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Resource assignment problems occur in a vast variety of applications, from scheduling problems over image
recognition to communication networks. Often these problems can be modeled by a maximum weight

matching problem in (bipartite) graphs or generalizations thereof, and efficient and practical algorithms are
known for these problems. Although in some of the applications an assignment of the resources may be needed
only once, in many of these applications, the assignment has to be computed more often for different scenarios.
In that case it is often essential that the assignments can be computed very fast. Moreover, implementing
different assignments in different scenarios may come with a certain cost for the reconfiguration of the system.
In this paper, we consider the problem of determining optimal assignments sequentially over a given time
horizon, where consecutive assignments are coupled by constraints that control the cost of reconfiguration. We
develop fast approximation and online algorithms for this problem with provable approximation guarantees and
competitive ratios. Moreover, we present an extensive computational study about the applicability of our model
and our algorithms in the context of orthogonal frequency division multiple access (OFDMA) wireless networks,
finding a significant performance improvement for the total bandwidth of the system using our algorithms. For
this application (the downlink of an OFDMA wireless cell) , the run time of matching algorithms is extremely
important, having an acceptable range of a few milliseconds only. For the considered realistic instances, our
algorithms perform extremely well: the solution quality is, on average, within a factor of 0.8–0.9 of optimal
off-line solutions, and the running times are at most 5 ms per phase even in the worst case. Thus, our algorithms
are well suited to be applied in the context of OFDMA systems.

Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2015.2221.
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analysis of algorithms; approximation algorithms
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1. Introduction
Resource assignment problems play a key role in
many practical applications. Whenever a set of re-
sources needs to be matched to a set of demands,
the goal is to find the most profitable or least costly
assignment of the resources to the demands. Assum-
ing that each resource might have a different profit
or cost for each demand and each resource can be
assigned to at most one demand, usually this prob-
lem can be modeled by a maximum weight match-
ing problem in (bipartite) graphs or generalizations
thereof. Applications come from a wide range of

areas, including scheduling (Höhn et al. 2011), image
recognition (Kim and Kak 1991), telecommunications
(Goudreau et al. 2000, Urgaonkar and Neely 2009,
Zhang and Yang 2004, Zhao et al. 2008), and game
theory (Gusfield and Irving 1989, Knuth 1976).

Resource allocation problems in telecommunication
networks have been addressed, for example, in the
context of switching (Goudreau et al. 2000) and wave-
length division multiplexing in optical networks
(Zhang and Yang 2004). They are also omnipresent
in wireless networks such as in orthogonal frequency
division multiple access (OFDMA) networks and

2070

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

15
9.

66
] 

on
 0

7 
A

pr
il 

20
17

, a
t 0

1:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:a.berger@maastrichtuniversity.nl
mailto:james.gross@ee.kth.se
mailto:tobias.harks@math.uni-augsburg.de
mailto:simon.tenbusch@inform-software.com
http://dx.doi.org/10.1287/mnsc.2015.2221


Berger et al.: Constrained Resource Assignments
Management Science 62(7), pp. 2070–2089, © 2016 INFORMS 2071

cognitive (wireless) networks (Urgaonkar and Neely
2009, Zhao et al. 2008). Here, the set of resources
often models the set of available wireless channels,
whereas mobile clients represent the demands. The
corresponding profit for assigning a channel to a
client depends on the channel states, which in turn
depend on several factors such as the movement of
the client, its distance to the transmitter, and interfer-
ence. Because the state of a wireless channel changes
relatively fast (within tens of milliseconds in general),
efficient resource allocation algorithms are of interest,
such as those used for the bipartite weighted match-
ing problem (Kim et al. 2001, Urgaonkar and Neely
2009, Yin and Liu 2000, Zhao et al. 2008).

In addition to the necessity of solving the resource
allocation problem fast, it is often necessary to com-
pute the assignments repeatedly over time. Because
the profits or costs of assigning resources to the
demands may change over time (for various system
specific reasons), the corresponding optimal assign-
ment may also change. If the system is switched to a
new assignment, reconfiguration costs can occur that
have a negative impact on the overall system per-
formance. Examples of such reconfiguration costs are
setup costs for machines in the context of scheduling
(Höhn et al. 2011) or control information in wireless
networks (Gross et al. 2006, Henttonen et al. 2008).
Typically, this reconfiguration cost grows with the dif-
ference (e.g., the number of changed edges) between
the assignments in consecutive phases.

Motivated by such reconfiguration costs, in this
paper we consider two models that take these
costs into account. The first model is based on the
k-constrained bipartite matching problem, where the
objective is to compute a maximum weight (perfect)
matching such that no more than k edges are modi-
fied with respect to a given initial (perfect) matching.
This problem arises as a first natural extension of the
classical bipartite matching problem by assuming that
the system operates within two phases (correspond-
ing to changed edge weights) and the reconfiguration
costs are controlled by imposing a budget constraint
of k new edges. We also consider the more general
case, where the edge weights may vary over several
phases. Because edge weights for the different consec-
utive phases are usually not known beforehand (for
example, due to the unknown future channel states
in a wireless network), this leads to a natural online
variant of the k-constrained matching problem. We
develop efficient and competitive online algorithms
for the case of multiple phases in which assignments
for the phases have to be found such that every
two consecutive assignments respect the budget con-
straint, and edge weights of future phases are not
known beforehand.

Whereas the k-constrained matching problem im-
poses a hard budget constraint on the number of
changed edges, as a second model we also consider
the case of elastic reconfiguration costs, where possi-
bly all edges can be changed, but the weight of the
new matching linearly decreases with the number of
changed edges. For this model we also develop effi-
cient and competitive online algorithms for the case
of multiple phases.

1.1. Related Work
Starting from Kuhn’s (1955) seminal contribution on
the Hungarian method, there has been a tremendous
amount of work addressing the problem of designing
efficient algorithms for different variants of matching
problems (for corresponding surveys, see Galil 1986,
Korte and Vygen 2000, Schrijver 2003).

Matching problems with coupling constraints have
not been considered much in the literature. Most
closely related to this work from an algorithmic per-
spective are bicriteria formulations of the matching
problem. In that sense, the reconfiguration costs can
be modeled as a second weight function. Earlier work
on the bicriteria problem focused on the construction
of the Pareto curve (Papadimitriou and Yannakakis
2000) or on the budgeted version of the problem.
Recently, a polynomial time approximation scheme
(PTAS) was developed for the closely related bud-
geted matching problem with general weights and
costs (Berger et al. 2011). Although the problems in
Berger et al. (2011) are related to our work, this PTAS
cannot be applied to our models, since it has run-
ning times that are far from being of practical rele-
vance, and since it cannot be used to find budgeted
perfect matchings. The corresponding budgeted per-
fect matching problem is NP-hard as well, and no
approximation algorithms for it are known. Other
related work on these problems has been carried out
by Papadimitriou and Yannakakis (1982), who devel-
oped very general approaches for approximation
algorithms for problems with a constant number of
objectives, based on the construction of �-approximate
Pareto curves.

In the context of telecommunication networks, it
has been shown that the control information can
become a significant drawback in the downlink of
OFDMA systems (Gross et al. 2006, Henttonen et al.
2008). To reduce the signaling overhead, different
techniques have been studied. A quadratic opti-
mization model that maximizes net throughput was
proposed by Gross et al. (2006). From an online
perspective, approaches for resource allocation and
channel assignments in wireless networks have been
considered, for example, by Buchbinder et al. (2012)
and Fu et al. (2006) in the context of power alloca-
tion and data scheduling for data transmission using
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dynamic programming. Finally, Midran et al. (2010)
consider online assignment algorithms for resource
allocation in OFDMA systems taking into consider-
ation the utility of terminals as a recursive function
over time.

1.2. Our Contribution and Organization
After introducing the model and necessary nota-
tion in §2, we derive a fast approximation algorithm
(Algorithm 1) for the k-constrained bipartite matching
problem in §3. We prove that the solution computed
by our algorithm guarantees at least 50% of the max-
imum possible weight. In §4, we formally introduce
the online k-constrained bipartite matching problem,
where the goal is to determine matchings sequen-
tially over time and in an online fashion; that is, edge
weights of future phases are not revealed to the algo-
rithm. We first show an upper bound of 4k− 15/n on
the competitive ratio of any deterministic online algo-
rithm and then introduce an online algorithm for this
problem (that is based on the previously introduced
algorithm for two phases) having a competitive ratio
with an (almost) matching lower bound of 4�k/2�5/n.
To evaluate the solution quality of our algorithm for
real-world instances, we also derive a compact linear
integer programming (IP) formulation for the off-line
optimization problem.

In §5, we introduce an online matching problem
with elastic reconfiguration costs. For this variant,
we develop an efficient online algorithm that has a
competitive ratio of 1/9 for all bipartite graphs with
at least three nodes on one partition. We further show
that this algorithm is the best possible by deriving
an upper bound of 1/9 for any deterministic online
algorithm. Also for this variant, we derive a compact
integer linear programming formulation for the off-
line optimization problem.

In §6, we numerically evaluate the presented algo-
rithms in the context of the downlink of an OFDMA
cell. We evaluate running times of our algorithms
and compare solution quality (for both variants) with
upper bounds on the corresponding off-line optimal
solution (which are based on solving the linear relax-
ation of the above-mentioned integer programs) as
well as with comparison schemes from literature.
It turns out that for realistic instances, the algo-
rithms’ performances greatly exceed their theoreti-
cally proven approximation guarantees. On the test
set representing different mobility and interference
scenarios of an OFDMA cell, the quality of our solu-
tions is, on average, within a factor of 0.8–0.9 of the
optimal solutions, and they outperform various com-
parison schemes significantly with respect to different
performance metrics (including a measure for qual-
ity of service as well as one for fairness). Although
there is a mild decrease in performance over the opti-
mal off-line solution, the run times of our algorithms

are quite fast, taking only up to 5 ms per phase on
the instances. Thus, our algorithms are well suited
to be applied in the context of OFDMA systems,
where computation times must lie in the range of
milliseconds.

