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Abstract—We present a framework for designing delay-
independent end-to-end congestion control algorithms, where
each end-user may have a different utility function. We only
require that utility functions are strictly increasing. In this
framework, we design an algorithm that maximizes the minimum
utility value in the network, that is, the resulting resource
allocation is utility max-min fair. To achieve this, we first extend
the congestion control algorithm EMKC proposed by Zhang et
al. [1], which aims at max-min fair bandwidth allocation. Our
extension (XMKC) allows for arbitrary rate allocations in the
steady state. We investigate XMKC analytically and prove local
asymptotic stability with heterogeneous time-varying feedback
delays in multi-link networks and global asymptotic stability
with homogeneous time-varying feedback delays in single-link
networks. Then, we propose UMKC (Utility Max-Min Fair Kelly
Control), which achieves utility max-min fairness in its steady
state. Based on the analysis of XMKC, we establish stability
results for UMKC in the presence of time-varying feedback
delays. Finally, we evaluate the performance of UMKC using
NS-2 simulations [2].

I. INTRODUCTION

In the last years, congestion control algorithms for commu-
nication networks (including various versions of TCP [3]–[7])
have been interpreted as distributed algorithms at sources and
links, which implicitly solve a global optimization problem,
see [8]–[11] and references therein. In these models, users are
associated with increasing and strictly concave utility functions
representing elastic traffic. Canonical distributed congestion
control algorithms that maximize aggregate utility are derived
by decomposing the optimization problem into subproblems
that can be solved by links and sources using only local
information. The links communicate a price based on usage
measurements and sources adapt the sending rates based on
the aggregate price (or maximum price as in [1], [12]).
In addition to the strong design goal of having distributed
algorithms, asymptotic stability in presence of feedback delays
is important for congestion control algorithms in high-speed
networks. To further complicate the situation, such delays are
by nature time-varying, since they are a result of perturbations
caused by randomly arriving and departing flows as well as
varying queuing delays.

Even though considerable progress has been made in de-
signing stable and distributed congestion control algorithms,
two important issues have only partly been addressed.

First, most of the stability results that have been obtained so
far deal either with fixed homogeneous delays (di = d) [8],

[13]–[19], or with fixed heterogeneous delays [20]–[22]. In
these works, it is required that flows adapt their sending rates
based on feedback delays, which may lead to severe RTT-
unfairness as shown in [23]. Based on ideas of [9], [14],
[21], Zhang and Loguinov [24] remedied the delay depen-
dency by proposing EMKC, a delay-independent max-min
fair congestion control algorithm. They showed that systems
with fixed diagonal feedback delays are stable if the Jacobian
in the steady state is diagonally similar to a radial matrix
(matrix A is radial iff ‖A‖2 = ρ(A)) and ρ (J) < 1. Still,
their results do not cover time-varying delays.

The second issue concerns the design of efficient, fair and
stable congestion control algorithms incorporating inelastic
traffic. Many works on congestion control algorithms using the
utility framework are focused on elastic traffic. As shown in
[25]–[28], some applications, especially real-time applications,
have non-concave utility functions. Only a few works deal
with this non-concavity, see for instance [29], [30]. In [31]
it was shown that the canonical distributed algorithms may
fail to converge to a feasible rate allocation and may lead to
instability and congestion. To overcome these problems the
authors propose a ’self regulating’ heuristic for the special
type of sigmoidal utilities in combination with a subgradient
method to generate prices. In [32], non-concave utility func-
tions are assumed and the conditions for convergence to global
optimality of the canonical algorithms are analyzed.

Another line of research dealing with non-convexity is
concerned with a different fairness definition rather than max-
imizing aggregate utility: an equilibrium point should result in
roughly equal utility values for different applications. In [33],
only mild assumptions on the feasible utility functions are
required (non-decreasing, not necessarily continuous). In this
approach, the links have to maintain per-flow states in order
to allocate bandwidth utility fair. Furthermore, no stability
results are given in the presence of communication delays.
The work in [29] presented a link algorithm that achieves
a utility max-min fair bandwidth allocation, where for each
link the utility functions of all flows sharing that link is
maintained. In [34], [35] distributed algorithms without per-
flow states are presented that converge to a utility max-min
fair operating point. They, however, prove stability only under
fixed communication delays and single link networks.

Our goal in this work is to contribute to the above two
issues. First, we propose XMKC, a generalization of EMKC,
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which allows for arbitrary bandwidth allocations in the steady
state but requires centralized calculation of control parameters.
XMKC is intended to serve as a base for algorithms that
achieve desired rate allocations in a fully distributed manner.
For XMKC, we prove local asymptotic stability with heteroge-
neous time-varying feedback delays in single and multi-link
networks and global asymptotic stability with homogeneous
time-varying feedback delays in single-link networks. Based
on XMKC, we develop an algorithm called UMKC (Utility
Max-Min Fair Kelly Control), which provides a unifying con-
gestion control algorithm for elastic and real-time traffic and is
fully distributed. We prove that UMKC’s steady state is utility
max-min fair in arbitrary network topologies. Furthermore,
based on the results for XMKC, we establish stability results
for UMKC in the presence of time-varying feedback delays.
Finally, we simulate UMKC using the network simulator NS-2
[2].

