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Chapter 1

Introduction

1.1 Motivation and Terminology

We consider a normed vector space (V, ∥·∥) for K ⊂ V nonempty. We are given a function

f : K→ R.

Our goal is to solve min{f(x)
∣∣ x ∈ K}. We sometimes write:

minimize f(x)

s.t.: x ∈ K.
(1.1)

An optimal solution of (1.1) is called global minimum.

Definition 1.1. x∗ ∈ K is a global minimum of f over K, if

f(x) ≥ f(x∗) for all x ∈ K.

If
f(x) > f(x∗) for all x ∈ K, x ̸= x∗,

we speak of a strict global minimum. Global maxima are defined analogously.

• infinite dimensional optimization (e.g., V is a function space, L1 or Lp space.),

• finite dimensional optimization (V = Rn),

• continuous optimization (int(K) ̸= ∅),

• discrete optimization (K ⊆ Zn).

1.2 Examples and Applications

Example 1.2 (Optimal Supply). The goal is to buy an amount M of a certain commodity.
We have the offers of n suppliers, where every supplier i ∈M has a maximum supply of
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8 | Chapter 1. Introduction

Mi units of the commodity. The prices of the i-th supplier are given by a function fi(xi).

min
n∑
i=1

fi(xi)

s.t. :
n∑
i=1

xi =M

0 ≤ xi ≤Mi, i = 1, . . . ,n.

Example 1.3 (Regression). An experiment shows the following data (ti,yi), i = 1, . . . ,m.
The hypothesis class under which this data is generated is given by a parameterized
function f(t,p). The goal is to choose parameters p in order to minimize the resulting
error measured as:

m∑
i=1

(yi − f(ti,p))2

A more general least-squares problem is given as:

min
q∑
i=1

Φi(x)
2

s.t. : gj(x) ≤ 0, j = 1, . . . , r

hj(x) = 0, j = 1, . . . , s.

Example 1.4 (Optimal control). We search for a control function that steers a car with
minimal “effort” in a given time frame [0, tf] from A to B. We use Newton’s laws describing
where s(t) denotes the location at time t, v(t) the speed at time t and a(t) denotes the
acceleration:

ṡ(t) = v(t), v̇(t) = a(t).

Suppose we are in dimension 1 and there is a straight line between A nach B of length
d. The coordinate of A is normalized to s = 0 and s = d for B. We need to satisfy
s(0) = 0, v(0) = 0, s(tf) = d, v(tf) = 0.

The control function corresponds to a(t), where a positive sign is acceleration and negative
sign is slow down. The effort accumulates quadratically in a:∫ tf

0
a(t)2dt

We obtain the following optimal control problem:

min
∫ tf
0
a(t)2dt

ṡ(t) = v(t)

v̇(t) = a(t)

s(0) = 0, s(tf) = d

Current Version: January 23, 2024.



1.3. Finite Dimensional Optimization | 9

v(0) = 0, v(tf) = 0.

1.3 Finite Dimensional Optimization

In this lecture, we consider only finite dimensional problems, that is, V := Rn.
The set of points in K that attain the minimum is denoted by arg min(f,K). We get

α = min{f(x) : x ∈ K}⇔ arg min(f,K) = {x ∈ K
∣∣ f(x) = α}.

x

f(x)

0 z1 2 3

Figure 1.1: f attains on K = [0, 3] its global minimum at x∗ = 3. There is a further local
minimum at z.

Definition 1.5. A point x∗ ∈ K is a local Minimum of f over K, if there is ρ > 0 such
that

f(x) ≥ f(x∗) for all x ∈ K ∩ Bρ(x∗),

where
Bρ(x) =

{
y ∈ Rn

∣∣ ∥x− y∥ < ρ
}

denotes the open ball around x with radius ρ > 0. If

f(x) > f(x∗) for all x ∈ K ∩ Bρ(x∗), x ̸= x∗,

we speak of a strict local minimum.

Usually K is represented via functional inequalities or equalities. In this case, we obtain:

K =
{
x ∈ Rn

∣∣ hi(x) = 0, i ∈ I1 = {1, . . . ,m}, gj(x) ≤ 0, j ∈ I2 = {1, . . . ,p}
}

, (1.2)

where all functions satisfy f,hi,gj ∈ C2 for all i ∈ I1, j ∈ I2.
We obtain the following classes of optimization problems:

• unrestricted optimization: m = p = 0

• restricted optimization: m > 0 oder p > 0

• linear optimization: f linear, gj,hi affin linear
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• quadratic optimization: f(x) = x⊺Ax+ b⊺x+ c, gj,hi affin linear

• convex optimization: f konvex, gj konvex, hi affin linear

• L2-problems: the function f has the form

f(x) =

n∑
i=1

wi (fi(x))
2,

with smooth functions fi and weights wi > 0.

• minimax problems: f has the form

f(x) = max{fi(x), i = 1, ...,m}

with smooth functions fi.

The following questions are the key drivers for the content of this lecture:

• When do optimal solutions exist?

• Are they unique?

• Can we derive useful necessary and sufficient optimality conditions?

• What about algorithms for solving such problems?

• What is the dependence of optimal solutions on problem parameters?

We recap a fundamental result due to Weierstrass.

Theorem 1.6 (Weierstrass). Let K ⊂ Rn be nonempty and compact and f : K → R
continuous. Then, there is x∗ ∈ K with

f(x∗) ≤ f(x) for all x ∈ K.

Proof. As f is continuous, the image f(K) of the compactum K is bounded in R and the
infimum

A := inf{f(x)|x ∈ K} ∈ R

exists. Hence, there is a sequence xn ∈ K,n ∈ N with

lim
n→∞ f(xn) = A.

As xn,n ∈ N is bounded, we can use the theorem of Bolzano/Weierstrass giving a conver-
gent subsequence xnk

,k ∈ N with

lim
k→∞ xnk

=: x∗ ∈ K.

Current Version: January 23, 2024.
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x∗ K
x∗

K

Figure 1.2: The red arcs represent feasible directions in DK(x∗).

With continuity of f we get
f(x∗) = lim

k→∞ f(xnk
) = A.

Thus, f attains at x∗ its minimum over K .

1.4 Differentiable Classic Optimization

1.4.1 Variational Inequalities

Definition 1.7 (Feasible Directions). Let x ∈ K ⊆ Rn with K ̸= ∅. The vector d ∈ Rn is
a feasible direction at x, if there is ᾱ > 0 such that x+ αd ∈ K for all 0 ≤ α ≤ ᾱ.

We denote by DK(x) the set of feasible directions at x. It is easy to see that DK(x) is a
pointed cone containing 0 (cf. 2.1), hence,DK(x) is known as the cone of feasible directions.

Slope g ′(0) > 0

g(α)

αᾱ

For continuous optimization problems (1.1) we obtain the following necessary optimality
conditions.

Theorem 1.8 (Variational Inequality). Let K ⊆ Rn and f : Rn → R be continuously
differentiable. Let x∗ be a local minimum of f over K and d ∈ DK(x∗). Then

∇f(x∗)⊺d ≥ 0.

Proof. Since d ∈ DK(x∗), there is ᾱ > 0 such that x∗(α) := x∗+αd ∈ K for all 0 ≤ α ≤ ᾱ.
We define a 1-dimensional function g(α) := f(x∗(α)). For a local minimum x∗ (w.r.t.
Bρ(x

∗)), we have
g(α) ≥ g(0) for all α ∈ [0, min{ρ̄, ᾱ}],
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where
ρ̄ := sup{α ≥ 0|x∗ + αd ∈ Bρ/2(x∗)}.

Thus,

lim
α→+0

g(α) − g(0)
α

≥ 0.

With the differentiability of f we get

0 ≤ lim
α→+0

g(α) − g(0)
α

= g ′(0) = ∇f(x∗)⊺d.

Theorem 1.9. Let K ⊆ Rn and f : K→ R be continuously differentiable. If x∗ ∈ int(K)
is a local minimum of f over K, then:

∇f(x∗) = 0. (1.3)

In particular, we have (1.3) for every local minimum of an unconstrained optimization
problem.

Proof. With Theorem 1.8 we get for every d ∈ DK(x∗): ∇f(x∗)⊺d ≥ 0. With x∗ ∈ int(K),
we get DK(x∗) = Rn.

Remark 1.10. Note that the concept of feasible directions of Definition 1.7 is not
useful for sets given my algebraic manifolds. Here, we need curved directions leading to
concepts of the tangent cone and linearized cone that we will see later.

1.4.2 Convex Optimization

We consider now a differentiable convex function f over a convex set K ⊂ Rn.

Definition 1.11. A set K ⊂ Rn is convex, if for all x,y ∈ K the segment between x and
y lies in K, that is,

λx+ (1 − λ)y ∈ K for all λ ∈ [0, 1].

Figure 1.3: Left: convex set. Right: non-convex set.

Current Version: January 23, 2024.
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Definition 1.12. Let K ⊂ Rn be convex. A function f : K → R is convex, if for all
x,y ∈ K and λ ∈ [0, 1] we have:

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (1.4)

f is strict convex, if for all x ̸= y and λ ∈ (0, 1) the above inequality is strict. The
function f is called (strictly) concave, if −f is (strictly) convex.

Theorem 1.13. Let K ⊂ Rn be convex, and let f1, f2 : K→ R be convex functions and
let α > 0. Then, the functions αf1, f1 + f2 and max{f1, f2} are convex over K.

Proof. Exercise.

Differences, products and minima of convex functions are not always convex!

Definition 1.14. Let K ⊂ Rn be convex, and f : K→ R. The set

Epi(f) = {(x,α) ∈ K× R : f(x) ≤ α}

is the epigraph vof f. For β ∈ R, we term the set

L(f,β) = {x ∈ K : f(x) ≤ β}

lower level set of f with level β.

Theorem 1.15. Let K ⊆ Rn and f : K→ R. Then:

1. f is convex ⇔ Epi(f) is convex.

2. f is convex ⇒ L(f,β) is convex for all β ∈ R. The reverse need not be true.

Proof. Exercise.

For convex differentiable functions we obtain the following characterization:

Theorem 1.16. Let f : Rn → R and f ∈ C1. Then:

1. f is konvex over the convex set K ⊆ Rn iff for all x,y ∈ K:

f(y) ≥ f(x) +∇f(x)⊺(y− x). (1.5)

2. f is strict convex ⇒ (1.5) is strict for all x ̸= y ∈ K.

