 ∈�K

+
of

flow to be transported on R, it asks which transport
tariffs should be selected and how the fixed demand
should be distributed among selected tariffs to meet
flow demand at a minimum cost. More formally, the
problem TS for transport relation R ∈R can be stated as

min
∑

t∈T 4R5

Ct4x4t55

s.t.
∑

t∈T 4R5

xi4t5= x̄i4R5 ∀ i ∈K1

xi4t5 ∈�+ ∀ t ∈ T 4R50

A solution to TS comprises a vector x4t5 ∈�K
+

of mul-
ticommodity flow for each tariff t ∈ T 4R5 such that
their sum meets the total flow demand x̄4R5. From a
networkwide perspective, solving the union of the TS
problems on all transport relations optimizes transport
cost with respect to a given fixed multicommodity flow
in the pattern-expanded network.

Depending on which of the five types of tariff cost
functions introduced in §2.3 are present in TS, we
employ different techniques to solve TS. In §3.1 we
devise an MIP formulation for arbitrary combinations of
tariff cost functions in TS. However, out of the different
tariff cost functions, property-dependent piecewise
constant costs stand out for a number of reasons. First,
although they constitute the most elementary class of
cost functions, in the presence of multiple tariffs of this
type, determining an optimal tariff selection already is
NP-hard (see Proposition 1). Second, it may be the tariff
type occurring most frequently in logistics applications:
Indeed, in the real-life data for our computational
study in §6, many transport relations are equipped
exclusively with piecewise constant tariffs. Therefore,
§3.2 is devoted to theoretic and algorithmic insights
into TS for this tariff type.

Elaborate algorithms for TTP, which we present
in §4, solve TS as a subroutine very frequently. Because
of its hardness and the demand for extremely short
computation times, we develop fast heuristic algorithms
for piecewise constant tariffs yielding only approximate
solutions as an alternative to the exact MIP approach.
In particular, we propose an efficient greedy algorithm
for computing solutions of decent quality within a
minimum of computation time in §3.2.1 and a cost
estimator that, instead of a feasible solution, only outputs
an estimate of the optimal cost of the given instance;
see §3.2.2.

3.1. MIP for the General Case
The introduction of tariff gadgets in §2.4 enables us to
naturally formulate and solve TS as a mixed-integer
program. This versatile approach is especially suited
when various tariff types occur together on a single
transport relation, or when computational time is not a
great issue, e.g., if flow paths for all commodities are
already specified and TS only needs be solved once on
each transport relation to optimize tariff choice. When
each tariff t ∈ T 4R5 is represented by a container gadget
4V 4t51E4t55, as detailed in §2.3, we denote with E4R5 2=
⋃

t∈T 4R5 E4t5—respectively V 4R5 2=
⋃

t∈T 4R5V 4t5—the set
of all edges—respectively nodes—that are introduced
to model the tariff structure on transport relation R.
TS for R can then be written as

min
{

∑

e∈E4R5

c4e5y4e5+
∑

i∈K

ci4e5xi4e5

}

s.t.
∑

e∈�+4v5

xi4e5−
∑

e∈�−4v5

xi4e5=











x̄i4R5 if v=start4R5
−x̄i4R5 if v=end4R5
0 otherwise

∀v∈V 4R51∀ i∈K1
∑

i∈K

�ijxi4e5≤�j4e5y4e5 ∀e∈E4R51∀ j ∈P1

y4e5≤ u4e5 ∀e∈E4R51

y4e5∈�+1 xi4e5∈�+ ∀e∈E4R51∀ i∈K0

As this MIP represents TS only on one single transport
relation, the MIP instances are rather small and can be
solved near optimally in a reasonable time for matters
of postoptimization.

3.2. Piecewise Constant Costs
When all tariffs on a transport relation are of the
property-dependent piecewise constant type, the tariff-
expanded transport relation is a bundle of parallel
fixed-charge container edges. The MIP formulation of
TS can be simplified to

min
∑

e∈E4R5

c4e5y4e5

s.t.
∑

e∈E4R5

xi4e5= x̄i4R5 ∀ i ∈K1

∑

i∈K

�ijxi4e5≤ �j4e5y4e5 ∀ e ∈ E4R51 ∀ j ∈ P1

y4e5≤ u4e5 ∀ e ∈ E4R51

y4e5 ∈�+1 xi4e5 ∈�+ ∀ e ∈ E4R51 ∀ i ∈K0

It is not hard to see that solving TS to optimality
remains NP-hard here, even for very restricted special
cases. We give a straightforward reduction from the
well-known unbounded knapsack problem, which is
proven to be NP-hard (Lueker 1975), to TS instances
with a single property, a single commodity, and no
bounds on the container multiplicities.
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Proposition 1. Problem TS is NP-hard, even when
restricted to instances with only piecewise constant cost
functions, a single property, and a single commodity and
unbounded multiplicities.

Proof. In the single-commodity, single-property
case, the above MIP reduces to �E4R5�+ 1 nontrivial
constraints, and there remain three single parame-
ters �ij , x̄i4R5, and �j , which we denote by �, x̄, and
�, respectively. Every feasible solution satisfies �x̄ ≤
∑

e∈E4R5�4e5y4e5, and conversely, if this inequality is
satisfied, it is trivial to find feasible assignments x4e5.
Hence, the MIP reduces in fact to a single nontrivial
constraint.

An instance of the unbounded knapsack problem is
given by a set of n items with values v11 0 0 0 1 vn ∈�+

and weights w11 0 0 0 1wn ∈ �+, a capacity W ∈ �+,
and a desired value V ∈ �+. The task is to find
numbers z11 0 0 0 1 zn ∈�+ such that

∑n
i=1 wizi ≤W and

∑n
i=1 vizi ≥ V .
Given such an instance IUK of the unbounded knap-

sack problem, we construct an instance ITS of the
above special case of TS as follows. First, for every
item i ∈ 811 0 0 0 1n9 of IUK, define ui 2= �W/wi� as the
maximum number of items of type i in a feasible
knapsack solution. Then, for each item i ∈ 811 0 0 0 1n9,
introduce a corresponding edge ei with containers
of fixed cost c4ei5 = vi and capacity �4ei5 = wi. We
set x̄ =

∑n
i=1 wiui −W and �= 1.

We now argue that IUK possesses a solution with
value at least V if and only if ITS can be solved with
cost at most

∑n
i=1 viui − V . First assume there is a

feasible solution z to IUK with value at least V . We
define y4ei5 2= ui − zi and observe that

n
∑

i=1

�4ei5y4ei5=

n
∑

i=1

wi4ui − zi5≥

n
∑

i=1

wiui −W = �x̄

and
n
∑

i=1

c4ei5y4ei5=

n
∑

i=1

vi4ui − zi5≥

n
∑

i=1

viui −V 0

We omit the converse of the argument, as it works
analogously. �

3.2.1. Greedy Algorithm. In this section we present
a generic greedy algorithm to heuristically solve
instances of TS for piecewise constant cost functions.
The inherent covering nature of TS—in the sense that
we select containers to “cover” the capacity extents
of a fixed flow vector x̄4R5—motivates us to devise a
generalization of the natural greedy approach to integer
programs with nonnegative data, e.g., as studied by
Dobson (1982).

