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Abstract Since the pioneering paper of Rosenthal a lot of work has been done in or-
der to determine classes of games that admit a potential. First, we study the existence
of potential functions for weighted congestion games. Let C be an arbitrary set of
locally bounded functions and let G(C) be the set of weighted congestion games with
cost functions in C. We show that every weighted congestion game G ∈ G(C) admits
an exact potential if and only if C contains only affine functions. We also give a simi-
lar characterization for w-potentials with the difference that here C consists either of
affine functions or of certain exponential functions. We finally extend our character-
izations to weighted congestion games with facility-dependent demands and elastic
demands, respectively.
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1 Introduction

In many situations, the state of a system is determined by a large number of indepen-
dent agents, each pursuing selfish goals optimizing an individual objective function.
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A natural framework for analyzing such decentralized systems are noncooperative
games. It is well known that an equilibrium point in pure strategies (if it exists) need
not optimize the social welfare as individual incentives are not always compatible
with social objectives. Fundamental goals in algorithmic game theory are to decide
whether a Nash equilibrium in pure strategies (PNE for short) exists, how efficient it
is in the worst case, and how fast an algorithm (or protocol) converges to an equilib-
rium.

One of the most successful approaches in accomplishing these goals is the poten-
tial function approach initiated by Rosenthal [28] and generalized by Monderer and
Shapley in [25]: one defines a function P on the set of possible strategies of the game
and shows that every strictly improving move by one defecting player strictly reduces
(increases) the value of P . If the set of outcomes of such a game is finite, every se-
quence of improving moves converges to a PNE. In particular, the global minimum
(maximum) of P is a PNE.

A function P with the property above is called a potential function of the game. If
one can associate a weight wi to each player such that wiP decreases about the same
value as the private cost of the defecting player i, then P is called a w-potential. If,
in addition, wi = 1 for each player, then P is called an exact potential.

1.1 Framework

An important class of games studied in the game theory, operations research, com-
puter science and economics literature is the class of congestion games. This class
of games has several concrete applications such as scheduling games, routing games,
facility location games, and network design games, see [1, 3, 7, 16, 19, 24]. Conges-
tion games, as introduced by Rosenthal [28], model the interaction of a finite set of
strategic agents that compete over a finite set of facilities. A pure strategy of each
player is a set of facilities. We consider cost minimization games. Here, the cost of
facility f is given by a real-valued cost function cf that depends on the number of
players using f and the private cost of every player equals the sum of the costs of the
facilities in the strategy that she chooses.1 Rosenthal [28] proved in a seminal paper
that such congestion games always admit a PNE by showing these games posses an
exact potential function.

In a weighted congestion game, every player has a demand di ∈ R>0 that she
places on the chosen facilities. The cost of a facility is a function of the total de-
mand of the facility. In contrast to unweighted congestion games, weighted conges-
tion games, even with two players, do not always admit a PNE, see the examples
given by Fotakis et al. [14], Goemans et al. [17], and Libman and Orda [21]. It is
worth noting that the instance in [14] only relies on cost functions that are either lin-
ear or maxima of two linear functions. The instance in [17] only uses polynomial cost
functions with nonnegative coefficients and degree of at most two.

On the positive side, Fotakis et al. [14, 15] proved that every weighted conges-
tion game with affine cost functions possesses an exact potential function and thus,
a PNE. Panagopoulou and Spirakis [27] proved existence of a weighted potential

1Since we allow the cost of a facility to be positive or negative, we also cover the maximization games.
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function for the case that all costs are determined by the exponential function. The
results of [14, 15] and [27] are particularly appealing as they establish existence of a
potential function independent of the underlying game structure, that is, independent
of the underlying strategy set, demand vector, and number of players, respectively. To
further stress this independence property, we rephrase the result of Fotakis et al. as
follows: Let C be a set of affine cost functions and let G(C) be the set of all weighted
congestion games with cost functions in C . Then, every game in G(C) possesses an
exact potential.

A natural open question is to decide whether there are further functions guarantee-
ing the existence of an exact or weighted potential. We thus investigate the following
question: How large is the class C of (continuous) cost functions such that every game
in the set of weighted congestion games G(C) with cost functions in C does admit a
potential function and hence a PNE?

Before we outline our results we present related work and explain, why it is im-
portant to characterize weighted congestion games admitting a potential function.

1.2 Related Work

Fundamental issues in algorithmic game theory are the computability of Nash equi-
libria and the design of distributed dynamics (for instance best-response) that prov-
ably converge in reasonable time to a Nash equilibrium (in pure or mixed strategies).

Monderer and Shapley [25] formalized Rosenthal’s approach of using potential
functions to determine the existence of PNE. Furthermore, they show that one-side
better response dynamics, i.e., sequences of unilateral deviations strictly reducing the
deviating player’s private costs, always converge to a PNE provided the game is fi-
nite and admits a potential. In addition, they proved that w-potential games have other
desirable properties, e.g., the Fictitious Play Process introduced by Brown [6] con-
verges to a PNE [26]. For recent progress on convergence towards approximate Nash
equilibria using potential functions, see Awerbuch et al. [4] and Fotakis et al. [12].

Fabrikant et al. [11] proved that one can efficiently compute a PNE for symmet-
ric network congestion games with nondecreasing cost functions. Their proof uses a
potential function argument, similar to Rosenthal [28]. Fotakis et al. [14] proved that
one can compute a PNE for weighted network games with affine cost (with nonneg-
ative coefficients) in pseudo-polynomial time (again using a potential function).

Milchtaich [23] introduced weighted congestion games with player-specific cost
functions. He presented, among other results, a game on 3 parallel links with 3 play-
ers, which does not possess a PNE. On the other hand, he proved that such games
with 2 players do possess a PNE. Ackermann et al. [1] characterized conditions on
the strategy space in weighted congestion games that guarantee the existence of PNE.
They also considered the case of player-specific cost functions.

Gairing et al. [16] derive a potential function for the case of unweighted conges-
tion games with player-specific linear latency functions (without a constant term).
Mavronicolas et al. [22] prove that every unweighted congestion game with player-
specific (additive or multiplicative) constants on parallel links has an ordinal poten-
tial. Even-Dar et al. [10] consider a variety of load balancing games with makespan
objectives and prove among other results that games on unrelated machines possess



Theory Comput Syst (2011) 49: 46–70 49

a generalized ordinal potential function. For related results, see the survey by Vöck-
ing [29] and references therein.

Potential functions also play a central role in Shapley cost sharing games with
weighted players, which are special cases of weighted congestion games, see An-
shelevich et al. [3] and Albers et al. [2]. In the variant with weighted players, each
player i has a demand di that she wishes to place on each facility of an allowable
subset of facilities (e.g., a path in a network connecting her source node si to her
terminal node ti ). When facility f ∈ F is stressed with a load of �f (x) in strategy
profile x, there exists a cost of kf (�f (x)). Under Shapley cost sharing, this cost is
shared fairly with respect to the demands among the users. Thus the cost of player i

for using facility f is defined as ci,f (x) = kf (�f (x)) di/�f (x) and clearly, the pri-
vate cost of player i in strategy profile x is given as πi(x) = ∑

f ∈xi
ci,f (x). For the

unweighted case (di = 1, i ∈ N ), Anshelevich et al. [3] proved existence of PNE and
derived bounds on the worst-case efficiency of Nash equilibria using a potential func-
tion argument. This argument fails in general for games with weighted players, see
the counterexamples given by Chen and Roughgarden [7]. Determining subclasses of
Shapley cost sharing games with weighted players that admit a potential, however, is
an open problem that we address in this paper.