Proof. We first show ⇐ for the first statement. Assume (1.5) holds for all x,y ∈ K.
Choose arbitrary x,y ∈ K and λ ∈ (0, 1). With convexity of K we get

z = λx+ (1 − λ)y ∈ K. (1.6)
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Tx(y) = f(x) +∇f(x)⊺(y − x)

yx

f(y)

Figure 1.4: Illustration of inequality 1.5. Tx(y) represents the tangent plane of f in x and
we have Tx(y) ≤ f(y) for all y ∈ K.

With (1.5), we get for x,y, z ∈ K:

f(x) ≥ f(z) + (x− z)⊺∇f(z) (1.7)

f(y) ≥ f(z) + (y− z)⊺∇f(z). (1.8)

Multiply (1.7) with λ and (1.8) with (1 − λ), add both inequalities and obtain:

λf(x) + (1 − λ)f(y) ≥ f(z) +
(
(λ(x− z) + (1 − λ)(y− z)

)⊺
∇f(z)

= f(z) +
(
λx+ (1 − λ)y− z)

)⊺
∇f(z)

= f(z).

With (1.6), the second expression of the second equation is 0. Thus, f is convex.⇒: Let f be convex. We choose x,y ∈ K and define ψ : R→ R as

ψ(λ) = (1 − λ)f(x) + λf(y) − f((1 − λ)x+ λy).

With convexity of f we get for all λ ∈ [0, 1] that ψ(λ) ≥ 0. Moreover ψ(0) = 0. We
compute the derivative of ψ at 0 and get

0 ≤ lim
t→0+

ψ(t) −ψ(0)
t

= Ψ̇(0) = −f(x) + f(y) −∇f(x)⊺(y− x).

The second statement is easy.

We obtain a sufficient optimality criterion for convex optimization problems.

Theorem 1.17. Let K ⊂ Rn be convex and let f : K → R be a differentiable konvex
function. Then, every local minimum of f over K is also a global Minimum.

Proof. Let x∗ be a local minimum. With Theorem 1.8, we get for every d ∈ DK(x∗) the
condition ∇f(x∗)⊺d ≥ 0. Because K is convex, for any y ∈ K, we get x∗ + λ(y − x∗) =

Current Version: January 23, 2024.



1.4. Differentiable Classic Optimization | 15

λy+ (1 − λ)x∗ ∈ K for all λ ∈ [0, 1]. Hence, y− x∗ ∈ DK(x∗). We get

f(y) ≥ f(x∗) +∇f(x∗)⊺(y− x∗) ≥ f(x∗),

where the first inequality follows from Theorem 1.16 and the second one from the varia-
tional inequality.

For unrestricted convex problems, we get the following implication.

Corollary 1.18. Let f : Rn → R be a differentiable konvex function. Then, every
x∗ ∈ Rn with ∇f(x∗) = 0 is a global minimum of the associated unrestricted optimization
problem.
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Chapter 2

Convexity and Separating Hyperplanes

2.1 Convex Sets and Cones

Definition 2.1. 1. For M ⊂ Rn we define

co(M) := ∩{K ⊃M|K convex}

as the convex hull of M. For x0, . . . , xk ∈ Rn we define

co(x0, . . . , xk) = co({x0, . . . , xk}).

This set is known as the simplex spanned by the points x0, . . . , xk. If x1 −

x0, . . . , xk − x0 are linearly independent, then the simplex is non-degenerate.

2. A subset K ⊂ Rn is a cone (pointed at 0), if for all x ∈ K the half-ray through x
lies in K, i.e.

αx ∈ K for all α ≥ 0.

3. Let K ⊂ Rn and x ∈ K. The cone

K(x) := {α(y− x)|y ∈ K,α > 0} =
⋃
α>0

α(K− x)

is termed the conic hull of K w.r.t. x.

See Fig. 2.1 for an illustration.

K

x y
K

x y

co(K)

Figure 2.1: The first set is convex. The second heart is non-convex and the dashed set
represents the convex hull.
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Definition 2.2. Let a ∈ Rn \ {0} and b ∈ R.

1. The set H = {x ∈ Rn : a⊺x = b} is called hyperplane.

2. The sets H− = {x ∈ Rn : a⊺x ≤ b} and H+ = {x ∈ Rn : a⊺x ≥ b} are Halfspaces.

3. Let A be a real-valued m× n matrix and b ∈ Rm.
K = {x ∈ Rn|Ax ≤ b} is a polyhedron and K = {x ∈ Rn|Ax = b, x ≥ 0} is a
polyhedron in standard form.

K

x y

K

K

x

y

Figure 2.2: Left: convex cone. Right: non-convex cone.

2.2 Convex Combinations

Definition 2.3. Let x1, . . . , xk ∈ Rn und λ1, . . . , λk ∈ R≥0 with λ1 + · · ·+ λk = 1.

• The vector
∑k
i=1 λix

i is called convex combination of x1, . . . , xk.

Theorem 2.4. 1. The intersection of convex sets is convex.

2. Every polyhedron is convex.

3. A convex combination of a finite points of a convex set lies in the respective set.

4. The convex hull of a set K ⊂ Rn is the set of all convex combinations of points in
K. The set of convex combinations of a finite point set is convex.

Proof. (1): Let Xi, i ∈ I be convex sets and define X := ∩i∈IXi. For x,y ∈ X we have
x,y ∈ Xi for all i ∈ I, hence λx+ (1− λ)y ∈ Xi for all i ∈ I and, hence, λx+ (1− λ)y ∈ X.
(2): A polyhedron is the intersection of finitely many convex halfspaces.

Current Version: January 23, 2024.
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(3): We prove via induction over k, that every convex combination of k points in X lies
in X. For k = 1 the statement is trivial and for k = 2 the statement follows from the
convexity of X. For the step k− 1→ k consider a convex combination µ1x

1 + · · ·µkxk. If
µi = 0 for some i ∈ {1, . . . ,k} we can use the induction hypothesis, hence, we can assume
w.l.o.g. that µk ∈ (0, 1). Define

ν1 =
µ1

1 − µk
, . . . ,νk−1 =

µk−1

1 − µk
≥ 0,

k−1∑
l=1

νl = 1.

Set

y :=
k−1∑
l=1

νlx
l

and observe that y ∈ X follows by the induction hypothesis. We get

x = (1 − µk)y+ µkx
k ∈ X,

because the case k = 2 was shown already.

(4): Let L be the set of convex combinations of points in K.

L ⊆ co(K): With (1) the set co(K) is convex, hence, all convex combinations of points in
co(K) lie again in co(K). With the definition of the convex hull, we get K ⊆ co(K), thus,
L ⊆ co(K).

co(K) ⊆ L: Let x,y ∈ L with

x =

k∑
i=1

αix
i and y =

l∑
j=1

βjy
j, where αi,βj ≥ 0,

k∑
i=1

αi = 1,
l∑
j=1

βj = 1.

For λ ∈ [0, 1] we get

z = λx+ (1 − λ)y =

k∑
i=1

λαix
i +

l∑
j=1

(1 − λ)βjy
j,

and thus z ∈ L because

0 ≤ λαi ≤ 1 ∀i, 0 ≤ (1 − λ)βj ≤ 1 ∀j and

k∑
i=1

λαi +

l∑
j=1

(1 − λ)βj = λ

k∑
i=1

αi + (1 − λ)

l∑
j=1

βj = λ+ 1 − λ = 1,

which shows that z is a convex combination of points in K. Thus L is convex. Obviously
K ⊆ L, since every xp ∈ K can be written as

xp =
∑
j∈J
λjx

j with λp = 1 and λj = 0 for i ̸= p.

Per definition we get co(K) ⊆ L, because L is a convex set containing K.
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Corollary 2.5. The set of convex combinations of x1, . . . , xk ∈ Rn is the smallest (w.r.t.
inclusion) convex subset of Rn, which contains x1, . . . , xk.

Proof. Let X be the set of convex combinations of x1, . . . , xk ∈ Rn. Define

Y := co(x1, . . . , xk) =
⋂
C⊆Rn

C convex
{x1,...,xk}⊂C

C. (2.1)

Y ist well-defined because Rn is one candidate C. With Theorem 2.4(1.) Y is convex as
intersection of convex sets. Y is also the smallest convex set containing x1, . . . , xk. Since
X is convex (see Theorem 2.4(4.) we get Y ⊆ X. Let x ∈ X. With the definition of X we
get x =

∑k
i=1 λix

i. As by assumption x1, . . . , xk ∈ Y we get with Theorem 2.4(3.), that
x ∈ Y.

Theorem 2.6 (Charathéodory). For K ⊂ Rn, co(K) is equal to the set of all convex
combinations which require at most (n+ 1) points of K.

Proof. Let x ∈ co(K). With Theorem 2.4 (4) there are x1, . . . , xk ∈ K with

x =

k∑
i=1

λix
i mit λi ≥ 0 for all i = 1, . . . ,k and

k∑
i=1

λi = 1.

If k ≤ n + 1 we are done. If k > n + 1, then we show that for the representation of x we
can ignore one of the k points: Define the (k− 1) vectors yi = xi− xk, i = 1, ...,k− 1. For
k > n + 1, the points yi are linearly dependent, i.e., there are α1, . . . ,αk−1 with αj ̸= 0
for at least one j ∈ {1, . . . ,k− 1} with

k−1∑
i=1

αiy
i = 0

⇔ k−1∑
i=1

αi(x
i − xk) = 0

⇔ k−1∑
i=1

αix
i + (−

k−1∑
i=1

αi)x
k = 0.

With αk = −
∑k−1
i=1 αi we get

k∑
i=1

αix
i = 0 und

k∑
i=1

αi = 0.

Because αj ̸= 0 for at least one j ∈ {1, . . . ,k− 1}, the following value is well-defined:

i0 = arg min
i∈{1,...,k}

{
λi
αi

|αi > 0} =
λi0
αi0

.
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We get

λi −
λi0
αi0
αi ≥ 0 ∀i and

k∑
i=1

λi −
λi0
αi0
αi = 1.

Moreover

x =

k∑
i=1

λix
i =

k∑
i=1

(
λix

i −
λi0
αi0
αix

i

)
=

k∑
i=1

(
λi − αi

λi0
αi0

)
xi.