The greedy algorithm for tariff selection repeat-
edly selects a “most efficient” container e ∈ E4R5 to
cover portions of, or the whole remaining commodity

demand d̄, initialized by d̄ 2= x̄4R5. Here, “efficiency”
of a container is measured by the function Score4e1 d̄5,
which reflects the ratio between cost of container e and
the portion of the demand d̄ it covers. The selected
container then is packed using the function Fill4e1 d̄5,
which returns a mix of commodities ã ∈ �K

+
, with

ãi ≤ d̄i for all i ∈ K and �j4ã5 ≤ �j4e5 for all j ∈ P ,
to ensure “efficient” capacity use of the container.
To speed up the algorithm we can assign the computed
mix of commodities ã multiple times to copies of the
same container, as long as there is enough remain-
ing demand d̄ to assign ã completely. Whenever the
number y4e5 of selected containers reaches its upper
bound u4e5, the container type e is removed from the
set of available containers (we omit dealing explicitly
with this case in our algorithms for better readability).
The algorithm repeats until all demand is assigned,
i.e., until d̄ is reduced to zero. At some point in the
algorithm there might be containers large enough to
cover all remaining demand d̄, whereas the Score
method still favors a smaller container that covers only
fractions and leaves demand for the next step. In such
situations it is advisable to consider both container
types and to branch on the computed solution. The first
branch completes the partial solution with a minimum
cost container, that suffices to cover d̄. The second
branch proceeds with a container with best Score value
and iterates.

A formal listing of the greedy algorithm is given
as Algorithm 1. To simplify notation we associate a
multiset Y over E4R5 with a possible solution vector
y ∈�E4R5

+ that contains y4e5 copies of container e ∈ E4R5
and denote with c4Y 5 the respective selection cost
c4y5=

∑

e∈E4R5 c4e5y4e5.

Algorithm 1 (Greedy Algorithm For Tariff Selection)
Input: a TS subproblem on transport relation R with

demand x̄4R5
Output: assignment commodity vectors x′4e5 ∈�K

+
1

multiset Y ′ over E4R5
1 d̄ ← x̄4R5; //remaining uncovered demand
2 x4e5← 01 ∀e ∈ E4R53 Y ← ∅;

//current partial solution
3 x′4e5← 01 ∀e ∈ E4R53 Y ′ ← ∅;

//current best complete solution
4 while there is uncovered demand d̄ do
5 if there exists eF = arg mine∈E4R52 �4d̄5≤�4e5 c4e5 then

–

//there is eF that can store d̄
6 if Y ′ = ∅ or c4Y ∪ eF 5 < c4Y ′5 then

//found new best solution?
7

–

replace Y ′ with Y ∪ eF and x′4e5 with x4e5,
∀e ∈ E4R5;

8 x′4eF 5← x′4eF 5+ d̄;
//update new best solution

9 eB ← arg maxe∈E4R5 Score4e1 d̄5;
//pick most efficient container

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks et al.: An Integrated Approach to Tactical Transportation Planning
12 Transportation Science, Articles in Advance, pp. 1–22, © 2014 INFORMS

10

–

ã← Fill4eB1 d̄;
//compute mix of commodities to assign

11 n←
⌊

mini∈K2 ãi 6=04d̄i/ãi5
⌋

;
//compute multiplicity of assignment

12 Y ← Y ∪i=11··· 1n 8eB9;
//add container copies

13 x4eB5← x4eB5+n ·ã;
//update assigned commodities

14 d̄ ← d̄−n ·ã;
//compute remaining uncovered demand

15 if Y ′ 6= ∅ and c4Y 5≥ c4Y ′5 then
16

–

return x′4e51Y ′;
//complete solution dominates

partial solution

Implementation of Score and Fill: A Two-Phase Greedy
Algorithm. Algorithm 1 uses two subprocedures called
Score for estimating “container efficiency,” and Fill
for computing corresponding container packings. Both
Score and Fill are based on a two-phase greedy
algorithm that tries to pack a given container e by
approximating the ray induced by the capacity vec-
tor �4e5. Score only executes the first phase of this
algorithm and uses the resulting filling ã to return the
score

∑

j∈P �j4ã5/c4e5. Note that Score is executed far
more frequently than Fill, so restricting to the first
phase significantly saves computation time. Once a
container is selected, Fill returns the refined filling
derived by the second phase.

The outline of the two-phase algorithm is as follows.
The first phase adds commodities that minimize the
residual capacity of a container until one of the capacity
constraints becomes tight or the demand of every com-
modity is depleted. Assuming that some commodity
demands have already been added to ã, let �̄4e5 be the
vector of residual capacities of this container w.r.t. ã.
For any given vector of commodities � ∈�K

+
, we denote

the maximal fraction of ã that can be feasibly assigned
to a container with residual capacities �̄4e5 by

linFrac4�1 �̄4e55 2= min
j∈P2�j 4�56=0

�̄j4e5

�j4�5
0

Now the algorithm successively chooses a commod-
ity i that minimizes the Euclidean norm of the vector
of slacks after maximal feasible assignment of this
commodity, i.e.,

i = arg min
i′∈K

∥

∥�̄4e5− min
{

linFrac4d̄i′1 �̄4e5511
}

·�4d̄i′5
∥

∥1

where d̄i is defined as d̄i 2= 401 0 0 0 1 d̄i1 0 0 0 105 and adds
this amount of commodity i to the current vector ã.
Phase 1 might incur an unnecessary amount of slack
in some capacities because of the greedy choice of

commodities. To improve this, Phase 2 minimizes slack
by focusing on a good mix of assigned commodities.

It adjusts the current ã to approximate the ray
induced by the capacity vector �4e5 with a conic com-
bination of property vectors �i of the available com-
modities. More formally, we decompose the property
space �P = V 4�4e55+V 4�4e55⊥ into the linear subspace
V 4�4e55 spanned by the capacity vector �4e5 and its
orthogonal complement and consider for each commod-
ity i the unique decomposition of its property vector
�i = vi +ui with vi ∈ V 4�4e55 and ui ∈ V 4�4e55⊥. The cur-
rent commodity mix ã ∈ �K

+
induces the property

vector
∑

i∈K ãi�i =
∑

i∈K ãivi +
∑

i∈K ãiui ∈�P
+

. Our goal
of approximating the ray spanned by �4e5 corresponds
to minimizing the orthogonal deviation �

∑

ãiui�. For
commodity l ∈ K, we define �l 2= �

∑

ãiui1ul�/�ul�
2.

Note that �lul corresponds to the projection of
∑

ãiui

on V 4ul5. If �l < 0, we augment ã by min8−�l1 d̄l9
units of commodity l, which leads to a decrease of the
orthogonal deviation. We iteratively augment ã in this
way until no additional improvement can be achieved
by any commodity. Note that the resulting vector ã
might violate container capacities. We therefore scale ã
down to feasibility.

3.2.2. Cost Estimation by Covering Relaxation. In
many situations where TS occurs as a subproblem in
the course of an algorithm for TTP, it is not important
to know which tariffs are utilized in a solution, just
which cost is incurred. Examples include the shortest
path type algorithms where the neighbors of some
node are to be labeled with the cost of forwarding some
flow to them. In these situations, the following covering
relaxation can be used to obtain considerable speed-
ups while still computing reasonable cost estimates.
The relaxation is based on dropping the requirement of
an exact assignment of the commodities to containers.
Instead, we only require the chosen containers to
cover the vector of aggregated properties �̄ 2= �4x̄4R55
induced by the flow vector x̄4R5. The result of this
relaxation is the following covering problem (CR):

min
∑

e∈E4R5

c4e5y4e5

s.t.
∑

e∈E4R5

y4e5�j4e5≥ �̄j ∀ j ∈ P1

y4e5 ∈�+ ∀ e ∈ E4R50

We can heuristically solve this problem very efficiently
by adjusting Algorithm 1 to directly operate on the
property vector �̄; i.e., we reduce �̄ by �4e5 for each
selected container copy e. An appropriate scoring
function can be defined by Score4e1 �̄5 2= 41/c4e55 ·

minj∈P 8�j4e5/�̄j9. Note that a solution to the covering
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relaxation does not necessarily yield a feasible solution
for the original TS problem. In fact, one can easily come
up with counterexamples where the estimate obtained
from CR is arbitrarily far away from the actual optimal
solution value of TS. However, these examples are of
rather artificial nature, including containers with zero
capacity in certain properties.