2. The Model
We start this section with formally defining the bipar-
tite matching problem with reconfiguration costs and
introducing the necessary notation. For some integer
n ≥ 1 we consider the balanced complete bipartite
graph Gn = Kn1n with n vertices in each partite set.
The vertex set of Gn consists of two disjoint sets U =

8u11 0 0 0 1un9 and V = 8v11 0 0 0 1 vn9, each of cardinality
n, and its edge set En = 8uivj 2 1 ≤ i1 j ≤ n9 consists of
all edges between U and V . Let M denote a perfect
matching in Gn, and let PM4Gn5 denote the set of per-
fect matchings of Gn. The mapping w2 En → �+

0
1 is

called the weight function, and w4M5 is the weight
of the matching M . In a sequential bipartite match-
ing problem we are given a sequence of edge weights
� = 4w11 0 0 0 1wT 5, where wt2 En → �+

0 , t = 11 0 0 0 1 T ,
T ∈ �. Here, T denotes the number of time slots. To
model reconfiguration costs, we introduce for any two
consecutive matchings 4M t−11M t5 a cost or penalty
function c2 PM4Gn5 × PM4Gn5 → �. The cost value
c4M t−11M t5 scales down the achievable weight due
to reconfiguring M t−1 to obtain M t . Given an initial
matching M0, the overall objective is to calculate per-
fect matchings M t , t = 11 0 0 0 1 T , such that the total net
weight

T
∑

t=1

wt4M t5 · c4M t−11M t5

is maximized. Note that every two consecutive match-
ings M t−1 and M t are coupled by the cost function
c4M t−11M t5. In the remainder of this paper, we will
be concerned with two important variants of the cost
function.

2.1. Budget-Constrained Matching
The first variant that we address is the k-constrained
bipartite matching problem, where we are given a
budget constraint on the number of changed edges.
Formally, we are given an integer parameter k ≥ 0,
and define the cost function c4M t−11M t5 as

c4M t−11M t5=

{

1 if �M t
∩M t−1

� ≥ n− k1

−� otherwise0

This type of cost function represents a hard bud-
get constraint requiring that at most k edges can be
changed per time slot.

1 Throughout the paper, we use �+

0 to denote the set of nonnegative
real numbers.
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The sequential k-constrained bipartite matching
problem is then to find a sequence of perfect match-
ings 4M11 0 0 0 1MT 5 of maximum total weight. Cer-
tainly, for any optimal solution, every two consecutive
matchings M t−1 and M t will differ by at most k edges;
that is, for every t ∈ 6T 7, M t will satisfy �M t ∩M t−1� ≥

n − k. For ease of presentation we assume that the
initial matching satisfies M0 = 8uivi2 1 ≤ i ≤ n9.

2.2. Elastic Reconfiguration Costs
In the second variant, we assume that for every two
consecutive matchings, the weight of the new match-
ing linearly decreases with the number of changed
edges. More precisely, suppose we are given an initial
matching M t−1 and a weight function wt . Then the
reconfiguration cost of the matching M t is defined as

c4M t−11M t5= �+ 41 −�5 ·
�M t ∩M t−1�

n
0

Here, � ∈ 60117 is a parameter that represents the im-
pact of reconfiguration costs on the obtained weight.
For instance, a value of �= 1 reduces our problem to a
maximum weight perfect matching problem without
reconfiguration costs. In contrast, a low value of �
represents high reconfiguration costs, which lead to a
lower total net weight.

3. Budget-Constrained Matchings
We first investigate the case of hard budget con-
straints on the number of changed edges. We call
the corresponding problem the k-constrained match-
ing problem, where k refers to the value of the actual
budget imposed. Before we study the general case
of T time slots, we first study the seemingly easy
case of a single time slot only. Our insights for the
case of a single time slot will later be used as the
main building block of algorithms for the general
case. In this problem, we are given an initial match-
ing M0 and the goal is to compute a matching M of
maximum weight that differs from M0 in at most k
edges. This problem arises as a first natural exten-
sion of the classical bipartite matching problem by
assuming that the system operates within two phases
(corresponding to changed edge weights) and the
reconfiguration costs are controlled by imposing a
strict budget constraint of k new edges. As noted
by Berger et al. (2011), despite several efforts over
the last decade, the complexity status of this prob-
lem is still open; that is, neither a polynomial time
algorithm is known nor is the problem known to be
NP-hard. In this paper, we tackle the problem by
using approximation algorithms. For a maximization
problem, a polynomial time algorithm is called an
�-approximation for some � ∈ 60117 if the algorithm
computes a solution of weight at least � times the

weight of an optimal solution. We devise a simple and
fast �k/2�/k-approximation (Algorithm 1) that only
needs to execute two maximum weight perfect match-
ing problems on a modified instance.

The main idea of Algorithm 1 is to change the
weights of the edges slightly (Step 1) to account for an
edge being either in the initial matching or not. There-
fore, a new edge is penalized by having its weight
reduced and is thus less likely to be included in the
solution. The weight of such an edge which is not in
the matching M0 is reduced by the average weight of
its two incident edges from M0.

Algorithm 1 (A �k/2�/k-Approximation for the
k-Constrained Bipartite Matching Problem)

Require: A complete bipartite graph
Gn =Kn1n = 4U ∪V 1En5 with edge weights
wij ∈�+

0 , the initial perfect matching
M0 = 8uivi2 1 ≤ i ≤ n9 and a parameter
k ≥ 0

Ensure: A perfect matching M of Gn with
�M ∩M0� ≥ n− k

1. set w4M05=
∑n

i=1 wii

2. for all 1 ≤ i1 j ≤ n do
3. set w′

ij =wij +w4M05/k− 4wii +wjj5/2
4. end for
5. find a maximum weight matching M1 w.r.t. w′

with at most l 2= �k/2� edges
6. I 2= �; M0

ALG 2= �

7. for all 1 ≤ i ≤ n do
8. if ui and vi are not matched by M1 and

�M0
ALG�<n− k then

9. I 2= I ∪ 8i9; M0
ALG 2=M0

ALG ∪ 8uivi9
10. end if
11. end for
12. compute a maximum weight perfect matching

M1
ALG w.r.t. w on the subgraph G68ui1vi2 i y I97

of nodes not matched by edges in M0
ALG.

13. return M =M0
ALG ∪M1

ALG

Theorem 1. Algorithm 1 is a �k/2�/k-approximation
for the k-constrained bipartite matching problem and runs
in O4kn35.

Proof. We first show that the algorithm indeed
outputs a feasible solution to the k-constrained bipar-
tite matching problem. Let l 2= �k/2�, and let M1 be
the matching computed in Step 5 of the algorithm. Let
I = 8i2 uivi ∈ M0

ALG9, where M0
ALG is defined in Step 9

of Algorithm 1. By the choice of l, there are at most
2l ≤ k edges from the initial matching M0 that are inci-
dent with an edge from M1. Therefore, there are at
least n− 2l ≥ n− k potential edges that can be added
to M0

ALG in Steps 7–11. Since M0
ALG ⊆M0 we have that

�M ∩M0� ≥ n−k, and hence, the output M is feasible.
For proving the approximation ratio of the algo-

rithm, we will compare the weight of the returned
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Figure 1 (Color online) An Example of the Different Edge Sets in the
Solution Described in the Proof of Theorem 1

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Notes. Here n = 10 and k = 5. In this example, M0 = 84i1 i51 i = 11 0 0 0 1109,
and Algorithm 1 computes M1 = 8481751 4101959 in Step 5. Then, we obtain
M0

ALG = 84i1 i51 i = 11 0 0 0 159, M1 = 8481751 4101959, M2 = 8471851 4911059,
and M̃ = 8461659.

matching M with the weight of another feasible solu-
tion M̄ . For this purpose, we define

M̃ = 8uivi2 i y I and ui and vi are not end points of
edges in M190

In words, M̃ contains those edges from M0 that,
besides edges in M0

ALG, could additionally be used
after having computed M1. Moreover, we let M2 be
an arbitrary matching that, when added to M0

ALG ∪

M̃ ∪ M1, will yield a perfect matching of Gn. We
denote this matching by M̄ =M0

ALG ∪M̃ ∪M1 ∪M2 (see
Figure 1 for an illustration).

In the remaining part of the proof we will show
that w4M̄5≥ �k/2�/kw4Opt5. This implies the claimed
approximation guarantee using w4M5 = w4M0

ALG5 +

w4M1
ALG5 ≥ w4M0

ALG5 + w4M̃5 + w4M15 + w4M25 =

w4M̄5. The above inequality follows since M1
ALG

was computed as a maximum weight perfect match-
ing on the same set of nodes that are also spanned by
M̃ ∪M1 ∪M2.

We will now prove the inequality w4M̄5 ≥ �k/2�/
kw4Opt5 by establishing four claims. In these claims,
we use the notation Opt = Opt0 ∪ Opt1 with Opt0 ⊆

M0 and �Opt0� = n − k describing a decomposition
of Opt into n− k “old” edges and possibly k “new”
edges.

Claim 1. w4M̄5=w′4M̃ ∪M1 ∪M25.

Claim 2. w′4M2 ∪ M̃5≥ 0.

Claim 3. w′4M15≥ �k/2�/kw′4Opt15.

Claim 4. w′4Opt15=w4Opt5.

From the above claims it follows that

w4M̄5
Claim 1
= w′4M1 ∪M2 ∪M̃5=w′4M15+w′4M2 ∪M̃5

Claim 2
≥ w′4M15

Claim 3
≥

�k/2�

k
w′4Opt15

Claim 4
=

�k/2�

k
w4Opt50

Now we prove the claims.