Here, we have λi0 − αi0
λi0
αi0

= 0, and, hence, x can represented as a convex combination of
at most k− 1 points.

2.3 Separating Hyperplanes

H

K1

K2

Figure 2.3: Illustration of the (strict) separation of two disjoint convex sets.

Definition 2.7. Two sets K1,K2 ⊂ Rn are called separable, if there are c ∈ R and row
vector λ ∈ Rn, λ ̸= 0 with

λx ≤ c ≤ λy for all x ∈ K1,y ∈ K2.

The hyperplane H = {x ∈ Rn|λx = c} is called separating hyperplane (cf. Fig. 2.3); The
sets K1,K2 are strictly separable via H, if K1∪K2 is not contained in H. The hyperplane
H defines two halfspaces

H+ = {x ∈ Rn|λx ≥ c}, H− = {x ∈ Rn|λx ≤ c}.

The sets K1,K2 are separable, if either K1 ⊆ H+,K2 ⊆ H− or K1 ⊆ H−,K2 ⊆ H+.

Theorem 2.8. Let K ⊂ Rn be a non-empty, convex set an let y ̸∈
o

K := int(K). Then,
{y} and K are separable, i.e., there is a row vector λ ∈ Rn \ {0} with

λy ≤ λx for all x ∈ K.
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H

K1

K2

Figure 2.4: The two sets K1,K2 ⊂ R2 are separable but not strictly. The separating
hyperplane is given as H = {x ∈ R2|x2 = 0}.

y

λ⊺ = x0 − y

x0 +H

x0

K

Figure 2.5: Illustration of the proof of Theorem 2.8. If x0 = y then H+ y is a separating
supporting hyperplane.

If
o

K ̸= ∅ then {y} and
o

K are strictly separable and we get

λy < λx for all x ∈
o

K.

Proof. 1. Case: y /∈ K̄, where K̄ denotes the topological closure of K. With ∥x∥ we denote
as usual the Euklidian norm. Set

d := inf
x∈K̄

∥x− y∥ > 0.

The function f(x) := ∥y− x∥ is continuous and attains on K̄ ∩ {x ∈ Rn| ∥x− y∥ ≤ 2d} its
minimum (Theorem of Weierstrass). As K̄ is closed, there is x0 ∈ K̄ with d = ∥y− x0∥.
With convexity of K̄ one can further show that the point x0 is unique (cf. Fig. 2.5).

We show λ := (x0 − y)⊺ ̸= 0 satisfies the conditions of the theorem. Let x ∈ K. With
convexity of K̄ we get

x0 + α(x− x0) ∈ K̄ für 0 ≤ α ≤ 1.

Hence,
∥x0 + α(x− x0) − y∥2 ≥ ∥x0 − y∥2
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and therefore
2α(x0 − y)

⊺(x− x0) + α
2 ∥x− x0∥2 ≥ 0.

Division byα > 0 yields for α ↓ 0

(x0 − y)
⊺(x− x0) ≥ 0

and therefore we get using λ⊺ = (x0 − y) and d = ∥λ∥

λx ≥ λx0 = λy+ d2 > λy.

Thus, H := {x ∈ Rn|λx = λx0} is a hyperplane separating {y} and K.

2. Case: y ∈ ∂K = K̄−
o

K.
For y ∈ ∂K there is a sequence {yk},yk /∈ K̄, with y = limk→∞ yk. For yk we can choose
according to Case 1. a row vector λk ̸= 0 with

λkyk ≤ λkx for all x ∈ K.

W.l.o.g. we can set ∥λk∥ = 1 and hence we can assume that the bounded sequence {λk}

converges with λ = limk→∞ λk, ∥λ∥ = 1. Taking the limit on both sides yields

λy ≤ λx for all x ∈ K.

The statement
λy < λx for all x ∈

o

K

follows immediately.

In case y ∈ ∂K we call the hyperplane supporting. From the separating hyperplane
theorem 2.8 we get:

K

0H

Figure 2.6: Separation of a convex cone via a hyperplane through 0.

Theorem 2.9. Let K ⊂ Rn be a non-empty convex and closed cone and suppose y /∈ K.
Then, there is λ ∈ Rn \ {0} with

λy < 0 ≤ λx for all x ∈ K.
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Proof. With K̄ = K there is – using the first statement of Theorem 2.8 – a row vector
λ ∈ Rn \ {0} such that for all x ∈ K we have λy < λx. From 0 ∈ K we get λy < λ0 = 0.
Suppose there is x ∈ K with λx < 0. Then,

λ(αx) = α(λx)→α→∞ −∞,

contradicting boundedness of λK via λy from below. Thus, we get

∀x ∈ K : λy < 0 ≤ λx.

We get as an implication the following theorem of the alternatives:

Theorem 2.10 (Lemma of Farkas). Let B a k × n matrix and d ∈ Rk. Then, exactly
one of the following statements is true

1. Bx = d, x ≥ 0 admits a solution x ∈ Rn.

2. λB ≥ 0, λd < 0 admits a solution λ ∈ Rk.

Proof. The cone
K := {Bx|x ≥ 0} ⊂ Rk

non-empty convex and closed. Exactly one of the statements is true

(a) d ∈ K.

(b) d /∈ K.

Statement (a) is statement (1) of the theorem. In case (b) we get with Theorem 2.8 the
existence of some λ ∈ Rk with

λd < 0 ≤ λz for all z ∈ K.

Also λBx ≥ 0 for all x ≥ 0, i.e., λB ≥ 0. This is Statement (2) of the theorem. Note
that (a) and (1) (and (b) and (2)) are equivalent, and, thus, (1) and (2) cannot be true
simultaneously.
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Chapter 3

Introduction to Linear Optimization

3.1 Examples

3.1.1 Production Modells

A company produces n products P1, . . . ,Pn, and for the production process, m activities
A1, . . . ,Am (workers, materials, etc.) are needed. Product Pj requires aij shares of the
activity Ai yields a net-gain of cj Euro. For activity Ai there is an upper bound of bi. The
production amount xj of product Pj should be determined in order maximize net gain:

z(x) =

n∑
j=1

cjxj

subject to:

n∑
j=1

aijxj ≤ bi, for all i = 1, . . . ,m

xj ≥ 0, for all j = 1, . . . ,n.

Example 3.1. A shoe fabric produces two types of products. There are 40 employees
and 10 machines. The working time budget and material budget is depicted in Table 3.1:
With the decision variables

Table 3.1: Parameters.
Type 1 Type 2 available

Production time [h] 20 10 8000

Machine hours [h] 4 5 2000

Material supply [dm2] 6 15 4500

Net gain [EUR] 16 32 −

x1 :amount type 1

25
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x2 : amount type 2

we get:

maximize z(x1, x2) = 16x1 + 32x2

s.t.:

20x1 + 10x2 ≤ 8000

4x1 + 5x2 ≤ 2000

6x1 + 15x2 ≤ 4500

x1 ≥ 0

x2 ≥ 0

The level plane with level k is given by z(x1, x2) = 16x1 + 32x2 = k. One way of solving
the problem is to determine the maximal k such that at least one point on z(x1, x2) = k

is feasible.

x1

x2
20x1 + 10x2 = 8000

4x1 + 5x2 = 2000

6x1 + 15x2 = 450016x1 + 32x2 = k = 3200

B

C

D

E

A

K

The function z attains its maximal value at vertex D of the feasible set K. The vertices
of K are A,B,C,D,E:

Table 3.2: Vertices of the feasible region of the production problem

Vertex z x1 x2 y1 y2 y3

B 6400 400 0 0 400 2100

C 9600 1000/3 400/3 0 0 500

D 10400 250 200 100 0 0
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In every vertex, exactly two variables are 0 (basic solution). If we walk along vertices
B→ C→ D the value of z increases. The optimal vertex is D with objective value:

x1 = 250, x2 = 200, z(x1, x2) = 10400.

3.2 Mathematical Formulation of Linear Optimization Problems

The linear optimization (LP) in standard form is given by

minimize z(x1, . . . , xn) =
n∑
j=1

cjxj

s.t.:
n∑
j=1

aijxj = bi, 1 ≤ i ≤ m

xj ≥ 0, j = 1, . . . ,n

In vector notation

x =


x1......
xn

 ∈ Rn, c = (c1, . . . , cn) ∈ Rn,b =


b1

..
bm

 ∈ Rm,A = (aik) m× n matrix

we get

minimize z(x) = cx

unter d.N.

Ax = b

x ≥ 0.

(3.1)

3.3 Reduction of other LP’s to Standardform

Suppose we have an LP that contains inequalities or free variables.
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3.3.1 Inequalities

Let A be an m× n matrix (not necessarily m < n).

minimize z(x) = cx

s.t.:

Ax ≤ b

x ≥ 0.

(3.2)

Define slack-variables
y := b−Ax ∈ Rm.

Then, Ax ≤ b is equivalent to
Ax+ y = b, y ≥ 0.

With c̃ := (c, 0) ∈ Rn+m, x̃ :=

x
y

 ∈ Rn+m, I being the m ×m identity matrix and

the m × (n +m)-matrix Ã := (A|I) we get that (3.2) is equivalent to the standard form
formulation

minimize z̃(x) = c̃x̃

s.t.:

Ãx̃ = b̃

x̃ ≥ 0.

(3.3)

3.3.2 Free Variable

In standard form (3.1) let some xi without sign constraint, e.g. x1.

minimize z(x) = cx

s.t.:

Ax = b

x2 ≥ 0, . . . , xn ≥ 0.

(3.4)
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1. Method: Elimination of x1

Choose index i with ai1 ̸= 0 and eliminate from

ai1x1 + ai2x2 + · · ·+ ainxn = bi

the variable x1 as linear combination of x2, . . . , xn. This yields a reduced linear equation
system of

Ã


x2......
xn

 = b̃ ∈ Rm−1.

2. Method:

Set x1 = u1 − v1,u1 := max{0, x1} ≥ 0, v1 := max{0,−x1} ≥ 0. This yields an LP with
n+ 1 variables u1, v1, x2, . . . , xn.
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Chapter 4

Theory of Polyhedra

We will study fundamental elements of the theory of polyhedra including vertices, faces
and valid inequalities.
The set

K := {x ∈ Rn|Ax = b, x ≥ 0}

is a polyhedron in standard form. The description of K is given via matrices A,b, hence,
we write P=(A,b) := K. Similarly, for

K := {x ∈ Rn|Ax ≤ b}

we write P(A,b) := K.