4. Path-Based Local Search
We propose a local search procedure that employs local
changes on a path decomposition of flow in the pattern
expanded network using tariff-selection subroutines.
As described in the introduction, there already are a
number of local search heuristics available for solving
capacitated network design problems. Adapting those
methods to multiple capacities and nonbinary design
variables does not suffice to cope with the large sizes
occurring from practical application of our model.
The precise replication of complex tariff structures
leads to a drastically increased number of (mostly
parallel) edges, which is further amplified by the cyclic
expansion of the network (to give rough numbers, the
tariff-expanded networks in our computational study
have 250,000 edges on average, corresponding to a
blow-up factor of 60 from an average of 4,000 edges
for the base networks). This makes it very hard for
heuristics that operate in the tariff-expanded network
without knowledge of the tariff structure. Although
most methods known from the literature either work
directly on the design variables or reroute flow of a
single commodity, our approach applies a neighborhood
search that is based on path decomposition of flow in
the pattern expanded network and reroutes multiple
commodities simultaneously.

To obtain good initial solutions for the local search
algorithm presented in §4.3, we also provide two
successive shortest path-type algorithms, one that
linearizes costs (SPLC) by estimating the per unit cost
(§4.1) and one, denoted by SPTS, that uses a tariff-
selection method for this purpose (§4.2). The first
method was designed with an emphasis on speed and
low memory requirement; the second is more accurate
in cost estimation and is used as the central subroutine
in our local search-improving moves.

We observed that our local search very well detects
cost savings from splitting up flow sharing the same
transport relation and rerouting it separately. In contrast,
detecting potential savings from consolidating a diverse
set of flow-carrying paths along a shared subpath is not
well captured. Note that this effect may appear only
after consolidating multiple paths—identifying such
a set of paths is an algorithmically challenging task.
To address this issue, we adapt the two path-based
algorithms to encourage consolidation by (i) forbidding
the direct source-sink-connections (which is well suited

for our types of practical networks) in the SPLC heuristic
and (ii) using a partial linearization technique for SPTS.
Both refinements yield considerable improvements in
solution quality of the local search procedure, as we
will see in §6.

4.1. Shortest Paths with Linearized Costs
A straightforward idea for obtaining edge costs for a
shortest path computation is estimating the per unit
shipping cost on each edge in the tariff-expanded
network by linearizing the fixed costs. This technique
yields a highly efficient approach suited for solving
even the largest occurring instances in a very small
amount of time.

In each iteration, the algorithm chooses a commodity
and finds a shortest path from a source to a sink
with respect to edge weights w ∈�E

+
. Whenever the

algorithm encounters an edge during the shortest
path computation, the residual capacity for the chosen
commodity on this edge is computed and the fixed cost
for that edge is divided by this capacity to obtain a
linear cost rate. To make this more precise, let k ∈K be
the commodity that is currently being routed and 4x1 y5
be the current (partial) solution to the capacitated
network design formulation consisting of the flow
x ∈�K×E

+
and design choices y ∈�E

+
. Using the notation

introduced in §2.4, we compute the residual capacity
of edge e ∈ E for commodity k provided by the y4e5
containers currently installed on the edge. This capacity
is defined by

�4e5 2= min
j∈P

�j4e5y4e5−�j4x4e55

�kj

0

If there is a positive residual capacity �4e5 > 0, we set
the capacity r4e5 2= �4e5 and the weight w4e5 2= ck4e5,
only considering the linear cost for shipping commodity
k along e. If no residual capacity is left, i.e., �4e5= 0,
then an additional container can be installed on e if
y4e5 < u4e5. In this case, we set

r4e5 2= min
j∈P

�j4e5

�kj

and w4e5 2= ck4e5+
c4e5

r4e5
0

Otherwise, if y4e5= u4e5, we set r4e5 2= 0 and w4e5 2= �.
Once a shortest path P from a source to a sink of

commodity k with respect to the weights w is found,
the bottleneck capacity r 2= mine∈P r4e5 is determined and
r units of commodity k are sent along the path. Note
that all of the above computations can be carried out
efficiently, and instead of updating weights and capaci-
ties of all edges in each step, these values are calculated
on demand and updated when necessary. Technically,
we flag those variables r4e5 and w4e5 as “invalid” that
have to be recomputed at the next encounter of edge e.
A listing of SPLC is given as Algorithm 2.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks et al.: An Integrated Approach to Tactical Transportation Planning
14 Transportation Science, Articles in Advance, pp. 1–22, © 2014 INFORMS

Algorithm 2 (Successive Shortest Path Algorithm with
Linearized Costs (SPLC))
1 Initialize x = 0, y = 0.
2 for each commodity i ∈K do
3

–

Invalidate r4e5 and w4e5 for all e ∈ E.
4 while there is a source s of i with remaining

–

supply do
5 Find path P in G from s to a sink t with

∑

e∈P w4e5 minimum, updating the values
of r4e5 and w4e5 on-demand when the
previous value has been invalidated.

6 Augment x along P by mine∈P r4e5 units
of commodity i, adjust y accordingly.

7 Invalidate r4e5 and w4e5 for all e ∈ P .

The linearization procedure assumes optimal uti-
lization of container capacities in the resulting flow
pattern and thus favors large containers with low per
unit cost rates. Since this high utilization is not always
attained, the linearization often leads to suboptimal
tariff choices on transport relations. The effect can be
compensated by optimizing the tariff selection on each
transport relation a posteriori with a tariff selection
method described in §3.

Consolidation by Forbidding Direct Connections
(SPLC-F). The SPLC heuristic favors large containers
with low per unit costs and prefers direct connections,
as single detours cannot yield lower per unit costs.
A simple approach for encouraging consolidation when
costs are just linearized is to forbid all direct connections
between sources and sinks of the same commodity
during the construction of the initial solution. By
doing so, hubs and common paths are automatically
used. Unnecessary detours can be easily identified
and corrected by improving moves of the local search
procedure.

4.2. Shortest Paths with Tariff Selection
The rather imprecise estimation of the actual trans-
portation cost achieved by the linearization approach
presented in the previous section might lead to weak
choices of paths when routing the commodities. We thus
propose a second strategy that employs tariff selection
algorithms during the shortest path search. Although
this more sophisticated approach requires more compu-
tational effort, it still turns out to be efficient while
at the same time providing several possibilities for
adjustments.

Since tariff-selection methods require as input the
amount of flow to be routed, these flow values ã ∈�K

+

have to be determined before the shortest paths compu-
tation. We implement this a priori flow computation
efficiently by identifying source-sink-pairs such that
the possible transport volume from source to sink
is maximum (w.r.t. a weighted combination of the
property extents).

More formally, for each ordered pair of nodes 4s1 t5
in the pattern expanded network, let

ãk4s1 t5 2=
(

min8bk4s51−bk4t59
)+

for k ∈K, and let w ∈�P
+

be the weight function, given
as a parameter to the heuristic. Then source s and sink t
are chosen such that

∑

j∈P wj�j4ã4s1 t55 is maximum.
During the shortest path computation, edge weights

have to be evaluated too often to solve the tariff
selection problem to optimality every time. In fact, it is
sufficient to only estimate the cost using the estimator
presented in §3, whereas the actual tariff assignment
can be determined at the end of the solution process
from the flow values on the transport relations in the
pattern expanded network using an exact method.
A listing of SPTS is given as Algorithm 3.

Algorithm 3 (Successive Shortest Path Algorithm with
Tariff Selection (SPTS))
1 Initialize x = 0.
2 while not all demand has been satisfied do
3

–

Let s1 t ∈V such that
∑

j∈P wj�j4ã4s1 t55 is
maximum.