1.3 Our Results for Weighted Congestion Games

Our first two results provide a characterization of the existence of exact and w-
potential functions for the set of weighted congestion games with locally bounded and
continuous cost functions, respectively. Let C be an arbitrary set of locally bounded
functions and let G(C) be the set of weighted congestion games with cost functions
in C . We show that every weighted congestion game G ∈ G(C) admits an exact po-
tential if and only if C contains only affine functions. Our proof relies on a seminal
result of Monderer and Shapley [25] stating that a finite strategic game is an exact
potential game if and only if the discrete integral over the player’s utility functions
along every 4-cycle is zero. We apply this 4-cycle condition for a generic weighted
congestion game and obtain a functional equation in terms of the used cost functions
and the used demands, respectively. By varying the demands we obtain a necessary
and sufficient condition on the used cost functions expressed by a differential equa-
tion. Finally, we show that only affine functions fulfill this differential equation. We
note that while the if-part of our characterization follows already from the potential
function given by Fotakis et al. [14], our complete characterization also delivers an
alternative non-constructive proof for the if-part.

For an arbitrary set C of continuous functions, we show that every weighted con-
gestion game G ∈ G(C) possesses a weighted potential if and only if exactly one of
the following cases hold: (i) C contains only affine functions; (ii) C contains only
exponential functions such that c(�) = ac eφ � + bc for some ac, bc,φ ∈ R, where ac

and bc may depend on c, while φ must be equal for every c ∈ C . To derive this result
we use a scaling technique that transforms a w-potential game into an exact potential
game. This allows us to apply the 4-cycle criterion of Monderer and Shapley on the
transformed game which again gives rise to a functional equation. However, due to
the degree of freedom of our scaling technique it is not possible to derive a differen-
tial equation. By discretizing the demands we can express the necessary and sufficient
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conditions on the cost functions as a recurrence relation for which we show that it is
only satisfied by either affine or exponential only.

We additionally show that the above characterizations for exact and w-potentials
are valid even if we restrict the set G(C) to two-player games (four-player games for
w-potentials), three-facility games (four-facility games for w-potentials), games with
symmetric strategies, games with singleton strategies, games with integral demands.
Moreover, we derive a result for two-player weighted congestion games, showing
that every such game with cost functions in C admits a weighted potential if C =
{(c : R>0 → R) : c(x) = a m(x) + b, a, b ∈ R}, where m : R>0 → R is a strictly
monotonic function.

Our results have a series of consequences. First, using a result of Monderer and
Shapley [25, Lemma 2.10], our characterization of w-potentials in weighted conges-
tion games carries over to the mixed extension of weighted congestion games.

Second, we obtain the following characterizations for Shapley cost sharing games.
Let K be a set of continuous functions. Then, the set S(K) of Shapley cost sharing
games with weighted players and construction cost functions in K are w-potential
games if and only if K contains either quadratic construction cost functions k(�) =
ak�

2 + bk� or functions of type k(�) = ake
φ�� + bk� for some ak, bk,φ ∈ R, where

ak and bk may depend on k, while φ must be equal for every k ∈ K. Notice that these
results hold for arbitrary coefficients ak, bk,φ ∈ R. Thus, we obtain the existence
of PNE for a family of games with nondecreasing and strictly concave construction
costs modeling the effect of economies of scale.

After the initial publication of this paper, Harks and Klimm [18] explored the ex-
istence of PNE in weighted congestion games. For a class C of twice continuously
differentiable cost functions, they showed that the conditions given in Theorem 3.9
are in fact necessary for the existence of PNE in all weighted congestion games con-
tained in G(C). Their characterization, however, requires new techniques based on
the analysis of generic improvement cycles, see [18] for details.

1.4 Our Results for Extended Models

In the second part of this paper, we introduce two non-trivial extensions of weighted
congestion games.

First, we study weighted congestion games with facility-dependent demands, that
is, the demand di,f of player i depends on the facility f . These games contain, among
others, scheduling games on identical, restricted, related and unrelated machines. In
contrast to classical load balancing games, we do not consider makespan objectives.
In our model, the private cost of a player is a function of the machine load multiplied
with the demand of the player.

We show the following: Let C be a set of continuous functions and let Gf d(C)

denote the set of weighted congestion games with facility-dependent demands and
cost functions in C . Every G ∈ Gf d(C) has a w-potential if and only if C contains
only affine functions. In this case the w-potential is an exact potential. To the best of
our knowledge, our characterization establishes for the first time the existence of an
exact potential function (and hence the existence of a PNE) for affine cost functions
and arbitrary strategy sets and demands, respectively.



Theory Comput Syst (2011) 49: 46–70 51

Second, we study weighted congestion games with elastic demands. Here, each
player i is allowed to choose both a subset of the set of facilities and her demand di

out of a compact set Di ⊂ R>0 of demands that are allowable for her. This congestion
model can be interpreted as a generalization of Cournot games [9], where multiple
producers strategically determine quantities they will produce. The cost of a producer
is given by her offered quantity multiplied with the market price, which is usually a
decreasing function of the total quantity offered by all producers. Weighted conges-
tion games with elastic demands generalize Cournot games in the sense that there
are multiple markets (facilities) and each player may offer her quantity on allowable
subsets of these markets.

Weighted congestion games with elastic demands have several additional appli-
cations: they model, e.g., routing problems in the Internet, where each user wants
to route data along a path in the network and adjusts the injected data rate accord-
ing to the level of congestion in the network. Most mathematical models for routing
and congestion control rely on fractional routing, see Kelly [20] and Cole et al. [8].
In practice, however, routing protocols use single path routing, see, e.g., the current
TCP/IP protocol. Weighted congestion games with elastic demands model both con-
gestion control and unsplittable routing. Yet another application is that of Shapley
cost sharing games with players that may vary their requested demand.

Let Ge(C) be the set of weighted congestion games with elastic demands where
each player may chose her demand out of a compact space and where the cost of each
facility is determined by a function in C . Here, our main contribution is to show that
all games G ∈ Ge(C) are w-potential games if and only if C contains only affine
functions. For this important class of games, this result also establishes for the first
time the existence of PNE.

2 Preliminaries

A finite strategic game is a tuple G = (N,X,π) where N = {1, . . . , n} is the non-
empty finite set of players, X = ×i∈NXi where Xi is the finite and non-empty set
of strategies of player i, and π : X → R

n is the combined private cost function.
We will call an element x ∈ X strategy profile. For S ⊂ N , −S denotes the com-

plementary set of S, and we define for convenience of notation XS = ×j∈SXj . In-
stead of X−{i} we will write X−i , and with a slight abuse of notation we will write
sometimes a strategy profile as x = (xi, x−i ) meaning that xi ∈ Xi and x−i ∈ X−i .
A strategy profile x is a pure Nash equilibrium if for all i ∈ N the condition
πi(x) ≤ πi(yi, x−i ) holds for all yi ∈ Xi . A sufficient condition for the existence
of a pure Nash equilibrium is the existence of a potential function, see Monderer and
Shapley [25].

Definition 2.1 (Weighted and exact potential games) A strategic game G =
(N,X,π) is called weighted potential game if there is a vector w = (wi)i∈N ∈ R

n
>0

and a function P : X → R such that πi(xi, x−i ) − πi(yi, x−i ) = wi(P (xi, x−i ) −
P(yi, x−i )) for all i ∈ N , x−i ∈ X−i , and all xi, yi ∈ Xi . The function P together
with the vector w is then called a w-potential of the game G. The function P is
called an exact potential if wi = 1 for all i ∈ N .
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Monderer and Shapley [25, Theorem 2.8] characterized exact potentials by the use
of certain cycles defined below. For this, let a finite strategic game G = (N,X,π) be
given. A path in X is a sequence γ = (x0, x1, . . . , xm) with xk ∈ X, k = 0, . . . ,m,

such that for all k ∈ {1, . . . ,m} there exists a unique player ik ∈ N such that xk =
(xk

ik
, xk−1

−ik
) for some xk

ik
�= xk−1

ik
, xk

ik
∈ Xi . A path is called closed if x0 = xm and

is called simple closed if in addition xk �= xl for 0 ≤ k �= l ≤ m − 1. The length of
a closed path is defined as the number of its distinct elements. For a set of strategy
profiles X let �(X) denote the set of all simple closed paths in X that have length 4.
For a finite path γ = (x0, x1, . . . , xm) let the discrete path integral of π along γ be
defined as I (γ,π) = ∑m

k=1(πik (x
k)−πik (x

k−1)) where ik is the deviator at step k in
γ , that is xk

ik
�= xk−1

ik
.