Proof of Claim 1. By definition of w′ we obtain

w′4M1 ∪M2 ∪ M̃5

=
∑

uivj∈M1∪M2∪M̃

(

wij +
w4M05

k
−

wii +wjj

2

)

=w4M1 ∪M2 ∪ M̃5+ k ·
w4M05

k
−
∑

iyI

wii

=w4M1 ∪M2 ∪ M̃5+w4M0
ALG5=w4M̄50

Proof of Claim 2. Since �M1 ∪ M2 ∪ M̃ � = k and
�M1� ≤ �k/2�, we have that �M2 ∪ M̃ � ≥ k/2. Therefore,
we get that

w′4M2 ∪ M̃5 =
∑

uivj∈M2∪M̃

(

wij +
w4M05

k
−

wii +wjj

2

)

≥
k

2
·
w4M05

k
+

∑

uivj∈M̃

0 −
∑

uivj∈M2

wii +wjj

2

≥
w4M05

2
−

w4M05

2
= 01

where the last inequality holds because in the sum
∑

uivj∈M2
4wii +wjj52 each term wii can appear only

once. To see this, observe that if wii appeared twice,
we would get that uivj ∈ M2 and uj ′vi ∈ M2 for some
j1 j ′, implying uivi ∈ M̃ , a contradiction.

Proof of Claim 3. Consider an optimal solution
Opt and a decomposition OPT = OPT0 ∪OPT1, where
OPT0 ⊆M0 and �OPT0� = n− k. Then �OPT1� = k, and
the set L of the �k/2� heaviest edges of Opt1 with
respect to (w.r.t.) w′ (independent on whether some of
these weights may be negative) has the property that

w′4L5≥
�k/2�

k
w′4Opt150

Because L comprises a feasible solution to the prob-
lem solved in Step 5 of the algorithm, we obtain

w′4M15≥w′4L5≥
�k/2�

k
w′4Opt150

Proof of Claim 4. Let I∗ = 8i2 uivi ∈Opt09. We now
have that

w′4Opt15 =
∑

uivj∈Opt1

(

wij +
w4M05

k
−

wii +wjj

2

)

= w4Opt15+ k ·
w4M05

k
−
∑

iyI∗

wii

= w4Opt15+
∑

i∈I∗

wii =w4Opt50
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Regarding the claimed running time of the algo-
rithm, note that the problem in Step 5 can be solved
by adding two independent sets of size n − r (1 ≤

r ≤ l) and connecting all the vertices of the first set to
U and all vertices of the second set to V with edges
of weight zero, and then finding a maximum weight
perfect matching in the augmented graph. This will
return a maximum weight matching in the original
graph having exactly r edges. Applying this proce-
dure for all 1 ≤ r ≤ l and choosing the matching of
maximum weight will give the desired matching hav-
ing at most l edges. This also implies that the algo-
rithm can be implemented to run in O4kn35 time. �

For even k, Algorithm 1 is a 1/2-approximation. If
k is odd and small (say k ≤ 1/� + 1), then the opti-
mal solution can be found by exhaustive search. On
the other hand, if k > 1/� + 1, then �k/2�/k ≥ 1/2 − �.
This implies that Algorithm 1 can be used to devise
a 41/2 − �5-approximation for all k’s that run in time
O4n1/�5. Also note that our algorithm works for com-
plete graphs as well without modification, except that
for Steps 5 and 12, a maximum weight perfect match-
ing algorithm for general graphs has to be used.

4. Online Budget-Constrained
Matching Problems

In this section, we introduce an online variant of the
k-constrained bipartite matching problem that cap-
tures the sequential structure of systems that arise in
practice.

An instance of the online k-constrained bipartite
matching problem consists of a balanced complete
bipartite graph Gn = Kn1n = 4U ∪ V 1En5 with n nodes
in each partite set. Moreover, we are given a per-
fect matching M0 in Gn and a sequence of edge
weights � = 4w11 0 0 0 1wT 5, where wt2 En → �+

0 , t =

11 0 0 0 1 T , T ∈�. Here, T denotes the number of time
slots. The goal is to sequentially calculate perfect
matchings M t1 t = 11 0 0 0 1 T such that the total weight
∑T

t=1 w
t4M t5 is maximized. We make the follow-

ing three crucial assumptions: (i) edge weights are
revealed in an online fashion, that is, edge weights
are only revealed for the current time slot and
future edge weights are not known; (ii) once a
matching is determined, no change of this match-
ing is possible; (iii) every matching M t may have
at most k changes with respect to its predecessor
matching M t−11 t = 11 0 0 0 1 T . Note that constraint (iii)
is equivalent to using the scaled weight func-
tion

∑T
t=1 c4M

t−11M t5wt4M t5, with c4M t−11M t5= 1, if
�M t ∩M t−1� ≥ n− k and −� otherwise.

Knowing all edge weights in advance, we call the
problem of maximizing the total weight subject to the
matching constraints the off-line optimization problem
and denote the off-line optimal solution (and its total
weight) by Opt.

4.1. Online Algorithms and Competitive Analysis
For a given sequence of weights � = 4w11 0 0 0 1wT 5 and
a sequence of perfect matchings 4M11 0 0 0 1MT 5 pro-
duced by an online algorithm, Alg, we denote by
�4Alg5 the total weight of all perfect matchings in the
output sequence. The online algorithm Alg is called
(strictly) c-competitive, if for all possible sequences � ,
�4Alg5 is never smaller than c times the total weight
of an optimal off-line solution. The competitive ratio of
Alg is the supremum over all c ≥ 0 such that Alg is
c-competitive; see, for instance, Borodin and El-Yaniv
(1998) and Fiat and Woeginger (1998).

We first present an algorithm that achieves a compet-
itive ratio of �k/2�/n. The idea of the algorithm is simi-
lar to the one used in Algorithm 1. Given edge weights
wt in time slot t and a perfect matching M t−1, we first
compute a maximum weight matching w.r.t. wt having
at most �k/2� edges. This matching can be extended
to a perfect matching having at most k changes from
M t−1; see Algorithm 2 for a formal description. The
main difference to Algorithm 1 appears in Step 1 of
Algorithm 2, where a maximum weight perfect match-
ing M ′ w.r.t. wt is computed (instead of the changed
edge weights w′). For the sake of simplicity, we extend
M ′ to an arbitrary perfect matching M t because the
way M ′ is extended does not change the competitive
ratio. Moreover, note that this algorithm does not actu-
ally consider the input matching M t−1 and returns a
feasible matching having the claimed approximation
ratio, even when compared to the optimal value of the
assignment problem without any constraints.

Algorithm 2 (A �k/2�/n-Competitive Algorithm for
Online k-Constrained Bipartite Matching)

Require: A complete bipartite graph
Gn =Kn1n = 4U ∪V 1En5 with edge weights
wt

ij ∈�+

0 , the previous perfect matching
M t−1 = 8uivi2 1 ≤ i ≤ n9 and a parameter
k ≥ 0

Ensure: A perfect matching M t of Gn with
�M t ∩M t−1� ≥ n− k

1. find a maximum weight matching M ′ w.r.t. wt

with at most l 2= �k/2� edges
2. extend M ′ to an arbitrary perfect matching M t

We complement this result by showing that no
deterministic online algorithm can achieve a compet-
itive ratio better than 4k − 15/n, thus matching our
bound up to a factor of 2.

Theorem 2. The competitive ratio of the above online
algorithm is at least �k/2�/n, where n is the size of the
balanced complete bipartite input graph Gn. Moreover, the
competitive ratio of any deterministic online algorithm is
at most 4k− 15/n, even when all weights are restricted to
be in the set 80119.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

15
9.

66
] 

on
 0

7 
A

pr
il 

20
17

, a
t 0

1:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Berger et al.: Constrained Resource Assignments
2076 Management Science 62(7), pp. 2070–2089, © 2016 INFORMS

Figure 2 Lower Bound Construction for n = 3

Notes. The left perfect matching has been computed by an arbitrary deter-
ministic online algorithm in phase T − 1. The right perfect matching is opti-
mal for phase T . The weights in phase T are 1 for visible edges and 0 for all
other edges in G3.

Proof. Let � = 4w11 0 0 0 1wT 5 be arbitrary and con-
sider the two solutions, Alg, which is produced by
the above algorithm, and Opt, the optimal solution
for the corresponding off-line problem with weight
sequence � . Let Optt and Algt denote the solutions
of Opt and Alg in time slot t, respectively. We can
argue that the �k/2� heaviest edges of Optt comprise
a feasible solution to the problem that Alg solves in
time slot t (see Step 1 of Algorithm 2). Clearly, the
weight of the �k/2� heaviest edges of Optt sum up to
at least 4�k/2�/n5wt4Optt5. Hence, for every 1 ≤ t ≤ T
we have that wt4Algt5 ≥ 4�k/2�/n5wt4Optt5, and the
claimed competitive ratio follows as we sum up this
inequality over all time slots.

For proving the upper bound, we construct an
instance of the k-constrained online matching prob-
lem with T ≥ �n/k� + 1 time slots as follows. The
initial matching M0 is any arbitrary perfect match-
ing in Gn. We specify � = 4w11 0 0 0 1wT 5 as follows. All
weights of the first T − 1 time slots remain zero; i.e.,
wt

ij = 0 for all 1 ≤ t ≤ T − 1 and all 1 ≤ i1 j ≤ n. Let
Alg be an arbitrary deterministic online algorithm
that determines the matching MT−1 in time slot T −1.
By relabeling indices we can assume 4i1 i5 ∈ MT−1 for
i = 11 0 0 0 1n. Given MT−1, the online adversary deter-
mines the edge weights for time slot T as follows.
We define wT

i1 i+1 = 1, for i = 11 0 0 0 1n− 1, and wT
n11 = 1,

wT
ij = 0 otherwise. Clearly, Alg achieves for the first

T − 1 time slots a total weight of 0. In the last phase,
Alg can add at most k−1 edges of weight 1, because
obtaining k− 1 edges of weight 1 in phase T requires
adding at least one new edge of weight 0; see Fig-
ure 2 for an illustration for the case n = 3. Thus, the
total weight for all T phases is at most 4k − 15/n.
The optimal matching (anticipating the high weight
in the last time slot) will be able to successively add
k new edges (that have weight 1 in the last phase) in
every time slot (possibly less in the last time slot if
k - n). Since there are T ≥ �n/k� + 1 time slots, it can
achieve an overall weight of n, and thus �4Alg5 ≤

44k− 15/n5�4Opt5. �
Note that the above algorithm and Algorithm 1 dif-

fer only in the weight functions that are used, and
that it is only the modification of the original weights
that enables us to achieve a 4�k/2�5/k-approximation.