II. SYSTEM MODEL

We model a packet switched network by a set L of unidi-
rectional links with capacities (Cl, l ∈ L). Here, capacities are
not necessarily physical constraints but can be some configured
target values of the aggregate load at the links. The set of links
is shared by a set S of sources (we use the terms source,
application and flow interchangeably). Each source i ∈ S
represents an end-to-end connection that involves the subset
L(i) of links. Equivalently, each link l is used by the set S(l)
of sources. In this work, we do not consider multi-path routing.
We denote the integral time variable with t ∈ Z

+
0 and the rate

of flow i at time instant t with xi(t) ∈ R
+
0 . Each application

is associated with a utility function Ui (xi) : R
+
0 → R

+
0 that

fulfills the conditions

1) Ui(0) = 0, ∀i ∈ S,
2) Ui (x) is continuous and strictly increasing ∀i ∈ S and

∀x ∈ R
+
0 .

Note that our results are not restricted to strict concave utility
functions, which makes them applicable not only for elastic
traffic like TCP but also for multimedia applications with non-
concave utility functions [25].

For each source i ∈ S and each link l ∈ L(i), we
denote by d→i,l ∈ Z

+
0 the delay on the path from the

source i to the link l. Conversely, the value d←i,l ∈ Z
+

denotes the delay of the reverse path that includes the path
from the link l to the destination and the path from the
destination back to the source. For the round-trip delay we
obtain di = d←i,l + d→i,l = d←i,l′ + d→i,l′ ≥ 1, ∀l, l′ ∈ L(i). Note
that with this notation, a value of 1 represents an undelayed
link.

For each link l, the aggregate load at time t is given
by Xl(t) =

∑
i∈S(l) xi

(
t − d→i,l

)
. We call a rate allocation

x = (xi, i ∈ S) feasible, if and only if Xl ≤ Cl, ∀l ∈ L.

III. XMKC: A GENERALIZATION OF EMKC

In this section, we generalize the source equation of EMKC
in order to achieve arbitrary rate allocations in the steady state.

We also modify the router equation in order to avoid capacity
overshoots in the steady state as observed with EMKC. This
modification allows us to establish stability results in the
presence of time-varying feedback delays, which we present
in Section III-B. Note, that in [24], Zhang and Loguinov also
established local stability for the generalized source equation.
However, their results are only valid for time-invariant feed-
back delays.

In order to achieve a rate allocation according to a certain
allocation strategy or fairness criterion, XMKC requires a
centralized calculation of control parameters. Our analysis of
XMKC, however, proves useful for deriving stability results
for distributed congestion control algorithms. Specifically, in
Section IV we will present UMKC, which achieves utility
max-min fairness in a distributed manner. We will also show
that UMKC can be used to allocate bandwidth in a max-
min fair way, since max-min fairness complies with utility
max-min fairness, when all users have the utility function
U(x) = x.

A. Generalization of EMKC’s steady state

Our first goal is to modify EMKC to achieve arbitrary steady
state rate allocations. To achieve this goal, we modify the
source equation of EMKC. We obtain:

xi(t) = xi(t − di) + κ [wi − ηi(t) · xi (t − di)] . (1)

Here, ηi(t) is the maximum congestion measure of all links on

the path of flow i: ηi(t) := max
l∈L(i)

pl

(
t − d←i,l

)
. The difference

between (1) and the sender equation of EMKC is that we allow
each sender to have individual values wi, whereas with EMKC
wi = wj , ∀i, j ∈ S. We will show that with a proper choice
of wi and with a modified version of the router equation that
we present below we can achieve arbitrary rate allocations in
the steady state.

To deal with the capacity overshoot as observed with
EMKC, we modify the router equation for the congestion
measure pl(t). We introduce the value C̃l = νCl with ν < 1,
which we call the virtual capacity, and use it instead of the
target capacity Cl to calculate pl(t). In Section III-B, we show
that the choice of ν is critical to system’s stability and how
it has to be chosen to guarantee stability in presence of time-
varying feedback delays. The modified router equation is:

pl(t) =
Xl(t) − C̃l

Xl(t)
. (2)

The following Proposition describes the equilibrium struc-
ture of XMKC for a given parameter vector w = (wi, i ∈ S).
In the following, we will omit the router index l if considering
single-link scenarios.

Proposition 1. In a single-link network, the equilibrium struc-
ture of XMKC, as described by (1), (2), with fixed ν ∈ (0, 1),
κ ∈ (0, 1), and w = (wi, i ∈ S) with wi > 0, ∀i ∈ S, has the
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shape

x̂i =
µ

µ − ν
· wi, (3)

X̂ = µC, (4)

where µ = ν + 1
C

∑
wi.

We omit the proof for brevity.1

From this Proposition we see, how the equilibrium rates x̂i

depend on the paramter vector w. In the following Proposition,
we answer the reverse question of how to chose the parameter
vector w in order to achieve a given bandwidth allocation z.

