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Abstract We study the impact of collusion in network games with splittable flow and
focus on the well established price of anarchy as a measure of this impact. We first
investigate symmetric load balancing games and show that the price of anarchy is at
most m, where m denotes the number of coalitions. For general networks, we present
an instance showing that the price of anarchy is unbounded, even in the case of two
coalitions. If latencies are restricted to polynomials with nonnegative coefficients and
bounded degree, we prove upper bounds on the price of anarchy for general networks,
which improve upon the current best ones except for affine latencies.

In light of the negative results even for two coalitions, we analyze the effectiveness
of Stackelberg strategies as a means to improve the quality of Nash equilibria. In this
setting, an α fraction of the entire demand is first routed centrally by a Stackelberg
leader according to a predefined Stackelberg strategy and the remaining demand is
then routed selfishly by the coalitions (followers).

For a single coalitional follower and parallel arcs, we develop an efficiently com-
putable Stackelberg strategy that reduces the price of anarchy to one. For general
networks and a single coalitional follower, we show that a simple strategy, called
SCALE, reduces the price of anarchy to 1 + α. Finally, we investigate SCALE for
multiple coalitional followers, general networks, and affine latencies. We present the
first known upper bound on the price of anarchy in this case. Our bound smoothly
varies between 1.5 for α = 0 and full efficiency for α = 1.
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1 Introduction

Over the past years, the impact of the behavior of selfish, uncoordinated users in
congested networks has been investigated intensively in the theoretical computer sci-
ence and operations research literature. In this context, network routing games have
proved to be a reasonable means of modeling selfish behavior in networks. The basic
idea is to model the interaction of selfish network users as a noncooperative game.
We are given a directed graph with latency functions on the arcs and a set of origin-
destination pairs, called commodities. Every commodity is associated with a demand,
which specifies the rate of flow that needs to be sent from the respective origin to
the destination. In the nonatomic variant, every demand represents a continuum of
agents, each controlling an infinitesimal amount of flow. The latency that an agent
experiences to traverse an arc is given by a (non-decreasing) function of the total
flow on that arc. Agents are assumed to act selfishly and route their flow along a
minimum-latency path from their origin to the destination; a solution in which no
agent can switch to a path with smaller travel time corresponds to a Wardrop equilib-
rium [15, 37].

Koutsoupias and Papadimitriou [24] initiated the investigation of the efficiency
loss caused by selfish behavior. They introduced a measure to quantify the ineffi-
ciency of Nash equilibria which they termed the price of anarchy. The price of anar-
chy is defined as the worst-case ratio of the cost of a Nash equilibrium over the cost
of a system optimum. In a seminal work, Roughgarden and Tardos [34] showed that
the price of anarchy for network routing games with nonatomic players and linear
latency functions is 4/3; in particular, this bound holds independently of the under-
lying network topology. The case of more general families of latency functions has
been studied by Roughgarden [29] and Correa et al. [13]. (For an overview of these
results, we refer to the book by Roughgarden [31].) Despite these bounds for specific
classes of latency functions, it is known that the price of anarchy for general latency
functions is unbounded even on simple parallel-arc networks [34].

In this paper, we study nonatomic network games in which the agents are parti-
tioned into a (in)finite number of sets, which we interprete (and term) as coalitions
of agents. We allow that agents of different commodities may belong to the same
coalition and further assume that every coalition aims at minimizing the average de-
lay experienced by this coalition. In this setting, we study the worst case efficiency
(price of anarchy) of Nash equilibria: stable points, where no coalition can unilater-
ally improve its cost by rerouting its flow. While the model under consideration (also
known as atomic splittable flow games) has been studied by many researchers, see
among others Cominetti et al. [11], Hayrapetyan et al. [20], Korilis et al. [23], and
Roughgarden and Tardos [34], several intriguing open questions still persist.

Cominetti et al. [11] discovered that the price of anarchy in these games may
exceed that of corresponding nonatomic games without coalitions. More precisely,
Cominetti et al. [11] presented an instance showing that for polynomial latency func-
tions of degree d , the price of anarchy grows as Ω(d). On the positive side, they
presented upper bounds of 1.5, 2.56, and 7.83, for polynomial latency functions of
degree d = 1,2,3, respectively. For polynomials of larger degree, the previously best
known upper bound is O(2ddd+1), which is due to Hayrapetyan et al. [20].
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1.1 Our Results

We investigate nonatomic network routing games with coalitions. Our contribution
in this setting is the following:

1. First, we consider symmetric load balancing games, that is, we are given parallel
arcs that connect a common source and a common sink. For this setting, we show
that the price of anarchy is at most m, where m denotes the number of coalitions.
This result holds for arbitrary convex latencies and is related to a previous result of
Cominetti et al. [11], who showed that for single-commodity network games with
m coalitions each of which controlling the same amount of flow is at most m. Our
result is a generalization in the sense that we do not require that the flow is evenly
distributed among coalitions. On the other hand, our result is more restrictive as it
only holds for parallel arcs.

2. We then investigate the efficiency of Nash equilibria for general networks. We
show that the price of anarchy in such games is unbounded, even for two coali-
tions. For semi-convex latency functions, we derive a generic upper bound on the
price of anarchy using a variational inequality approach. We further show that if
the class of allowable latencies is restricted to polynomials with nonnegative co-
efficients and maximum degree d , the price of anarchy is at most d

√
d for d ≥ 4.

Our bounds improve upon all previous known bounds, except for affine latencies,
i.e., d = 1. For an overview of our bounds, we refer to Table 1.

Due to the large efficiency loss of Nash equilibria, researchers have proposed dif-
ferent approaches to reduce the price of anarchy in network routing games. One of
the most promising approaches is the use of Stackelberg routing, see [23, 30]. In
this setting, it is assumed that a fraction α ∈ [0,1] of the entire demand is controlled
by a central authority, termed Stackelberg leader, while the remaining demand is
controlled by the selfish players, also called the followers. In a Stackelberg game,
the Stackelberg leader first routes the centrally controlled flow according to a prede-
termined policy, called the Stackelberg strategy, and then the remaining demand is
routed by the selfish followers. The aim is to devise Stackelberg strategies so as to
minimize the price of anarchy of the resulting combined flow.