4 Compute shortest path P in G from s to t w.r.t. c̃,
where c̃4R5 is the estimated cost for augmenting
the current flow x4R5 by ã4s1 t5 on transport
relation R.

5 Augment x along P by ã4s1 t5.
6 Compute a flow in the tariff expanded network of
same value as x using a tariff selection method.

Consolidation by Partial Cost Linearization (SPTS-L).
Cost computation based on tariff selection allows for
a more sophisticated approach to encourage consoli-
dation by taking into account the unrouted demand.
We linearize costs at inter-hub and source-hub (if there
are fewer sources) or hub-sink (if there are fewer sinks)
connections in the following way: Let ã+ ∈ �K

+
be

the sum of all supply not yet routed in the current
solution, and let M 2= minj44

∑

i �ijã
+

i 5/4
∑

i �ijãi55. For
each available tariff t on a transport relation, we now
compute the cost Ct4ã

+5 for routing ã+ and divide it
by M to obtain an edge cost that anticipates future
consolidation on this transport relation.

4.3. Path-Based Local Search
In the following we introduce a local search algo-
rithm that reroutes flow along paths with the aim of
improving feasible solutions. Before we describe the
procedure in detail, we briefly introduce the notion of
flow decomposition.

A well-known result from network flow theory states
that any feasible flow in a network can be decomposed
into flow on paths from sources to sinks (and cycles,
which, however, can immediately be removed from the
solution in our case). A flow-carrying path is a tuple
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4P1ãP 5, where P is a sequence of transport relations
R11 0 0 0 1Rm such that start4Ri+15= end4Ri5 and ãP ∈�K

+

is a multi-commodity flow vector specifying the amount
of flow sent along the path. A path decomposition of a
flow x is a collection of flow-carrying paths P such
that x4R5=

∑

P∈P2 R∈P ãP .
The local search algorithm maintains a path decom-

position of the flow of the current solution. It moves
from one solution to another by replacing one or multi-
ple paths of the decomposition with paths of lower
cost. The general outline of an improving move is
the following: when removing a path 4P1ãP 5 from
the solution, for each transport relation R of the path,
x4R5 is decreased by ãP and the tariff selection of R is
adapted accordingly, using the greedy tariff selection
heuristic presented in §3. After removing a set of paths,
the resulting partial solution is completed again by
computing new paths using the SPTS heuristic intro-
duced in §4.2. The move is accepted if the total cost of
the solution decreases, and is reverted otherwise.

We implemented two variants of improving moves:
Type A moves simply to remove a single path at a time.
This way, only small amounts of flow are rerouted in
one move and the assignment of sources to sinks is left
unaffected. In contrast, Type B moves consider groups
of paths sharing the same transport relation. All flow
passing this transport relation is removed and routed
anew, which means that multiple paths can be replaced
at once and the assignment of sources to sinks might
be altered.

Our local search algorithm now performs improving
moves in alternating phases of Types A and B. This
allows us to recompute the path decomposition at
the beginning of each phase, adapted to the type of
movement.

In both cases paths are constructed in a depth-first
search (DFS) manner: At a node in the DFS tree for
each incident edge R we compute the maximal flow
vector ã4R5 that could be assigned to a path proceeding
on that edge and choose an edge greedily so as to
maximize a suitably defined weight function of that
flow vector. For Type A phases, the DFS starts at a
source and continues along the edge that maximizes
a weighted combination of the properties of ã4R5.
In contrast, the decomposition for Type B phases
facilitates a bidirectional DFS starting at heavily used
transport relations and chooses edges that maximize
the savings resulting from reducing their flow. In both
cases, because of flow conservation, we either close
cycles (which can immediately be removed from the
solution) or find a source-sink path, which we add to
the path decomposition.

The two phases alternate repeatedly until the relative
improvement achieved by both falls below a specified
value or the time limit is reached. At the end of the
procedure, a final improvement phase is conducted by

identifying and eliminating weakly utilized containers
in the tariff-expanded network and again rerouting the
corresponding flow using a variation of Type B moves.

5. MIP-Based Approaches
In this section, we discuss MIP techniques that sup-
plement the combinatorial heuristics presented in the
previous section, not only yielding high-quality solu-
tions but also providing lower bounds for assessing this
quality. The plain MIP formulation presented in §2.4
is not suited for solving reasonably sized real-world
networks since they involve too many variables and
constraints. We propose an aggregated formulation that
considerably reduces model size and still yields good
dual bounds (§5.1). We then combine this with efficient
preprocessing techniques to tighten the relaxation (§5.2).
In §5.3, we use solutions to the LP relaxation of this
strengthened aggregated formulation as initial solutions
for our local search. Finally, a postprocessing step that
improves solution quality is presented in §5.4. During
this step, tariff selection decisions are locally optimized
on all transport relations that connect a given pair
of nodes in different slots of the pattern-expanded
network.

Besides strengthening the MIP formulation, a promis-
ing approach to deal with multicommodity capacitated
network flow problems is to use a Benders decompo-
sition; see, e.g., Costa, Cordeau, and Gendron (2009).
Preliminary runs with a Benders decomposition com-
bined with heuristics and adding additionally valid
inequalties implemented in SCIP 2.0 suffered from
slow solving times. Interestingly, the subproblems
(multicommodity multidimensional flow problems)
solved by CPLEX turned out to be the bottleneck.
In fact, numerical instability results from high variance
between large and small coefficients in our practical
instances in conjunction with inexact dual values inher-
ent to Benders decomposition. Experiments with warm
starts in the subproblem solving procedure and other
techniques did not work out on our large-scale tariff
and pattern-expanded networks. To be precise, CPLEX
tries several Markowitz thresholds and tries to repair
basis singularities. We point out that on small instances
our Benders implementation works well, but it seems
to be the large instances that induce a huge amount
of Benders cuts together with their widely varying
coefficients and long LP solving times. We leave it to
future research to determine how to incorporate multi-
dimensional capacities into combinatorial approaches
similar to Costa, Cordeau, and Gendron (2009).

5.1. Tariff-Aggregated MIP
As mentioned above, the plain MIP formulation suffers
from huge memory requirements. In particular, the
introduction of tariff gadgets results in a tremendous
number of—mostly parallel—edges. We make use
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of this parallel structure and propose an aggregated
formulation that still reflects the original tariff struc-
tures while significantly reducing the number of flow
variables and capacity constraints. The aggregation
is set up as follows. For each pair of nodes v1w ∈V
let E4v1w5 be the set of edges from v to w in the
tariff-expanded network. For each i ∈K, we replace
the flow variables xi4e5 of the edges e ∈ E4v1w5 with a
single flow variable xi4v1w5 ∈�K

+
. For each j ∈ P , we

replace the capacity constraints of the edges in E4v1w5
w.r.t. j by a single constraint

∑

i∈K

�ijxi4v1w5≤
∑

e∈E4v1w5

�j4e5y4e50

Clearly, the resulting MIP is a relaxation of the original
TTP instance, as we can construct a feasible solution of
the relaxation from a feasible solution of the original
formulation by setting xi4v1w5 2=

∑

e∈E4v1w5 xi4e5 and
adopting the values of all design variables. Conversely,
each solution of the relaxation induces a flow on the
transport relations of the pattern-expanded network.
These flow values yield a tariff-selection subproblem on
each transport relation (see §3). Computational experi-
ments on practical instances reveal that by applying a
tariff-selection heuristic on each relation, we can derive
feasible solutions of the original model with a minimal
increase in cost. In contrast, given the typically high
number of parallel edges between each pair of nodes
in TTP instances (20 on average in our test sets), the
aggregation drastically reduces the number of variables
and constraints, resulting in a considerable boost in
effectiveness of branch and bound solvers.