Proposition 2. In a single-link network with fixed ν ∈ (0, 1),
κ ∈ (0, 1), and given a rate allocation z = (zi, i ∈ S) with
Z :=

∑
zi = µC for a µ > ν, there exists a unique parameter

vector w = (wi, i ∈ S) such that XMKC, as described by
(1), (2), achieves rate allocation z in its steady state. The
corresponding parameter vector is given by

wi =
µ − ν

µ
zi, ∀i ∈ S. (5)

Proof: First, we show that choosing w according to (5)
results in the desired rate allocation z. For the sum of the
control parameters wi, we obtain

∑
wi =

µ − ν

µ

∑
zi =

µ − ν

µ
µC = (µ − ν)C

⇔ µ = ν +
1
C

∑
wj .

Applying Proposition 1, we obtain x̂i = zi. For
the proof of uniqueness, consider another parameter
vector w̃ = (w̃i, i ∈ S). Assuming

∑
wj �= ∑

w̃j ,
we obtain µ′ = ν + 1

C

∑
w̃j �= µ and therefore with

Proposition 1: X̂ ′ = µ′C �= Z. Therefore we know∑
w̃j =

∑
wj . Applying once again Proposition 1, we

obtain x̂i = zi = µ
µ−ν wi = µ

µ−ν w̃i, ∀i ∈ S, from which
follows wi = w̃i, ∀i ∈ S.

Usually, calculation of the desired rate allocation z that
satisfies a certain fairness criterion, requires knowledge of the
networks parameters. For now, we assume that z is given. In
Section IV, we will use these results to reach a utility max-min
fair rate allocation in a fully distributed manner.

B. Stability of XMKC

One of the most important characteristics of a congestion
control algorithm is its asymptotic stability. An asymptotically
stable algorithm is more likely to avoid oscillations in its
steady state and to properly respond to perturbations caused
by arrival and departure of flows and other transient effects.

1) Local Stability: Zhang and Loguinov [24] established
a sufficient condition for local asymptotic stability with het-
erogeneous time-invariant feedback delays for EMKC for a
broader class of feedback functions p(t). In real networks,
however, feedback delays vary with time. To establish a
sufficient condition for stability in presence of time-varying

1All proves will appear in the full version of the paper.

feedback delays, we use a result obtained by Kaszkurewicz
and Bhaya in [36]. The authors show that a non-linear discrete
system is locally asymptotically stable in its stationary point
in the presence of heterogeneous uniformly-bounded time-
varying delays if all eigenvalues of |J | are smaller than 1.
Here, J denotes the Jacobian of the system in the stationary
point and |A| := [|aij |]i,j∈S .

Theorem 1. In a single-link network with heterogeneous time-
varying feedback delays XMKC, as described by (1), (2), with
an arbitrary parameter vector w = (wi, i ∈ S) and fixed ν ∈
(0, 1) and κ ∈ (0, 1), is locally asymptotically stable in its
steady state if ∑

wi ≥ νC. (6)

Proof: Using the steady state values from Proposition 1,
we can calculate the Jacobian of the undelayed system in the
equilibrium point:

∂p(t − 1)
∂xi(t − 1)

∣∣∣∣
ep

=
C̃

X̂2
=

ν

µ2 · C ,

∂xi(t)
∂xi(t − 1)

∣∣∣∣
ep

= 1 − κ

µ(µ − ν)C
[
νwi + (µ − ν)2C

]
,

∂xi(t)
∂xj(t − 1)

∣∣∣∣
ep

= −κ
νwi

µ(µ − ν)C
.

Since the last equation does not depend on j, the Jacobian in
the steady state has the following shape (with n := |S|):

J =




a1 b1 . . . b1

b2 a2 . . . b2

. . . . . . . . . . . . .

bn bn . . . an


 ,

where ai = ∂xi(t)
∂xi(t−1)

∣∣∣
ep

and bi = ∂xi(t)
∂xj(t−1)

∣∣∣
ep

.

To complete the proof, we bound the eigenvalues of |J |
from above by the L1 matrix norm of |J | and then show that
condition (6) implies: ‖ |J | ‖1 < 1. Simple transformations
result in: 1 − κ ≤ ai < 1 and −κ < bi < 0. Since we
demanded that κ ∈ (0, 1), we obtain:

|J | =




a1 −b1 . . . −b1

−b2 a2 . . . −b2

. . . . . . . . . . . . . . . .

−bn −bn . . . an


 .

The eigenvalues of a matrix are bounded by any of the induced
matrix norms. Thus, we obtain for the eigenvalues of |J |

|λk| ≤ ‖ |J | ‖1 = max
i∈S


ai −

∑
j �=i

bj


, ∀k ∈ S.

It is now sufficient to show that ai −
∑

j �=i bj < 1, ∀i ∈ S.
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To do this, we explicitly calculate the above sum and obtain

ai −
∑
j �=i

bj = 1 +
κ

µ(µ − ν)C


ν

∑
j �=i

wj − νwi − (µ − ν)2C




< 1 +
κ

µ(µ − ν)C


ν

∑
j∈S

wj − (µ − ν)2C


 = 1 + κ

2ν − µ

µ
,

which is smaller than or equal to 1 if ν ≤ µ
2 , which in turn is

an implication of condition (6).

Remark. Condition (6) can be translated into an equivalent
condition on the target load and parameter ν. For example,
to ensure local stability of any steady state with an aggregate
load X̂ = C, it is sufficient to set ν ≤ 0.5.