3. In light of the negative results that hold even for only two coalitions, we inves-
tigate Stackelberg strategies as a way to improve the quality of Nash equilibria.
Recently, Bonifaci et al. [6] showed that for nonatomic followers and single com-
modity networks, no Stackelberg strategy can reduce the price of anarchy to a
constant. This result, however, does not rule out the existence of a Stackelberg
strategy inducing a constant price of anarchy, when the number of coalitional fol-
lowers is small. For a single coalitional follower, parallel arcs and semi-convex
latencies, we develop an efficiently computable Stackelberg strategy (called SFS)
that reduces the price of anarchy to one. For general networks, semi-convex la-
tencies and a single coalitional follower, we prove that the SCALE strategy (see
Roughgarden [30]) reduces the price of anarchy to 1 + α. This result holds for
convex latencies and general networks.

4. Finally, we consider general networks and multiple coalitional followers. For
affine linear latencies, we prove that the SCALE strategy yields an upper bound
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on the price of anarchy, which smoothly varies between the best known bound on
the price of anarchy of 1.5 when α = 0 and full efficiency when α = 1.

1.2 Applications

There are numerous applications that can be interpreted as a network routing game
with coalitions. Here, we focus on highlighting only a few (as we find) particularly
interesting ones.

In recent years, the number of traffic participants that use a navigation device has
increased significantly. Already nowadays, navigation systems feature bidirectional
data communication which, among other services, opens the possibility to transmit
the current location of a customer to a central server of the service provider (see, e.g.,
[26]). This way, the current traffic situation can be monitored accurately in real-time
(given that a sufficient number of traffic participants are using this technology). Based
on this data, the service provider can provide a better route guidance, e.g., in the case
of traffic congestion, by centrally computing routes for their customers which are then
communicated back to the respective navigation devices. A natural objective that the
service provider might want to achieve in order to provide a good quality of service is
to minimize the average travel time of their customers. This scenario can be modeled
as nonatomic network game with coalitions, where the members of coalition are the
customers of a specific service-provider.

One important application of Stackelberg routing is the routing of Internet
traffic within the domain of an Internet service provider, see also Sharma and
Williamson [35]. Here, the Internet service provider centrally controls a fraction of
the overall traffic traversing its domain, while the remaining traffic is controlled by
other service providers. In this setting, a natural goal for a service provider is to de-
vise routes to the centrally controlled flow so as to minimize the overall delay in its
domain. Our results for the Stackelberg strategies SCALE and SFS provides the In-
ternet service provider with efficient algorithms to compute routes for the centrally
controlled traffic.

1.3 Related Work

Awerbuch et al. [3], Christodoulou and Koutsoupias [10], and Aland et al. [1] derived
tight bounds on the price of anarchy for weighted and unweighted congestion games
with polynomial latency functions. These works, however, did not study the impact
of coalitions on the price of anarchy.

Closer to our work are the papers by Hayrapetyan et al. [20] and Cominetti
et al. [11]. The former presented a general framework for studying congestion games
with colluding players. Their goal is to investigate the price of collusion: the factor
by which the quality of Nash equilibria can deteriorate when coalitions form. Their
results imply that for symmetric nonatomic load balancing games with coalitions the
price of anarchy does not exceed that of the game without coalitions. For weighted
congestion games with coalitions and polynomial latencies they proved upper bounds
of O(2ddd+1), where d denotes the degree of the considered polynomials. They also
presented examples showing that in discrete (atomic) network games, the price of
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collusion may be strictly larger than 1, i.e., coalitions may strictly increase the social
cost.

Cominetti et al. [11] studied the atomic splittable selfish routing model in which
the flow of every commodity forms a coalition (atomic player). Thus, this model can
be incorporated as a special case of nonatomic network congestion games with arbi-
trary coalitions. They observed that the price of anarchy of this game may exceed that
of the standard nonatomic selfish routing game without coalitions. Based on the work
of Catoni and Pallotino [9], they presented an instance with affine latency functions
in which the price of anarchy is 1.34. Using a variational inequality approach, they
presented bounds on the price of anarchy for linear and polynomial latency functions
of degree two and three of 1.5, 2.56, and 7.83, respectively. As noted by Cominetti
et al., these positive bounds directly carry over to the case of nonatomic network
congestion games with arbitrary coalitions (considered in this paper), since the varia-
tional inequalities are still valid in this more general model. For polynomials of larger
degree, their approach does not yield bounds. For single commodity networks with
symmetric demands (every coalition controls the same amount of flow), Cominetti
et al. [11] proved an upper bound of m on the price of anarchy.

Altman et al. [2] proved for monomial latency functions and single commodity
networks that there is a Nash flow, which is optimal. They also derived conditions
under which Nash equilibria are unique. Uniqueness of Nash equilibria has been
further studied by Fleischer et al. [4] and Orda et al. [27].

Haurie and Marcotte [19] presented a general framework for studying atomic split-
table network games with elastic demands. They characterized the relationship be-
tween nonatomic and atomic splittable network games. Haurie and Marcotte, how-
ever, do not study the efficiency of Nash equilibria with respect to an optimal solution.

Fotakis et al. [17] studied algorithmic issues in the setting of atomic congestion
games with coalitions and unsplittable flows. They proved upper bounds on the price
of anarchy, where the cost of a coalition is defined as the maximum latency, see also
the KP-model [24].

The idea of using Stackelberg strategies to improve the performance of a sys-
tem was first proposed by Korilis et al. [23]. The authors identified necessary and
sufficient conditions for the existence of Stackelberg strategies that induce a system
optimum; their model also considers atomic splittable followers. In particular, they
showed that for a single atomic splittable follower, parallel arcs, and M/M/1 laten-
cies, there exists an optimal Stackelberg strategy that reduces the price of anarchy to
one.

Roughgarden [30] proposed some natural Stackelberg strategies, e.g., SCALE and
Largest-Latency-First (LLF). For parallel-arc networks he showed that the price of
anarchy for LLF is bounded by 4/(3 + α) and 1/α for linear and arbitrary latency
functions, respectively. Both bounds are best possible. Moreover, he also proved that
it is NP-hard to compute the best Stackelberg strategy. Kumar and Marathe [25]
gave a PTAS to compute the best Stackelberg strategy for the case of parallel-arc
networks. Karakostas and Kolliopoulos [22] proved upper bounds on the price of
anarchy for SCALE and LLF. Their bounds hold for arbitrary multi-commodity net-
works and linear latency functions. Swamy [36] obtained upper bounds on the price
of anarchy for SCALE and LLF for polynomial latency functions. He also proved a
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bound of 1 + 1/α for single-commodity, series-parallel networks with arbitrary la-
tency functions. Bonifaci et al. [6] proved that even for single-commodity networks
no Stackelberg strategy can induce a bounded price of anarchy for any α ∈ (0,1).
On the positive side, they proved that LLF induces an upper bound on the price of
anarchy, which only depends on the size of the network (number of vertices, arcs
and commodities). They also derived almost tight bounds for SCALE and polyno-
mial latencies. Correa and Stier-Moses [12] proved, besides some other results, that
strategies in which the Stackelberg leader sends no more flow on every edge than the
system optimum, does not increase the price of anarchy. Sharma and Williamson [35]
considered the problem of determining the smallest value of α such that the price of
anarchy can be improved. They obtained results for parallel-arc networks and linear
latency functions. Kaporis and Spirakis [21] studied a related question of finding the
minimum demand that the Stackelberg leader needs to control in order to enforce an
optimal flow. Given that the Stackelberg leader controls a sufficiently large fraction
of the overall demand, they also showed that one can efficiently compute the optimal
Stackelberg strategy. Finally, Fotakis [16] studied Stackelberg routing with unsplit-
table flows and proved (among other results) that the 1/α bound for parallel links still
holds.