Definition 4.1. A bounded polyhedron is a polytope.

4.1 Faces of Polyhedra

We consider in the following polyedra of the form P(A,b), where A ∈ Rm×n,b ∈ Rm.

Definition 4.2. Let K ⊆ Rn,a ∈ Rn,α ∈ R.

1. The inequality a⊺x ≤ α is called valid w.r.t. K, if

K ⊆ {x ∈ Rn|a⊺x ≤ α}.

2. The hyperplane H = {x ∈ Rn|a⊺x = α},a ̸= 0, is called supporting hyperplane of
K, if a⊺x ≤ α is valid w.r.t. K and K ∩H ̸= ∅.

Note that a = 0 in the first statement of Definition 4.2 is feasible.

Definition 4.3. Let K ⊂ Rn. A set F ⊆ K is called a face of K, if there is a valid
inequality w.r.t. K of the form d⊺x ≤ δ such that

F = K ∩ {x ∈ Rn|d⊺x = δ}.

A face is proper, if F ̸= K. F is called non-trivial, is ∅ ≠ F ̸= K.

31
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Is d⊺x ≤ δ valid w.r.t. K, then K ∩ {x ∈ Rn|d⊺x = δ} is called induced face by d⊺x ≤ δ.

Note again that d = 0 in Definition 4.3 is allowed.

Example 4.4. We give an example.

2x1 + x2 ≤ 8

4x1 + 5x2 ≤ 20

2x1 + 5x2 ≤ 15

x1, x2 ≥ 0

x1

x2

K

face F

G

Figure 4.1: Example of a face.

The face F is induced by
2x1 + 5x2 ≤ 15,

because
F = K ∩ {x ∈ R2

+|2x1 + 5x2 = 15}.

Moreover, G = (10
3 , 4

3) is a face indued by the valid inequalities (in Proposition 4.8 it
becomes clear that a face can be induced by several valid inequalities).

2x1 + x2 ≤ 8

4x1 + 5x2 ≤ 20.

Note that G = (10
3 , 4

3) as a face of K can also be induced via (see Fig. 4.1)

4x1 + 3x2 ≤ 52/3

x1 + x2 ≤ 14/3
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Proposition 4.5. Let K = P(A,b) ⊂ Rnbe a polyhedron. Then, the following state-
ments hold:

1. K is a face of itself.

2. ∅ is a face of K.

3. If F = {x|d⊺x = δ} ∩ K is a non-trivial face of K, then d ̸= 0.

Proof. (1): K = K ∩ {x ∈ Rn|0⊺x = 0}.
(2): Let δ > 0 be arbitrary. We have 0⊺x ≤ δ is a valid inequality for K and we get
∅ = K ∩ {x ∈ Rn|0⊺x = δ}.
(3): For d = 0 the case δ ≥ 0 yields a valid inequality of the form d⊺x ≤ δ and, hence,
one of the first two cases applies.

Theorem 4.6. Let K = P(A,b) be a non-empty polyhedron and c⊺ ∈ Rn. Consider the
LP

min{cx|x ∈ K}.

Let F∗ be the solution set and in case F∗ ̸= ∅ let z∗ = min{cx|x ∈ K}. Then:

1. If F∗ ̸= ∅, then F∗ = {x ∈ K|cx = z∗} is a non-empty face of K and if c ̸= 0, the set
{x ∈ Rn|cx = z∗} is a supporting hyperplane of K.

2. The set of optimal solutions of min{cx|x ∈ K} is a face of K.

Proof. For (1):
Let F∗ ̸= ∅. With the definition of z∗ we get cx ≥ z∗ for all x ∈ K, thus the inequality
−cx ≤ −z∗ is valid for K. Moreover, F∗ = {x ∈ Rn|cx = z∗}∩K, implying that F∗ is a non-
empty face of K. We get immediately that {x ∈ Rn|cx = z∗} is a supporting hyperplane in
case c ̸= 0.
For (2): For F∗ = ∅ the statement is clear, otherwise we get that (2) is just a reformulation
of (1).

An illustration of the above theorem appears in Fig. 4.2.
For A ∈ Rm×n with row index set M := {1, . . . ,m} and column index set N = {1, . . . ,n}
we denote by ai, i ∈M the rows and by aj, j ∈ N the columns of A. For I ⊆M we denote
by AI the submatrix consisting of the rows ai, i ∈ I.

Definition 4.7. Let K = P(A,b) ⊂ Rn and M the row index set of A. For F ⊆ K let

eq(F) := {i ∈M|aix = bi∀x ∈ F},

i.e. eq(F) is the set of all active inequalities at x ∈ F. For I ⊆M denote by

fa(I) := {x ∈ K|AIx = bI}
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x1

x2

cx = z∗

cx = k K

set of optimal solutions

Figure 4.2: Graphical illustration of Theorem (4.6).

x1

x2

cx = k

Figure 4.3: In this example, the set of optimal solutions is empty.
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Figure 4.4: The black points of the polytopes are vertices. For a circle, every point on the
boundary is a vertex.

the induced face by valid inequalities corresponding to index set I.

We verify that indeed fa(I) is a face of K.

Proposition 4.8. The set F := fa(I) defined in Definition 4.7 is a face of K.

Proof. If I = ∅, then F = K is a trivial face of K. Let |I| ≥ 1. Define

a⊺ :=
∑
i∈I
ai and γ :=

∑
i∈I
bi.

We have that a⊺x ≤ γ is a valid inequality and for x ∈ K \ F, at least ine inequality is
strict, hence,

a⊺x

 = γ, for x ∈ F,

< γ, else.

We get F = {x ∈ K|a⊺x = γ} = K ∩ {x ∈ Rn|a⊺x = γ}.

We consider again the Example 4.4. Here, we have M = {1, 2, 3, 4, 5}, fa({1, 2}) = G and
eq(G) = {1, 2}.

4.2 Vertices and Extreme Points

Definition 4.9. Let K ⊂ Rn.

1. x ∈ K is called extreme point of K, if there are no two distinct points y, z ∈ K with

x = αy+ (1 − α)z for some α ∈ (0, 1).

2. x ∈ K is called vertex of K, if {x} is a 0-dimensional face of K.

Definition 4.9 works for any set K ⊂ Rn.

Theorem 4.10. Let K = P(A,b) ⊂ Rn be a polyhedron and x ∈ K. Then, the following
is equivalent:

1. x is a vertex of K.
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2. {x} is a 0-dimensional face of K.

3. x is an extreme point of K.

4. rank(Aeq({x})) = n.

5. There is c⊺ ∈ Rn \{0}, such that x is the unique solution to the LP min{cy : y ∈ K}.

Proof. The statements (1) and (2) just correspond to the Definition 4.9 of a vertex. The
proof works as follows: (2)⇒(5), (5)⇒(3), (3)⇒(4) and (4)⇒(2).
(2)⇒(5):
Per definition, x is a face, hence there is a valid inequality w.r.t. K d⊺x ≤ γ, such that
{y ∈ K|d⊺x = γ} = {x}.
Thus, x is the unique optimal solution to min{cy : y ∈ K} for c := −d⊺.
If K ̸= {x}, then c ̸= 0 because of Proposition 4.5(3), otherwise we can choose c ̸= 0
arbitrarily.
(5)⇒(3):
Let x be the unique optimal solution to min{cy|y ∈ K} with value γ. If x = λw+ (1− λ)z
for w, z ∈ K,w ̸= z, 0 < λ < 1, then

γ = cx = c(λw+ (1 − λ)z)

= λcw+ (1 − λ)cz

> λγ+ (1 − λ)γ = γ,

contradiction.
(3)⇒(4):
Suppose (4) does not hold. Then, there is d ̸= 0 with Aeq({x})d = 0. For small ϵ > 0 we
get

A(x± ϵd) ≤ b.

With y = x − ϵd, and z = x + ϵd we get y, z ∈ K and x = 1/2y + 1/2z . Hence, we also
get that (3) is not valid.
(4)⇒(2):
We know that fa(eq({x})) is a face and with rank(Aeq({x})) = n we get

fa(eq({x})) = {y ∈ K|Aeq({x})y = beq({x})} = {x}.

Thus, {x} is a face and its dimension is 0.

We get a similar result for polyeder in standard form.

Theorem 4.11. Let K = P=(A,b), i.e.

K := {x ∈ Rn|Ax = b, x ≥ 0}.
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x ∈ K is an extreme point or equivalently a vertex, if and only if the column vectors ak

of A that correspond to indices k with xk > 0 are linearly independent.

Proof. ⇒: Let x ∈ K be a vertex. W.l.o.g.

x = (x1, . . . , xr, 0, . . . , 0)⊺, xi > 0, i = 1, . . . , r.

If r = 0, the column set is empty, and the set is linearly independent. For r > 0 we have

r∑
i=1

aixi = b.

Contra-position: suppose a1, . . . ,ar are linearly dependent. Then, there are scalars
d1, . . . ,dr,di ̸= 0 for at least one i, with

r∑
i=1

aidi = 0.

If xi > 0, then for ϵ > 0 small enough, we get

xi ± ϵdi > 0, for i = 1, . . . , r.

We set
d := (d1, . . . ,dr, 0, . . . , 0)⊺,y := x+ ϵd, z := x− ϵd.

Then, y, z ≥ 0 and with

r∑
i=1

ai(xi ± ϵdi) =
r∑
i=1

aixi ± ϵ
r∑
i=1

aidi︸ ︷︷ ︸
=0

= b,

we have y, z ∈ K. With x ̸= y, z, and x = y+z
2 we get a contradiction that x is an extreme

point of K. Hence, a1, . . . ,ar are linearly independent.⇐: W.l.o.g. assume that the first r components of x are positive, and assume that
a1, . . . ,ar are linearly independent.

1. Case: r = 0 :⇒ x = 0. If x = 0 is no extreme point, there are y, z ∈ K,y ̸= z and
0 < α < 1 with

0 = x = αy+ (1 − α)z.

With y, z ≥ 0 and α ̸= 0, we get y = 0, z = 0, contradiction.

2. Case: r > 0 : Per definition we have
∑r
i=1 a

ixi = b.