2) Global Stability: Global stability analysis of non-linear
systems is a very challenging issue. Zhang and Loguinov [37]
proved global asymptotic stability of EMKC in single-link net-
works with homogeneous time-invariant feedback delays for
the case wi = wj , ∀i, j ∈ S. We present a fairly simpler proof
of global stability of XMKC for the general case wi �= wj in
the presence of homogeneous time-varying feedback delays,
which is an assumption that is more close to the conditions
in real networks. For the proof, we will need the following
Lemma:

Lemma 1. A sequence given by the recursive equation
xn = an−1 · xn−1 + bn−1 can be written in the explicit form

xn = x0 ·
n−1∏
i=0

ai +
n−1∑
i=0

bi

n−1∏
j=i+1

aj .

Additionally, if an = a and bn = b, ∀n ∈ N, this expression
can be written as

xn = an · x0 + b · 1 − an

1 − a
.

With this Lemma we can now prove the following Theorem:

Theorem 2. In a single-link network with homogeneous time-
varying feedback delays XMKC, as described by (1), (2),
with fixed ν ∈ (0, 1) and κ ∈ (0, 1) and with an arbitrary
parameter vector w = (wi, i ∈ S), is globally asymptotically
stable.

Proof: We establish the proof in two steps. First, we will
show that the aggregate load converges to its steady state value
for arbitrary initial conditions. This step is analogous to [1],
where it is done for wi = wj , ∀i, j ∈ S, and for fixed delays.
Then, we will show that convergence of the total load implies
convergence of the individual sending rates.

Since all users are assumed to have the same delays,
we can write d→i,l(t) = d→j,l(t) = d→(t), ∀i, j ∈ S(l), and
d←i,l(t) = d←j,l(t) = d←(t), ∀i, j ∈ S(l). The sender equation
then becomes

xi(t) = xi (t − d(t)) + κ [wi − p (t − d←(t)) · xi (t − d(t))] .

We denote by tk ∈ Z
+
0 the sequence of time instants

that are on the time-scale of the feedback delays. That is:

tk = tk−1 + d (tk−1), t0 ∈ [0, d(0)). Writing x
(k)
i for xi (tk)

and p(k−1) for p (tk − d← (tk)), we can rewrite the sender
equation as

x
(k)
i = x

(k−1)
i + κ

[
wi − p(k−1) · x(k−1)

i

]
.

Substituting the congestion measure (2) in the above
equation and taking the sum over i, we obtain with
X(k) := X (tk + d→ (tk)):∑

x
(k)
i = X(k) = (1 − κ)X(k−1) + κµC,

where µ = ν + 1
C

∑
wi.

Applying Lemma 1, we can write this expression in an explicit
form:

X(k) = (1 − κ)kX(0) +
(
1 − (1 − κ)k

)
µC.

This sequence converges to µC, which is the steady state
value of the aggregate load as shown in Proposition 1, for
arbitrary initial condition X(0) and therefore the aggregate
load is globally stable.

Now we show that the convergence of the aggregate
load implies the convergence of the individual rates. With
a(k) := 1 − κp(k) and bi := κwi, ∀i ∈ S, we can rewrite the
sender equation as

x
(k)
i = a(k−1) · x(k−1)

i + bi.

Applying Lemma 1, we obtain an explicit form for x
(k)
i :

x
(k)
i = x

(0)
i ·

k−1∏
m=0

a(m) + bi ·
k−1∑
m=0

k−1∏
p=m+1

a(p). (7)

Since we know that X(k) → µC, we conclude that there exists
a k0 ∈ N, such that all a(k) with k ≥ k0 lie in the interval
(0, 1):

X(k) → µC

⇒ p(k) → µ − ν

µ
∈ (0, 1)

⇒ 0 < ε1 ≤ p(k) < 1, ∀k > k0

⇒ 0 < a(k) ≤ ε2 < 1, ∀k > k0.

From this we derive two conclusions. First:

x
(0)
i ·

k−1∏
m=0

a(m) −→
k→∞

0. (8)

And second:

bi ·
k−1∑
m=0

k−1∏
p=m+1

a(p) (9)

is strictly increasing for k ≥ k0. Since we know that X(k)

converges, we also know that x
(k)
i is bounded ∀i ∈ S. From

this fact, using (7) and (8), we know that sequence (9) is
bounded too. Since (9) is strictly increasing and bounded, it
converges, and using (7) we obtain convergence of x

(k)
i .

Now that we know that x
(k)
i converges, we can take

the limit on both sides of the sender equation and obtain
lim

k→∞
x

(k)
i = µ−ν

µ wi, which is the steady state value of xi as

shown in Proposition 1.
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3) Multi-Link Stability: As argued in [1], proofs of multi-
link stability under general conditions are very challenging.
However, with the assumption of a fixed consistent bottle-
neck assignment (see [1] for a definition), Zhang, Kang and
Loguinov [Theorem 3 in [1]] showed that for certain max-
min systems including EMKC local stability in single-link
networks implies local stability in the multi-link case. A
consistent bottleneck assignment with EMKC and XMKC
means that each source receives feedback from the router on
its path that has the highest congestion measure pl(t). Since
the proof of this theorem does not rely on the assumption
of wi = wj , ∀i, j ∈ S, single-link results of Theorem 1
imply multi-link stability of XMKC with a fixed consistent
bottleneck assignment in the presence of heterogeneous time-
varying feedback delays.