2 The Model

In a network routing game, we are given a directed network G = (V ,A) and k origin-
destination pairs (s1, t1), . . . , (sk, tk) called commodities. We will use the shorthand
[k] := {1,2, . . . , k}. For every commodity i ∈ [k], a demand ri > 0 is given that spec-
ifies the amount of flow with origin si and destination ti . Let Pi be the set of all paths
from si to ti in G and let P = ⋃

i Pi . A flow is a function f : P → R+, and we
denote by fP = f (P ) the amount of flow that is send along path P . The flow f is
feasible (with respect to r) if for all i,

∑
P∈Pi

fP = ri .
For a given flow f , we define the flow on an arc a ∈ A as fa = ∑

P�a fP . More-
over, each arc a ∈ A has an associated load-dependent latency denoted by �a(·). For
each a ∈ A, the latency function �a is assumed to be nonnegative, nondecreasing
and differentiable. We also assume that �a is defined on [0,∞) and that x�a(x) is a
convex function of x. Such functions are called semi-convex or standard [29]. The
latency of a path P with respect to a flow f is defined as the sum of the latencies of
the arcs in the path, denoted by �P (f ) = ∑

a∈P �a(fa). The total cost of a flow f is
C(f ) = ∑

a∈A fa�a(fa). The feasible flow of minimum total cost is called optimal.
We will denote the optimal flow by o.

In a nonatomic network game, infinitely many agents are carrying the flow rate
and each agent controls only an infinitesimal fraction of the demand. The continuum
of agents of type j (traveling from sj to tj ) is represented by the interval [0, rj ].
It is well known that for this setting Nash flows exist and their total cost is unique,
see [31]. Furthermore, the price of anarchy, which measures the worst case ratio of the
total cost of any Nash flow and that of an optimal flow is well understood, see Correa
et al. [13, 14], Perakis [28], Roughgarden [31], and Roughgarden and Tardos [34].

In this paper, we study nonatomic network games in which the agents are parti-
tioned into a (in)finite set of coalitions. In our model, we allow that agents of different
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commodities, i.e., agents traveling from different sources to different destinations,
may belong to the same coalition. We assume that the partition of agents into coali-
tions is fixed and given a priori.

Let [m] = {1, . . . ,m} denote a set of coalitions. To this end, we represent every
agent of commodity i as a real number in [0, ri]. Then, the distribution of agents
among the coalitions is modeled by a collection of Lebesgue-measurable functions
ci : [0, ri] → [m], i ∈ [k], which map an agent of type i ∈ [k] to coalition j ∈ [m].
The continuum of agents of type i belonging to coalition j is defined as the Lebesgue-
measure of {ξ ∈ [0, ri] : ci(ξ) = j} and denoted by ci,j . Using this notation, we define
by f j the flow for coalition j and say that f j is feasible for coalition j if f j satisfies
the demands ci,j , i ∈ [k] in the usual sense. The amount of flow of coalition j on arc
a is defined as f

j
a = ∑

P∈P :P�a f
j
P , where f

j
P denotes the flow of coalition j along

path P .
We assume that every coalition aims at minimizing the average delay or total

travel time experienced by this coalition, see also [11]. Thus, the cost for coalition
j is defined as Cj (f j ;f −j ) := ∑

a∈A �a(fa)f
j
a , where f −j denotes the flow of all

other coalitions.
The tuple I = (G, r, �, c,m) is called an instance of the nonatomic network game

with coalitions. Our model is similar to the one proposed by Hayrapetyan et al. [20]
and it includes the special case, where we have exactly k coalitions each of which
controlling the flow for commodity k.

Definition 1 A feasible flow f is a Nash equilibrium if and only if for all j ∈ [m]:
Cj (f j ;f −j ) ≤ Cj (xj ;f −j ) for all feasible flows xj for coalition j ∈ [m].

In a Nash equilibrium, every coalition routes its flow so as to minimize Cj (f j ;f −j )

with the understanding that coalition j optimizes over f j while the flow f −j of all
other coalitions is fixed.

Definition 2 Let L be a class of latency functions. Let Im(L) be the set of all in-
stances with at most m coalitions and latency functions in L. For I ∈ Im(L), let oI

be an optimal profile and let ΘI be the set of Nash equilibria, respectively. Then, the
price of anarchy is defined by

sup
I∈Im(L)

sup
f ∈ΘI

C(f )

C(oI )
.

Note that this definition of the price of anarchy is slightly different from the stan-
dard nonatomic selfish routing model [31], since there may be qualitatively different
equilibria, see [4].

If latencies are restricted to be standard, minimizing Cj (f j ;f −j ) is a convex
optimization problem. The following necessary and sufficient optimality conditions
characterize Nash flows for a nonatomic network game with coalitions. This char-
acterization can also be found in Haurie and Marcotte [19] (Theorem 2.3) and in
Cominetti et al. [11].
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Lemma 1 A feasible flow (f 1, . . . , f m) is a Nash equilibrium for a nonatomic net-
work game with m coalitions if and only if for every j ∈ [m] the following inequality
is satisfied:

∑

a∈A

(�a(fa) + �′
a(fa)f

j
a )(f

j
a − x

j
a ) ≤ 0 for all feasible flows xj . (1)

Proof A flow f is a Nash equilibrium if and only if every f j , j ∈ [m], is a global
minimizer of Cj (f j ;f −j ). Since the feasible region of all feasible flows for coalition
j forms a convex and compact set, and the objective Cj (f j ;f −j ) is nondecreasing,
differentiable and convex, the variational inequality (1) constitutes a first order nec-
essary and sufficient optimality condition for the global minimum of Cj (·;f −j ) at
f j , see the book by Boyd and Vandenberghe [7]. This condition expresses that at the
optimum f j , there is no feasible gradient descent direction. �

3 Nonatomic Network Games with Coalitions

In the subsequent sections, we will investigate the price of anarchy for specific net-
work topologies and classes of latency functions.