We can also combine the algorithm from Theorem 2
and Algorithm 1 to obtain an online algorithm with
a competitive ratio of 4�k/2�5/n that at the same time
provides a 4�k/2�5/k-approximation to the optimal
solution for each time slot.

Corollary 1. The online algorithm that in each time
slot chooses from the solutions of the algorithm from The-
orem 2 and of Algorithm 1 the one with higher weight
has a competitive ratio of at least 4�k/2�5/n and provides
a 4�k/2�5/k-approximation for the k-constrained matching
problem in each time step.

4.2. The Off-Line Problem: An Integer Linear
Programming Formulation

Whereas Theorem 2 provides an almost optimal lower
bound on the competitive ratio achievable by any
deterministic online algorithm, the actual competitive
ratio (4�k/2�5/n) is a worst-case bound. For real-world
instances, this bound may be far too pessimistic. To
evaluate the performance of our online algorithms
for real-world instances, we need to solve the corre-
sponding off-line problem. Recall that assuming the
weights of all T frames are known, we have to deter-
mine T matchings that maximize the total net weight
over all T frames while allowing no more than k mod-
ifications on the assignments from frame to frame. We
will first present a very natural nonlinear integer pro-
gramming formulation. We use the following notation
for parameters and variables:

• wt
ij ∈ �+: weight of edge ij during phase t (i1 j ∈

6n71 t ∈ 6T 7);
• xt

ij ∈ 80119: binary variable indicating use of
edge ij during phase t (i1 j ∈ 6n71 t ∈ 6T 7).
The following (assignment) constraints are used:

∑

j

xt
ij = 1 for all i ∈ 6n71 t ∈ 6T 71 (1)

∑

i

xt
ij = 1 for all j ∈ 6n71 t ∈ 6T 70 (2)

Given a nonnegative integer parameter k ≤ n, two
consecutive matchings are constrained to differ in at
most k edges, or, said differently, at least n− k edges
must be kept from the matching in a previous phase.
An edge ij is kept from phase t − 1 to phase t if and
only if xt−1

ij · xt
ij = 1. The objective is to maximize the

total weight of all edges over all phases. For the off-
line optimization problem we hence obtain the fol-
lowing formulation with quadratic constraints:

max
∑

t

∑

i1 j

wt
ij · x

t
ij (3)

s.t.
∑

i1 j

xt−1
ij xt

ij ≥ n− k for all 2 ≤ t ≤ T 0 (4)

In general, the above constraints define a noncon-
vex boundary of the feasible region, and thus the
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formulation cannot be solved using standard tech-
niques. To obtain a linear mixed integer formulation,
we introduce for every i1 j ∈ 6n7 and 2 ≤ t ≤ T the
additional binary variables yt

ij defined as

yt
ij =

{

1 if edge ij is used in phases t − 1 and t1

0 otherwise.

Based on these new variables, we replace (4) by the
constraint

∑

i1 j

yt
ij ≥ n− k for all 2 ≤ t ≤ T 1 (5)

and we add the constraints

yt
ij ≤ xt−1

ij for all i1 j ∈ 6n71 2 ≤ t ≤ T 1 (6)

yt
ij ≤ xt

ij for all i1 j ∈ 6n71 2 ≤ t ≤ T (7)

to make sure that yt
ij = 0 if either xt−1

ij = 0 or xt
ij = 0.

This ensures that yt
ij = 1 only if edge ij is in both

matchings, xt−1 and xt . Therefore, any sequence of fea-
sible matchings x11 0 0 0 1 xT can be extended to a feasi-
ble solution of (5)–(7). Thus, we obtain the following
proposition.

Proposition 3. The integer linear program defined by
(1)–(3) and (5)–(7) is a correct formulation for the budget-
constrained matching problem for multiple phases.

The above integer linear program (or any relaxation
thereof) can be solved (for instance, using CPLEX)
and yields an upper bound on the objective value of
the off-line problem.

5. Online Matchings with Elastic
Reconfiguration Costs

As in the previous section, an instance of the online
bipartite matching problem with elastic reconfigura-
tion costs consists of a balanced complete bipartite
graph Gn =Kn1n = 4V ∪W1En5 together with an initial
perfect matching M0 in Gn and a sequence of edge
weights � = 4w11 0 0 0 1wT 5, where wt2 En → �+

0 , t =

11 0 0 0 1 T , T ∈ �. The goal is to sequentially calculate
perfect matchings M t1 t = 11 0 0 0 1 T , such that the total
net weight

∑T
t=1 w

t4M t54�+ 41−�5 · 4�M t−1 ∩M t�5/n5 is
maximized. In this variant, there is a parameter � ∈

60117 that captures the trade-off between the amount
of reconfiguration and the obtained net weight.

We impose the assumptions that edge weights are
revealed in an online fashion and, once a matching
is determined, no change of this matching is possi-
ble. In contrast to the pervious online version assum-
ing a hard budget constraint, now two consecutive
matchings may have an arbitrary number of different
matching edges.

5.1. Online Algorithms and Competitive Analysis
We now present an online algorithm having a constant
competitive ratio of 1/9 for arbitrary instances with
n ≥ 3. Note that for n = 1 there is nothing to do, and
for n = 2 one can show that no deterministic online
algorithm can have a competitive ratio better than �,
whereas the online algorithm that always computes a
maximum weight perfect matching actually achieves
a competitive ratio of �.

For the general case n ≥ 3, our online algorithm
works as follows. At the beginning of every phase, we
compute for every k = 11 0 0 0 1n a k-constrained match-
ing using Algorithm 1 and then select the best solu-
tion. The time complexity of this algorithm is O4n45.
It turns out that for worst-case instances, the optimal
k is equal to 2 · �n/3�, giving a competitive ratio of
precisely 1/9. We further prove that the algorithm is
in some sense best possible by proving that no deter-
ministic online algorithm can have a competitive ratio
above 1/9.

Theorem 4. For n ≥ 3, the competitive ratio of the
above online algorithm is at least 1/9, and it runs in O4n45.
Moreover, no deterministic online algorithm can have a
competitive ratio above 1/9.

Proof. We first prove the upper bound. Let n = 3
and T = 2. The initial matching M0 is any arbitrary
perfect matching in G3. We specify � = 4w11w25 as
follows. All weights of the first time slot remain zero,
i.e., w1

ij = 0, for all 1 ≤ i, j ≤ 3. Let Alg be an arbi-
trary deterministic online algorithm that determines
the matching M1 in time slot 1. By relabeling indices,
we can assume 4i1 i5 ∈ M1 for i = 11 0 0 0 13. Given M1,
the online adversary determines the edge weights for
time slot T = 2 as follows. We define w2

i1 i+1 = 1, for
i = 112, and w2

311 = 1, and w2
ij = 0 otherwise (see again

Figure 2 for the construction). Alg achieves for the
first time slot a net weight of 0. If Alg picks 1 edge
of weight 1 in the last phase, we obtain Alg4�5 = 1 ·

4� + 41 − �5 · 43 − 25/35 = � + 41 − �5/3. If Alg picks
at least two edges of weight 1 in the last phase, we
obtain Alg4�5 ≤ 3 · 4� + 41 − �5 · 05 = 3 · �. The opti-
mal solution requires no reconfiguration and achieves
a net weight of 3. For �= 0, we thus obtain the upper
bound of 1/9.

Now, we prove the lower bound for arbitrary
n≥ 3. Let � = 4w11 0 0 0 1wT 5 be an arbitrary sequence,
and let 4O11 0 0 0 1OT 5 denote an optimal solution and
4M11 0 0 0 1MT 5 denote the solution of the online algo-
rithm. Let OPT i denote the corresponding net weight
in slot i, and let ALGi denote the corresponding net
weight of the online algorithm. By the definition of
Algorithm 1 for k = 2�n/3�, the obtained net weight is
larger than or equal to than taking the �n/3� heaviest
edges with respect to a maximum perfect matching
(maximizing wi). Moreover, the solution returned by
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Algorithm 1 (for k = 2�n/3�) results in at most 2�n/3�

changed edges. Thus, it follows that

ALGi
≥ wi4M i5 ·

(

�+
41 −�5 · 4n− 2 · �n/3�5

n

)

≥ wi4Oi5 ·

(

�+
41 −�5 · 4n− 2 · �n/3�5

n

)

·
�n/3�

n
0

We now need the following technical lemma.

Lemma 1. Let � ∈ 60117. Then, for all n ∈� with n≥ 3,
the following inequality holds:
(

�+
41 −�5 · 4n− 2 · �n/3�5

n

)

·
�n/3�

n
≥

1
9

+
4
45

·�0

Proof of Lemma 1. Writing n ≡ r mod 3, for a
remainder r ∈ 8011129, we have to consider three
cases.

1. r = 0: We can write n = q · 3 for some q ∈ �. We
obtain

(

�+
41 −�5 · 4n− 2 · �n/3�5

n

)

·
�n/3�

n

=
�

3
+ 41 −�5 ·

43q − 2q5q
9q2

=
1 + 2�

9
0

2. r = 1: We can write n = q · 3 + 1 for some q ∈ �.
We obtain

(

�+
41 −�5 · 4n− 2 · �n/3�5

n

)

·
�n/3�

n

=
�q

3q + 1
+ 41 −�5 ·

43q + 1 − 2q5q
43q + 152

≥
�

4
+

1 −�

9
=

1
9

+
5�
36

0

For the last inequality we used q2 + q ≥ q2 + 47/95 · q+

1/9 for all q ∈�.
3. r = 2: We can write n = q · 3 + 2 for some q ∈ �.

We obtain
(

�+
41 −�5 · 4n− 2 · �n/3�5

n

)

·
�n/3�

n

=
�q

3q + 2
+ 41 −�5 ·

43q + 2 − 2q5q
43q + 252

≥
�

5
+

1 −�

9
=

1
9

+
4�
45

0

For the last inequality we used q2 + 2q ≥ q2 + 44/35 ·

q + 4/9 for all q ∈�. �
The theorem now follows by the above lemma. �

5.2. The Off-Line Problem: An Integer Linear
Programming Formulation

Again, as for the online k-constrained matching prob-
lem, we need to compute the off-line optimum to

compare the performance of the above online algo-
rithms to a theoretically possible upper bound. To
compute the off-line optimum, we consider the prob-
lem of finding consecutive perfect matchings in com-
plete bipartite graphs with n nodes in each partite set
over T phases. We use the following notation:

• wt
ij ∈ �+: weight of edge ij during phase t (i1 j ∈

6n71 t ∈ 6T 7);
• xt

ij ∈ 80119: binary variable indicating use of
edge ij during phase t (i1 j ∈ 6n71 t ∈ 6T 7).