5.2. Preprocessing
Although tariff aggregation helps reduce problem sizes,
the considered MIPs still suffer from numeric instability
and weak lower bounds. We address these issues with
two preprocessing steps that can be applied to the
aggregated formulation.

5.2.1. Strengthened Container Inequalities. As
already discussed in §1.3.3, MIP formulations of capac-
itated network design problems can be considerably
strengthened by adding valid inequalities. Among the
valid inequalities used in the literature are strong capac-
ity and minimum cardinality inequalities. The natural
extensions of these inequalities to TTP, however, did
not turn out to be very effective for the instances in our
computational study. Instead, we propose a method to
bound the total extent of capacity used within individ-
ual containers. Before we describe these strengthened
container inequalities in detail, we give some reasons for
the failure of the known inequalities mentioned above.

Strong capacity inequalities state that xi4e5≤ biy4e5 for
all i ∈K and all e ∈ E, where bi 2=

∑

v∈V 2 bi4v5>0 bi4v5 is
the total demand of commodity i. Although Chouman,

Crainic, and Gendron (2011) report on the positive
impact of strong capacity inequalities on the integrality
gap in their computational experiments, it is also easy to
see that the strong capacity inequality for commodity i
at edge e can only strengthen the original formulation
if �j4e5 > �ijbi for all j ∈ P . In typical TTP instances,
total demands within the network are much larger than
individual transport capacities and the inequalities
remained mostly ineffective.

Minimum cardinality inequalities require the number
of containers installed on a cut induced by a set of
nodes S ⊂ V to be at least as large as the minimum
number of containers required to transport the excessive
demand 4

∑

v∈S bi4v55
+

i∈K within S across the cut. As
already observed by Chouman, Crainic, and Gendron
(2011), these inequalities are weak if the magnitudes of
the capacities vary widely, as is typically the case for
logistics tariffs that are modeled within TTP instances.
Their suggested improvements cannot be applied in
our case as their model contains only binary design
variables, whereas ours are integer. In the following,
however, we show how to strengthen our capacity
inequalities using similar ideas.

Solutions to the LP relaxation of TTP provide weak
lower bounds for the following reason: When consid-
ering a flow-carrying transport relation, LP solutions
tend to set the variable of the largest container to the
minimal fraction needed to grant capacities for the
flow on this transport relation. These fractions are
unfortunately very small, which means that they do
not reflect the cost that would be incurred in an integer
solution. The idea is to restrict container capacities
without affecting the cost of an optimal integer solution.
This is possible, if, for a given transport relation R ∈R,
an upper bound â4R5 on the flow x4R5 in any optimal
solution is known. Useful upper bounds can be derived
for transport relations incident to node sets S ⊂ V with
either �+4S5= � or �−4S5= �. Given an upper bound
â4R5, we can replace for every e ∈ E4R5 and every j ∈ P
the capacity �j4e5 by �j4e5− sj , where sj is the result of
solving

min sj

s.t.
∑

i∈K

�ij ′xi4e5+ sj ′ = �j ′4e5 ∀ j ′ ∈ P1

0 ≤ xi4e5≤ âi4R5 ∀ i ∈K1

sj ′ ≥ 0 ∀ j ′ ∈ P0

In a preprocessing routine we solve these linear pro-
grams for each property j of each fixed-charge container
e on each transport relation R for which reasonable
upper bounds â4R5 can be computed.

5.2.2. Commodity Scaling. We could observe
numerical difficulties while solving LP relaxations of
large instances: the LP solving steps suffer from basis

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks et al.: An Integrated Approach to Tactical Transportation Planning
Transportation Science, Articles in Advance, pp. 1–22, © 2014 INFORMS 17

singularities and sometimes even numerical infeasibil-
ity. One reason for these difficulties lies in the diversity
of properties for different commodities. The capacity
inequalities involve many flow variables with prop-
erty coefficients varying in magnitudes of 106 for our
test instances. Nonetheless, because flow variables are
fractional in our model, we can apply the following
scaling steps. For each commodity i ∈K we determine
a scaling factor si > 0 and obtain scaled values b̃i4v5
and �̃ij , defined by

b̃i4v5 2= bi4v5/si and �̃ij 2= si�ij for each j ∈ P0

The scaled problem instance is equivalent to the non-
scaled one in the sense that feasible flow values x̃i4e5
obtained for the scaled problem can be scaled back to
obtain feasible flow values xi4e5= six̃i4e5 for the origi-
nal problem. We chose the scaling factors si for each
commodity in such a way that among the resulting
coefficients �̃ij1 j ∈ P the smallest such coefficient has
the magnitude 10−1. The improved numeric stability of
the constraint system significantly speeds up the LP
solution process.

5.3. Initial Solutions for Local Search from
Aggregated LP Relaxation

In §4, we discussed the importance of properly cho-
sen initial solutions for the local search procedure
and devised two ways to encourage consolidation of
flow during the construction of the initial solution
by shortest path type algorithms. Alternatively, we
can obtain initial solutions from the LP relaxation of
the aggregated MIP formulation by applying tariff-
selection heuristics to the multicommodity flow in the
pattern expanded network induced by the aggregated
LP solution.

Notice that in this case, strengthening container
inequalities as described above also encourages consol-
idation in the solution process. In fact, the effect of the
strengthened inequalities is strongest on edges that are
reachable from a few sources or sinks only (such as
direct source-sink connections). This implicitly encour-
ages flow to take detours on non-source-sink paths,
where weaker container inequalities permit lower costs
in the LP relaxation. Since inappropriately consolidated
flow can be efficiently disaggregated by the local search
algorithm, initial solutions constructed from the LP
relaxation lead to high-quality final solutions, as we
shall see in §6.

5.4. Pattern-Optimization Subproblem
In the tariff-selection subproblem considered in §3, we
fixed the amount of flow passing a given transport
relation and optimized the tariff selection with respect
to this given flow value. This idea can be extended by
considering all transport relations that connect a given
pair of nodes in different slots of the pattern-expanded

network. More formally, for some node v ∈ B in the
base network and a cycle length F , let v11 0 0 0 1vF be
the copies of node v created in the pattern expansion
step, with vi ∈ V 4Bi5 for i ∈ 811 0 0 0 1 F 9. We consider the
pattern-optimization subproblem induced by a fixed pair
of nodes s1 t ∈ B and therefore define

V 4s1 t5 2=
F
⋃

i=1

8si1 ti91

R4s1 t5 2= 8R ∈R2 start4R51end4R5 ∈ V 4s1 t590

Given a solution to the whole TTP instance with flow
values 4x̄4R551 R ∈R, we consider a locally restricted
instance of TTP, fixing the flow values on all trans-
port relations R\R4s1 t5 and optimizing the flow
4x4R55R∈R4s1t5 in the subnetwork induced by the copies
of s and t; i.e.,

min
∑

R∈R4s1 t5

∑

t∈T 4R5

Ct4x4t55

s.t.
∑

R∈�+

R4s1 t54v5

xi4R5−
∑

R∈�−
R4s1 t54v5

xi4R5= b̄i4v5

∀v ∈V4s1 t51 ∀ i ∈K1
∑

t∈T 4R5

xi4t5= xi4R5 ∀R ∈R4s1 t51 ∀ i ∈K1

x4t5≥ 0 ∀ t ∈ T 4R51 ∀R ∈R4s1 t51

where b̄4v5 2=
∑

R∈�+

R4s1 t54v5
x̄4R5−

∑

R∈�−
R4s1 t54v5

x̄4R5. Using
tariff gadgets, this restricted instance of TTP can be
formulated as a mixed-integer program. It contains
only a small fraction of the decision variables present
in the whole instance. In fact, restricted instances can
be solved to near optimality very quickly using a
standard MIP solver. We thus iteratively optimize these
subproblems arising for all pairs of adjacent nodes
with flow carrying transport relations between them.