3.1 Symmetric Load Balancing Games

A symmetric load balancing game is a network game, where the underlying digraph
simply connects two distinguished nodes with parallel links.

Theorem 1 For symmetric load balancing games with m coalitions and nondecreas-
ing, differentiable, and standard latency functions, the price of anarchy is at most m.

Proof As usual, let f denote a Nash flow and o an optimal flow. We bound the cost
of each coalition individually. Assume the flow for coalition j carries αj units of

flow. We claim that there exists a feasible flow gj such that g
j
a + f

−j
a ≤ oa for all

a ∈ A with g
j
a > 0. To see this, we define the flow ḡ = [o − f −j ]+, where the pos-

itive projection is applied component wise, that is, for arc a we have [ḡa]+ = ḡa ,
if ḡa ≥ 0, and 0 otherwise. It is straight-forward to verify that ḡ is a feasible flow
for β ≥ αj units of flow. Hence, the flow g = αj

β
ḡ is feasible for coalition j . The

cost of coalition j when applying strategy g can be bounded by Cj (g;f −j ) =
∑

a∈A �a(ga + f
−j
a )ga ≤ ∑

a∈A �a(oa)ga ≤ ∑
a∈A �a(oa)oa. The first inequality is

valid since for arcs a with ga > 0, we have
αj

β
[oa − f

−j
a ]+ + f

−j
a ≤ oa , because

oa ≥ f
−j
a and

αj

β
≤ 1. The second inequality follows since g is by definition opt-

restricted, that is, ga ≤ oa for all a ∈ A. Using that coalition j plays a best response
in equilibrium, we have Cj (f j ;f −j ) ≤ Cj (g;f −j ) ≤ C(o). We apply the same ar-
gument for every coalition, thus, C(f ) = ∑

j∈[m] Cj (f j ;f −j ) ≤ mC(o). �
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Fig. 1 The graph G, used in the
proof of Proposition 1

3.2 Multi-commodity Networks

We present the following negative result.

Proposition 1 Let M > 0. There is a multi-commodity instance I = (G, r, �, c,m)

with m = 2 such that for a Nash flow f , and an optimal flow o, C(f ) ≥ Ω(M) ·C(o).

Proof Consider the construction in Fig. 1. We have two players, where one player has
a demand of size M from s0 to t0. The second player has a demand of size 1 from s1
from t1. All latencies are constant (1 or 0 as indicated in Fig. 1) except for the latency
function �(x), which is defined as �(x) = max{0, x − M}. In a Nash equilibrium, the
second player will route 1/2 of its flow along the upper path. Indeed, in this case the
marginal latency evaluates to �(1/2 + M) + �′(1/2 + M)1/2 = 1. The total cost of
the combined flow f evaluates to C(f ) = 1/2(M + 1/2) + 1/2 = Ω(M). A feasible
flow can always be constructed by routing the flow of the two commodities along the
direct path. Thus, we obtain C(o) ≤ 1, proving the proposition. �

Note that the function �(x) used in the above proposition is not differentiable
in x = M . But this can be removed by defining a different function �̄(x), which
smoothly interpolates between �(M) = 0 and �(1/2+M) and satisfies �(1/2+M)+
�′(1/2 + M)1/2 = 1.

3.3 Bounding the Price of Anarchy via the λ-Approach

The previous example showed that for multi-commodity networks, the price of anar-
chy is unbounded even for two coalitions. In the following, we will therefore restrict
the class of allowable latency functions in order to obtain upper bounds on the price
of anarchy.

For a latency function � and nonnegative parameter λ we define the following
nonnegative value:

ω(�;m,λ) := sup
f,x≥0

(�(f ) − λ�(x))x + �′(f )(
∑

j∈[m](f j xj − (f j )2))

�(f )f
. (2)

Here, we slightly abuse notation and denote by f (under the supremum) the vector
f = (f 1, . . . , f m) and also the sum f = ∑m

j=1 f j .
We assume 0/0 = 0 by convention. For a given class of latency functions L, we

define ωm(L;λ) := sup�∈L ω(�;m,λ) and Λm(L) := {λ ∈ R
+|(1 − ωm(L;λ)) > 0}.

Theorem 2 Consider a family of instances Im(L), where L is a class of nondecreas-
ing, differentiable, and standard latency functions. Then, the price of anarchy is at
most infλ∈Λm(L)[λ(1 − ωm(L;λ))−1].
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Proof Let f be a Nash flow, and x be any feasible flow. Then,

C(f ) ≤
∑

a∈A

(

�a(fa)fa +
∑

j∈[m]
(�a(fa) + �′

a(fa)f
j
a )(x

j
a − f

j
a )

)

(3)

=
∑

a∈A

(

λ�a(xa)xa + (�a(fa) − λ�a(xa))xa +
∑

j∈[m]
�′
a(fa)f

j
a (x

j
a − f

j
a )

)

≤ λC(x) + ωm(L;λ)C(f ). (4)

Here, (3) follows from the variational inequality stated in Lemma 1. The last inequal-
ity (4) follows from the definition of ωm(L;λ). Taking x as the optimal flow the claim
is proven. �

Note that whenever Λm(L) = ∅ or Λm(L) = {∞}, the approach does not yield
a finite price of anarchy. Our definition of ωm(L;λ) is closely related to the pa-
rameter βm(L) in Cominetti et al. [11] and αm(L) in Roughgarden [32] for the
atomic splittable selfish routing model. For λ = 1, we have βm(L) = ωm(L;1) and
αm(L) = (1 − ωm(L;1))−1. As we show in the next section, the generalized value
ωm(L;λ) implies improved bounds for a large class of latency functions, e.g., poly-
nomial latency functions. The previous approaches with βm(L) (or αm(L)) failed
for instance to generate upper bounds for polynomials of degree d ≥ 4 because this
value exceeds 1 (or is infinite). The advantage of Theorem 2 is that we can tune the
parameter λ and, hence, ωm(L;λ) so as to minimize the price of anarchy given by
λ/(1 − ωm(L;λ)).

We make use of a result of Cominetti et al. [11].

Theorem 3 (Cominetti et al. [11]) The value βm(�) = ω(�;m,1) is at most

sup
x,f ≥0

(�(f ) − �(x))x + �′(f )[(x)2/4 − (f − x/2)2/m]
�(f )f

.

Since the necessary calculations to prove the above claim only affect the last term
in (2), which is the same for ω(�;m,λ) and βm(�), this bound carries over for arbi-
trary nonnegative values of λ.