Theorem 2.2 (Monderer and Shapley) Let G = (N,X,π) be a finite strategic game.
Then, G is an exact potential game if and only if I (γ,π) = 0 for all γ ∈ �(X).

In the following, we will use this characterization in order to study the existence
of potentials in weighted congestion games.

3 Weighted Congestion Games

Definition 3.1 (Congestion model) A tuple M = (N,F,X = ×i∈NXi, (cf )f ∈F ) is
called a congestion model, where N = {1, . . . , n} is a non-empty, finite set of players,
F is a non-empty, finite set of facilities, for each player i ∈ N , her collection of pure
strategies Xi is a non-empty, finite set of subsets of F and (cf )f ∈F is a set of cost
functions.

In the following, we will define weighted congestion games similar to Goemans
et al. [17].

Definition 3.2 (Weighted congestion game) Let M = (N,F,X, (cf )f ∈F ) be a
congestion model and (di)i∈N ∈ R

n
>0 be a vector of demands. The corresponding

weighted congestion game is the strategic game G(M) = (N,X,π), where π is de-
fined as π = ×i∈Nπi , πi(x) = ∑

f ∈xi
dicf (�f (x)) and �f (x) = ∑

j∈N :f ∈xj
dj .

We call �f (x) the load on facility f in strategy x. In case there is no confusion on
the underlying congestion model, we will write G instead of G(M).

A slightly different class of games has been considered by (among others) Fotakis
et al. [14, 15], Gairing et al. [16] and Mavronicolas et al. [22]. They considered games
that almost coincide with Definition 3.2 except that the private cost of every player
is not scaled by her demands. We call such games normalized if they comply with
Definition 3.2 except that the private costs are defined as π̄i (x) = ∑

f ∈xi
cf (�f (x))

for all i ∈ N .
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Fotakis et al. [14] show that there are normalized weighted congestion games with
cf (�) = � for all f ∈ F that are not exact potential games. They also show that any
normalized weighted congestion game with linear costs on the facilities admits a w-
potential.

We state the following trivial relations between weighted congestion games and
normalized weighted congestion games: Let G = (N,X,π) and Ḡ = (N,X, π̄) be
a weighted congestion game and a normalized weighted congestion game with de-
mands (di)i∈N , respectively. Moreover, let them share the same congestion model
and the same demands. Then G and Ḡ coincide in the following sense: (i) A strategy
profile x ∈ X is a PNE in G if and only if x is a PNE in Ḡ; (ii) A real-valued function
P : X → R is a (wi/di)i∈N -potential for G if and only if P is a (wi)i∈N -potential
for Ḡ; (iii) A real-valued function P : X → R is an ordinal potential for G (see [25]
for a definition) if and only if P is an ordinal potential for Ḡ; (iv) The real-valued
function P : X → R is an exact potential for G if and only if P is a (di)i∈N -potential
for Ḡ; (v) The real-valued function P : X → R is an exact potential for Ḡ if and only
if P is a (1/di)i∈N -potential for G. All proofs rely on the simple observation that
πi(x) = diπ̄i(x) for all i ∈ N,x ∈ X.

3.1 Characterizing the Existence of an Exact Potential

In the following, we will examine necessary and sufficient conditions for a weighted
congestion game G to be a potential game. The criterion in Theorem 2.2 states
that the existence of an exact potential for G = (N,X,π) is equivalent to the fact
that I (γ,π) = 0 for all γ ∈ �(X). In such paths, either one or two players de-
viate. It is easy to verify that I (γ,π) = 0 for all paths γ with only one deviat-
ing player. Considering a path γ with two deviating players, say i and j , each
of them uses two different strategies, say xi, yi ∈ Xi and xj , yj ∈ Xj . We de-
note by z−{i,j} ∈ X−{i,j} the strategy profile of all players except i and j that
remains constant in γ . Then, a generic path γ ∈ �(X) can be written as γ =
((xi, xj , z−{i,j}), (yi, xj , z−{i,j}), (yi, yj , z−{i,j}), (xi, yj , z−{i,j}), (xi, xj , z−{i,j})).
For a facility f ∈ F , we define rf = ∑

k∈N\{i,j}:f ∈(z−{i,j })m dm as the sum of the
demands on f in the partial strategy profile z−{i,j}. The following lemma provides
an explicit formula for the calculation of I (γ,π) for such a path.

Lemma 3.3 Let M = (N,F,X, (cf )f ∈F ) be a congestion model and G(M) a cor-
responding weighted congestion game with demands (di)i∈N . Moreover, let

γ = (
(xi, xj , z−{i,j}), (yi, xj , z−{i,j}), (yi, yj , z−{i,j}), (xi, yj , z−{i,j}),

(xi, xj , z−{i,j})
)

be an arbitrary path in �(X) with two deviating players. Then,

I (γ,π) =
∑

f ∈F1∪F11

(dj − di)cf (di + dj + rf ) − dj cf (dj + rf ) + dicf (di + rf )

+
∑

f ∈F3∪F9

(di − dj )cf (di + dj + rf ) − dicf (di + rf ) + dj cf (dj + rf ),

(1)



54 Theory Comput Syst (2011) 49: 46–70

Table 1 Decomposition of F

into 16 disjoint subsets
Fk, k = 1, . . . ,16

xj \ yj xj ∩ yj yj \ xj F \ (xj ∪ yj )

xi \ yi F1 F2 F3 F4

xi ∩ yi F5 F6 F7 F8

yi \ xi F9 F10 F11 F12

F \ (xi ∪ yi ) F13 F14 F15 F16

where F1 = (xi \ yi)∩ (xj \ yj ), F3 = (xi \ yi)∩ (yj \ xj ), F9 = (yi \ xi)∩ (xj \ yj ),
and F11 = (yi \ xi) ∩ (yj \ xj ).

Proof We fix i, j ∈ N,xi, yi ∈ Xi, xj , yj ∈ Xj , and z−{i,j} ∈ X−{i,j} arbitrarily
and consider the path γ = ((xi, xj , z−{i,j}), (yi, xj , z−{i,j}), (yi, yj , z−{i,j})(xi, yj ,

z−{i,j}), (xi, xj , z−{i,j})). We compute straightforwardly that

I (γ,π) = πi(yi, xj , z−{i,j}) − πi(xi, xj , z−{i,j}) + πj (yi, yj , z−{i,j})

− πj (yi, xj , z−{i,j}) + πi(xi, yj , z−{i,j}) − πi(yi, yj , z−{i,j})

+ πj (xi, xj , z−{i,j}) − πj (xi, yj , z−{i,j}). (2)

For fixed xi, yi, xj and yj , every facility f ∈ F can be chosen by player i in both
strategy xi and strategy yi , in one of these strategies or not at all. The same holds
for player j and strategies xj and yj . We can thus decompose F into 16 disjoint sets
F1, . . . ,F16. The first set, F1, comprises all facilities that are in (xi \ yi) ∩ (xj \ yj ).
F2 contains all facilities that are in (xi \yi)∩ (xj ∩yj ), and so on. The comprehensive
description of all 16 cases is given in Table 1.

In order to compute for instance the first term of (2), we notice that in strategy
profile x = (yi, xj , z−{i,j}) the load on each facility f ∈ F5 ∪ F6 ∪ F9 ∪ F10 equals
�f (x) = di + dj + rf , while the load on each facility g ∈ F7 ∪ F8 ∪ F11 ∪ F12 equals
�g(x) = di + rg . These considerations lead to the following equation. We will use the
notation

∑
F,G for

∑
f ∈F∪G.