Note that in contrast to the tariff-selection subprob-
lem, solving the pattern-optimization subproblem for
one pair of nodes may affect the subproblem of other,
nondisjoint pairs of nodes, as holdover edges of a com-
mon node appear in each of the problems as variables.
Consequently, the order of the node pairs considered
plays an important role. We order the node pairs non-
increasingly with respect to a weighted combination
of the property extents of the total flow in the sub-
network affected by the pattern optimization of each
pair 4s1 t5, i.e.,

∑

j∈P wj�j4
∑

R∈R4s1 t5 x̄4R55, using the same
weights w ∈�P

+
as provided for local search and SPTS

heuristic. This reflects the optimization potential of the
corresponding node pair and leads to an “important
pairs first” order, which is also useful when the pattern
optimization process is not carried out on all node
pairs because of time constraints.
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6. Computational Study
We verify the TTP model and the algorithmic ap-
proaches presented in the preceding sections by con-
ducting a computational study based on real-world
data provided by our project partner, 4flow AG, a logis-
tics consultancy company serving small, medium-size,
and global customers from a broad spectrum of indus-
tries. We also compare our heuristics and MIP-based
approaches with a reference solution obtained from
4flow AG.

6.1. Instance Sets
The benchmark library consists of 145 instances aggre-
gated from four recent and ongoing customer projects
in three different industries (Auto1, Auto2, Chemical,
and Retail). All base networks correspond to European
supply chains in which goods are transported according
to FTL or LTL tariffs. These networks share a layered
graph structure. More specifically, the nodes of the base
network are partitioned into an ordered set of layers,
with the lowest layer containing all sources and the
highest layer containing all sinks. In addition, there is a
fixed number (varying from one to three) of intermedi-
ate hub layers. There is a transport relation between
every pair of nodes from distinct layers, directed toward
the higher layer. However, transport relations within
the same layer are not present. Pattern expansion has
been conducted with a cycle length of six slots—one
slot corresponds to two months of a year. All tariffs are
of piecewise constant type, depending on the same two
properties (mass and volume) in every instance.

The automotive instances represent production net-
works with a high number of sources and a low number
of sinks; the chemical industry and retail sets are based
on distribution networks with a high number of sinks
but only a few sources. Table 2 shows the average val-
ues of key parameters of the instances within each set:
the first three columns contain the number of sources,
sinks, and hubs in the base network, followed by the
number of commodities (comm.), and the number of
edges in the base network, pattern-expanded network
and tariff-expanded network.

For future research, the instance library will be
available on request after signing a contract of data
confidentiality. For more information, please contact
one of the authors.

Table 2 Average Sizes of the Instances per Set

No. of nodes in base network No. of edges

Set (No. of instances) No. of source No. of sinks No. of hubs No. of comm. Base Pattern exp. Tariff exp.

Auto1 (36) 35 6 7 162 335 21296 761653
Auto2 (18) 34 3 4 117 186 11364 291264
Chemical (50) 7 244 19 101 61601 411222 2391238
Retail (41) 4 177 26 307 51665 351229 5111064

6.2. Algorithms and Implementation Details
We implemented and tested different variants of the
algorithms presented in §§4 and 5 to determine good
parameter settings and combinations. In long-term
planning, running time plays a minor role and the
fine-tuned aggregated MIP formulation, combined with
the path-based local search and pattern optimization
with generous time limits, can be used. To enable the
evaluation of multiple scenarios, our industrial partner
set a time limit of 30 minutes. For this case, we also
provide test results of approaches designed for time
efficiency without sacrificing too much solution quality.

Overall, the following algorithms were tested on
all 145 instances of the benchmark library. The first
two algorithms correspond to MIP approaches and the
last four are local search procedures that are named
according to the algorithm that delivers the initial
solution for local search.

AMIP-H: Aggregated MIP with integrated local search
(see §6.2.1).

MIP: Plain MIP formulation for comparison purposes,
see §2.
ALP: LP relaxation of aggregated MIP formulation

(see §5.3).
SPLC: Shortest path heuristic with linearized cost

(see §4.1).
SPLC-F: same as SPLC, but with forbidden direct

connections (see §4.2).
SPTS-L: Shortest path heuristic with tariff selection

(cost estimator) and partial linearization (see §4.2).
All algorithms have been implemented in C++

and compiled with gcc 4.5.0 on openSUSE 11.3 Linux
with kernel 2.6.32.19-0.2. Computations have been per-
formed on cluster nodes with two Dual-Core Opteron
2218 processors (2.6 GHz, 64 bit) and 16 GB of memory
using CPLEX 12.1 for MIPs and LPs. Since the heuristic
approaches have not been adapted to support concur-
rency, we limited the number of threads for the CPLEX
solver to one to ensure comparability of the results.

In §6.2.1 we elaborate on the interplay of the MIP
and the local search heuristic; the detailed settings for
the variants of local search procedures are presented
in §6.2.2.

6.2.1. Branch and Bound Frameworks. Our tests
involved different MIP formulations, which we imple-
mented in CPLEX. We tested the plain MIP formulation
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(MIP) for a direct comparison with our algorithms as
well as the aggregated MIP formulation that includes
the preprocessing methods described in §5.2 and
callbacks to our heuristics. The resulting algorithm is
denoted by AMIP-H and details of the implementation
are given below. To obtain reasonably tight lower
bounds, we also ran the aggregated MIP formulation
without heuristic callbacks (AMIP-B). We invoked a time
limit of two hours for the branch and bound process
and an extra time of one hour for applying local search
and pattern optimization.

When solving the aggregated and preprocessed MIP
formulation from §5 with a branch and bound frame-
work, we apply the local search and pattern optimiza-
tion procedures throughout search on integer solutions
as well as fractional LP solutions obtained in a node of
the branch and bound tree. These solutions induce a
flow on the transport relations of the pattern-expanded
network. This flow can be turned into a feasible TTP
solution by solving the tariff-selection subproblem on
each transport relation (see §5.1). We further improve
this solution by applying the local search heuristic and
pattern optimization with a time limit of 300 seconds.

As this procedure incurs a significant computational
effort, we require at least 1,500 branch and bound
nodes to be processed between two successive calls of
the heuristics. Furthermore, we use the cost estimator
presented in §3.2.2 to evaluate the potential of a given
LP solution to improve on the current best solution:
only if the estimated total cost is within 8% of the best
known solution do we compute the corresponding TTP
solution. We also apply the procedure to all integer
solutions found by the MIP solver.

6.2.2. Local Search Procedures. We tested the local
search algorithm described in §4.3 using initial solu-
tions constructed by the aforementioned heuristics.
The current tariff selection on the transport relations
was then further improved using the exact MIP formu-
lation, as described in §3. Finally, pattern optimization
was performed on the returned solution using the
nonaggregated formulation.

Computation time of the starting heuristics ALP, SPLC
and SPLC-F turned out to be almost negligible, and we
invoked a total solution time of 30 minutes (includ-
ing pattern optimization) in this case. Unfortunately,
the more sophisticated SPTS-L solver turned out to
cause considerably more computational effort. Here we
invoked the same time limits as for the branch and
bound approaches. Recall that for fine-tuning the path-
decomposition of the local search procedure and the
SPTS heuristic an additional parameter is specified—a
weight function on the properties of the model that
reflects the importance of properties. For the benchmark
instance set, mass occurs to be the dominant property.
We thus choose the weight function to be an indicator
function on mass.

Table 3 Average Improvement of the Lower Bound Compared to MIP

Auto1 Auto2 Chemical Retail All
Solver (31/36) (18/18) (48/50) (30/41) (127/145)

ALP −17081 −6087 −21061 −10044 −15096
AMIP-B 17048 0061 12038 4084 10018

Note. The number of instances handled by MIP/number of all instances per
set is shown in parentheses.