Corollary 1 If λ ≥ 0, the value ω(�;m,λ) is at most

sup
x,f ≥0

(�(f ) − λ�(x))x + �′(f )[x2/4 − (f − x/2)2/m]
�(f )f

.

3.4 Linear and Affine Linear Latency Functions

Cominetti et al. [11] proved an upper bound of 1.5 for affine latencies. In the fol-
lowing, we present a stronger result for linear latencies. We also show that for affine
latencies the best bound can be achieved by setting λ = 1. In this case, we have
βm(L) = ωm(L;1).
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Theorem 4 Consider linear latency functions in L∗
1 = {a1z : a1 ≥ 0} and m ≥ 2

coalitions. Then, the price of anarchy is at most

P(m) = (2m + √
2
√

m(m + 1))(m + 1 + √
2
√

m(m + 1))
√

2

8
√

m(m + 1)(m + 1)
.

Furthermore, limm→∞ P(m) = 3
4 + 1

2

√
2 ≈ 1.46.

Proof For proving the first claim, we start with the bound on ω(�;m,λ) given in
Corollary 1. We define μ := x

f
for f > 0 and 0, otherwise, and replace x = μf . This

yields ω(�;m,λ) ≤ maxμ≥0(μ
2(m−1−λ4m

4m
) + μ(m+1

m
) − 1

m
). For λ > m−1

4m
this is a

strictly convex program with a unique solution given by μ∗ = −2(m+1)
m−1−λ4m

. Inserting

the solution, yields ω(�;m,λ) ≤ m+3−4λ
4λm+1−m

. The condition λ ∈ Λm(L∗
1) is equivalent

to λ > max{m−1
4m

, m−2
2m−2 }. We define the value λ = 1

2 + 1
4

√
2(m + 1)/m, which is

contained in Λm(L∗
1). Applying Theorem 2 with this value proves the claim. �

The proof for affine latencies is similar and leads to C(f ) ≤ minλ≥1
4λ2−λ
4λ−2 C(x)

showing that the best bound can be achieved by setting λ = 1.

3.5 Polynomial Latency Functions

To facilitate the result of Theorem 2 for polynomial latency functions, one needs to
bound ωm(Ld;λ) for the class Ld of polynomials with nonnegative coefficients and
degree at most d ∈ N:

Ld = {cdxd + · · · + c1x + c0 : cs ≥ 0, s = 0, . . . , d}.

Note that polynomials in Ld are nonnegative for nonnegative arguments, continuous,
nondecreasing, and convex.

We focus in the following on the general case m ∈ N ∪ {∞}. Therefore, we define

ω(�;∞, λ) := sup
x,f ≥0

(�(f ) − λ�(x))x + �′(f )(x)2/4

�(f )f
. (5)

Then, it follows from Theorem 3 that ω(�;m,λ) ≤ ω(�;∞, λ), since the square is
nonnegative and limm→∞(f − x/2)2/m = 0.

We now observe that the total cost function C(f ) is linear in each of the latency
functions �(·). We can therefore reduce the analysis to monomial latency functions.
For this we subdivide each arc a into d arcs a1, . . . , ad with monomial latency func-
tions �as (x) = csx

s for s = 1, . . . , d .

Lemma 2 Consider the class Ms := {csx
s : cs ≥ 0} for s ∈ N. Then, ω∞(Ms;λ) ≤

max0≤μ μ(1 − λμs + sμ/4).
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Proof Let � ∈ Ms . Then, by (5) we get

ω(�;∞, λ) ≤ sup
x,f ≥0

(f s − λxs)x + sf s−1x2/4

f s+1
.

Substituting x = μf,μ ≥ 0, we obtain

ω(�;∞, λ) ≤ max
0≤μ

μ(1 − λμs + sμ/4). �

The next lemma states that ω∞(Ms;λ) is monotonically increasing in s for λ ≥ 1.

Lemma 3 For λ ≥ 1, ω∞(Ms;λ) ≤ ω∞(Md;λ) for all s ≤ d, s ∈ N, d ∈ N.

Proof Let λ ≥ 1. By Lemma 2, we have for � ∈ Ms

ω(�;∞, λ) ≤ max
0≤μ

μ(1 − λμs + sμ/4).

It is enough to prove that the argument maximum satisfies μ∗ ≤ 1. We define
Ts(μ) := μ(1 − λμs + sμ/4) and show that T ′

s (μ) ≤ 0 for all μ ≥ 1. To this end,
we obtain

T ′
s (μ) = 1 − (s + 1)λμs + (sμ)/2 = 1 − μ((s + 1)λμs−1 − s/2)

≤ 1 − μ((s + 1)λ − s/2) ≤ 1 − μ(s/2 + 1) ≤ 0,

where the first inequality follows from μ ≥ 1, while the second inequality follows
from λ ≥ 1. �

The next theorem presents an upper bound on the price of anarchy for latencies in Ld .

Theorem 5 Consider latency functions in Ld , d ≥ 2. Then, the price of anarchy is at

most ( 1
2

√
d + 1

2 )d
(d2+1−√

d−d
3
2 )

(
√

d−1)(d−1)
.

Proof We define λ(d) := ( 1
2

√
d + 1

2 )d
(d2+1−√

d−d
3
2 )

(
√

d−1)(d2−1)
.

The proof proceeds by proving a claim, which yields a bound on ω(Ld ;∞, λ(d)).

Claim max0≤μ≤1[T (μ) := μ(1 − λ(d)μd + d
μ
4 )] = d/(d + 1), for all d ≥ 2.

Proof To prove the claim it is convenient to write λ(d) as

λ(d) = d2 + 1 − √
d − d

3
2

μ1(d)d(
√

d − 1)(d2 − 1)
,

where μ1(d) := 2/(
√

d + 1).
Then, the claim is proven by verifying the following facts:
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1. T ′(μ1(d)) = 0, T ′′(μ1(d)) < 0 and T ′′(μ) has at most one zero in (0,1)

2. T (0) = 0, T (1) ≤ d/(d + 1) and T (μ1(d)) = d/(d + 1).

Before we prove these facts, we show how they imply the claim. The first fact im-
plies that μ1(d) is the only local maximum of T (μ) in the open interval (0,1).
Then, by comparing T (μ1(d)) to the boundary values T (0) and T (1) it follows that
T (μ1(d)) = d/(d + 1) is the global maximum.

We start by proving the first fact. The expression T (μ1(d)) evaluates to:

T ′(μ1(d)) = 1 − (d + 1)λ(d)μ1(d)d + dμ1(d)/2

= 1 − (d + 1)
d2 + 1 − √

d − d
3
2

(
√

d − 1)(d2 − 1)
+ dμ1(d)/2

= 1 − d2 + 1 − √
d − d

3
2

(
√

d − 1)(d − 1)
+ d√

d + 1

= 0.