Contra-position: x is no extreme point of K. Then, there are y, z ∈ K, y ̸= z, and 0 < α < 1
with

x = αy+ (1 − α)z.
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As in Case 1., we get

yr+1 = · · · = yn = 0, zr+1 = · · · = zn = 0.

Moreover,

Ay = Az = b hence A(y− z) = 0⇒ r∑
i=1

ai(yi − zi) = 0

As a1, . . . ,ar are linearly independent, we get

yi = zi für i = 1, . . . , r⇒ y = z⇒ x = y = z, contradiction.

Definition 4.12. A polyhedron is called pointed, if it contains a vertex.

We define terms like edge and line of a polyhedron.

Definition 4.13. A polyhedron K ⊂ Rn contains a line, if x ∈ K and there is d ∈ Rn,
such that

x+ λd ∈ K for all λ ∈ R.

An edge of K is a face of dimension 1 connecting two vertices of K.

Theorem 4.14. Let K = P(A,b) ⊂ Rn be non-empty. The following statements are
equivalent:

1. K is pointed.

2. rank(A) = n.

3. Every non-empty face of K is pointed.

Proof. (1)⇒(2): Is x a vertex of K, then with Theorem 4.10 we get

n = rank(Aeq({x})) ≤ rang(A) ≤ n.

Hence, rank(A) = n.

(2)⇒ (1) : We choose x ∈ K such that the set I = eq({x}) is inclusion maximal. Let

F = {x ∈ K|AIx = bI}.

If rank(AI) = n, then we get with Thm. 4.10 that x is a vertex, hence, assume rank(AI) <
n. Then, the kernel of AI contains d ̸= 0 with

x± ϵd ∈ K, for ϵ small enough.
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The line {x + λd|λ ∈ R} hits at least one of the hyperplanes Hj = {x ∈ Rn|ajx = bj} for
some j /∈ I. (Suppose not, then all hyperplanes lie completely in K. Then,

ai(x+ λd) ≤ bi, for all row indices i, and all λ ∈ R.

This implies Ad = 0 and with rank(A) = n we get d = 0, contradiction.) Hence, there is
δ ∈ R such that x+ δd ∈ K and eq({x+ δd}) ⊃ I, in contradiction to the maximality of I.
(3)⇒(1): Is trivial as K is a face of itself.
(2)⇒(3): For every non-empty F of K we have

F = {x ∈ Rn|Ax ≤ b,Aeq(F)x ≤ beq(F),−Aeq(F)x ≤ −beq(F)}.

From (2) and the equivalence of (2) and (1), we get that F must be pointed.

We get an important corollary for polyhedra in standard form.

Corollary 4.15. Let K = P=(A,b), then

K ̸= ∅⇔ K is pointed.

Proof. We obtain a representation of K via

K = P=(A,b) = P(D,d) with D =


A

−A

−I

 ,d =


b

−b

0

 .

D has rank n. From Thm. 4.14 the statement follows.

For polytopes we get a similar result.

Corollary 4.16. Let K = P(A,b) be a polytope. Then,

K ̸= ∅⇔ K is pointed.

Proof. As K is bounded, there is u with K ⊆ {x|x ≤ u}. Thus we get a representation of
K via

K = P(A,b) = P(D,d) with D =

A
I

 ,d =

b
u

 .

D has rank n. From Thm. 4.14 the statement follows.
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Corollary 4.17. Let K = P(A,b) be a pointed polyhedron and suppose the LP

min cx s.t. x ∈ K

has a finite optimal solution. Then, the LP has an optimal solution that is a vertex.

Proof. F = {x ∈ K|cx = min{cy|y ∈ K}} is a non-empty face of K and contains using
Thm. 4.14 a vertex.

Corollary 4.18. If K is a non-empty polytope, then, every LP of the form

min cx s.t. x ∈ K

has an optimal vertex solution.

We collect these results in the main theorem of linear programming.

Theorem 4.19. The LP

min cx s.t. Ax = b, x ≥ 0

admits a finite optimal solution if and only if admits an optimal vertex solution.

Proof. With Cor. 4.15 we have that K is pointed (if K non-empty) and with Cor 4.17 we
get that LP has an optimal vertex solution (if there is a finite optimal solution).

Thm. 4.19 can be used to solve an LP in standard form by trying out all vertices.

Example 4.20.

min x1 + 2x2 + 3x3

s.t.:

2x1 + x2 + 5x3 = 5

x1 + 2x2 + x3 = 4

xi ≥ 0, i = 1, 2, 3

Solution: For a vertex, one component is 0.
1. Possibility: x1 = 0. Solve1 5

2 1


x2

x3

 =

5

4

⇒ x2 = 5/3, x3 = 2/3

Vertex: (0, 5/3, 2/3)⊺, objective 16/3.
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2. Possibility: x2 = 0. Solve2 5

1 1


x1

x3

 =

5

4

⇒ x1 = 5, x3 = −1

Infeasible.
3. Possibility: x3 = 0. Solve2 1

1 2


x1

x2

 =

5

4

⇒ x1 = 2, x2 = 1

Vertex: (2, 1, 0)⊺, objective 4.
The set K is bounded, hence the objective function attains at (2, 1, 0)⊺ its minimum.

In contrast to exhaustive search (cf. Chapter 5), the simplex algorithm is a far more
efficient algorithm for finding an optimal vertex.



42 | Chapter 4. Theory of Polyhedra

4.3 Basic Solutions

We consider an LP in standard form:

min z(x) = cx

s.t.:

Ax = b

x ≥ 0

Notation: K := P=(A,b) = {x ∈ Rn|Ax = b, x ≥ 0}.

We assume rank(A) = m < n. (Later we will see that this holds w.l.o.g.). We consider
the linear equation system Ax = b, whose solution space is an (n−m)-dimensional affine
subspace. The columns of A are denoted by aj, j = 1, . . . ,n.

Definition 4.21. An index vector B = (i1, . . . , im) withm distinct indices ij ∈ {1, . . . ,n}
is called basis, if the corresponding column vectors are linearly independent. The com-
plement vector to B is denoted by N = (j1, . . . , jn−m), jk ∈ {1, . . . ,n} and is called
non-basis. We have B ⊕ N = {1, . . . ,n}. With AB and AN we denote the submatrices,
defined via column vectors corresponding to B and N:

AB : m×m matrix with column vectors ai, i ∈ B

AN : m× (n−m) matrix with column vectors aj, j ∈ N

For such a subdivision of the set {1, . . . ,n} we write the set K as

(AB,AN)

xB
xN

 = b, xB, xN ≥ 0.

For B, we denote AB as basis matrix and AN as non-basis matrix. The variables xi, i ∈
B are called basic variables and the variables xj, j ∈ N are called non-basic variables.
x = (xB, xN) with

xB := A−1
B b und xN := 0

is termed basic solution w.r.t. basis B. A basic solution is feasible, if xB ≥ 0. A feasible
basic solution is non-degenerate, if xB > 0; if more than n − m components of x are
equal 0, we speak of a degenerate basic solution.

We obtain a characterization of basic solutions via Thm. 4.11:
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Theorem 4.22. Let K = P=(A,b). Then, the following is equivalent:

1. x ∈ K is an extreme point.

2. x ∈ K is a vertex.

3. x ∈ K is a feasible basic solution w.r.t. a basis B.

Proof. (1)⇔ (2) follows from Thm. 4.10.
(1) ⇒ (3) : Let x ∈ K be an extreme point. With Thm. 4.11 we obtain that all column
vectors aj, j ∈ J mit J := {i ∈ {1, . . . ,n} : xi > 0} are linearly independent and they can be
extended to a basis B. Per definition of J we get xN = 0, where N denotes the non-basis
w.r.t. B. Hence,

b = Ax = ABxB,

and using that AB is invertible
xB = A−1

B b.

Thus, x is a feasible basic solution w.r.t. basis B.
(3)⇒ (1) : Let x be a feasible basic solution to basis B, i.e., x = (xB, xN) with xN = 0 and
xB := A−1

B b ≥ 0. The set of indices with positive entries of x is a subset of B. Aas the
vectors ai, i ∈ B are linearly independent, the statement follows by Thm. 4.11 .

vertex
unique↔ feasible basic solution non−unique↔ basis.

We obtain a corollary on the number of vertices of a polyhedron K with rank(A) = m < n.

Corollary 4.23. There are at most
(
n
m

)
distinct vertices of K.

Proof. Every vertex leads to a feasible basic solution with a basic matrix. Every basic
matrix has m linearly independent columns of A and there are

(
n
m

)
different possibilities

to choose m linearly independent columns from A.

We close this chapter with showing that rank(A) = m is w.l.o.g.

Theorem 4.24. Let K = {x ∈ Rn|Ax = b, x ≥ 0} be a non-empty polyhedron in
standard form with matrix A ∈ Rm×n. Let rank(A) = k < m and suppose that the row
vectors ai1 , . . . ,aik are linearly independent. Consdider

P := {x ∈ Rn|ai1x = bi1 , . . . ,aikx = bik , x ≥ 0}.

Then, K = P.

Proof. W.l.o.g. i1 = 1, . . . , ik = k. Trivially K ⊆ P.
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We show only P ⊆ K. With rank(A) = k we that the row space of A has dimension k
and the vectors a1, . . . ,ak form a basis of that space. Hence, every row ai of A can be
represented as ai =

∑k
j=1 λijaj for scalars λij. Let x ∈ K. We have

bi = aix =

k∑
j=1

λijajx =

k∑
j=1

λijbj, i = 1, . . . ,m. (4.1)

Let y ∈ P. For all i = 1, . . . ,m we get with (4.1)

aiy =

k∑
j=1

λijajy =

k∑
j=1

λijbj = bi,

hence y ∈ K.

4.4 Degeneracy of Basic Solutions

For a feasible basic solution, there arem inequalities active and usually also n−m variables
0 and thus define additional n −m active inequalities. If more than n −m variables are
equal 0, we speak of a degenerate basic solution, see Definition 4.21.
We give an example.

Example 4.25. 1. Redundant variables:

x1 + x2 = 2

x3 = 0

x1, x2, x3 ≥ 0.

2. Redundant inequalities:

2x1 +x2 +y1 = 3

x1 +2x2 +y2 = 3

x1 +x2 +y3 = 2

x1, x2, y1, y2, y3 ≥ 0.

In x = (1, 1, 0, 0, 0)T the ineq. y3 ≥ 0 is redundant.