The following assignment constraints are used:
∑

j

xt
ij = 1 for all i ∈ 6n71 t ∈ 6T 73 (8)

∑

i

xt
ij = 1 for all j ∈ 6n71 t ∈ 6T 70 (9)

According to the multiphase nature of the problem
and the fact that we consider variable signaling costs,
given a sequence 4xt5t∈6T 7 of feasible integral perfect
matchings, we obtain the following objective function
(the vector x0 describes the initial matching M0):

f 44xt5t∈6T 75=
∑

t≥1

((

∑

i1 j

wt
ij · x

t
ij

)(

�+
1 −�

n

∑

i1 j

xt−1
ij xt

ij

))

0

(10)
Note that again the above mixed-integer problem for-
mulation is nonlinear. We turn it into a linear formu-
lation by adding the following variables:

• yt
ij ∈ 80119: binary variable indicating whether

edge ij is both in xt−1 and in xt (i.e., yt
ij = xt−1

ij · xt
ij );

• yt ∈�+: number of edges kept from xt−1 to xt ;
• ztij ∈�+: equals xt

ij · y
t .

Then, the previously nonlinear objective can be turned
into a linear one by observing that

∑

i1 j x
t−1
ij xt

ij = yt :

f 44xt5t∈6T 75=
∑

t≥1

(

� ·

(

∑

i1 j

wt
ij · x

t
ij

)

+
1 −�

n
·

(

∑

i1 j

wt
ijz

t
ij

))

0

(11)
Furthermore, we add the following constraints:

yt
ij ≤ xt

ij for all i1 j ∈ 6n71 t ≥ 21 (12)

yt
ij ≤ xt−1

ij for all i1 j ∈ 6n71 t ≥ 21 (13)

yt
=
∑

i1 j

yt
ij for all t ≥ 21 (14)

ztij ≤ xt
ij ·n for all i1 j ∈ 6n71 t ≥ 21 (15)

ztij ≤ yt for all i1 j ∈ 6n71 t ≥ 20 (16)

Similarly as in §4.2, constraints (12)–(14) ensure that
yt equals the number of edges kept from xt−1 to xt .
Because (11) is a maximization problem, the vari-
ables ztij will be set to yt for edges ij that are in the
matching xt , and to 0 for edges for which xt

ij = 0.
Therefore, in any optimal solution, ztij = xt

ij · y
t for all

i1 j , and t. Hence we obtain the following proposition.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

15
9.

66
] 

on
 0

7 
A

pr
il 

20
17

, a
t 0

1:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Berger et al.: Constrained Resource Assignments
Management Science 62(7), pp. 2070–2089, © 2016 INFORMS 2079

Proposition 5. The integer linear program defined by
(8), (9), and (11)–(16) is a correct formulation for the
matching problem with elastic reconfiguration costs.

6. Computational Study: Resource
Assignments in OFDMA
Wireless Networks

In this section we evaluate the proposed algorithms
for the budget-constrained case and the case of elastic
reconfiguration costs. We consider these algorithms
in the context of wireless systems, more precisely in
the context of the so-called downlink (i.e., the trans-
mission direction from the base station to the ter-
minals) of an OFDMA system. This is the standard
transmission technology for example in upcoming
fourth-generation cellular networks. In the following,
we first introduce the system model and parameter-
ization of the evaluation study. Then we discuss the
results for the budget-constrained case and the case
of elastic reconfiguration costs regarding two different
system scenarios.

6.1. System Overview
OFDMA systems are characterized by a set of n par-
allel communication channels referred to as subcarri-
ers. These are used to transmit data simultaneously
from one point in the system—usually the base station
of a cellular network—to multiple different clients
(referred to as terminals in the following). OFDMA
systems typically operate in a slotted fashion; i.e.,
time is split into frames of length Tf . We focus in
the following purely on the downlink transmission
direction and assume that the entire duration of each
frame can be used for it. Each frame of duration Tf is
furthermore subdivided into S digital symbols, which
ultimately convey the information. Hence, with n
subcarriers and S symbols, one downlink frame can
transport a total of S · n symbols from the base sta-
tion to the terminals. Note that in general symbols
can represent different amounts of bits (as discussed
in §6.2).

The base station and terminals are connected phys-
ically by the wireless channel. These channels are
well known for their unreliable transmission quality,
which results from a randomly varying channel gain
between transmitter and receiver (with several mag-
nitudes of variations in the gain over tens of mil-
liseconds in common transmission environments). In
OFDMA systems, it is well known that the quality
of the wireless channels (i.e., the subcarriers) varies
over time and frequency. Thus, per downlink phase,
different subcarriers each feature a different quality
to some distinct terminal. This results in a varying
amount of bits that can be transmitted on differ-
ent subcarriers and/or at different downlink frames.

Denote by wt
ij the amount of bits that can be trans-

mitted on subcarrier j to terminal i during downlink
frame t. This bit amount varies randomly for differ-
ent subcarriers, for different terminals, and for differ-
ent downlink frames. However, the base station of an
OFDMA system tracks via feedback loops the state of
the wireless subcarriers. Depending on the scenario,
this feedback is fast enough to provide an accurate
estimate of the next downlink phase. For most urban
wireless communication settings, where the move-
ment speed of the objects in the environment is low to
medium, this assumption is appropriate (Dahlmann
et al. 2008). Therefore, we consider in the following
that the base station has perfect channel knowledge
prior to the upcoming downlink frame regarding each
terminal/subcarrier pair. If instead the feedback is not
fast enough, stronger error correction coding needs to
be employed, which reduces the amount of bits wt

ij

that can be transmitted per terminal/subcarrier pair.
Based on this channel state knowledge, the base

station optimizes the allocation of subcarriers to ter-
minals for the upcoming frame. Different objective
functions have been discussed in the literature for
this task (Bohge et al. 2007, Ergen et al. 2003, Kim
et al. 2001, Li et al. 2010, Yin and Liu 2000), where
the maximization of the total rate needs to be bal-
anced with the quality-of-service requirements (i.e.,
rate requirements) of the terminals. Furthermore, the
optimization is constrained by the fact that each sub-
carrier can only be assigned to one terminal dur-
ing one downlink frame. Hence, bipartite weighted
matching has been proposed to compute the alloca-
tions at the base station (Kim et al. 2001, Yin and
Liu 2000) because it basically maximizes the sum rate
of the system but also allows for implicit quality-
of-service provisioning. This is possible by adjusting
the amount of subcarriers each terminal will receive
before the matching is invoked (i.e., copying the ver-
tex representing a specific terminal multiple times
into the vertex set U ). Based on the average chan-
nel quality of the subcarriers toward each terminal,
the expected amount of subcarriers required to reach
a certain quality-of-service level per allocation phase
can be determined (Gross 2009).

However, before utilizing the dynamic allocations
for payload transmission, the terminals need to be
informed of the subsets of subcarriers allocated to
them. Hence, the dynamic allocation of subcarriers
to terminals causes an additional signaling overhead
that needs to be taken into account. The more allo-
cations are changed from the last downlink frame to
the current one, the more overhead has to be spent.
Depending on the OFDMA system considered, this
reduces the number of symbols that can be used for
payload transmission during the upcoming downlink
frame. If we denote by S̄ the amount of symbols
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required to signal the overhead, then S − S̄ sym-
bols remain for payload transmission. These system
characteristics lead to both variants of the matching
problems discussed in this paper. If S̄ is fixed and
therefore only a certain number of assignments can
be changed from frame to frame, this leads to the
budget-constrained matching problem. On the other
hand, if S̄ is variable, we end up with elastic recon-
figuration costs.

6.2. System Parameters
We evaluate our algorithms regarding two different
scenario settings, which we refer to in the following
as the velocity and interference scenarios. Both of these
scenario settings are based on a set of common system
parameters, which we choose equally and that repre-
sent the downlink transmission in 3GPP LTE (Long
Term Evolution) OFDMA systems (3rd Generation
Partnership Project 2008, Dahlmann et al. 2008). We
assume a bandwidth of B = 20 MHz, which is sub-
divided into n = 96 subcarriers.2 Each subcarrier can
be assigned individually by the base station. Frame
durations are set to Tf = 1 (ms), whereas each frame
features in total S = 7 symbols. For our study, we con-
sider a total of 96 terminals to be present in a sin-
gle cell. For each of the 96 terminals, the base station
has a significant amount of data queued waiting for
transmission.

Based on this common set of parameters, we gener-
ate channel states for T = 11000 consecutive downlink
frames for the two different scenario settings in the
following way:

• Velocity scenario. In the first case, we position the
96 terminals in an area around the base station and
consider purely the variation of the object velocity in
the propagation scenario. The faster objects move in
an propagation environment, the faster the channel
states in a wireless system change (Cavers 2000). We
vary the object velocity between 1 m/s and 30 m/s.
At the same time, the terminals are considered to be
relatively far away from the base station, such that
their so called signal-to-noise ratio (SNR) on average
equals 5 dB. Note that in this case no external inter-
ference is present in the system.

• Interference scenario. In the second case, we con-
sider terminals to be randomly deployed over a cer-
tain area that is served by the base station. However,
in contrast to the velocity scenario, in this case there is
an interfering base station that causes a degradation
of the channel quality. We consider multiple differ-
ent settings where the interfering base station is closer

2 More precisely, these 96 elements are bundles of subcarriers
referred to as resource blocks in LTE. A resource block basically
consists of 12 subcarriers each that can be used for payload trans-
mission plus additional subcarriers for channel estimation.

and closer to the considered set of terminals (varying
the distance between the two base stations between
700 and 500 meters).