We now prove T ′′(μ1(d)) < 0. First, we simplify as follows

T ′′(μ1(d)) = −d(d + 1)λ(d)μ1(d)d−1 + d/2

= −d(d2 + 1 − √
d − d

3
2 )

2(
√

d − 1)2
+ d/2.

Then, T ′′(μ1(d)) < 0 if and only if

d(d2 + 1 − √
d − d

3
2 )

2(
√

d − 1)2
> 1/2 ⇔ d2 + √

d − d
3
2 − d > 0.

The last inequality is fulfilled for all d ≥ 1.
To verify that T ′′(μ) has at most one zero in (0,1), use for example Descartes’

rule of signs. The second fact follows by simple calculations. �

The claim implies ω∞(Ld ;λ(d)) ≤ d/(d + 1), hence, λ(d) ∈ Λ∞(Ld) so we can use
Theorem 2 to obtain the claimed bound of (d + 1)λ(d). �

In the following we analyze the growth of the derived upper bound for large d ,
(d ≥ 4). The proof consists of standard calculus and is omitted.

Corollary 2 ( 1
2

√
d + 1

2 )d
(d2+1−√

d−d
3
2 )

(
√

d−1)(d−1)
≤ √

d
d

for d ≥ 4.

In Table 1, we present an overview about achievable upper bounds on the price of an-
archy when numerically optimizing over λ ∈ Λm(Ld) so as to calculate the minimum
in Theorem 2.
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Table 1 Overview of upper bounds on the price of anarchy for polynomials with nonnegative coefficients
and maximum degree d . The result in the first column marked with (∗) is with respect to linear latencies
{a1x : a1 ≥ 0}. The result of the second column (affine latencies) is due to [11]

d = 1∗ d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

1.46 1.5 2.55 5.06 11.09 26.32 66.89 180.27 512 1,524 4,734

4 Stackelberg Strategies with Coalitional Followers

Since the price of anarchy in network games with only two coalitions is already un-
bounded (Proposition 1), we investigate coordination mechanisms as a means to im-
prove the quality of Nash equilibria. One of the most prominent coordination mech-
anisms in the context of network routing games is the use of Stackelberg routing, see
Korilis et al. [23] and Roughgarden [30].

In this setting, it is assumed that a fraction α ∈ [0,1] of the entire demand is
controlled by a central authority, termed Stackelberg leader, while the remaining de-
mand is controlled by selfish followers which in our case are the selfish coalitions. In
a Stackelberg game, the Stackelberg leader first routes the centrally controlled flow
according to a predetermined policy, called the Stackelberg strategy, and then the re-
maining demand is routed by the selfish followers. The aim is to devise Stackelberg
strategies so as to minimize the price of anarchy of the resulting combined flow with
respect to an optimal solution for the entire demand.

An instance of a Stackelberg routing game with coalitional followers is charac-
terized by a tuple I (α) = (G, r, �, c,m,α), where in addition to G, r , �, c and m,
a parameter α ∈ (0,1) is given that specifies the fraction of the demand controlled by
the Stackelberg leader.

A (strong) Stackelberg strategy is a flow g feasible with respect to the demand
vector r ′ = (α1r1, . . . , αkrk), for some α1, . . . , αk ∈ [0,1] such that

∑k
i=1 αiri =

α
∑k

i=1 ri . If αi = α for all i, g is called a weak Stackelberg strategy. Thus, both
strong and weak strategies route a fraction α of the overall traffic, but a strong strat-
egy can choose how much flow of each commodity is centrally controlled. For single-
commodity networks the two definitions coincide. A Stackelberg strategy g is called
opt-restricted if ga ≤ oa for all a ∈ A.

Given a Stackelberg strategy g, let �̃a(x) = �a(ga + x) for all a ∈ A and let r̃ =
r −r ′. We assume that the Stackelberg leader may choose arbitrarily which amount of
flow (up to αr) of a commodity and coalition it controls. Thus, the remaining set and
demands of the coalitional followers denoted by m̃ and c̃, respectively, is obtained by
reducing every ci,j by the amount of demand that the Stackelberg leader wishes to
control from coalition j and commodity i.

We say that a flow h is induced by g if it is a Nash flow for the instance
(G, r̃, �̃, c̃, m̃).

A Nash flow h can be characterized by the following variational inequality (see
Lemma 1): h is a Nash flow induced by g if and only if for all flows x feasible with
respect to r̃ ,

∑

j∈[m]

∑

a∈A

(�a(ga + ha) + �′
a(ga + ha)h

j
a)(x

j
a − h

j
a) ≥ 0. (6)
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We will mainly be concerned with the total cost of the combined induced flow g + h,
given by C(g + h) = ∑

a∈A(ga + ha)�a(ga + ha). In particular, we are interested in
bounding the price of anarchy, that is, the worst case ratio of C(g + h)/C(o). It will
be convenient to separate the total cost C(g +h) in C1(g;h) := ∑

a∈A �a(ga +ha)ga

and C2(h;g) := ∑
a∈A �a(ga + ha)ha .

4.1 Symmetric Load Balancing Games

We consider symmetric load balancing games in which the underlying digraph simply
connects two distinguished nodes with parallel links. Let g be a flow according to the
Largest-Latency-First (LLF) strategy introduced by Roughgarden [30]. LLF simply
calculates an optimal flow o and saturates the arcs with largest latencies first. On the
one hand, Roughgarden showed that for Stackelberg routing games with nonatomic
followers (without coalitions), LLF reduces the price of anarchy to 1/α. On the other
hand, Hayrapetyan et al. [20] showed that for symmetric load balancing games col-
luding nonatomic players only decrease the total cost. Combining these two results
(Hayrapetyan et al. [20] (Theorem 2.3) and Roughgarden [30] (Theorem 4.2)), it fol-
lows that the LLF strategy induces a flow of total cost of at most 1/αC(o). Thus, the
LLF strategy reduces the price of anarchy to 1/α even in Stackelberg routing games
with coalitional followers.

4.2 Symmetric Load Balancing Games with a Single Follower

We now consider the case of a single follower. This setting has been previously stud-
ied by Korilis et al. [23]. The authors showed that for a single coalitional follower,
parallel arcs, and M/M/1 latencies, there exists an efficiently computable Stackel-
berg strategy that reduces the price of anarchy to one. Our main result in this section
is a generalization of their result to arbitrary semi-convex latencies. We are given an
instance I (α) of a Stackelberg game on parallel arcs and a single coalitional follower.