3. geometric reasons (see Oktahedron in Fig. 4.5).

Remark 4.26. By disturbing a linear equation system with random noise, with high
probability we get a non-degenerate problem.
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Figure 4.5: The vertices of the Oktahedron are degenerate.
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Chapter 5

The Simplex Method

The most important method for solving an LP in standard form

minimize z(x) = cx

s.t.

Ax = b

x ≥ 0.

(5.1)

is the Simplex-Method. We assume rang(A) = m < n. With Thm. (4.19) we know that
an optimal solution (if it exists) is a vertex of

K = {x ∈ Rn|Ax = b, x ≥ 0}.

The simplex-method consists of executing the following steps:

Geometric form:

1. Find vertex x of P=(A,b)

2. Computing adjacent vertex y of x with smaller objective value. Replace x with
y and repeat (2).

3. If (2) is not possible, there are three exclusive possibilities:

• x is optimal.

• LP is unbounded.

• The iterate leads to a basis describing the same vertex, in this case re-
peat (2).

47
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5.1 Parametrization of the Solution Space

For basis B we get that the linear equation system Ax = b can be represented as

Ax = ABxB +ANxN = b.

This way, we obtain a parametrization of the n−m dimensional solution space of Ax = b
via

xB = A−1
B b−A

−1
B ANxN, xN ∈ Rn−m, (5.2)

where xB is the dependent variable and xN denotes the independent variable. Subdivide
c in cB ∈ Rm and cN ∈ Rn−m. Inserting (5.2) into the objective leads to

z(x) = cx = cBxB + cNxN

= cBA
−1
B b−

(
cBA

−1
B AN − cN

)
xN

=: z0 − rNxN,

(5.3)

where

z0 := cBA−1
B b

rN := cBA−1
B AN − cN = (rj)j∈N ∈ Rn−m (vector of reduced costs)

With Thm. 4.22 the basic solutions describe the vertices of K. The representation (5.3)
of the objective yields the following optimality criterion:

Theorem 5.1. Let B be a basis with

1. the corresponding solution x is feasible, i.e. xB ≥ 0,

2. rN = cBA
−1
B AN − cN ≤ 0.

Then, x is optimal for the LP (5.1) and the optimal value is z0 = cBA
−1
B b.

Proof. For every feasible x̃ we get x̃B ≥ 0 and with (5.3) and using rN ≤ 0, we get

z(x̃) = cx̃ = z0 − rNx̃N ≥ z0 = z(x).

For a special case of linear inequality restrictions of the form

min cx u.d.N. Ax ≤ b, x ≥ 0, where b ≥ 0,
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we get an equivalent reformulation

min cx+ 0y s.t. Ax+ y = Ã

x
y

 = b, x ≥ 0,y ≥ 0,

where Ã = (A, I). Choose basis B = {n+ 1, . . . ,n+m},N = {1, . . . ,n} and we get a basic

solution

x
y

 =

0

b

 ∈ Rn+m. The reduced cost are ÃB = I, c̃B = 0, c̃N = c with

rN = c̃BÃ
−1
B ÃN − c̃N = −c ∈ Rn

z0 = 0.

5.2 Basis Exchange

The Simplex-Method is based on the sufficient optimality conditions of Thm. 5.1. We
search for a basis B with

1. xB ≥ 0

2. rN ≤ 0.

We start with B satisfying 1. If 2. is violated, we go to an adjacent basis B ′ via a basis
exchange step so that the objective value goes down.

Definition 5.2. Two basic solutions x = (xB, xN) and x ′ = (x ′B ′ , x ′N ′) are called adjacent,
if |B∩B ′| = m−1, i.e., B and B ′ differ by the exchange of one basic and non-basic variable,
respectively.

For B, we use (5.2)
xB = A−1

B b−A
−1
B ANxN, xN ∈ Rn−m.

ComputingA−1
B can be done with elementary row multiplication (Gauss-Jordan-Elimination).

The following example demonstrate one exchange-step (pivot step):

Example 5.3.

minimize z(x1, x2, x3) = −x1 − 2x2 − 3x3

s.t.

2x1 + x2 + 5x3 = 5

x1 + 2x2 + x3 = 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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We choose basis B = (1, 2) and we use a tableau form b|A:

b x1 x2 x3

5 2 1 5

4 1 2 1

·1/2

b x1 x2 x3

5/2 1 1/2 5/2

4 1 2 1 −1. row

b x1 x2 x3

5/2 1 1/2 5/2

3/2 0 3/2 −3/2 ·2/3

b x1 x2 x3

5/2 1 1/2 5/2

1 0 1 −1

−1/2 · 2. row

b x1 x2 x3

2 1 0 3

1 0 1 −1

We get:

xB =

x1

x2

 =

2

1

−

 3

−1

 x3 = A−1
B b−A

−1
B ANxN.

The basic solution
x1 = 2, x2 = 1, x3 = 0

is feasible but not optimal, as we have

rN = r3 = cBA
−1
B AN − cN = (−1,−2)

 3

−1

− (−3) = 2 > 0.

For 0 ≤ x3 ≤ 2/3 we get that xB ≥ 0 is feasible: geometrically, we follow an edge of K. For
x3 = 2/3 we get a new basic solution x = (0, 5/3, 2/3)⊺. The transition x3 = 0→ x3 = 2/3
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corresponds to a basic exchange step

B = (1, 2)→ B ′ = (3, 2),N = (3)→ N ′ = (1).

The non-basic variable x3 is exchanged with the basic variable x1: x3 = 2/3 − 1/3x1. For
the new basis B ′ we get

xB ′ =

x3

x2

 =

2/3

5/3

−

1/3

1/3

 x1

with

rN ′ = r ′1 = (−3,−2)

1/3

1/3

− (−1) = −2/3 < 0.

Hence, the found solution is optimal.

We will formalize this idea now. Suppose

AB = I,B = (1, . . . ,m) and N = (m+ 1, . . . ,n)

and xB = b ≥ 0, i.e. the starting x is feasible. If rN ≤ 0, x is optimal with Thm. 5.1. Let
rs > 0 for some s ∈ N. In

xB = A−1
B b−A

−1
B ANxN, z(x) = z0 − rNxN,

we insert
AB = I, xj = 0 for j ∈ N \ {s}

and get
xB = b− asxs

z(x) = z0 − rsxs.
(5.4)

1. Case: as ≤ 0.
In this case, we get

xB = b− asxs ≥ 0 for xs →∞.

We get z(x) = z0 − rsxs → −∞ for xs →∞ and hence the problem has no finite solution;
the polyhdron K is unbounded in a descent direction of the objective.
2. Case: ais > 0 for some i ∈ {1, . . . ,m}. Define p ∈ B via

bp

aps
= min

{
bi
ais

∣∣∣∣ais > 0, i = 1, . . . ,m
}

.

In order to ensure xB ≥ 0, the value of xs can be at most

xs =
bp

aps
⇒ xp = 0.
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This corresponds to an exchange of the non-basic variable xs with the basic variable xp
(recall B = (1, . . . ,m)). The value aps > 0 is called pivot element. we get

z(x) = z0 − rs
bp

aps
. (5.5)

We can differentiate the following cases:

(a) bp = 0: basic solution is degenerate, z(x) = z0

(b) bp > 0: We get a strict improvement z(x) < z0

We get the following necessary optimality condition:

Corollary 5.4. Let the basic solution x with xB ≥ 0 and xN = 0 optimal. If xB > 0,
then rN ≤ 0.

The index s ∈ N (pivot column) can be computed as follows:

1. (Rule of Dantzig): Choose smallest s ∈ N with:

rs = max
j∈N

rj. (5.6)

Choose smallest p ∈ B with

bp

aps
= min

{
bi
ais

∣∣∣∣ais > 0, i = 1, . . . ,m
}

. (5.7)

2. (Rule of Bland): Choose smallest s ∈ N with rs > 0. Choose smallest p ∈ B, so that
bp is smallest and bp

aps
= min

{
bi
ais

∣∣∣ais > 0, i = 1, . . . ,m
}

.

Let us describe a basis exchange after executing the Gauss-Jordan elimination. That is,
we start with

AB = I,B = (1, . . . ,m),N = (m+ 1, . . . ,n),

and thus
xi = bi −

∑
j∈N

aijxj, i ∈ B. (5.8)

The p-th equation can be solved for xs using aps > 0:

xp = bp −
∑
j∈N

apjxj = bp −
∑

j∈N,j ̸=s
apjxj − apsxs

Solving for xs yields:

xs =
bp

aps
−
∑

j∈N,j ̸=s

apj

aps
xj −

1
aps

xp. (5.9)
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Insert xs in the other equations (5.8) with i ̸= p:

xi = bi − ais
bp

aps︸ ︷︷ ︸
=b ′

i

−
∑

j∈N,j ̸=s

(
aij − ais

apj

aps

)
xj +

ais
aps

xp. (5.10)

Define new basis: Transition

B = (1, . . . ,m)→ B ′ = (1, . . . ,p− 1, s,p+ 1, . . . ,m).