The generation of the (random) channel states for
these two different scenarios follows standard meth-
ods commonly applied in wireless systems research.
Although the channel instances do not reflect real
channel measurements, the considered channel state
distributions have been widely used, for instance, in
standardization, and can therefore be considered to
be realistic. In both scenarios, we focus on a center
frequency of 2 GHz. The transmit power per sub-
carrier is set to 2 W. The noise power per subcar-
rier is set to −100 dBm. Channel gains are generated
based on three effects: path loss, shadowing, and fad-
ing (where the first one is only dependent on the
distance between transmitter and receiver, whereas
the other two effects are random). For path loss we
assume a standard model with 10 log4k5 = −3502 dB
and �= 305. Log-normally distributed shadowing is
assumed and parameterized by � = 4 dB. Fading is
modeled by a Rayleigh-fading random process with
a Jakes power spectrum parameterized by a Doppler
shift according to the center frequency and the pre-
viously described object velocity (which varies in the
case of the velocity scenario between 1 m/s and
30 m/s and is fixed to 10 m/s for the interference
scenario). Furthermore, we assume an exponential
power delay profile with a delay spread of 1 �s.

Based on the channel gains generated according
to these assumptions, the resulting SNR �t

ij per sub-
carrier/terminal pair is determined in the case of
the velocity scenario, whereas for the interference
scenario the corresponding signal-to-interference plus
noise ratio �t

ij is determined. These ratios are common
metrics to quantify the quality of a specific wireless
communication channel3 and can be directly con-
verted into a corresponding throughput. We assume
the Shannon capacity for this relationship, i.e., wt

ij =

log241 + �t
ij5. Altogether, this allows us to generate

realistic weights wt
ij for the set of T consecutive down-

link frames for the two different scenarios.
Based on the weights, the base station now gener-

ates the dynamic allocations. Signaling the overhead
that stems from the dynamic allocations in LTE con-
sumes, in general, a varying amount of symbols per
frame. It is conveyed via the physical downlink con-
trol channels Dahlmann et al. (2008). For the setup
that we consider, there can be up to S̄ = 3 symbols
used for control information out of the total of S = 7
symbols per downlink frame. The control informa-
tion includes, among other control elements, a termi-
nal identifier, the assigned resource blocks, and the

3 Note that we represent both quantities by the same symbol �,
which is commonly the case in wireless communication research.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

15
9.

66
] 

on
 0

7 
A

pr
il 

20
17

, a
t 0

1:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Berger et al.: Constrained Resource Assignments
Management Science 62(7), pp. 2070–2089, © 2016 INFORMS 2081

modulation/coding scheme used on these resource
blocks. There exist different encodings for these dif-
ferent kinds of information. We consider here for
illustration purposes a simplified model where per
signaling symbol a total of 32 assignment changes can
be represented. If the signaling symbols do not indi-
cate a novel assignment of a given subcarrier, the cor-
responding assignment of the previous phase remains
valid.

6.3. Computational Study of the
Budget-Constrained Matching

We start presenting and discussing the performance
of the introduced algorithms in the context of the
budget-constrained matching problem for both sce-
narios. Because of the budget constraint, we consider
that the base station of the system is configured to
spend only one symbol on the signaling overhead, i.e.,
we set S̄ = 1. This allows the base station to alter at
most k = 32 allocations from phase to phase. Hence,
the objective is to maximize the total net weight

T
∑

t=1

wt4M t5 · c4M t−11M t5

with cost function c4M t−11M t5 defined as

c4M t−11M t5=

{

1 if �M t
∩M t−1

� ≥ 641
−� otherwise0

This corresponds to the online k-constrained bipartite
matching problem where the weights of the bipartite
matching graph are revealed in an online fashion (i.e.,
the base station does not know at time t the weights
of the frame at time t + 11 t + 21 0 0 0).

6.3.1. Online Algorithms. We consider three dif-
ferent approaches to solve the online k-constrained
bipartite matching problem. These different ap-
proaches perform per downlink phase the following
algorithms:

• Greedy-MIP. Per frame the optimal solution to the
IP formulation of the k-constrained bipartite match-
ing problem is computed. Recall that the theoretical
complexity of this problem is not known yet.

• 1/2-Approximation. In this approach, per frame
Algorithm 1 is executed. As stated, it represents a
viable option to determine the solution to the k-
constrained bipartite matching problem. The running
time of this algorithm is O4n35.

• Lagrange. Finally, in this approach, per frame a
Lagrangian dual problem is solved. This achieves a
feasible solution per frame as well but with a signifi-
cantly higher worst-case running time of O4n65.

To compare the performance of the above online
algorithms, we compute upper bounds using the inte-
ger linear programming formulation introduced in
§4.2. We relax all binary variables to take on real val-
ues to cope with the large programs arising.

6.3.2. Methodology. We consider two different per-
formance metrics for our study. As discussed above,
the first one is the net weight of the matchings, which
represents the total amount of bits that can be con-
veyed over the T phases. For illustration and vali-
dation purposes, we convert this net weight into the
average throughput per terminal obtained by

4S − S̄5 ·

∑T
t=1 w

t4M t5 · c4M t−11M t5

T ·n · Tf
0

This is simply a rescaling of the net weight. As sec-
ond comparison metric, we consider the computation
times required to come up with a suitable matching
per frame by the different approaches considered.

In the case of the velocity scenario, we vary the
maximum object velocity in the propagation sce-
nario. The reason for varying the velocity is that with
an increasing velocity, the correlation of the chan-
nel states, i.e., edge weights, between two consecu-
tive frames decreases. This is an implicit feature of
the fading model introduced in §6.1. To characterize
the strength of the correlation, the so-called coher-
ence time of a wireless channel is an established mea-
sure in engineering. It quantifies the time span over
which the autocorrelation function of the fading pro-
cess drops below a value of 0095. In our computational
study, we vary the velocity from 1 m/s up to 30 m/s,
which corresponds to a decrease of the coherence time
from 33 ms down to 1 ms. Recall that a single frame
has a time length of 1 ms. Hence, even for large veloc-
ities, consecutive edge weights are still correlated, but
not as strong as for small velocities. In contrast, in the
case of the interference scenario, we vary the posi-
tion of the interfering base station (between 500 and
700 meters distance from the serving base station).
The closer the interfering base station gets, the more
terminals are effected by the interring base station. In
general, if a wireless channel is interfered with, this
leads to a faster change of the channel states com-
pared to the case without interference. Hence, for the
interference scenario, the closer the base station gets,
the more terminals will experience a worse channel
quality in general (due to the interference) while at
the same time, for these terminals, also the channel
states vary faster, leading to higher signaling costs.

In general, for each setting of the velocities or inter-
ference distances, we have evaluated the algorithms’
performance over several time lengths, from frame 1
to frame 1,000, for several intervals of 100 frames,
and for several intervals of 25 frames. For each
algorithm, there is no significant difference in the
average net throughput per frame for the different
interval lengths, and therefore we present here the
results for 10 different runs of 25 frames. We evalu-
ate the algorithms’ average performance for frames
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Figure 3 (Color online) Average Throughput per Terminal vs. Increasing Channel Variability for the Three Different Approaches for the
Budget-Constrained Matching Setting k = 32 and the Values of the Upper Bound in the Velocity Scenario
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51–75, 151–175, etc. This enables us to compute upper
bounds for the corresponding time intervals and to
get rid of initial transients in the matching results
of the first phases after the initial matching, which
is always computed as a maximum weight perfect
matching.

6.3.3. Implementation. We used different imple-
mentations to compute the results of the different
approaches. In case of the 1/2-approximation, the
data were processed by a C program that solved the
upcoming matchings based on the C-implementation
of bipartite weighted matching available in Stachniss
(2004). In contrast, the greedy-MIP was obtained via
reformulating the problem into a mixed-integer pro-
gram and solving it with CPLEX (IBM ILOG 2010).
The Lagrange approach (Berger et al. 2011) was imple-
mented in C++, and the linear programs arising dur-
ing the binary search were solved using CPLEX as
well. The upper bound on the optimal off-line solu-
tion was computed by solving the linear relaxation of
the integer program presented in §4.2 using CPLEX.

All schemes were executed on a multicore machine
running at 3.3 GHz and having a main memory
of 64 GB. The operating system was an Ubuntu
10.10 Linux distribution (64 bit version). Although the
machine features several cores, all implementations
were single threaded. After executing the correspond-
ing software implementations, the resulting match-
ings were afterward used for statistical analysis.

Table 1 Run Times (Milliseconds) of Different Approaches per Phase for the Budget-Constrained Matching According to the
System Instances Considered

Greedy-MIP Lagrange 1/2-approximation
Movement
speed (m/s) Avg Min Max Avg Min Max Avg Min Max

1 168 118 404 431 327 11139 109 108 109
2 178 119 365 471 343 11061 109 109 200
10 203 118 648 480 343 11077 202 202 202
20 201 118 552 515 369 889 203 203 204
30 213 118 803 440 345 728 203 203 203

6.3.4. Numerical Results: Velocity Scenario. The
corresponding results on the average throughput of
all four schemes are shown in Figure 3 for the
velocity scenario. In addition, Table 1 shows the
average values per phase as well as the minimum
and maximum terminal throughputs as obtained
from all schemes for all runs. In addition, the table
also shows the corresponding ratios of the three
online schemes compared to the upper bound. Notice
initially that the average throughput per terminal
decreases as the velocity in the environment increases.
This is due to the increasing variation in the chan-
nel states from downlink frame to downlink frame,
which cannot be fully exploited by all schemes due
to the k-constraint. In general, the two heuristic
approaches Lagrange and 1/2-approximation achieve
almost the same performance as the greedy-MIP
approach. For lower speeds, the 1/2-approximation
outperforms the Lagrange approach slightly, although
for higher speeds this relationship turns around. The
two suboptimal schemes are always within 90% of the
greedy-MIP solution for the data sets that we have
considered. Table 2 shows that the competitive ratios
never drop below 80%. This shows, especially for the
1/2-approximation, that for realistic data, the gap to
the upper bound is much smaller than its theoretical
performance guarantee of �k/2�/n suggests. Note that
the upper bound represents a bound on the perfor-
mance that can be achieved if all assignment decisions
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Table 2 Throughput (Kilobits per Second) of the Different Approaches for the Budget-Constrained Matching According to the System Instances
Considered as Well as Competitive Ratios (Second Row for Each Scenario) in the Velocity Scenario