IV. UTILITY MAX-MIN FAIRNESS WITH UMKC

With XMKC, a target steady state rate allocation is de-
termined by an arbitrary but fixed parameter vector w, see
Proposition 1. In a distributed setting, this parameter vector w
is not known a priori.

In this section, we introduce available utility u as a second
feedback variable, which allows the senders to dynamically
adapt wi in a distributed way so as to achieve a utility max-min
fair rate allocation in the steady state. We propose a strategy
for a flow to choose its feedback router according to both
feedback variables and call the extended algorithm UMKC.
We prove that UMKC’s steady state is utility max-min fair
in arbitrary networks. Based on the results for XMKC, we
establish stability results for UMKC in the presence of time-
varying feedback delays. Note that our analysis does not rely
on strict concavity of utility functions.

A. Utility Max-Min Fair Steady State

Cao and Zegura [29] established the following necessary
and sufficient condition for a rate allocation to be utility max-
min fair:

Proposition 3 (from Cao and Zegura [29]). A feasible rate
allocation x = (xi, i ∈ S) is utility max-min fair if and only
if each flow has a utility bottleneck link with respect to x.

Here, utility bottleneck is defined as follows

Definition 1 (from Cao and Zegura [29]). Given a fea-
sible bandwidth allocation x = (xi, i ∈ S), we say that
for a flow i ∈ S link l ∈ L(i) is a utility bottleneck
if and only if all of l’s target capacity is allocated and
Ui (xi) ≥ Uj (xj) , ∀j ∈ S(l), j �= i.

In [29], the authors also showed that for a given set of
utility functions and a given network there always exists a
utility max-min fair rate allocation.

To achieve utility max-min fairness in the steady state, we
use the following parameter vector:

wi = (1 − ν)U−1
i (u) , i ∈ S. (10)

Here, u denotes the available utility of the path, which is
part of the feedback provided by the network. We obtain the
following rate equation:

xi(t) = xi(t−di)+κ
[
(1 − ν)U−1

i

(
ul(i)

) − ηi(t) · xi (t − di)
]
.

(11)
Here, ηi(t) := pl(i)

(
t − d←i,l(i)

)
and l(i) is the link on the

path of the flow i that provides the feedback.
With UMKC, the feedback router for flow i is determined

according to the following scheme:

Scheme 1 Selection of the feedback router with UMKC
1. If on the path of flow i there are overloaded links, the

router with the highest congestion measure provides the
feedback: l(i) = argmax

l∈L(i)

(
pl

(
t − d←i,l

))
, ∀i ∈ S.

2. Otherwise, the feedback is provided by the
router with the smallest available utility
ul on the path: l(i) = argmin

l∈L(i)

(ul) , ∀i ∈ S.

3. If there are multiple routers with the smallest available
utility on the path, choose the one with the highest router
ID. (This rule is needed for consistency and is used in the
proof of Lemma 2.)

To implement this scheme, each router is required to ex-
amine the congestion measure and the available utility that is
already contained in the header of arriving packets and replace
them with its own values if needed.

Following [1], we call a flow i that receives its feedback
from the link l ∈ L(i) responsive with respect to l and
unresponsive with respect to all other links l′ ∈ L \ {l}.

In the following Proposition we show that using source
equation (11) and selection Scheme 1 and provided that
all routers that have responsive flows are fully utilized, the
resulting rate allocation is utility max-min fair.

Proposition 4. In an arbitrary network, if the rate allocation
is feasible and all routers that have responsive flows are fully
utilized then the steady state of the system (2), (11), with
feedback router selection Scheme 1, is utility max-min fair.

Proof: A necessary and sufficient condition for (11) to be

in its steady state is x̂i =
(1−ν)U−1

i (ul(i))
p̂l(i)

, where p̂l(i) is the
steady state congestion measure of link l(i). Since we assumed
that all routers that have responsive flows are fully utilized, we
obtain from (2): p̂l(i) = 1 − ν, which implies that:

x̂i = U−1
i

(
ul(i)

)
. (12)

Since we also assumed that the rate allocation is feasible, each
flow receives its feedback from the router with the smallest
available utility on the path according to step 2 in Scheme 1.
To complete the proof, we need to show that each flow has
a utility bottleneck, so that the conditions of Proposition 3
are satisfied. Since we assumed that each router that has
responsive flows is fully utilized, it remains to show that
for each flow i: Uj (x̂j) ≤ Ui (x̂i) , ∀j ∈ S (l(i)). With (12),
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this translates to ul(j) ≤ ul(i), ∀j ∈ S (l(i)). Assume on the
contrary that there exists a j ∈ S (l(i)) such that ul(j) > ul(i).
We immediately obtain a contradiction to step 2 in Scheme 1,
since both l(i) and l(j) are on the path of flow j and flow j
receives its feedback from router l(j) though the router l(i)
has lower available utility.