I (γ,π) = di

⎛

⎝
∑

F9,F10

cf (di + dj + rf ) +
∑

F11,F12

cf (di + rf )

−
∑

F1,F2

cf (di + dj + rf ) −
∑

F3,F4

cf (di + rf )

⎞

⎠

+ dj

⎛

⎝
∑

F7,F11

cf (di + dj + rf ) +
∑

F3,F15

cf (dj + rf )

−
∑

F5,F9

cf (di + dj + rf ) −
∑

F1,F13

cf (dj + rf )

⎞

⎠
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+ di

⎛

⎝
∑

F2,F3

cf (di + dj + rf ) +
∑

F1,F4

cf (di + rf )

−
∑

F10,F11

cf (di + dj + rf ) −
∑

F9,F12

cf (di + rf )

⎞

⎠

+ dj

⎛

⎝
∑

F1,F5

cf (di + dj + rf ) +
∑

F9,F13

cf (dj + rf )

−
∑

F3,F7

cf (di + dj + rf ) −
∑

F11,F15

cf (dj + rf )

⎞

⎠ .

By reordering the summation many terms cancel out and we obtain

I (γ,π) =
∑

f ∈F1∪F11

(dj − di)cf (di + dj + rf ) − dj cf (dj + rf ) + dicf (di + rf )

+
∑

f ∈F3∪F9

(di − dj )cf (di + dj + rf ) − dicf (di + rf ) + dj cf (dj + rf ),

establishing the result. �

Using Lemma 3.3, we can derive a sufficient condition on the existence of an exact
potential in a weighted congestion game.

Proposition 3.4 Let M = (N,F,X, (cf )f ∈F ) be a congestion model and G(M)

a corresponding weighted congestion game with demands (di)i∈N . For each facility
f ∈ F , we denote by Nf = {i ∈ N : (∃xi ∈ Xi : f ∈ xi)} the set of players potentially
using f , and by Rf

−{i,j} = {∑k∈P dk : P ⊆ Nf \ {i, j}} the set of possible residual

demands by all players except i and j . If for all f ∈ F and all i, j ∈ Nf

(dj −di)cf (di +dj +rf )−dj cf (dj +rf )+dicf (di +rf ) = 0 ∀rf ∈ Rf
−{i,j}, (3)

then G admits an exact potential.

Proof Using the criterion of Monderer and Shapley, it is enough to prove that
I (γ,π) = 0 for all γ ∈ �(X). By Lemma 3.3, I (γ,π) evaluates to

I (γ,π) =
∑

f ∈F1∪F11

(dj − di)cf (di + dj + rf ) − dj cf (dj + rf ) + dicf (di + rf )

+
∑

f ∈F3∪F9

(di − dj )cf (di + dj + rf ) − dicf (di + rf ) + dj cf (dj + rf ),

(4)
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for some i, j ∈ Nf and rf ∈ Rf
−{i,j}. Using (3) each summand of (4) equals 0, estab-

lishing the result. �

It follows easily that the above condition is satisfied if all demands are equal (this
corresponds to unweighted congestion games, see Rosenthal’s potential [28]).

For different demands di �= dj it is a useful observation that we can write the
condition of Proposition 3.4 as

cf (di + dj + rf ) − cf (dj + rf )

di

= cf (dj + rf ) − cf (di + rf )

dj − di

(5)

for all i, j ∈ Nf and rf ∈ Rf
−{i,j}. Thus, the difference quotients of cf between the

points di + rf and dj + rf as well as dj + rf and di + dj + rf must have the same
value. For arbitrary demands (weighted congestion games) and affine cost functions,
one can check that the above condition is also satisfied, see the positive result of
Fotakis et al. [14].

For a single weighted congestion game, the linearity condition on cost functions,
however, is only sufficient but not necessary. In Example 3.5, we show that it is
possible to construct a non-affine cost function that satisfies the condition of Propo-
sition 3.4 for all 3 player games with demand vector (1,2,5).

Example 3.5 Let M = (N = {1,2,3},X,F, (cf )f ∈F ) be an arbitrary congestion
model with three players and let G(M) be a corresponding weighted congestion
game with demands d1 = 1, d2 = 2, d3 = 5.

We want to construct a non-linear cost function that gives rise to an exact potential
in G. To this end, we consider an arbitrary 4-cycle γ . We apply Lemma 3.3 and obtain
that I (γ,π) evaluates to

I (γ,π) =
∑

f ∈F1∪F11

(dj − di)cf (di + dj + rf ) − dj cf (dj + rf ) + dicf (di + rf )

+
∑

f ∈F3∪F9

(di − dj )cf (di + dj + rf ) − dicf (di + rf ) + dj cf (dj + rf ).

(6)

Regarding (6), only the following realizations of (di, dj , rf ) are possible:

(1,2,0), (1,5,0), (2,5,0),

(1,2,5), (1,5,2), (2,5,1).
(7)

Note that only realizations with di < dj are considered, the others are symmetric and,
thus, omitted. Proposition 3.4 establishes that it is sufficient for the existence of an
exact potential that in each cost function cf , the values to the arguments shown in (7)
lie on a straight line. It is easy to construct a non-linear cost function c : R>0 → R

satisfying this property. An example of such a function is given in Fig. 1.
We derive that I (γ,π) = 0 for any 4-cycle γ in any such game regardless of the

structure of the set of strategies.
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c(�) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if � ∈ (0,1],
5� − 5 if � ∈ (1,3],
−� + 13 if � ∈ (3,5],
2� − 2 if � ∈ (5,6],
10 if � ∈ (6,∞).
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Fig. 1 A non-linear cost function cf that gives rise to an exact potential in all weighted congestion games
with demands d1 = 1, d2 = 3 and d3 = 5

There is, however, an important question left: Are there non-affine cost functions
that give rise to an exact potential in all weighted congestion games, i.e., in weighted
congestion games with arbitrary strategy spaces and number of players, respectively?
Under mild assumptions on feasible cost functions, we will give in Theorem 3.7 a
negative answer to this question. First, we need the following lemma.

Lemma 3.6 Let C be a set of functions and let G(C) be the set of all weighted con-
gestion games with cost functions in C . Every G ∈ G(C) has an exact potential if and
only if for all c ∈ C

(x − y)c(x + y + z) − xc(x + z) + yc(y + z) = 0 (8)

for all x, y ∈ R>0 and z ∈ R≥0.

Proof Suppose G = (N,X,π) ∈ G(C) is a weighted congestion game with cost func-
tions in C and every c ∈ C satisfies (8). First, we will show that G has an exact po-
tential. To this end, let γ ∈ �(X) be an arbitrary simple closed path in X of length 4.
I (γ,π) evaluates to (1), which is zero using (8).

For the opposite direction suppose that there is a c̃ ∈ C that does not satisfy equa-
tion (8). This implies that there are x, y ∈ R>0 and z ∈ R≥0 such that

(x − y)c̃(x + y + z) − xc̃(x + z) + yc̃(y + z) �= 0.

Now consider the congestion model M = (N,F,X, (cf )f ∈F ) where N = {1,2,3},
F = {f,g,h}, X1 = {{f }, {g}}, X2 = {{f }, {h}}, X3 = {f }, and cf = cg = ch =
c̃. Let G = (N,X,π) be a corresponding weighted congestion game with de-
mands d1 = y, d2 = x and d3 = z. We will investigate the value of I (γ,π) for
γ = (({g}, {h}, {f }), ({f }, {h}, {f }), ({f }, {f }, {f }), ({g}, {f }, {f }), ({g}, {h}, {f })).
This value equals (x − y)c̃(x + y + z) − xc̃(x + z) + yc̃(y + z) �= 0 implying that
this game does not possess an exact potential function. �
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We will now solve the functional equation (8) in order to characterize all cost
functions that guarantee an exact potential in all weighted congestion games. We
require the following property: A function c : R>0 → R is locally bounded, if for
every compact set K ⊂ R>0, |c(x)| < MK for all x ∈ K and a constant MK ∈ R>0

potentially depending on K .