Greedy-MIP Lagrange 1/2-approximation Upper bound
Movement
speed Avg Min Max Avg Min Max Avg Min Max Avg Min Max

1 (m/s) 266 262 269 243 236 246 263 259 266 266 262 269
% 100 100 100 9103 8904 9201 9901 9809 9903 100 100 100
2 (m/s) 267 265 272 244 241 248 264 262 269 267 265 272
% 100 100 100 9104 9009 9109 9809 9807 9901 100 100 100
10 (m/s) 263 261 265 247 245 250 255 253 258 266 264 269
% 9808 9806 9809 9209 9206 9301 9509 9505 9601 100 100 100
20 (m/s) 233 231 235 230 228 232 227 225 228 256 255 258
% 9100 9004 9105 8909 8904 9007 8806 8802 8901 100 100 100
30 (m/s) 218 215 219 215 212 218 213 211 215 245 244 245
% 8902 8803 8907 8708 8608 8809 8701 8605 8707 100 100 100

are optimally computed with complete knowledge
of the future states of the subcarrier/terminal pairs.
Moreover, the upper bound is the optimal value of the
linear programming relaxation; therefore, the optimal
integral solution may even have a lower value for the
overall throughput. Interestingly, having (and using)
this knowledge can thus at most achieve a perfor-
mance improvement of up to 20%. We conclude that
for the communication system considered (as well as
its parameterization), the established signaling system
is already quite efficient, as the usage of statistical
information regarding the future channel evolution
would only yield a marginal additional performance
improvement.

For our implementations, we have also traced the
computation times, which are summarized as aver-
ages (as well as minimum and maximum values)
in Table 2. The values show clearly that the 1/2-
approximation is indeed a good trade-off between
the achieved performance and the running times.
As mentioned previously, run times in the range of
milliseconds qualify an algorithm to be applied in a
real OFDMA system, as the algorithms can be further
tuned to have a run time significantly below 1 ms by
implementing subroutines of the algorithms in hard-
ware and/or optimizing the software implementation
itself. Also note that especially the worst case running
time of the 1/2-approximation clearly outperforms
the other approaches. Because of the large computa-
tional overhead of the Lagrange approach, we do not
consider it further for the elastic reconfiguration costs.

6.3.5. Numerical Results: Interference Scenario.
In Figure 4, we present the average throughput results
for the four different schemes in the case of the inter-
ference scenario, whereas in Table 3 the correspond-
ing values are shown in addition to the minimum
and maximum values as well as well the competi-
tive ratios. Notice that in the plot we also show the
results of the system performance in the case where
no interferer is present (right set of bar plots). In

general, we observe that as the interference in the
cell becomes stronger, the performance of all schemes
degrades. However, whereas the 1/2-approximation
is in all considered cases very close to the greedy-MIP
performance and within 85% of the performance of
the upper bound, the performance of the Lagrange
approach decreases more strongly as the interference
in the cell increases and achieves only around 70% of
the performance of the upper bound.

6.4. Computational Study for Elastic
Reconfiguration Costs

The case of elastic reconfiguration costs results from
considering a system setup where from downlink
frame to downlink frame a varying number of sym-
bols can be consumed by the signaling overhead.
According to our model for the signaling channel, a
minimum of S̄ = 0 and a maximum of S̄ = 3 sym-
bols will be considered in the following. The objective
function of interest is again

T
∑

t=1

wt4M t5 · c4M t−11M t50

However, the cost function c4M t−11M t5 is given
according to the elastic reconfiguration cost model by

c4M t−11M t5=
4
7

+
1
7

·

⌊

�M t ∩M t−1�

32

⌋

0

Note that this reconfiguration cost model is slightly
different than the one discussed in §5, where the
reconfiguration costs were linearly dependent on the
amount of modified assignments from phase to phase.
However, for the considered system, the reconfigura-
tion costs depend on a discretized amount of modi-
fied assignment changes from phase to phase, which
results in the above cost model. Although from a
formal point of view this is a slightly different cost
model, we nevertheless apply our algorithms and
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Figure 4 (Color online) Average Throughput per Terminal vs. Increasing Distance of the Interfering Base Station for the Three Different Approaches
for the Budget-Constrained Matching Setting k = 32 and the Values of the Upper Bound in the Interference Scenario
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results from §5 because we expect only very lit-
tle modification from an exact analysis. Note that
in the above definition for the reconfiguration costs,
�M t ∩M t−1� ≤ 96, and thus 0 ≤ c4M t−11M t5≤ 1.

6.4.1. Online Algorithms. For elastic reconfigura-
tion costs we consider the following three different
approaches:

• Maximum weight matching. Here, per frame, the
solution to the unrestricted weighted matching in-
stance is computed. With elastic reconfiguration costs,
this always leads to a feasible matching; however, it
does not consider the number of changes in consecu-
tive assignments and is therefore not sensible to the
net weight. Note that this approach has again a run-
ning time of O4n35.

• Greedy-MIP. Per frame, the optimal solution to
the IP formulation of the k-constrained bipartite
matching problem is computed sequentially setting
k = 32, then k = 64, and finally k = 96. Out of the
different versions, the best one is then chosen for com-
parison purposes.

• 1/2-Approximation. In this approach, per frame,
Algorithm 1 is executed sequentially in the same man-
ner as with the greedy-MIP approach. In principle,

Table 3 Throughput (Kilobits per Second) of the Different Approaches for the Budget-Constrained Matching According to the System Instances
Considered as Well as Competitive Ratios (Second Row for Each Scenario) in the Interference Scenario

Greedy-MIP Lagrange 1/2-approximation Upper bound
Interferer (int.)
distance Avg Min Max Avg Min Max Avg Min Max Avg Min Max

500 (m) 569 564 577 393 377 409 544 540 548 637 631 644
% 89 89 90 62 60 64 85 86 85 100 100 100
600 (m) 614 609 621 440 430 452 593 587 601 681 676 688
% 90 90 90 65 64 66 87 87 87 100 100 100
700 (m) 653 646 660 482 490 519 632 628 638 715 711 721
% 91 91 92 67 66 69 88 88 88 100 100 100
No int. 832 830 836 792 688 834 813 809 817 867 864 871
% 96 96 96 91 80 96 94 94 94 100 100 100

this approach has a complexity of O4n45 if the recon-
figuration costs scaled linearly. However, for the con-
sidered system, the reconfiguration costs can only
take three values such that the complexity remains
at O4n35.

• Proportional fair scheduling (PFS). In addition to
the above three approaches, we also run simulations
using a standard resource assignment algorithm from
literature. This is the well-known proportional fair
scheduler (Kelly et al. 1998, Kim and Han 2005),
which represents an algorithmic compromise between
opportunistically assigning resources to the terminal
with the best channel states (leading to the high-
est sum throughput, but to an unfair allocation of
the rates) and max-min fairness (where all termi-
nals are required to be assigned the exact same rate
providing perfect fairness but achieving possibly a
low sum throughput). PFS does not necessarily com-
pute a perfect matching in each time slot. Instead,
per terminal j , the average throughput r�j over the
last � time slots is computed, and the current channel
states wi1 j are normalized by the average r�j . Once this
modification of the channel coefficients is done, each
subcarrier is assigned to the terminal with the high-
est normalized channel coefficient, i.e., in a greedy
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Figure 5 (Color online) Average Throughput per Terminal vs. Increasing Channel Variability for the Four Different Approaches for the Elastic
Reconfiguration Costs and the Values of the Upper Bound in the Velocity Scenario
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fashion. By exploiting this kind of “memory,” termi-
nals with low average throughput are weighted auto-
matically by higher channel coefficients, even if the
absolute channel states are fairly poor. As a result,
terminals receive average rates over time that are in
proportion to their own average channel states, but
also in proportion to the average channel states of all
other terminals. Note that proportional fair schedul-
ing does not take the signaling costs into account. In
our evaluation, we set the window � over which the
rates are averaged to 100 slots.

To compare the performance of the above online
algorithms, we again compute upper bounds using
the integer linear programming formulation intro-
duced in §5.2. To cope with the very large integer
programs that arise, the results of the upper bound
presented here are obtained by solving the follow-
ing linear relaxation of the formulation, where (15)
and (16) are replaced by (17) and (18):

∑

i1 j

ztij ≤ n ·
∑

i1 j

yt
ij for all t ≥ 21 (17)

ztij1y
t
ij1x

t
ij ≥ 0 for all i1 j ∈ 6n71 t ≥ 10 (18)

6.4.2. Methodology. Most of the methodology is
taken from the study on budget-constrained match-
ings. Again we scale the net weight obtained from all
matchings by a factor given by

S ·

∑T
t=1 w

t4M t5 · c4M t−11M t5

T ·n · Tf

to obtain the average throughput per terminal. As
a second performance metric we consider again the
run times of the algorithms. However, in contrast
to the budget-constrained matching case, we con-
sider two more metrics. On the one hand, for flows
of packets, the so-called quality of service is a fur-
ther important metric. This can be quantified, for
example, by the minimum throughput that a termi-
nal receives over time. It represents the fact that in

the case of delay-sensitive applications (like voice or
video), a minimum throughput must be provided to
each terminal. In the following, we consider here the
minimum throughput over 10 consecutive slots. As
a further metric we consider the variance over the
assigned average throughput per terminal (Jain 1991).
This metric shows how evenly (and hence “fair”) the
throughput is distributed among the terminals for the
different algorithms.

As in the budget-constrained matching case, we
consider again two scenarios. In the case of the
velocity scenario, the parameter varied is again the
maximum object velocity of the propagation environ-
ment with the same speed settings as in §6.3.2. For
the interference scenario, we again set the interfer-
ing base station closer and closer to the serving base
station with the same distance as mentioned above.
Implementation-wise, the different approaches rely on
the programs discussed in the above section and are
executed on the same computer as mentioned above.