Now we know that to establish a utility max-min fair
rate allocation we must ensure that no router is overloaded
and each router that has responsive flows is fully utilized.
The only way for the routers to influence their aggregate
load is through providing appropriate feedback u. Since the
routers are not able to directly calculate the desired u as it
requires the knowledge of the utility functions of all flows
they are traversed by, they have to update their available
utility iteratively, generating a sequence u

(τ)
l that converges

to the desired value, which we denote by ůl. The existence of
this value is ensured by the result from [29] that states that
for each set of utility functions and for each network there
is a utility max-min fair rate allocation. After each update
of u, the routers have to wait until the sending rates reach
their corresponding steady state values to avoid oscillations
of the available utility and inconsistent selection of feedback
routers by the flows. Then, they can recalculate u based on
the measured aggregate load X̂(u). We thus obtain a sequence
of steady states. To simplify the notation, we call the steady
states that correspond to u �= ů transient steady states and the
utility max-min fair steady state with u = ů terminal steady
state.

For the calculation of the available utility we use the secant
method. Writing X̂

(τ)
l for X̂l

(
u

(τ)
l

)
, it has the shape:

u
(τ)
l = u

(τ−1)
l −

[
X̂

(τ−1)
l − Cl

] u
(τ−1)
l − u

(τ−2)
l

X̂
(τ−1)
l − X̂

(τ−2)
l

. (13)

Since this method works only for routers that have responsive
flows (because otherwise X̂l is not a function of ul), we
assume in the following that all routers have responsive flows.
Note that in the case of linear utility functions, X̂(u) is also a
linear function of u and the secant method converges in only
one step. This implies that in a single-link network with linear
utility functions, starting with an arbitrary u > 0, the router is
able to calculate ů after two transient steady states that provide
the values X̂(0) and X̂(1). The third steady state will be utility
max-min fair with X̂(3) = C.

Now we are able to prove the following Theorem:

Theorem 3. The terminal steady state of UMKC as described
by equations (2), (11), and (13), and with the feedback router
selection Scheme 1, is utility max-min fair in an arbitrary
multi-link network, where all routers have responsive flows.

Proof: Consider equation (13). It is in its steady state if
and only if X̂l = Cl. Since we assume that all routers have
responsive flows, the resulting rate allocation is feasible and
the conditions of Proposition 4 are fulfilled.

In the following, we present a result showing that for utility
functions of the form Ui(x) = x, ∀i ∈ S, UMKC leads to

bandwidth max-min fairness.

Corollary 1. The terminal steady state of UMKC as de-
scribed by equations (2), (11), and (13), with the feedback
router selection Scheme 1, and with utility functions satisfying
Ui(x) = x, ∀i ∈ S, is max-min fair in an arbitrary multi-link
network, where all routers have responsive flows.

B. Single-Link Stability of UMKC

In this section, we use the results established for XMKC to
derive a sufficient condition for the transient and the terminal
steady state of UMKC to be stable in single-link networks.
First, we establish the equilibrium structure of UMKC in a
single-link network:

Proposition 5. In a single-link network, steady state of the
system (2), (11) with fixed ν ∈ (0, 1), κ ∈ (0, 1) and u > 0
has the following shape:

x̂i(u) =
U−1

i (u)∑
U−1

i (u)
X̂(u) (14)

X̂(u) = (1 − ν)
∑

U−1
i (u) + C̃ (15)

Corollary 2 (to Theorem 1). In a single-link network with
heterogeneous time-varying feedback delays, the system (2),
(11) with ν ∈ (0, 1) and κ ∈ (0, 1) is locally asymptotically
stable in its transient steady state with u > 0 if X̂(u) ≥ 2νC.
For the terminal steady state, this condition translates to
ν ≤ 0.5.

Note that as long u �= ů, X̂(u) can become arbitrarily
small. Therefore, it is not possible to choose ν such that
transient steady states for all u > 0 are locally asymptotically
stable in the presence of heterogeneous time-varying feedback
delays. For example, choosing ν = 0.5 guarantees stability
only for the terminal steady state with X̂(u) = C. Choosing
ν = 0.4 guarantees stability for all transient steady states with
total load X̂(u) ≥ 0.8C. However, this established stability
condition is only proved to be sufficient. Its necessity is still
an open issue. In fact, simulations show that UMKC is still
stable even if this condition is violated.

Similarly, global asymptotic stability of UMKC with a fixed
u > 0 follows directly from the corresponding statements for
XMKC.

Corollary 3 (to Theorem 2). In a single-link network with
homogeneous time-varying feedback delays, system (2), (11)
with ν ∈ (0, 1) and κ ∈ (0, 1) is globally asymptotically stable
for an arbitrary fixed u > 0.

This result holds for a fixed u > 0, which corresponds to a
transient steady state if u �= ů and to the terminal steady state
if u = ů. It implies that UMKC globally converges towards
the terminal steady state if and only if the sequence of transient
steady states converges. In the following, we present a special
class of utility functions, which guarantees the convergence of
the sequence of transient steady states.
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Theorem 4. In a single-link network with homogeneous time-
varying feedback delays and linear utility functions, UMKC
is globally asymptotically stable.