6.3. Results
We now elaborate on the results of our computational
experiments, starting with the effect of aggregation on
the lower bounds. We then analyze solution quality and
the impact of local search initial solutions and pattern
optimization. We close by comparing our approach to
a reference solution on an additional instance.

6.3.1. Influence of Aggregation on Lower Bounds.
We investigate the improvement on lower bounds
achieved by the aggregation and our preprocessing
techniques against the plain MIP formulation in Table 3.
In fact, we observed that especially for the large
instances, MIP suffers from numerical instabilities and
degeneracy that lead to solving times of thousands
of seconds for the root relaxation. In some cases, the
initial cut generation rounds for the root relaxation
did not terminate within given time limits. In turn,
the efficiency of initial cuts greatly benefits from our
preprocessing techniques—fewer cuts achieve a much
better lower bound here.

Not surprisingly, the lower bounds derived by the
strengthened aggregated LP (ALP) are of low quality,
with a gap of more than 15% on average toward the
value obtained by MIP. In a set-by-set comparison, the
AMIP-B method achieves an average improvement over
MIP of more than 10% and up to 17% on average on set
Auto1, whereas MIP is only competitive on the compar-
atively small instances of the Auto2 set. Apparently, the
loss in tightness caused by the aggregation is more than
compensated by the boost in efficiency of the branch
and bound procedure achieved by the smaller size of
the formulation and its increased numerical stability.
An overview over the lower bounds for all instances
can be found in the online appendix (available as
supplemental material at http://dx.doi.org/10.1287/
trsc.2014.0541).

6.3.2. Quality of Solutions. Table 4 shows the gaps
of the computed solutions to the lower bound com-
puted by AMIP-B. Throughout the automotive and retail
instance sets, the solution quality is within single-digit
average gaps to the lower bounds. The local search
with LP starting solution and the AMIP-H framework
provide the best solution quality, whereas the perfor-
mance of approaches with path-based initial solutions
is weaker and varies, depending on the instance set.
We infer that the more holistic LP approach captures
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Table 4 Average Gaps to Best Known Lower Bound in %

Solver Auto1 (36) Auto2 (18) Chemical (50) Retail (41) All (145)

MIP 9�09 (1) 2�35 (3) 29�18 (0) 13�33 (1) 16�38 (5)
ALP 6�22 (24) 2�63 (0) 13�92 (17) 4�74 (40) 8�01 (81)
AMIP-H 6�12 (26) 1�26 (16) 14�61 (24) 4�75 (38) 8�06 (104)
SPLC 6�51 (17) 5�07 (0) 23�54 (0) 4�75 (37) 11�71 (54)
SPLC-F 6�90 (11) 3�65 (0) 18�08 (9) 10�70 (27) 11�43 (47)
SPTS-L 6�57 (19) 4�15 (0) 19�44 (1) 4�74 (39) 10�19 (59)

Note. Number of achieved best solutions is shown in parentheses.

the multicommodity flow nature of our problem better
than the iterative path approaches.

AMIP-H attains near optimality on Auto2, outperform-
ing ALP on this set. Apparently, the small instance sizes
in this set benefit the branch and bound process.

The gaps are considerably weaker on the instances
of the Chemical set. The instances of this set are much
bigger w.r.t. the number of edges and sinks in the
base network than those from the other sets, which
presumably also affects the MIP framework’s ability to
produce tight lower bounds.

6.3.3. Performance of Local Search and Impact of
Initial Solutions. The results in Table 4 and Figure 2
show that the choice of the initial solution clearly affects
the performance of the local search procedure. In fact,
in many instances, the initially expensive flow patterns
of the consolidation enforcing heuristics lead to better
final solutions than those obtained from solutions with
low consolidation provided by SPLC for comparison.
However, the effectiveness of the combinatorial starting
heuristics strongly depends on the structure and size
of the instance. In contrast, ALP consistently shows the
best results, on par with the AMIP-H framework (which
takes considerably more computational effort).

Figure 2 Gaps Achieved with Postprocessing in Percent
Note. The percentage gap to best known lower bound of fast solvers (time
limit 1,800 seconds) for the initial solution, after local search and pattern
optimization are shown—with initial solutions by SPLC-F achieving 113% on
average in Auto1 and 253% in Retail.
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Figure 3 Running Times of Postprocessing
Note. The table shows shifted geometric means of running times as shares of
2,000 seconds for the local search combined with different algorithms to
compute initial solutions with pattern optimization.

6.3.4. Impact of Pattern Optimization. Figure 2
reveals that the effect of pattern optimization is rather
weak on the sets Auto2 and Retail, although its share
of the computation times is significant (Figure 3).
The picture is considerably different, however, for the
instances of the Chemical set. Here, computation times
are reduced to a minimum, whereas the improvement
of solution quality because of pattern optimization is
significantly higher. This better performance can be
explained by the less granular tariff structure in this
instance set, resulting in smaller subproblems while at
the same time increasing the importance of temporal
consolidation.

6.3.5. Purely Combinatorial Heuristics. To pro-
vide solutions independent of third-party software
and licenses, we also evaluated purely combinatorial
variants of the local search heuristic with path-based
initial solutions: After replacing MIP-based tariff selec-
tion algorithms with greedy heuristics and omitting
pattern optimization, the approaches still produce good
solutions with a mild loss of at most 3% of average
solution quality.

6.3.6. Comparison with Solutions from Practice.
For reasons of confidentiality, we could not obtain refer-
ence solutions or current network costs for the instances
presented above. Instead, a direct comparison with an
instance of a European cross-docking network from a
recent project has been conducted in cooperation with
4flow AG. The base network consists of 228 consumers,
545 suppliers, five hubs, and 5,857 edges, resulting in a
tariff-expanded network with 209,304 edges. It is fully
connected in contrast to the layered structure observed
so far. In this instance, the AMIP-H framework obtained a
solution with 1.2% gap to optimality. We compared this
against a solution obtained with a standard software
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for supply chain design at project start operating on a
conventional model. Our solution constitutes a 14%
improvement, which, if applied on an annual basis,
results in a savings up to 1.6 million euros.

7. Summary and Conclusions
The tactical transportation planning model presented
in this paper integrates the important aspects of tactical
logistics network optimization: realistic transportation
tariffs, delivery patterns, and inventory costs. Several
algorithmic techniques have been devised to address
the challenges associated with the specific instance
structure induced by our model. These methods have
been successfully tested on a broad set of real-world
instances.

Among our techniques, we propose a local search
procedure that simultaneously reroutes flow of multiple
commodities. Equipping the local search with different
types of initial solutions, such as multicommodity flow
patterns derived from a strengthened LP relaxation
or from purely combinatorial path-based approaches,
yields solutions that are within a single-digit percent of
the optimum on average. Our algorithm can be used
either in connection with standard MIP solvers for
optimal solution quality or as a purely combinatorial
algorithm, yielding competitive solutions without usage
of third-party software. Hence, the broad spectrum of
our algorithms offers a flexible tradeoff among solution
quality, operating cost, and computation time.

The performance of our algorithms to a great part
relies on the successful isolation of the tariff selection
subproblem. We devise a variety of exact and heuristic
methods to efficiently solve this problem, providing a
tradeoff between speed and exactness of the solution
procedure. A computational analysis of these algo-
rithms and additional techniques can be found in a
companion paper to this article by König, Matuschke,
and Richter (2012) that also provides further theoretical
insights into the tariff selection subproblem.

Currently, our algorithmic toolkit is being integrated
into real-world software by our partner 4flow AG, and
a second project that incorporates robustness aspects
into the model has started.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/trsc.2014.0541.