Theorem 3.7 Let C be a set of locally bounded functions and let G(C) be the set of
weighted congestion games with cost functions in C . Then, every G ∈ G(C) admits an
exact potential function if and only if C contains affine functions only, that is, every
c ∈ C can be written as c(�) = ac� + bc for some ac, bc ∈ R.

Proof Fotakis et al. [14] derived an exact potential function for weighted conges-
tion games with affine cost functions. We can provide an alternative non-constructive
proof by checking that affine functions fulfill functional equation (8) and, thus, we
may conclude that they give rise to an exact potential. We will prove the reverse
direction in two steps.

In Step 1, we prove the following: Let c fulfill (8). Then, c is differentiable and
c′(x + z) = (c(x + z) − c(z))/x holds for all x ∈ R>0 and z ∈ R≥0.

First, we will show continuity of c on R>0. Let x ∈ R>0 and z ∈ R≥0 be arbitrary

and let (yn)n∈N be a sequence in R>0 such that yn
n→∞−→ 0 and both yn + z > 0 and

yn + x > 0 for all n ∈ N. Then, using (8) we get x(c(x + z + yn) − c(x + z)) =
yn(c(x +z+yn)−c(z+yn)). As c is bounded on any compact set, the right hand side
of the previous equation goes to 0 as n goes to infinity and hence x limn→∞(c(x +
z + yn) − c(x + z)) = 0. This shows continuity in x + z.

Moreover, (8) implies that x(c(x + z + yn) − c(x + z))/yn = c(x + z + yn) −
c(z+yn). As c is continuous we know that the limits on the right hand side of the pre-
vious equation exist and, thus, c′(x + z) = (c(x + z)− c(z))/x holds for all x ∈ R>0.

So c satisfies the differential equation c′(x + z) = (c(x + z) − c(z))/x. We will
show in Step 2 that only affine functions solve this differential equation. To see
this, we set t = x + z, which leads to the differential equation c′(t) = (c(t) − c0)/

(t − t0), t ∈ R>0, where c0 = c(z) and t0 = z are constants. Standard calculus
shows that for every initial value c1 for the initial time t1 > t0, this ordinary lin-
ear differential equation admits a unique solution c(t) = (t − t0)C + c0, where
C = (c1 − c0)/(t1 − t0). �

3.2 Characterizing the Existence of a w-Potential

Our next goal is to determine whether weaker notions of potential functions will
enrich the class of cost functions giving rise to a potential game. The idea of a w-
potential allows a player specific scaling of the private cost πi by a strictly positive wi .
It is a useful observation that the existence of a w-potential function is equivalent to
the existence of a strictly positive-valued vector w = (wi)i∈N such that the game Gw

with private costs π̄ = ×i∈Nπi/wi has an exact potential.
Using this equivalent formulation and Theorem 2.2 it follows that the existence of

an exact potential function for the game Gw = (N,X, π̄) is equivalent to I (γ, π̄) = 0
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for all γ ∈ �(X) suggesting that Gw has an exact potential if and only if there are
wi,wj ∈ R>0 such that

(
di

wi

− dj

wj

)

cf (di + dj + rf ) = di

wi

cf (di + rf ) − dj

wj

cf (dj + rf )

for all i, j ∈ N and all rf ∈ Rf
−{i,j}. In particular it is necessary that either cf (di +

dj + rf ) = cf (dj + rf ) = cf (di + rf ) or the value α(di, dj ) defined as

α(di, dj ) = wi

wj

= di

dj

· cf (di + dj + rf ) − cf (di + rf )

cf (di + dj + rf ) − cf (dj + rf )
(9)

is strictly positive and independent of both f and rf . This observation leads us to the
following lemma.

Lemma 3.8 Let C be a set of functions. Let G(C) be the set of weighted congestion
games with cost functions in C . Every G ∈ G(C) has a w-potential if and only if for
all x, y ∈ R>0, there exists an α(x, y) ∈ R>0 such that

α(x, y) · (c(x + y + z) − c(y + z)
) = x

y
· (c(x + y + z) − c(x + z)

)
(10)

for all z ∈ R≥0 and c ∈ C .

Proof Let M = (N,F,X, (cf )f ∈F ) be a congestion model where for all f ∈ F the
cost function cf satisfies (10). Let (di)i∈N,di ∈ R>0, be an arbitrary vector of de-
mands and G(M) the corresponding weighted congestion game. We will show that
this game possesses a w-potential. Lemma 3.8 implies that there for any two distinct
players i, j ∈ N there is α(di, dj ) ∈ R>0 such that

α(di, dj ) ·
(
cf (di +dj +z)−cf (dj +z)

) = di

dj

· (cf (di +dj +z)−cf (di +z)
)

(11)

for all z ∈ R≥0 and f ∈ F . If cf (di + dj + z) − cf (dj + z) = 0 for all f ∈ F

then α(di, dj ) can be chosen arbitrarily. If, in contrast, there is f ′ ∈ F such
that cf ′(di + dj + z) − cf ′(dj + z) �= 0 then α(di, dj ) = di/dj · (cf ′(di + dj ) −
cf ′(di))/(cf ′(di +dj )− cf ′(dj )). In both cases, we can chose the values of α(di, dj )

such that α(di, dk) = α(di, dj ) · α(dj , dk) for all di, dj , dk ∈ R>0. In particular, we
can find a vector of weights (wi)i∈N ∈ R>0 such that α(di, dj ) = wi/wj for all
i, j ∈ N with i �= j .

Using Monderer and Shapley’s criterion we will show that the corresponding
game Gw = (N,X, π̄) has an exact potential. For this, we consider an arbitrary path
γ ∈ �(X). Without loss of generality only two players, say i and j , change their
strategies in γ while the sum of the demands of all other players is equal to a facility-
specific value rf . Analogously to the proof of Lemma 3.6, we get
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I (γ, π̄) =
∑

f ∈F1,F11

(
dj

wj

− di

wi

)

cf (di + dj + rf ) − dj

wj

cf (dj + rf )

+ di

wi

cf (di + rf ) +
∑

f ∈F3,F9

(
di

wi

− dj

wj

)

cf (di + dj + rf )

− di

wi

cf (di + rf ) + dj

wj

cf (dj + rf ).

We multiply with wi , use α(di, dj ) = wi/wj and obtain

wiI (γ, π̄) =
∑

f ∈F1,F11

α(di, dj )dj

(
cf (di + dj + rf ) − cf (dj + rf )

)

− di

(
cf (di + dj + rf ) + cf (di + rf )

)

+
∑

f ∈F3,F9

−α(di, dj )dj

(
cf (di + dj + rf ) − cf (dj + rf )

)

+ di

(
cf (di + dj + rf ) − cf (di + rf )

)
.

Using (11) shows that I (γ, π̄) = 0 proving the first result.
To show the other direction, assume that the condition on C does not hold, that is,

there are x0, y0 ∈ R>0 such that for every α > 0 there is a cost function cα ∈ C and a
value zα ∈ R≥0 with

α · (cα(x0 + y0 + zα) − cα(y0 + zα)
) �= x0

y0
· (cα(x0 + y0 + z) − cα(x0 + zα)

)
. (12)

First assume that cα(x0 + y0 + zα) − cα(y0 + zα) = 0. Note that (12) implies
that cα(x0 + y0 + z) − cα(x0 + zα) �= 0. Let us consider the congestion model
M = (N,F,X, (cf )f ∈F ) where N = {1,2,3}, F = {f,g,h}, X1 = {{f }, {g}}, X2 =
{{f,h}}, X3 = {{f }}, and cf = cg = ch = cα . Furthermore, let d1 = x0, d2 = y0 and
d3 = zα and consider the corresponding weighted congestion game G = (N,X,π).
For the path γ = (({g}, {h}, {f }), ({f }, {h}, {f }), ({f }, {f }, {f }), ({g}, {f }, {f }),
({g}, {h}, {f })) in X we get for any strictly positive vector w

I (γ,π/w) =
(

y0

w2
− x0

w1

)

cα(x0 + y0 + zα) − y0

w2
cα(y0 + zα) + x0

w1
cα(x0 + zα)

= x0

w1

(
cα(x0 + zα) − cα(x0 + y0 + zα)

) �= 0.