We define a Stackelberg strategy g that we call single-follower-support (SFS)
strategy as in Algorithm 1.

We prove that this algorithm computes an optimal Stackelberg strategy.

Theorem 6 Consider an instance I (α) of a Stackelberg game on parallel arcs with
a single coalitional follower. Let g be according to the SFS strategy and let h be an
induced Nash flow. Then, the combined flow g + h is optimal.

Proof First, we consider the case
∑

a∈A1
g1

a = α, which implies g = g1.
Since g is opt-restricted, it suffices to prove that the flow ha = oa −ga is a feasible

Nash flow for 1 − α. More precisely, we have to verify that

�a(oa) + �′
a(oa)(oa − ga) ≤ �â(oâ) + �′

â
(oâ)(oâ − gâ),

for all a, â ∈ A with oa − ga > 0. These inequalities are satisfied since �′
a(oa) = 0

for all a ∈ A1.
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Algorithm 1 Single-follower-support
Input: I (α)

Output: Stackelberg strategy g

1: compute a system optimal flow o

2: A1 := {a ∈ A : oa > 0 and �′
a(oa) = 0}, A2 := {a ∈ A : oa > 0 and �′

a(oa) > 0}
3:

x∗ := arg max
0≤xa≤oa,a∈A1

∑

a∈A1

xa, s.t. :
∑

a∈A1

xa ≤ α

4: g1 := x∗, g2 = (g2
a)a∈A2 := 0

5: if
∑

a∈A1
g1

a < α then
6:

g2
a := α − ∑

a∈A1
g1

a

�′
a(oa)(

∑
ā∈A2

1
�′̄
a(oā)

)
for all a ∈ A2.

7: end if
8: Return g = g1 + g2

Now we consider the case
∑

a∈A1
g1

a < α. Notice that in this case oa − ga = 0 for
all a ∈ A1. Thus, we have to show that

�a(oa) + �′
a(oa)(oa − ga) = C for some C ≥ 0 and all a ∈ A2, (7)

C ≤ �â(oâ) + �′
â
(oâ)(oâ − gâ) for all â ∈ A. (8)

We now use that the system optimal flow o satisfies

�a(oa) + �′
a(oa)(oa) = C̄ for some C̄ ≥ 0 and all a ∈ A2,

C̄ ≤ �â(oâ) + �′
â
(oâ)(oâ) for all â ∈ A.

Hence, the conditions (7) and (8) are equivalent to

�′
a(oa)ga = D for some D ≥ 0 and all a ∈ A2.

Defining D = (α − ∑
a∈A1

g1
a)/(

∑
ā∈A2

1
�′̄
a(oā)

) together with ga = D/�′
a(oa) proves

the result. �

4.3 General Networks with a Single Follower

In the following section, we will analyze a simple and easy-to-implement Stackelberg
strategy termed SCALE. According to the SCALE strategy, a flow g is obtained by
computing an optimal flow o and scaling this flow by α, i.e., g = αo.

We show that SCALE achieves a bound of (1 + α) on the price of anarchy that
even holds for general networks and latency functions.
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Theorem 7 Consider a family of instances I(α) of Stackelberg games with a single
coalitional follower and let g be according to the SCALE strategy. Then, the price of
anarchy of the equilibrium flow g + h is at most 1 + α.

Proof We bound the cost C1(g;h) and C2(h;g) separately. For the follower, we
know that h̄ = (1 − α)oa is a feasible flow. Since the follower plays a best response
in equilibrium, we have C2(h;αo) ≤ C2((1 − α)o;αo) = ∑

a∈A �a(oa)(1 − α)oa ≤
(1 − α)C(o). Now we bound the cost of the leader. Let h denote the best response of
the follower. We consider the following cases. (i) 0 ≤ ha ≤ (1 − α)oa . In this case it
follows that �a(αoa + ha)αoa ≤ α�a(oa)oa . (ii) ha > (1 − α)oa . This case implies
oa < 1

1−α
ha and we get �a(αoa + ha)αoa ≤ α

1−α
�a(αoa + ha)ha . Using both cases,

we have C1(αo;h) ≤ αC(o) + α
1−α

C2(h;αo) ≤ 2αC(o), where the last inequality
follows because C2(h;αo) ≤ (1 −α)C(o). Summing both inequalities for C1 and C2

proves the claim. �

Based on a simple single-commodity Braess instance [8], one can show that no
Stackelberg strategy can induce a price of anarchy of one, even if there is only a
single coalitional follower.

4.4 General Networks with Multiple Followers

In this section, we study SCALE for general networks and multiple coalitional fol-
lowers.

Lemma 4 Consider an instance I (α) of a Stackelberg game and let g be according
to the SCALE strategy. Then, the following inequality holds:

∑

k∈[m]

∑

a∈A

(�a(αoa + ha) + �′
a(αoa + ha)h

k
a)(x

k
a − hk

a) ≥ 0,

where h is the flow of the followers and x is any feasible flow for the demand (1−α)r .

Proof The lemma follows directly from (6). Taking xa := (1 − α)oa , which is a fea-
sible flow for the remaining (1 − α)r demand, we get

∑

k∈[m]

∑

a∈A

(�a(αoa + ha) + �′
a(αoa + ha)h

k
a)((1 − α)ok

a − hk
a) ≥ 0.

�

For a latency function � and a nonnegative number λ1, we define the nonnegative
value:

ω1(�;α,λ1) := sup
o,x≥0

�(αo + h)αo − λ1�(o)o

�(αo + h)(αo + h)
. (9)

We assume by convention 0/0 = 0.
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For a given class L, we further define ω1(L;α,λ1) := sup�∈L ω1(�;α,λ1). Simi-
larly,

ω2(�;α,m,λ2) := sup
o,h≥0

((1 − α)�(αo + h) − λ2�(o))o + z(f,h)

�(αo + h)(αo + h)
,

with z(f,h) := �′(αo + h)(
∑

k∈[m][(1 − α)hkok − (hk)2]). Note that the value

z(f,h) is at most �′(αo + h)
(1−α)(o)2

4 . We define ω2(L;α,m,λ2) := sup�∈L ω2(�;α,

m,λ2).

Proposition 2 Consider an instance I (α) of a Stackelberg game and let g be accord-
ing to the SCALE strategy. Then,

C1(g;h) ≤ λ1C(o) + ω1(L;α,λ1)C(g + h),

C2(h;g) ≤ λ2C(o) + ω2(L;α,m,λ2)C(g + h).