Acknowledgments
The authors would like to thank Cristina Hayden and Lars
Stolletz of 4flow AG for fruitful discussions on the subject
of logistics planning, providing data for our computational
study, and offering their opinion when interpreting the
solutions computed. The authors also thank Michael Bastubbe
and Hendrik Lüthen for their help in implementing the
algorithmic framework. This work was supported by the
European Regional Development Fund and is part of a joint
project of Technische Universität Berlin and 4flow AG.

References
Afentakis P, Gavish B (1986) Optimal lot-sizing algorithms for

complex product structures. Oper. Res. 34(2):237–249.
Afentakis P, Gavish B, Karmarkar U (1984) Computationally effi-

cient optimal solutions to the lot-sizing problem in multistage
assembly systems. Management Sci. 30(2):222–239.

Blumenfeld DE, Burns LD, Daganzo CF, Frick MC, Hall RW (1987)
Reducing logistics costs at General Motors. Interfaces 17(1):26–47.

Burns LD, Hall RW, Blumenfeld DE, Daganzo CF (1985) Distribution
strategies that minimize transportation and inventory costs.
Oper. Res. 33(3):469–490.

Cakir O (2009) Benders decomposition applied to multi-commodity,
multi-mode distribution planning. Expert Systems Appl. 36(4):
8212–8217.

Çetinkaya S (2005) Coordination of inventory and shipment con-
solidation decisions: A review of premises, models, and justi-
fication. Pardalos PM, Hearn D, Geunes J, Akçali E, Romeijn
HE, Shen Z-JM, eds. Applications of Supply Chain Management
and E-Commerce Research, Applied Optimization, Vol. 92 (Springer,
New York), 3–51.

Chakrabarty D, Chekuri C, Khanna S, Korula N (2011) Approxima-
bility of capacitated network design. Günlük O, Woeginger GJ,
eds. Integer Programming and Combinatoral Optimization (Springer,
Berlin Heidelberg), 78–91.

Chan LMA, Muriel A, Shen Z-JM, Simchi-Levi D, Teo C-P (2002) Effec-
tive zero-inventory-ordering policies for the single-warehouse
multiretailer problem with piecewise linear cost structures.
Management Sci. 48(11):1446–1460.

Chopra S, Meindl P (2007) Supply Chain Management: Strategy,
Planning, and Operations (Pearson Prentice-Hall, Upper Saddle
River, NJ).

Chouman M, Crainic TG, Gendron B (2011) Commodity repre-
sentations and cutset-based inequalities for multicommodity
capacitated fixed-charge network design. Technical report,
CIRRELT-2011-56. Université de Montréal. Centre de recherche
sur les transports, Montréal.

Clark AJ, Scarf H (1960) Optimal policies for a multi-echelon inven-
tory problem. Management Sci. 6(4):475–490.

Costa AM (2005) A survey on Benders decomposition applied
to fixed-charge network design problems. Comput. Oper. Res.
32(6):1429–1450.

Costa AM, Cordeau J-F, Gendron B (2009) Benders, metric and cutset
inequalities for multicommodity capacitated network design.
Comput. Optim. Appl. 42(3):371–392.

Crainic TG (2000) Service network design in freight transportation.
Eur. J. Oper. Res. 122(2):272–288.

Crainic TG, Gendreau M (2002) Cooperative parallel tabu search for
capacitated network design. J. Heuristics 8(6):601–627.

Crainic TG, Gendreau M, Farvolden JM (2000) A simplex-based tabu
search method for capacitated network design. INFORMS J.
Comput. 12(3):223–236.

Crainic TG, Gendron B, Hernu G (2004) A slope scaling/Lagrangean
perturbation heuristic with long-term memory for multicom-
modity capacitated fixed-charge network design. J. Heuristics
10(5):525–545.

Dobson G (1982) Worst-case analysis of greedy heuristics for integer
programming with nonnegative data. Math. Oper. Res. 7(4):
515–531.

Fischetti M, Salvagnin D, Zanette A (2010) A note on the selection of
Benders’ cuts. Math. Program. 124(1–2):175–182.

Frangioni A, Gendron B (2009) 0-1 Reformulations of the multicom-
modity capacitated network design problem. Discrete Appl. Math.
157(6):1229–1241.

Geoffrion AM, Graves GW (1974) Multicommodity distribution
system design by Benders decomposition. Management Sci.
20(5):822–844.

Geunes J, Pardalos PM (2003) Network optimization in supply
chain management and financial engineering: An annotated
bibliography. Networks 42(2):66–84.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Harks et al.: An Integrated Approach to Tactical Transportation Planning
22 Transportation Science, Articles in Advance, pp. 1–22, © 2014 INFORMS

Ghamlouche I, Crainic TG, Gendreau M (2003) Cycle-based neigh-
bourhoods for fixed-charge capacitated multicommodity network
design. Oper. Res. 51(4):655–667.

Ghamlouche I, Crainic TG, Gendreau M (2004) Path relinking, cycle-
based neighbourhoods and capacitated multicommodity network
design. Ann. Oper. Res. 131(1):109–133.

Guisewite G, Pardalos P (1990) Minimum concave-cost network flow
problems: Applications, complexity, and algorithms. Ann. Oper.
Res. 25(1):75–99.

Jans R, Degraeve Z (2007) Meta-heuristics for dynamic lot sizing:
A review and comparison of solution approaches. Eur. J. Oper.
Res. 177(3):1855–1875.

Jayaraman V (1998) Transportation, facility location and inventory
issues in distribution network design: An investigation. Internat.
J. Oper. Production Management 18(5):471–494.

Kempkes JP, Koberstein A, Suhl L (2010) A resource based mixed
integer modelling approach for integrated operational logistics
planning. Aalst W, Mylopoulos J, Rosemann M, Shaw MJ,
Szyperski C, Dangelmaier W, Blecken A, Delius R, Klöpfer S,
eds. Advanced Manufacturing and Sustainable Logistics, Lecture
Notes in Business Information Processing, Vol. 46 (Springer,
Berlin Heidelberg), 281–294.

Kim D, Pardalos PM (1999) A solution approach to the fixed charge
network flow problem using a dynamic slope scaling procedure.
Oper. Res. Lett. 24(4):195–203.

Kliewer G, Timajev L (2005) Relax-and-cut for capacitated net-
work design. Brodal GS, Leonardi S, eds. Algorithms–ESA 2005,

Lecture Notes in Computer Science, Vol. 3369 (Springer, Berlin
Heidelberg), 47–58.

König FG, Matuschke J, Richter A (2012) Multi-dimensional com-
modity covering for tariff selection in transportation. Delling
D, Liberti L, eds. 12th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS
2012), OASICS, Vol. 25 (Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany), 58–70.

Lueker GS (1975) Two NP-complete problems in nonnegative integer
programming. Technical report, Princeton University Computer
Science Laboratory, Princeton, NJ.

Magnanti TL, Wong RT (1984) Network design and transportation
planning: Models and algorithms. Transportation Sci. 18(1):
1–55.

Richey MB, Parker RG (1986) On multiple Steiner subgraph problems.
Networks 16(4):423–438.

Schöneberg T, Koberstein A, Suhl L (2010) An optimization model for
automated selection of economic and ecologic delivery profiles
in area forwarding based inbound logistics networks. Flexible
Services Manufacturing J. 22(3–4):214–235.

Simchi-Levi D, Kaminsky P, Simchi-Levi E (2003) Designing and
Managing the Supply Chain: Concepts, Strategies, and Case Studies
(McGraw Hill, New York).

Stadtler H (2003) Multilevel lot sizing with setup times and multiple
constrained resources: Internally rolling schedules with lot-sizing
windows. Oper. Res. 51(3):487–502.

Wagner HM, Whitin TM (1958) Dynamic version of the economic lot
size model. Management Sci. 5(1):89–96.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

13
0.

16
6]

 o
n 

09
 F

eb
ru

ar
y 

20
15

, a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 