The second equality follows from the assumption cα(x0 +y0 +zα) = cα(y0 +zα) and
the contradiction follows from cα(x0 +y0 + z)− cα(x0 + zα) �= 0. Using the criterion
of Monderer and Shapley the game does not admit a weighted potential and we thus
may assume in the following that cα(x0 + y0 + zα) �= cα(y0 + zα) for all cα ∈ C and
zα ∈ R≥0.
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Let α be arbitrary and consider cα ∈ C and zα ∈ R≥0 such that (12) does not hold.
As we may assume that cα(x0 + y0 + zα) �= cα(y0 + zα), the value

β = x0

y0
· cα(x0 + y0 + zα) − cα(x0 + zα)

cα(x0 + y0 + zα) − cα(y0 + zα)

is well defined. If β < 0, it follows that I (γ,π /w) �= 0 for any strictly positive
vector w. If β > 0, we find cβ ∈ C and zβ such that

β · (cβ(x0 + y0 + zβ) − cβ(y0 + zβ)
) �= x0

y0
· (cβ(x0 + y0 + z) − cβ(x0 + zβ)

)
.

Finally, let us consider the congestion model M = (N,F,X, (cf )f ∈F ), where
N = {1,2,3,4}, F = {f,g,h, ι}, X1 = {{f }, {h}, {ι}}, X2 = {{g}, {h}, {ι}}, X3 =
{{h}}, X4 = {{ι}} and cf = cg = ch = cα, cι = cβ . Now we regard the game G(M) =
(N,X,π) with demands d1 = x0, d2 = y0, d3 = zα , d4 = zβ . Assuming that G admits
a weighted potential we can find a strictly positive vector w such that Gw admits an
exact potential. To this end, we will apply the criterion of Monderer and Shapley to
the paths

γ1 = (
({f }, {g}, {h}, {ι}), ({h}, {g}, {h}, {ι}), ({h}, {h}, {h}, {ι}), ({f }, {h}, {h}, {ι}),
({f }, {g}, {h}, {ι})),

γ2 = (
({f }, {g}, {h}, {ι}), ({ι}, {g}, {h}, {ι}), ({ι}, {ι}, {h}, {ι}), ({f }, {ι}, {h}, {ι}),
({f }, {g}, {h}, {ι})),

and compute that

I (γ1,π/w) =
(

y0

w2
− x0

w1

)

cα(x0 + y0 + zα) − y0

w2
cα(y0 + zα)

+ x0

w1
cα(x0 + zα) = 0, (13)

I (γ2,π/w) =
(

y0

w2
− x0

w1

)

cβ(x0 + y0 + zβ) − y0

w2
cβ(y0 + zβ)

+ x0

w1
cβ(x0 + zβ) = 0. (14)

We derive from (13) and (14) that

β = x0

y0
· cα(x0 + y0 + zα) − cα(x0 + zα)

cα(x0 + y0 + zα) − c̃1(y0 + zα)
= w1

w2

= x0

y0
· cβ(x0 + y0 + zβ) − cβ(x0 + zβ)

cβ(x0 + y0 + zβ) − cβ(y0 + zβ)
�= β,

which is a contradiction. �
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Although condition (10) seems to be similar to the functional equation (8) charac-
terizing the existence of an exact potential, it is not possible to proceed using differ-
ential equations. As α(x, y) need not be bounded it is not possible to prove continuity
and differentiability of c. Instead, we will use the discrete counterpart of differential
equations, that is, difference equations.

Theorem 3.9 Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C . Then every G ∈ G(C) admits a w-potential
if and only if exactly one of the following cases holds:

1. C contains only affine functions,
2. C contains only exponential functions c(�) = ac eφ� + bc for some ac, bc,φ ∈ R,

where ac and bc may depend on c, while φ must be equal for every c ∈ C .

Proof First, we will prove that these functions guarantee the existence of a w-
potential in all such games. We have shown in Sect. 3.1 that affine cost functions cf

give rise to an exact potential. As every exact potential function is also a w-potential
for w = (1, . . . ,1), we may conclude that affine cost functions give rise to a weighted
potential in weighted congestion games.

So let us check the case c(�) = ac eφ� + bc for φ �= 0. It is easy to verify that

α(x, y) = x

y
· ace

φ(x+y+z) + bc − ace
φ(x+z) − bc

aceφ(x+y+z) + bc − aceφ(y+z) − bc

= x

y
· eφ (x+y) − eφ(x)

eφ (x+y) − eφ (y)
> 0.

Note in particular that α(x, y) does neither depend on ac, bc, nor z. Thus, it is unam-
biguously defined and strictly positive. Theorem 3.8 then yields the result.

To show the opposite direction, we assume that the conditions on C do not hold
but that every G ∈ G(C) admits a w-potential.

First, suppose that there is a function c̃ ∈ C that is neither affine nor exponen-
tial. This implies that there are four points p1 < p2 < p3 < p4 following neither an
exponential nor a affine law, that is, there are neither a, b and φ ∈ R such that

c̃(p1) = aeφp1 + b, . . . , c̃(p4) = aeφp4 + b,

nor are there s and t ∈ R such that

c̃(p1) = sp1 + t, . . . , c̃(p4) = sp4 + t.

As c̃ is continuous, we may assume without loss of generality that the above condi-
tions hold for rational p1, . . . , p4 and we can write them as p1 = 2m1/(2 k), . . . , p4 =
2m4/(2k) for some m1,m2,m3,m4, k ∈ N.

We regard a congestion model M = (N = {1,2,3},F,X, c) and a series of
games Gm(M) = (N,X,π),0 ≤ m ≤ 2m4. We set the demands of the players as
d1 = 1/(2k), d2 = 2/(2k) and d3 = m/(2k). By assumption each game Gm admits a
w-potential. By Lemma 3.8 this implies that for each game

α(d1, d2) = d1

d2
· c̃(d1 + d2 + d3) − c̃(d1 + d3)

c̃(d1 + d2 + d3) − c̃(d2 + d3)
= d1

d2
· c̃(d1 + d2) − c̃(d1)

c̃(d1 + d2) − c̃(d2)
.
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In particular α(d1, d2) is the same for each game Gm. Now, we introduce fn =
c̃(n/(2k)) and consider the sequence (fn)n∈N . Thus, we can write

α(d1, d2) = 1

2
· fm+3 − fm+1

fm+3 − fm+2
.

If α(d1, d2) = 1/2, we conclude that c̃ is constant, which contradicts our assumption.
So we may assume that α(d1, d2) �= 1/2 and we obtain

fm+3 − 2α(d1, d2)

2α(d1, d2) − 1
fm+2 + 1

2α(d1, d2) − 1
fm+1 = 0. (15)

Equation (15) defines a recursively defined sequence on {1, . . . ,2m4}.
The main result in [5, Chap. 4], gives sufficient conditions on the uniqueness of

the general solution of such sequences. First, we define the characteristic equation
of a general second-order recurrence relation am+2 + β2am+1 + β1am = 0 as x2 +
β2x + β1 = 0.

Now let x1 and x2 be the distinct and real roots of the characteristic equation.
Then every general solution am of the recurrence relation is a linear combination
with coefficients independent of m of powers (xi)

m of the solutions xi, i = 1,2. In
addition, if x is the double root of the characteristic equation, every general solution
am of the recurrence relation is a linear combination of xm and mxm. In both cases,
if two consecutive initial values ak and ak+1 of the recurrence relation are known,
a solution can be obtained by evaluating the two constants of the linear combination
using the two initial values and the fact that this solution is unique.