Proof: Global stability of UMKC requires two condi-
tions: (i) global stability of the sequence of u(τ) of available
utilites and (ii) global stability of each transient steady state
(corresponding to a fixed u(τ)). The second condition directly
follows from Corollary 3. The first condition follows from
global convergence of the secant method for linear functions.

As a special case of the above theorem, for utility functions
satisfying Ui(x) = x, ∀i ∈ S, UMKC is globally stable. This
case is of independent interest as it results in a max-min fair
rate allocation (see Corollary 1).

C. Multi-Link Stability of UMKC

In this section we show that UMKC is locally asymptot-
ically stable in its terminal steady state in multi-link net-
works with heterogeneous time-varying feedback delays if
each sender is able to correctly identify its utility bottleneck
link. We use a technique presented by Zhang, Kang and
Loguinov [1]. Further investigations of UMKC’s behavior in
multi-link networks are made by means of simulations.

Following [1], we say that the steady state rate allocation
of flow j depends on the steady state rate allocation of
flow i or simply flow j depends on flow i if and only if
l(j) ∈ L(i) ∩ L(j) and l(i) �= l(j). Here, l(i) ∈ L(i) denotes
again the feedback router of flow i, ∀i ∈ S. We denote the
fact that flow j depends on flow i by i → j. This dependency
relation allows us to construct a dependency graph for a given
assignment of feedback routers. Analogous to [1], we prove
the following proposition for UMKC

Lemma 2. With UMKC, if each sender receives feedback from
its utility bottleneck link, then the resulting dependency graph
is acyclic.

Proof: From its definition we know that a utility bot-
tleneck router is fully utilized. As shown in the proof of
Proposition 4, the received utility of a flow equals the available
utility of its feedback router if the feedback router is fully
utilized: Ui (xi) = ul(i). Since for the utility bottleneck of flow
i we know: Ui (xi) ≥ Uj (xj) ,∀j ∈ L (l(i)) , we conclude

ul(i) ≥ ul(j), ∀j ∈ L (l(i)) . (16)

Now assume that there is a cycle in the dependency graph:
i1 → . . . in → i1. With (16), step 2 in the feedback router
selection Scheme 1 and using the definition of the introduced
dependency relation, we obtain: ul(i1) ≤ · · · ≤ ul(in) ≤ ul(i1).
Now, consider two cases. First, one of the inequality signs is
strict. Then, we obtain the contradiction ul(i1) < ul(i1) and
the proof is complete. Second, all available utilities are equal.
In this case, step 3 in the feedback router selection Scheme 1
demands that the router with the highest router ID provides
the feedback. We obtain: l (i1) < . . . l (in) < l (i1) , thus
obtaining the contradiction l (i1) < l (i1).

Now, following [1], we call an assignment of feedback
routers consistent if and only if it results in an acyclic
dependency graph. To prove the following stability result, we
use a result from [1] showing that a network with a consistent
assignment of feedback links contains at least one link that
has no unresponsive flows.

Theorem 5. In a multi-link network and provided that all
routers have responsive flows, each flow receives feedback
from its utility bottleneck link, and ν ≤ 0.5, u = ů are fixed,
UMKC is locally asymptotically stable in its terminal steady
state in the presence of heterogeneous time-varying feedback
delays.

Proof: From Lemma 2, we know that if each flow receives
its feedback from its utility bottleneck then the resulting
dependency graph is acyclic and therefore the assignment of
the feedback routers is consistent. From Lemma 3 in [1], we
know that with a consistent assignment of feedback routers,
there is at least one router l1 that has no unresponsive flows.
Therefore, we can consider this router and its responsive flows
as a single-link network, since both are independent from the
other flows. For single-link networks, we know from Corollary
2 that system (2), (11), which describes UMKC with fixed
u > 0, is locally asymptotically stable in the terminal steady
state, that is with u = ů, if ν ≤ 0.5. After the flows that
are responsive with respect to l1 have reached their steady
state, we can remove them from the dependency graph. Again,
the new dependency graph contains at least one router l2 that
has no unresponsive flows except for the flows of the router
l1 that we now can assume as constant-rate. Repeating this
argumentation chain for all routers in the network, we obtain
asymptotic local stability of the entire system.

This Theorem proves local asymptotic stability of UMKC’s
terminal steady state in multi-link networks with a stationary
assignment of feedback routers. It does not address the issue
of oscillations of the assignment of feedback routers. During
such oscillations, there is a possibility of having a directed
cycle in the dependency graph that persists over time so that
the proof is not valid for that case. Feedback might oscillate in
the presence of heterogeneous feedback delays when senders
update their rates based on the information that was valid at
different time instants. We leave it for future work to prove
the convergence of UMKC’s assignment of feedback routers.

V. SIMULATION RESULTS

We extended the NS-2 framework [2] to simulate UMKC
in multi-link topologies. In this section we present the results
of the simulations.

A. Single-Link Simulation

Figure 1 shows the results of a single-link simulation
with two flows, one with a strict concave utility function
U1(x) = k

√
x and the other with a multimedia utility function

U2(x) as in Figure 1a. The multimedia application is assumed
to use a codec that operates optimally at 0.5 Mbps and quickly
degrades in performance if the available bandwidth decreases
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Fig. 1. Results of the single-link simulation: (a) Used utility functions. (b)
Sending rates and their sum as percentage of the target load.