New non-basis:

N = (m+ 1, . . . ,n)→ N ′ = (m+ 1, . . . , s− 1,p, s+ 1, . . . ,n).

have the form

xB ′ =



x1
...

xp−1
xs
xp+1...
xm


= b ′ −A ′

N ′xN ′ ,

and hence have the form (5.2). The elements of the matrix

b ′ A ′
N ′

are given via

Pivot element: reciprocal value :

a ′
ps =

1
aps

Other row p: divide by pivot element:

a ′
pj =

apj

aps
, j ̸= s

b ′
p =

bp

aps

Other column s: divide by negative pivot element:

a ′
is = −

ais
aps

, i ̸= p

Other elements: subtract the ais-multiple of the new row p from the i-th row:

a ′
ij = aij − ais

apj

aps
= aij − aisa

′
pj, i ̸= p, j ̸= s
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b ′
i = bi − ais

bp

aps
= bi − aisb

′
p, i ̸= p

We give an example.

x1

x2

x3

b x1 x2 x3 x4 x5 x6

5 1 0 0 1 1 −1

3 0 1 0 2 −3 1

−1 0 0 1 −1 2 −1

Note that the current basic solution is infeasible. Change non-basic variable x4 with basic
variable x1:

x4

x2

x3

b ′ x1 x2 x3 x4 x5 x6

5 1 0 0 1 1 −1

−7 −2 1 0 0 −5 3

4 1 0 1 0 3 −2

With the choice of the pivot element, we did not follow any of the rules of Dantzig or
Bland and indeed: x2 becomes negative.
As the identity matrix AB = I contains no new information if we know B,N,AN,b, we
will consider in the following only the reduced tableau.

x4

x2

x3

b ′ x1 x5 x6

5 1 1 −1

−7 −2 −5 3

4 1 3 −2

We can verify:

b ′
2 = 3 − 2 · 5 = −7

b ′
3 = −1 − (−1) · 5 = 4

xB ′ =


x4

x2

x3

 = b ′ =


5

−7

4


B ′ = (4, 2, 3)
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5.3 Objective Function and Reduced Costs

Via elimination of xs in (5.9), we get

z(x) = z0 −
∑
j∈N

rjxj

= z0 −
∑

j∈N,j ̸=s
rjxj − rs

 bp

aps
−
∑

j∈N,j̸=s

apj

aps
xj −

1
aps

xp


= z0 − rs

bp

aps
−
∑

j∈N,j̸=s

(
rj − rs

apj

aps

)
xj +

rs

aps
xp

=: z ′0 −
∑
j∈N ′

r ′jxj

with

z ′0 := z0 − rs
bp

aps

r ′p := −
rs

aps

r ′j := rj − rs
apj

aps
= rj − rsa

′
pj, j ̸= p.

(5.11)

The row (z0, rN) will be handled as the rows in

b AN

This leads to the extended tableau form:

xj, j ∈ N

z(x)

xi, i ∈ B

z0 rN

b AN

(5.12)

Figure 5.1: Extended Simplex-Tableau.

We give an example.

Example 5.5.

minimize z(x1, x2, x3) = −x1 − 2x2 − 3x3

s.t.

2x1 + x2 + 5x3 = 5

x1 + 2x2 + x3 = 4
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x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

For B = (1, 2),N = (3) we can transform the linear equation system to AB = I:

b AN =
2 3

1 −1
, xB = b =

2

1

 > 0

c = (−1,−2,−3)

z0 = cBb = (−1,−2)

2

1

 = −4

r3 = cBA
−1
B AN − c3 = 2 > 0.

We get the Simplex-Tableau:

xN

z(x), rN

x1

x2

−4 2

2 3

1 −1

Exchange x3 with x1: r ′1 = −2/3 < 0, hence the basic solution x1 = 0, x2 = 5/3, x3 = 2/3

xN

z(x), rN

x3

x2

−16/3 −2/3

2/3 1/3

5/3 1/3

is optimal.
The algorithmic execution of the Simplex-Method is illustrated in Fig..5.1 with a corre-
sponding tableau-matrix.

T = (tij) =
z0 rN

b AN

0 ≤ i ≤ m

0 ≤ j ≤ n−m
(5.13)

Now, we formally describe the simplex-method (with the rule of Dantzig).
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1. Start: Let B be a basis with AB = I. Suppose the corresponding basic solution
is feasible, i.e., xB = b ≥ 0. Compute with N the tableau-matrix T = (tij)

in (5.13). Denote with B(i) the basis index corresponding to the i-th row of T
for 1 ≤ i ≤ m. Analogously denote with N(j) the non-basis index corresponding
to the j-th column of T for 1 ≤ j ≤ n−m.

2. If t0s > 0 for all 1 ≤ s ≤ n −m, go to 3. Otherwise, the current basis-solution
is optimal. Set

xB(i) := ti0, 1 ≤ i ≤ m
xN(j) := 0, 1 ≤ j ≤ n−m

z := t00

3. Compute the Exchange-Column: Choose index 1 ≤ s ≤ n −m (with N(s)

smallest) with
t0s := max

1≤j≤n−m
t0j.

4. If tis ≤ 0, for all 1 ≤ i ≤ m, there is no finite solution. Stop.
If there is tis > 0 for some 1 ≤ i ≤ m, go to step 5.

5. Compute the Exchange-Row: Choose index 1 ≤ p ≤ m (with N(p) smallest)
with

tp0

tps
= min

{
ti0
tis

∣∣∣∣tis > 0, i = 1, . . . ,m
}

.

Go to step 6.

6. Exchange the s-th element of N with the p-th element of B:
B← (

B(1), . . . ,B(p− 1),N(s),B(p+ 1) . . . ,B(m)
)

N← (
N(1), . . . ,N(s− 1),B(p),N(s+ 1) . . . ,N(n−m)

)
Execute pivot operation with pivot element tps > 0:

• pivot elemet: t ′ps := 1/tps

• pivot row: t ′pj := tpj
tps

, j = 0, 1, . . . ,n−m, j ̸= s

• pivot column: t ′is := − tis
tps

, i = 0, 1, . . . ,m, i ̸= p

• other elements: t ′ij := tij − tis
tpj
tps

, i ̸= p, j ̸= s
• set tij := t ′ij and go to step 2.

Figure 5.2: Formal Execution of the Simplex-Method.
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5.4 Application to LPs with Inequalities

The LP
min{cx|Ax ≤ b, x ≥ 0}, x ∈ Rn,b ∈ Rn,b ≥ 0

is equivalent to

min{cx+ 0 · y|Ax+ y = b, x ≥ 0,y ≥ 0},

x
y

 ∈ Rn+m,b ∈ Rn

Start: B = (n+ 1, . . . ,n+m),N = (1, . . . ,n)

Basic solution: x = 0,y = b ≥ 0, z0 = 0, rN = −c. The corresponding (m + 1) × (n + 1)
dimensional Simplex-Tableau:

z

y

0 −c

b A

We solve the example from Subsec. 3.1.1.

maximize z(x1, x2) = 16x1 + 32x2

s.t.

20x1 + 10x2 ≤ 8000

4x1 + 5x2 ≤ 2000

6x1 + 15x2 ≤ 4500

x1 ≥ 0

x2 ≥ 0

The geometric sequence A→ B→ C→ D is executed algebraically via the Tableau-Form.

x1 x2

z 0 16 32

y1 8000 20 10

y2 2000 4 5

y3 4500 6 15

Let us choose 20 as pivot element and we exchange x1 with y1: This corresponds to
A→ B.
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y1 x2

z −6400 −4/5 24

x1 400 1/20 1/2

y2 400 −1/5 3

y3 2100 −3/10 12

Then, we exchange x2 with y2: This leads to B→ C.

y1 y2

z −9600 4/5 −8

x1 1000/3 1/12 −1/6

x2 400/3 −1/15 1/3

y3 500 1/2 −4

Exchange y1 with y3: This is C→ D.

y3 y2

z −10400 −8/5 −8/5

x1 250 −1/6 1/2

x2 200 2/15 −1/5

y1 1000 2 −8

Here rN = (−8/5,−8/5) < 0, hence x1 = 250, x2 = 200, zmin = −10400, i.e. zmax = 10400,
is optimal.

We show next that for non-degenerate problems the simplex-method always terminates.

Theorem 5.6. If, during the execution of the simplex-method, all computed basic-
solutions are non-degenerate, the method terminates.

Proof. For every pivot step j we get

z
j
0 = zj−1

0 − rj−1
s

b
j−1
p

a
j−1
ps

.
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As for every j per assumption bjp > 0, we get a strictly monotone sequence

z10 > z
2
0 > . . .

Hence, no basis is visited twice and since there are only finitely many solutions, the
algorithm terminates.

5.5 Cycling of the Simplex-Method and Lexicographical Pivoting

For a pivot operation with bp = 0 the objective value does not change

z(x) = z0 − rs
bp

aps
= t00 − t0s

tp0

tps

= z0

There are examples showing that the simplex-method (using a “wrong” pivot-rule) may
cycle forever (see exercise).
In order to avoid cycling, we will now introduce a lexicographical variant.

Definition 5.7. Let k ∈ N. Then, we can define a total order on Rk via

x ⪰ y :⇔ x = y or xi > yi for i = min{s|xs ̸= ys}

that is compatible with addition on Rk. This order is called lexicographical order.

If 0 ∈ Rk and x ∈ Rk with x ≻ 0 (that means x ⪰ 0 and x ̸= 0), then x is called
lexikographically positive.
We consider now the complete tableau in standard form:

T = (tij)i=0,...,m
j=0,...,n

=
z0 0 rN

b AB = I AN

The rows ti, i = 1, . . . ,m are vectors in Rn+1. For basis B, we denote by B(i) the i-th
entry of the current basis B. Initially B = (1, . . . ,m) and N = (m+ 1, . . . ,n).

Definition 5.8 (Lexicographical Rule (LEX)). Let B be the current basis and denote the
corresponding tableau by T .

• Choose arbitrary column index s ∈ N with rs = t0s > 0.

• Condsider I = {i ∈ {1, . . . ,m}|tis > 0}. Choose p ∈ I with

tp

tps
= lexmin

{
ti
tis

∣∣∣∣i ∈ I} .
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This lex. minimum satisfies

ti
tis

≻ tp

tps
for all i ∈ I \ {p}.

Then, B(p) leaves the current basis B and s enters the new basis, that is, B ′(p) = s.

By choice of p, we get
tp0

tps
= min

{
ti0
tis

∣∣∣∣i ∈ I} .

Hence, the pivot step leads to a feasible new basis.

Theorem 5.9. Suppose we start the simplex-method using LEX with a tableau that
contains only lex. positive rows (except the reduced cost row). Then, the method
terminates.

Proof. We first claim that the assumption of lex. positive rows of the theorem are easily
satisfiable via applying the Gauss-Jordan transformation, i.e., (b|I|AN) (except first row).
Because of feasibility xB ≥ 0, the first column contains only numbers greater equal than
0 (except first row). As the first sub-matrix is lex. positive, the claim is shown.
We show inductively over the execution of LEX, that this property is preserved. Consider
a basis B with the required property. Let s and p be chosen according to LEX. Denote
the new basis by B ′. For the p-th row t ′p of the new tableau T ′ we get

t ′p =
tp

tps
≻ 0,

since by assumption tp ≻ 0 and tps > 0. For i ∈ {1, . . . ,m}, i ̸= p, the i-th row t ′i of T ′ is
given as:

t ′i = ti −
tis
tps
tp.

For tis > 0, we get according to LEX

t ′i = tis

(
ti
tis

−
tp

tps

)
≻ 0.