The characteristic equation of the recurrence relation (15) equals

x2 − 2α(d1, d2)

2α(d1, d2) − 1
x + 1

2α(d1, d2) − 1
= (x − 1)

(

x − 1

2α(d1, d2) − 1

)

.

So if α(d1, d2) �= 1, two different roots occur and fm can be computed explicitly and
uniquely for even m as

fm = b · 1m + a ·
(

1

2α(d1, d2) − 1

)m

= b + a · exp

(

m ln

(
1

2α(d1, d2) − 1

))

for some constants a and b ∈ R. If α(d1, d2) = 1, we can evaluate fm as

fm = t · 1m + ms · 1m = t + sm

for some constants s, t ∈ R showing that c̃ follows either an exponential or affine law
on p1, . . . , p4. So it remains to show that neither affine and exponential functions nor
exponential function with different exponents can occur simultaneously.

Let us first assume on the contrary that C contains both affine and exponential
functions, that is, there are c̃1, c̃2 ∈ C such that c̃1(�) = s� + t for some constants
s, t ∈ R and c̃2 = aeφ� + b for some constants a, b ∈ R and φ �= 0. Let us fix x = 1
and y = 2. We calculate that

α1(1,2) = 1

2
· c̃1(3 + z) − c̃1(1 + z)

c̃1(3 + z) − c̃1(2 + z)
= 1, (16)
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while

α2(1,2) = 1

2
· c̃2(3 + z) − c̃2(1 + z)

c̃2(3 + z) − c̃2(2 + z)
= 1

2
· e3φ − eφ

e3φ − e2φ
= 1

2
(1 + e−φ) �= 1. (17)

Thus, α(1,2) is not independent of c̃1 and c̃2, respectively, which contradicts Theo-
rem 3.8.

To finish the proof, let us finally assume that C contains two exponential functions
with different exponents c̃2, c̃3 ∈ C where c̃2 = aeφ� + b c̃3(�) = seψ� + t for some
constants a, b, s, t ∈ R and 0 �= ψ �= φ �= 0. As in (17), we obtain, α2(1,2) = (1 +
e−φ)/2 and α3(1,2) = (1 + e−ψ)/2. Using that the exponential function is bijective,
we derive α2(1,2) �= α3(1,2) for φ �= ψ , which is a contradiction to the conditions
of Lemma 3.8. �

Panagopoulou and Spirakis [27] showed that the function P : X → R defined as
P(x) = ∑

f ∈F cf (x) is a w-potential if the cost functions on all facilities are equal
the exponential function, that is, cf (x) = ex for all f ∈ F . It directly follows that
P(x) is also a w-potential if the cost functions are of type cf (x) = af eφx for all
f ∈ F , where φ is a constant that does not depend on the facility. The function P(x)

is not a w−potential (not even a generalized ordinal potential) if the costs are of type
cf (x) = af eφx + bf for all f ∈ F . For this more general case, the function P̃ : X →
R defined as P̃ (x) = ∑

f ∈F cf (x) + ∑
i∈N

∑
f ∈xi

eφdi −1
eφ bf is a w-potential. The

proof uses standard arguments and is omitted.

3.3 Implications of Our Characterizations

It is natural to ask whether these results remain valid if additional restrictions on the
set G(C) are made. A natural restriction is to assume that all players have an integral
demand. As we used infinitesimally small demands in the proof of Lemma 3.6, our
results for exact potentials do not apply directly to integer demands. With a slight
variation of the proof of Theorem 3.9, where only the case α(·, ·) = 1 is considered,
however, we still obtain the same result provided C contains only continuous func-
tions.

Another natural restriction on G(C) are games with symmetric sets of strategies or
games with a bounded number of players or facilities. Since the proofs of Lemmas 3.6
and 3.8 and Theorems 3.7 and 3.9 rely on mild assumptions, we can strengthen our
characterizations as follows.

Corollary 3.10 Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C satisfying one or more of the following
properties

1. Each game G = (N,X,π) ∈ G(C) has two (four) players.
2. Each game G = (N,X,π) ∈ G(C) has three (four) facilities.
3. For each game G = (N,X,π) ∈ G(C) and each player i ∈ N the set of her strate-

gies Xi contains a single facility only.
4. Each game G = (N,X,π) ∈ G(C) has symmetric strategies, that is Xi = Xj for

all i, j ∈ N .
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5. In each game G = (N,X,π) ∈ G(C), the demands of all players are integral.

Then, every G = (N,X,π) ∈ G(C) has an exact potential (a w-potential) if and only
if C contains only affine functions (only affine functions or only exponential func-
tions as in Theorem 3.8). Note that for the case of a w-potential, the conditions in
parentheses must hold.

We remark that the conditions given in Corollary 3.10 are not necessary for the
existence of a generalized ordinal potential function, see Monderer and Shapley [25]
for a definition. In fact, for singleton congestion games with non-decreasing cost
functions, there exists a generalized ordinal potential function, see Fotakis et al. [13].

Yet, we are able to deduce an interesting result concerning the existence of w-
potentials in weighted congestion games, where each facility can be chosen by at
most two players. By adapting the proof of Lemma 3.8 for two-player games, the
following lemma follows.

Lemma 3.11 Let C be a set of functions and let G 2(C) be the set of weighted conges-
tion games where each facility lies in the strategy sets of at most two players and cost
functions are in C . Every G ∈ G 2(C) has a w-potential if and only if for all x, y ∈ R>0

there exists an α(x, y) ∈ R>0 such that

α(x, y) · (c(x + y) − c(y)
) = x

y
· (c(x + y) − c(x)

)
(18)

for all c ∈ C .

Using this lemma, we can prove that in games where each facility lies in the strat-
egy sets of at most two players also non-affine and non-exponential functions give
rise to a weighted potential.

Theorem 3.12 Let m : R>0 → R be a strictly monotonic function and let Cm =
{a m(x) + b : a, b ∈ R}. Let G 2(Cm) be the set of weighted congestion games where
each facility lies in the strategy sets of at most two players and cost functions are
in Cm. Then every such game G ∈ G 2(Cm) admits a w-potential.

Proof Let c ∈ Cm be arbitrary. By definition of Cm, we can write c(x) = ac m(x) +
bc for some ac, bc ∈ R. If ac = 0, the function c is constant and thus fulfills the
requirements of Lemma 3.11. If ac �= 0, it is easy to check that

α = x

y
· c(x + y) − c(x)

c(x + y) − c(y)
= x

y
· acm(x + y) + bc − (ac m(x) + bc)

acm(x + y) + bc − (acm(y) + bc)

= x

y
· m(x + y) − m(x)

m(x + y) − m(y)
> 0

for all c ∈ Cm and hence the conditions of Lemma 3.11 are fulfilled implying the
existence of a w-potential. �



66 Theory Comput Syst (2011) 49: 46–70

This result generalizes a result of Anshelevich et al. in [3], who showed that
a weighted congestion game with two players and cf (�) = bf /� for a constant
bf ∈ R>0 has a potential. Moreover, this result shows that the characterization of
Corollary 3.10 is tight in the sense that weighted congestion games with two players
admit a w-potential even if cost functions are neither affine nor exponential.

4 Extensions of the Model

In the last section, we developed a new technique to characterize the set of functions
that give rise to a potential in weighted congestion games. In this section, we will
introduce two generalizations of weighted congestion games and investigate the set
of cost functions that assure the existence of potential functions.

Definition 4.1 (Facility-dependent demands) Let M = (N,F,X, (cf )f ∈F ) be a
congestion model and let (di,f )i∈N,f ∈F be a matrix of facility-dependent demands.
The corresponding weighted congestion game with facility-dependent demands is the
strategic game G(M) = (N,X,π), where π is defined as π = ×i∈Nπi , πi(x) =∑

f ∈xi
di,f cf (�f (x)) and �f (x) = ∑

j∈N :f ∈xj
dj,f .