6.4.3. Numerical Results: Velocity Scenario. In
Figure 5 we show the average throughput of the five
different schemes for the velocity scenario. In addi-
tion, these values are also shown in Table 4 together
with the minimum and maximum values obtained
over the different runs (we also show the ratios of the
four online schemes compared to the upper bound).
Note that the graphs again have a decreasing slope
as the velocity of the terminals increases. Further-
more, whereas the 1/2-approximation is quite close
to the greedy-MIP approach (within 3%), the maxi-

mum weight matching algorithm suffers significantly
from the additional signaling burden, which leads
to a performance loss of up to 25% compared to
the greedy-MIP approach. The figure also reveals the
potential performance gain that might be obtained
from predicting future channel states and choosing
assignments for example based on such predictions
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Table 4 Throughput (Kilobits per Second)of the Different Approaches for the Elastic Reconfiguration Costs According to the System Instances
Considered in the Velocity Scenario

Greedy-MIP Max weight M PFS 1/2-approximation Upper bound
Movement
speed Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max

1 (m/s) 271 265 279 26403 25908 26609 17600 17207 17600 26300 25907 26705 30705 30302 31008
% 8802 8609 9008 8600 8503 8605 5702 5700 5606 8505 8400 8702 100 100 100
2 (m/s) 269 264 273 25404 24807 25901 17709 17505 17709 26103 25603 26602 30600 30301 31108
% 8708 8700 8902 8301 8109 8409 5801 5709 5701 8504 8402 8602 100 100 100
10 (m/s) 251 246 253 20106 19900 20408 18101 17905 18101 24207 23907 24508 28506 28207 28801
% 8708 8701 8805 7006 6901 7202 6304 6305 6209 8500 8405 8503 100 100 100
20 (m/s) 233 231 236 17702 17603 17804 18105 18005 18105 22604 22405 22808 26603 25602 26905
% 8705 8607 9009 6606 6602 6901 6802 7005 6703 8500 8400 8807 100 100 100
30 (m/s) 219 217 221 17703 17608 17708 18108 18100 18108 21507 21306 21801 25508 25501 25605
% 8506 8501 8600 6903 6901 6906 7101 7100 7009 8403 8304 8502 100 100 100

Table 5 Quality-of-Service (QoS) Support (Kilobits per Second)
and Fairness (Kilobits per Second Squared) of the
1/2-Approximation Compared to the Proportional Fair
Scheduler for the Elastic Configuration Costs Over
Different Object Speeds in the Propagation Scenario in
the Velocity Scenario

1/2-approximation PFS
Movement
speed (m/s) QoS (min rate) Fairness (� 2) QoS (min rate) Fairness (� 2)

1 560 71 0 17
2 979 36 0 7.6
10 11645 11 0 2
20 11570 9 0 1
30 11411 6 0 1

or other statistical knowledge (anticipating the sig-
naling costs). Such schemes are limited by the per-
formance of the upper bound, which achieves about
20% more average throughput than the greedy-MIP
strategy. This shows nicely that a greedy approach in
general is not far away from an off-line optimum that
can be achieved if the channel states of all T frames
are already known. Finally, note that the proportional
fair scheduling approach, which we use as a refer-
ence scheme here, has the worst performance of all
schemes, featuring a constant average throughput per
terminal over all terminal speeds. We refine this initial
analysis by considering two further performance met-
rics quantifying fairness and quality of service (in the

Table 6 Run Times (Milliseconds) of the Different Approaches per Phase for the Elastic Reconfiguration Costs According to the System
Instances Considered

Greedy-MIP Max weight M PFS 1/2-approximation
Movement
speed (m/s) Avg Min Max Avg Min Max Avg Min Max Avg Min Max

1 548 402 1,445 004 004 005 001 001 001 406 405 408
2 534 408 1,086 004 004 005 001 001 001 407 406 408
10 544 410 1,048 004 004 005 001 001 001 408 408 409
20 548 412 1,204 004 004 004 001 001 001 409 409 500
30 589 416 2,066 004 004 004 001 001 001 409 408 500

form of the minimum assigned rate over all terminals)
in Table 5. This analysis further reveals the trade-off
encountered in OFDMA resource scheduling. Because
of the perfect matching characteristic of the approxi-
mation, per slot, every terminal receives a subcarrier,
and hence the scheme achieves a good fairness; i.e.,
the minimum rate over 10 slots is still reasonably high
(but by about a factor of four lower than the average
rate over 10 slots). In contrast, the proportional fair
scheduling algorithm has a relatively low quality-of-
service support, as for all scenarios periods of 10 slots
can be found for which the minimum rate turns out
to be 0. This is partially due to the fact that there
are quite many terminals compared to the number
of resource blocks. On the other hand, if considering
fairness, we observe from Table 5 that (as expected)
proportional fair scheduling achieves a more even dis-
tribution of the long-term average throughput per ter-
minal, compared to the approximation. Note that this
comes at the price of a lower aggregate throughput,
as shown in Figure 5.

Regarding the run times, we again observe a much
lower average value in case of the 1/2-approximation
compared to the greedy-MIP in Table 6. The lower
run time of the maximum weight matching approach
results from the fact that, per instance, only a sin-
gle matching of cardinality 96 needs to be com-
puted. Although this run time is quite low, the
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Figure 6 (Color online) Average Throughput per Terminal vs. Increasing Distance of the Interfering Base Station for the Four Different Approaches
for the Elastic Reconfiguration Costs, and the Values of the Upper Bound in the Interference Scenario
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performance is worse than the one of the 1/2-
approximation. Because of its simplicity, the propor-
tional fair scheduler has the lowest run time of all
considered schemes; nevertheless, it also provides the
lowest performance in terms of average throughput
as well as quality-of-service provisioning.

6.4.4. Numerical Results: Interference Scenario.
In Figure 6, we show the average throughput of
the four different schemes plus the upper bound
in the case of the interference scenario for elastic
reconfiguration costs, whereas Table 7 shows the
corresponding numerical values including the mini-
mum, the maximum, and the competitive ratios. As
the interfering base station gets closer and closer
to the serving base station, the increase in inter-
ference leads to a decreasing average throughput
for all considered schemes. As with the budget-
constrained case, we observe again that the 1/2-
approximation achieves in all cases a performance
very close to that of the greedy-MIP scheme. How-
ever, we notice a slightly bigger gap to the upper
bound (compared to the budget-constrained case for
the interference scenario). However, we also observe
this increased gap for elastic reconfiguration costs in

Table 7 Throughput (Kilobits per Second) of the Different Approaches for the Elastic Reconfiguration Costs According to the System Instances
Considered in the Interference Scenario

Greedy-MIP Max weight M PFS 1/2-approximation Upper bound
Interferer (int.)
dist. Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max

500 (m) 570 565 575 508 485 528 485 479 494 555 549 563 682 676 690
% 88 88 89 74 72 77 71 71 71 81 81 82 100 100 100
600 (m) 615 609 620 530 509 550 506 500 512 595 590 599 724 718 731
% 85 85 85 73 71 75 70 70 70 82 82 82 100 100 100
700 (m) 653 646 660 545 533 553 518 510 526 632 626 637 758 752 765
% 86 86 86 72 71 72 68 68 69 83 83 83 100 100 100
No int. 824 817 829 625 603 652 536 462 596 814 804 823 933 930 936
% 88 88 89 67 65 70 57 50 64 87 86 88 100 100 100

the case of the velocity scenario. Furthermore, the
stronger the interference gets in the cell, the lower the
performance advantage of the 1/2-approximation and
of the greedy-MIP approaches to maximum weight
matching and the proportional fair scheduler. This
is clearly due to the increased channel variability as
the interference increases, which causes larger costs
in terms of the signaling overhead for the greedy-
MIP and the 1/2-approximation in comparison to the
overhead-insensitive allocation schemes (maximum
weight matching and proportional fair scheduling).

Finally, in Table 8 we give the results on the fair-
ness and quality-of-service support of the 1/2-approx-
imation and the proportional fair scheduler for the
investigated interference scenario. These results reaf-
firm the findings of the velocity scenario. Whereas the
1/2-approximation has a better quality-of-service sup-
port for all considered scenario settings, the fairness
is in general better for the proportional fair scheduler.
Note that the fairness measure—which is the vari-
ance over the average throughput per terminal in our
case—is in general much higher in the interference
scenarios than in the velocity scenario due to the posi-
tioning of the terminals (which are spread all over the
cell in the case of the interference scenario, leading
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Table 8 Quality-of-Service (QoS) Support (Kilobits per Second)
and Fairness (Kilobits per Second Squared) of the
1/2-Approximation Compared to the Proportional Fair
Scheduler for the Elastic Configuration Costs for Different
Interferer Distances in the Interference Scenario

1/2-approximation PFS

Interferer (int.) QoS Fairness QoS Fairness
dist. (min rate) (� 2) (min rate) (� 2)

500 (m) 1,673 36,295 0 17,136
600 (m) 2,260 41,531 0 16,141
700 (m) 2,784 40,976 0 15,401
No int. 2,222 42,969 0 13,307

to a much higher variance of the average through-
put). Because the average throughput per terminal is
higher in case of the 1/2-approximation, we conclude
that the 1/2-approximation is also a good approach
for interference scenarios.

7. Conclusions
In this paper we addressed resource assignment prob-
lems with additional constraints motivated by appli-
cations in which assignments have to be realized
over time and the reconfiguration of any two con-
secutive assignments has a significant impact on the
overall performance. For our target applications, the
run time of matching algorithms is extremely impor-
tant, having an acceptable range of a few millisec-
onds only. We introduced two variants of bipartite
matching problems with reconfiguration costs and
provided extremely fast approximation and online
algorithms with provable approximation guarantees
and competitive ratios. We also tested our algorithms
on realistic instances in the context of the down-
link of an OFDMA wireless cell. It turned out that
for the instances considered, our algorithms perform
extremely well with respect to both solution quality
and running time: the solution quality, on average,
is within a factor of 0.8–0.9 of optimal off-line solu-
tions, and the running times are at most 5 ms per
phase even in the worst case. Thus, our algorithms
are well suited to be applied in the context of OFDMA
systems.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2015.2221.
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