(e.g., a video stream). The multimedia utility function is
constructed from linear and tanh sections in a way that it has
a specified minimum and maximum slope. The target capacity
of the link is 0.6 Mbps, which is 90% of the physical capacity
to prevent large queues.

With the bandwidth fair resource allocation, both appli-
cations would receive 0.3 Mbps. This is not enough for
the multimedia application to start transmission, therefore
its received utility would be near zero. In contrast to this,
utility max-min fair bandwidth allocation gives 0.18 Mbps
to the elastic application and 0.42 Mbps to the multimedia
application, which allows the latter to start sending though
with a reduced performance. Figure 1b shows the sending rates
of the flows as a percentage of the target capacity. Flow 1
starts at t = 0 sec and flow 2 starts at t = 5 sec. Both sending
rates converge to their predicted utility max-min fair values of
approximately 30% and 70% of the target load.

B. Multi-Link Simulation

We evaluated UMKC in a multi-link topology given in
Figure 2a with heterogeneous feedback delays and randomly
arriving and departing flows to investigate its stability, fair-
ness, link utilization and queue length. For this simulation,
we used three utility functions, a concave utility function
Uc(x) = kc

√
x, a linear one Ul(x) = klx, and a multimedia

utility function of a video stream Um(x) with a base layer
at 0.5 Mbps and two enhancement layers at 1 Mbps and 1.5
Mbps as in Figure 2b.

The target load of Link 1 is 20 Mbps, the one of Link 2 is
25 Mbps. For both links, target loads are 90% of the physical
capacities to prevent building of large queues. The delay of
Link 1 is 1 ms, the one of Link 2 is 100 ms. Additionally,
each flow has a random round trip delay between 1 ms and
100 ms.

At t = 0, 11 senders are attached to the SN1. 10 start to send
to DN2 and 1 to DN1. At t = 30 sec, further 10 senders join
the network at SN2 and send to DN2. At t = 50 sec, senders
start to join the network at random time instants chosen from
the interval [50, 100] sec. In total, 20 senders join the network
during this time, 10 at SN1 sending to DN2 and 10 at SN2
sending to DN2. At t = 100 sec, senders start to leave network
at random time instants chosen from the interval [100, 150] sec.
20 senders leave the network during this time, 10 from SN1
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Fig. 2. (a) Three core nodes (CN) are interconnected by two links with
target capacities C1 and C2. There are 3 sets of flows that interconnect a
source node (SN) and a destination node (DN): SN1→DN1, SN1→DN2 and
SN2→DN2. Each flow is randomly assigned a round trip delay between 1 ms
and 200 ms, so that we obtain a heterogeneously delayed network. (b) Video
stream utility function used for the multi-link simulation. It is constructed
from linear and tanh sections and it’s slope lies in in the interval [0.1, 50].

and 10 from SN2. These senders are chosen randomly from
the whole set of the senders.

50% of the flows have the strict concave utilty function
Uc(x), 40% the linear utility function Ul(x) and 10% the
multimedia utility function Um(x).

Figure 3a shows the fairness index adopted from Jain, Chiu

and Hawe [38]: φ(x) =
[∑

i∈S Ui(xi)
]2

|S|
∑

i∈S Ui(xi)
2 . Here, Ui (xi) is the

received utility of flow i and |S| is the total number of flows

in the network. The range of values of φ(x) is
(

1
|S| , 1

]
, where

1 means that all flows receive the same utility and 1
|S| means

maximum unfairness. It is remarkable that the fairness level is
above 0.9 even during the period with randomly arriving and
departing flows. At t = 30 sec, 10 flows enter the network
simultaneously, which temporarily degrades the fairness. Also
at other time instants, when multiple flows enter the network in
quick succession, the fairness level is temporarily decreased.

VI. CONCLUSION

In this paper, we addressed two important goals in designing
congestion control mechanisms: delay-independent stability in
presence of heterogeneous time-varying feedback delays and
joint congestion control of flows with utility functions that
are not necessarily concave. We achieved the first goal by
proposing a flexible framework called XMKC, which can be
used for designing congestion control algorithms that achieve
delay-independent stability and allocate resources fairly. We
achieved the second goal by proposing the congestion con-
trol algorithm UMKC, which is based on the previously
established framework and leads to a utility max-min fair
rate allocation in arbitrary networks. Based on the results
for XMKC, we established stability results for UMKC in
the presence of time-varying feedback delays. We proved
asymptotic global stability for time-varying delays in single-
link networks for a max-min fair congestion controller, which
is an important special case of our framework.

An open issue that we leave for future work is the investi-
gation of stability characteristics without the assumption of a
fixed and consistent assignment of the feedback routers (see
also [39]). Another issue is a unified normalization framework
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Fig. 3. Results of the multi-link simulation: (a) Fairness index adopted from
Jain, Chiu and Hawe [38]. (b) The quotient of the aggregate load and the
target load. (c) Queue lengths. (d) The available utility u

(τ)
l

.

for utility functions (see also [40]). Finally, we see potential
in the systematic investiagtion of discrete congestion control
algorithms satisfying the stability condition ρ (|J |) < 1.
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