Restricting the strategy sets to singletons, we obtain scheduling games. In a
scheduling game, players are jobs that have machine-dependent demands and can
be scheduled on a set of admissible machines (restricted scheduling on unrelated
machines). In contrast to the classical approach, where each job strives to minimize
its makespan, we consider a different private cost function: Machines charge a price
per unit given by a load-dependent cost function cf and each job minimizes its cost
defined as the price of the chosen machine multiplied with its machine-dependent
demand.

Theorem 4.2 Let C be a set of continuous functions and let Gf d(C) be the set of
weighted congestion games with facility-dependent demands and cost functions in C .
Then, every G ∈ Gf d(C) admits a w-potential if and only if C contains only affine
functions, that is, every c ∈ C can be written as c(�) = ac� + bc for some ac, bc ∈ R.
For a game G with affine cost functions, the potential function is given by P(x) =∑

i∈N

∑
f ∈xi

cf (
∑

j∈{1,...,i}:f ∈xj
dj,f )di,f .

Proof For any set of functions C , the set G(C) of weighted congestion games with
cost functions in C is contained in the set of weighted congestion games with facility-
dependent demands. Thus, we can restrict C to the set of affine functions or exponen-
tial functions as in Theorem 3.9.

We first show that if C contains an exponential function, then there is a weighted
congestion game with facility-dependent demands that does not admit a weighted
potential. To this end, suppose that there is a cost function c̃ ∈ C that can be written
as c̃(�) = ace

φ� + bc for some ac, bc,φ ∈ R with ac �= 0 and φ �= 0. We consider
the congestion model M = (N,F,X, (cf )f ∈F ), where N = {1,2}, F = {f,g,h, ι},
X1 = {{{f }, {h}, {ι}}, X2 = {{g}, {h}, {ι}}, and cf = cg = ch = cι = c̃. In addition, we
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specify d1,ι = 2/φ and di,f = 1/φ for all (i, f ) ∈ N ×F \{(1, ι)}. Let G = (N,X,π)

denote the corresponding weighted congestion game with facility-dependent de-
mands. Regarding the 4-cycle

γ1 = (
({f }, {g}, {h}, {ι}), ({h}, {g}, {h}, {ι}), ({h}, {h}, {h}, {ι}), ({f }, {h}, {h}, {ι}),
({f }, {g}, {h}, {ι}))

we obtain I (γ1,π/w) = 0 if and only if w1 = w2. In contrast, for the 4-cycle

γ2 = (({f }, {g}, {h}, {ι}), ({ι}, {g}, {h}, {ι}), ({ι}, {ι}, {h}, {ι}), ({f }, {ι}, {h}, {ι}),
({f }, {g}, {h}, {ι}))

we derive I (γ2,π/w) = 0 if and only if the equation w1/w2 = (2e3 − 2e2)/(e3 − e1)

is fulfilled. Thus, I (γ1,π/w) = I (γ2,π/w) = 0 implies 0 = e2 − 2e + 1, a contra-
diction. We conclude that G does not admit a weighted potential. We proceed by
showing that P(x) is an exact potential for affine costs.

Assume cf (�) = af � + bf , with af , bf ∈ R for all f ∈ F . We define the func-
tion c

≤i
f (x) = cf (

∑
j∈{1,...,i}:f ∈xj

dj,f ) and rewrite P(x) as P(x) = ∑
i∈N Pi(x),

where Pi(x) = ∑
f ∈xi

c
≤i
f (x)di,f . Let G = (N,X,π) be an arbitrary weighted con-

gestion game with facility-dependent demands and let x, y ∈ X be two strategy pro-
files such that x = (xk, x−k) and y = (yk, y−k) with x−k = y−k for some xk, yk ∈ Xk

and x−k ∈ X−k . We notice that Pi(x) = Pi(y) for all i < k. Now consider a player
i > k. When computing Pi(x) − Pi(y), we observe that all costs corresponding to
facilities not contained in xk ∪ yk cancel out. For each facility f ∈ (xi ∩ xk) \ yk , we
get c

≤i
f (x) − c

≤i
f (y) = af dk,f . Analogously, for each facility f ∈ (xi ∩ yk) \ xk , it

holds that c
≤i
f (x) − c

≤i
f (y) = −af dk,f . For each facility f ∈ xi ∩ xk ∩ yk , we have

c
≤i
f (x) = c

≤i
f (y). Hence,

Pi(x) − Pi(y) =
∑

f ∈xi∩xk

af dk,f di,f −
∑

f ∈xi∩yk

af dk,f di,f .

Moreover, we can calculate straightforwardly that

Pk(x) − Pk(y) =
∑

f ∈xk

cf

( ∑

j∈{1,...,k}:f ∈xj

dj,f

)

dk,f

−
∑

f ∈yk

cf

( ∑

j∈{1,...,k}:f ∈yj

dj,f

)

dk,f .

We thus obtain

P(x) − P(y) =
∑

i∈N

Pi(x) −
∑

i∈N

Pi(y)

=
n∑

i>k

( ∑

f ∈xi∩xk

af dk,f di,f −
∑

f ∈yi∩yk

af dk,f di,f

)
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+
∑

f ∈xk

af

( ∑

j∈{1,...,k}:f ∈xj

dj,f

)

dk,f

−
∑

f ∈yk

af

( ∑

j∈{1,...,k}:f ∈yj

dj,f

)

dk,f + dk,f

∑

f ∈xk

bf − dk,f

∑

f ∈yk

bf

=
∑

f ∈xk

af

( ∑

j∈{1,...,n}:f ∈xj

dj,f

)

dk,f

−
∑

f ∈yk

af

( ∑

j∈{1,...,n}:f ∈yj

dj,f

)

dk,f + dk,f

∑

f ∈xk

bf − dk,f

∑

f ∈yk

bf

= πk(x) − πk(y).

Hence, P is an exact potential function. �

Note that the potential function used is a natural generalization of Rosenthal’s
potential function [28]. We will now introduce an extension to weighted congestion
games allowing players to also choose their demand.

Definition 4.3 (Elastic demands) Let M = (N,F,X, (cf )f ∈F ) be a congestion
model. Together with D = ×i∈NDi , where Di ⊂ R>0 are compact for all i ∈ N ,
we define the weighted congestion game with elastic demands as the strate-
gic game G(M) = (N, X̄,π) with X̄ = (X,D), π = ×i∈Nπi , and πi(x̄) =∑

f ∈xi
dicf (�f (x̄)) and �f (x̄) = ∑

j∈N :f ∈xj
dj . A strategy of player i is a tuple

x̄i = (xi, di) where xi ∈ Xi and di ∈ Di .

In our definition of weighted congestion games with elastic demands, we explicitly
allow for positive and negative, and for increasing and decreasing cost functions.
Thus, an increase in the demand may increase or decrease the player’s private cost.
Note that in weighted congestion games with elastic demands, the strategy sets are
topological spaces and are in general infinite. By restricting the sets Di to singletons
Di = {di}, i ∈ N , we obtain weighted congestion games as a special case of weighted
congestion games with elastic demands. The proof of the following result is omitted
as it is similar to the case of facility-dependent demands.

Theorem 4.4 Let C be a set of continuous functions and let Ge(C) be the set of
weighted congestion games with elastic demands and cost functions in C . Then, every
G ∈ Ge(C) admits a w-potential function if and only if C contains only affine func-
tions. For a game G with affine cost functions, the potential function is given by the
function P(x̄) = ∑

i∈N

∑
f ∈xi

cf (
∑

j∈{1,...,i}:f ∈xj
dj )di .

As an immediate consequence, we obtain the existence of a PNE if cost functions
are affine. Note that the existence of a potential is not sufficient for proving existence
of a PNE as we are considering infinite games. However, as X̄ is compact and P is
continuous, P has a minimum x̄∗ ∈ X̄ and x̄∗ is a PNE.
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Corollary 4.5 Let C be a set of affine functions and let Ge(C) be the set of weighted
congestion games with elastic demands and cost functions in C . Then, every G ∈
Ge(C) admits a PNE.
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