The proof simply uses Lemma 4 and the definitions of ω1 and ω2.
Before we state the main theorem, we define

Λm(L;α) := {(λ1, λ2) ∈ R
2+|(1 − (ω1(L;α,λ1) + ω2(L;α,m,λ2))) > 0}.

Note that the set Λ(L;α) may be empty.

Theorem 8 Consider a family of instances I(α) of Stackelberg games, where g

is defined according to the SCALE strategy. Then, the price of anarchy is at most
inf(λ1,λ2)∈Λm(L;α)[ λ1+λ2

1−(ω1(L;α,λ1)+ω2(L;α,m,λ2))
].

The proof uses the previous proposition.

Affine Latency Functions We will use Theorem 8 to prove upper bounds on the price
of anarchy for affine latencies. First, we need two technical lemmas.

Lemma 5 For λ1 ∈ R+, ω1(L1;α,λ1) ≤ max{α−λ1
α

, α2

4λ1
}.

Proof We start with constant latency functions �(z) = c0. By definition of
ω1(L;α,λ1) we get

ω1(L;α,λ1) = sup
o,h≥0

αoc0 − λ1oc0

(αo + h)c0
≤ max

{
α − λ1

α
,0

}

.

For linear latency functions �(z) = c1z, we get

ω1(L;α,λ1) = sup
o,h≥0

c1(αo + h)αo − λ1c1o
2

c1(αo + h)2
= sup

o,h≥0

(αo + h)αo − λ1o
2

(αo + h)2
.
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We define μ := h
o

if o > 0 and zero otherwise. This yields

ω1(L;α,λ1) ≤ max
μ≥0

α2 + αμ − λ1

(α + μ)2
≤ α2

4λ1
.

Since α2

4λ1
≥ 0, we get the claim. �

Lemma 6 For λ2 ≥ 1+α−2α2

4 , ω2(L1;α,m,λ2) ≤ max{ 1−α−λ2
α

,
(1−α)2

4λ2+α−1 }.

Proof We start with constant latency functions �(z) = c0. By definition of
ω2(L;α,λ2) and since h ≥ 0 we get

ω2(L;α,m,λ2) = sup
o,h≥0

(1 − α)oc0 − λ2oc0

(αo + h)c0
≤ 1 − α − λ2

α
.

For linear latency functions �(z) = c1z, we get

ω2(L;α,m,λ2) ≤ sup
o,h≥0

c1(αo + h)(1 − α)o − λ2c1o
2 + c1

1−α
4 o2

c1(αo + h)2

= sup
o,h≥0

(αo + h)(1 − α)o − λ2o
2 + 1−α

4 o2

(αo + h)2
.

We define μ := h
o

if o > 0 and zero otherwise. This yields

ω2(L;α,m,λ2) ≤ max
μ≥0

(1 − α)(α + μ) − λ2 + 1−α
4

(α + μ)2
≤ (α − 1)2

α + 4λ2 − 1
,

where μ∗ = 2α2+4λ2−1−α
2(1−α)

is the optimal solution to the above convex program. Using

λ2 ≥ 1+α−2α2

4 we have μ∗ ≥ 0, which proves the claim. �

Theorem 9 Consider a family of instances I(α) of Stackelberg games such that la-
tency functions are affine. Then, the price of anarchy for the SCALE strategy and m

coalitional followers is at most

(1 + 2
√

1 − α)(1 + √
1 − α)2

4 + 4
√

1 − α − 3α
for α ∈

[

0,
1

2

√
3

]

and

(−3α − 2α
√

1 − α − 1 + 2α2)(1 + √
1 − α)α

2(−3α − 3α
√

1 − α + 1 + √
1 − α + α2)

for α ∈
[

1

2

√
3,1

]

.

Proof We define for α ∈ [0, 1
2

√
3]

λ1 = 1

2
(1 + √

1 − α)α, λ2 = 1

2
(1 + √

1 − α)(1 − α).
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This choice satisfies the conditions:

α − λ1

α
= α2

4λ1
,

1 − α − λ2

α
≤ (1 − α)2

4λ2
.

Note that for α ∈ [0, 1
2

√
3] we have λ2 ≥ 1+α−2α2

4 as required in Lemma 6. From
Lemmas 5 and 6, we thus obtain

ω1(L1;α,λ1) + ω2(L1;α,m,λ2)

= 1 − λ1

α
+ (1 − α)2

4λ2 + α − 1

= 2 + 2
√

1 − α − α

2(1 + √
1 − α)(1 + 2

√
1 − α)

= 1

(1 + 2
√

1 − α)
− α

2(1 + √
1 − α)(1 + 2

√
1 − α)

< 1.

Thus (λ1, λ2) ∈ Λm(L1;α) and applying Theorem 8 proves the first claim.
For α ∈ [ 1

2

√
3,1] we define

λ2 = 1 + α − 2α2

4
.

It is easy to prove that for α ∈ [ 1
2

√
3,1] we have

1 − α − λ2

α
≤ (1 − α)2

4λ2
.

Then, it also straightforward to check that (λ1, λ2) ∈ Λm(L1;α). Hence, applying
Theorem 8 proves the second claim. �

5 Conclusions and Final Remarks

In the first part of this paper, we investigated the price of anarchy in nonatomic net-
work games with coalitions. On the positive side, we derived an upper bound on the
price of anarchy for restricted topologies (load balancing games). For general topolo-
gies and (semi-convex) latency functions, we developed a generic upper bound on
the price of anarchy which depends on the specific class of allowable latency func-
tions. We note that this bound actually holds for the larger class of congestion games
with fractional demand assignments, because the proof technique does not use the
network structure, but only uses variational inequalities which remain valid in this
more general setting.

After the publication of a preliminary version of this article [18], there has been
some work extending our results. Bhaskar et al. [5] showed that the upper bound
of m on the price of anarchy for load balancing games (see Theorem 1) continues to
hold for series-parallel networks. Roughgarden and Schoppmann [33] proved that the
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generic upper bound of Theorem 2 is in fact tight. They also give an exact closed-form
expression for the price of anarchy for polynomial latency functions with nonnegative
coefficients and bounded degree.

In the second part of this paper, we investigated Stackelberg routing as a means to
improve the quality of Nash equilibria. In this setting, we investigated and designed
Stackelberg strategies and derived bounds on the price of anarchy for restricted net-
work topologies, number of followers, and classes of latency functions, respectively.
Perhaps, the most intriguing open question in this setting is whether there exists a
Stackelberg strategy that induces a constant price of anarchy (depending on α) for a
finite number of following coalitions. So far, we only understand the extreme cases:
for one follower, the answer is yes (Theorem 7), while for infinitely many followers,
the answer is no, see [6].
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