For tis ≤ 0, we get

t ′i = ti +
|tis|

tps
tp ⪰ ti ≻ 0.

Overall, the rows remain lex. positive.
Let us consider the first row t0 and t ′0. We have

t ′0 = t0 −
t0s

tps
tp.

With t0s = rs > 0 we get

t0 = t ′0 +
t0s

tps
tp ≻ t ′0.
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Thus, after executing a pivot step using LEX, the 0-th row decreases strictly lexicograph-
ically and hence no tableau can appear twice.

5.6 Computing a Feasible Basic Solution - Two-Phase Method

Consider the LP in standard form:

minimize z(x) = cx

s.t.

Ax = b

x ≥ 0.

(5.14)

W.l.o.g. assume b ≥ 0 ist. If there is some row with negative bi just multiply with −1.
We define the following auxiliary problem:

minimize z(x,y) =
n+m∑
i=n+1

yi

s.t.

Ax+ y = b

x,y ≥ 0.

(5.15)

We use here additional artificial variables yi, where i ∈ {n + 1, . . . ,n +m}. One of the
following statements holds true.

1. The auxiliary problem has an optimal solution with value 0. Then, the system
Ax = b, x ≥ 0 is feasible.

2. The auxiliary problem has an optimal solution with value > 0. Then, Ax = b, x ≥ 0
is infeasible.

The auxiliary problem can be solved with the simplex-method, where we use as start basis
yi, i ∈ {n+ 1, . . . ,n+m} (recall b ≥ 0). We write

B = (n+ 1, . . . ,n+m),N = (1, . . . ,n), cB = (1, 1, . . . , 1) ∈ Rm and cN = 0 ∈ Rn.

This yields

z0 = cBb =

m∑
i=1

bi ≥ 0,

rN = cBAN,

(5.16)
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where rj =
∑m
i=1 aij, j = 1, . . . ,n. The start tableau reads

x

z(x,y), rN z0 rN

y b AN

(5.17)

The two-phase method for LP (5.14) consists of the following steps:

Phase I: Solve (5.15). The basic variables yn+1, . . . ,yn+m need to be non-basic vari-
ables in the optimal tableau. Then, we get a feasible solution for the original
problem.

Phase II: Compute starting tableau for LP (5.14) via

• Delete the columns belonging to yn+1, . . . ,yn+m,

• Compute z0 and rN.

Example 5.10. We apply the two-phase method to the following problem:

min 4x1 + x2 + x3

u.d.N. 2x1 + x2 + 2x3 = 4

3x1 + 3x2 + x3 = 3

x1 , x2 , x3 ≥ 0

The auxiliary problem reads as:

min y4 + y5

u.d.N. 2x1 + x2 + 2x3 + y4 = 4

3x1 + 3x2 + x3 + y5 = 3

x1 , x2 , x3 , y4 , y5 ≥ 0

We start with basis B = (4, 5) and N = (1, 2, 3).

z0 = b1 + b2 = 4 + 3 = 7 and rN =

(
2∑
i=1

aij

)
j=1,2,3

= (5, 4, 3).
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The start tableau reads as:

x1 x2 x3

z(x,y), rN 7 5 4 3

y4 4 2 1 2

y5 3 3 3 1

With the rule of Dantzig we get:

y5 x2 x3

z(x,y), rN 2 -5/3 -1 4/3

y4 2 -2/3 -1 4/3

x1 1 1/3 1 1/3

y5 x2 y4

z(x,y), rN 0 -1 0 -1

x3 3/2 -1/2 -3/4 3/4

x1 1/2 1/2 5/4 -1/4

We see that rN ≤ 0 and z(x,y) = 0, where y4 and y5 non-basic.Hence, a feasible solution
to Ax = b, x ≥ 0 is given via basis B = (3, 1) with

x3 = 3/2, x1 = 1/2, x2 = 0.

Note that the basis matrix AB is already given as the unit-matrix and hence phase II
can be easily started. We delete the column vectors corresponding to y4 and y5. We get
c = (4, 1, 1), B = (3, 1), N = (2), cB = (1, 4) and b =

(3/2
1/2

)
(see tableau). For the new

costs and the reduced costs we get:

z0 = cBb = (1, 4)
(

3/2
1/2

)
= 3/2 + 4/2 = 7/2 and

rN = r2 = cBa
2 − c2 = (1, 4)

(
−3/4
5/4

)
− 1 = 13/4,

where a2 needs to be taken from the tableau.
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The start tableau for phase II reads as:

x2

z(x), rN 7/2 13/4

x3 3/2 -3/4

x1 1/2 5/4

After one pivot step we get

x1

z(x), rN 11/5 -13/5

x3 9/5 3/5

x2 2/5 4/5

As r1 = −13/5 < 0, the solution is optimal

x1 = 0, x2 = 2/5, x3 = 9/5 with objective 11/5.

Let us turn to problems with inequality constraints.

minimize z(x) = cx

s.t.

aix = bi, i = 1, . . . ,k

aix ≤ bi, i = k+ 1, . . . ,m

x ≥ 0.

(5.18)

We introduce artificial variables yn+1, . . . ,yn+k for the first k equations and slack-variables
xn+k+1, . . . , xn+m for the inequalities. Let us assume b ≥ 0. Then, we need to solve in
phase I the following auxiliary problem (as slack-variables can be ≥ 0, they don’t appear
in the objective):

minimize
n+k∑
i=n+1

yi

s.t.

aix+ yn+i = bi, i = 1, . . . ,k

aix+ xn+i = bi i = k+ 1, . . . ,m

x,y ≥ 0.

(5.19)
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The start tableau reads as in 5.17, where

z0 =

k∑
i=1

bi and rj =
k∑
i=1

aij, j = 1, . . . ,n.

Note that we assumed b ≥ 0 which is this time not w.l.o.g. Let us consider the general
case now:

minimize z(x) = cx

s.t.

aix ≥ bi, i = 1, . . . ,k

aix ≤ bi, i = k+ 1, . . . ,m

x ≥ 0.

(5.20)

Here we can assume w.l.o.g. b ≥ 0 ist. We introduce slack-variables xn+1, . . . , xn+m and
obtain a problem in standard form:

minimize z(x) = cx

s.t.

aix− xn+i = bi, i = 1, . . . ,k

aix+ xn+i = bi, i = k+ 1, . . . ,m

xi ≥ 0, i = 1, . . . ,n+m.

(5.21)

We use the artificial variables yn+m+1, . . . ,yn+m+k for the first k equations (since here the
slack-variables have a negative sign).
The auxiliary problem reads as

minimize
n+m+k∑
i=n+m+1

yi

s.t.

aix− xn+i + yn+m+i = bi, i = 1, . . . ,k

aix+ xn+i = bi, i = k+ 1, . . . ,m

xi ≥ 0, i = 1, . . . ,n+m

yi ≥ 0, i = n+m+ 1, . . . ,n+m+ k.

(5.22)

Let us sort the n+m+ k variables as

x1, . . . , xn, xn+1, . . . , xn+k︸ ︷︷ ︸
N

,yn+m+1, . . . ,yn+m+k, xn+k+1, . . . , xn+m︸ ︷︷ ︸
B

.
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Then, we get

cB = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
m−k

) ∈ Rm,

z0 = cBb =

k∑
i=1

bi,

rj = cBa
j − cj =


∑k
i=1 aij, j = 1, . . . ,n

−1, j = n+ 1, . . . ,n+ k

Finally, we can compute the start tableau or phase I:

x1 · · · xn xn+1 · · · xn+k

z(x), rN
∑k
i=1 bi

∑k
i=1 aij −1 · · ·− 1

yn+m+1 b1 a1

...
...

... −Ik

yn+m+k bk ak

xn+k+1 bk+1 ak+1

...
...

... 0

xn+m bm am

Remark 5.11. If the found vertex after phase 1 is degenerate, that is, some artificial
variables are still in the basis, then we need to perform additional pivots until we reach
a feasible solution for Ax = b, x ≥ 0. Such pivot steps just change the basis, not the
vertex itself.
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Chapter 6

LP Duality

We consider an LP in standard form

minimize z(x) = cx

Ax = b

x ≥ 0,

(P)

for A ∈ Rm×n, c⊺ ∈ Rn,b ∈ Rm. Denote

K = {x ∈ Rn|Ax = b, x ≥ 0} .

Let x ∈ K and consider λ⊺ ∈ Rm. We obtain

b = Ax⇔ λb = λAx ∀λ⊺ ∈ Rm.

We get a lower bound on cx via:

λb ≤ cx ∀λ⊺ ∈ Rm with λA ≤ c.

Let us conmpute the best lower bound on cx. This leads to the dual problem:

maximize z∗(λ) = λb

λA ≤ c.
(D)

We denote by K∗ the polyhedron for the dual problem.

K∗ := {λ⊺ ∈ Rm|λA ≤ c}.

Note that λ⊺ has no sign constraints.

6.1 Dual Programms

Every LP has a corresponding dual LP. One can differentiate between a symmetric and asymmetric form.

69
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Symmetric Form:
Primal problem (P-sym):

minimize cx

Ax ≥ b

x ≥ 0,

(P-sym)

Dual problem (D-sym):

maximize λb

λA ≤ c

λ ≥ 0.

(D-sym)

Here, A is an m× n matrix, x ∈ Rn is a column vektor, and λ ∈ Rm a row vector.

Remark 6.1. The dual problem of the dual problem is the primal problem. Proof:
Exercise.

We give an example.

Primal problem (P):

minimize 3x1 + 4x2 + 5x3

x1 + 2x2 + 3x3 ≥ 5

2x1 + 2x2 + x3 ≥ 6

xi ≥ 0, i = 1, 2, 3

Dual problem (D):

maximize 5λ1 + 6λ2

λ1 + 2λ2 ≤ 3

2λ1 + 2λ2 ≤ 4

3λ1 + λ2 ≤ 5

λi ≥ 0, i = 1, 2.

The LP in standard form can be reduced to the symmetric form. The equation system

Ax = b

corresponds to

Ax ≥ b

−Ax ≥ −b.
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The dual problem for w ∈ R2m is then using (P-sym)

maximize w

 b

−b


w

 A

−A

 ≤ c

w ≥ 0.

Insert w := (u, v),u, v ∈ Rm, and we obtain

maximize ub− vb

uA− vA ≤ c

u ≥ 0, v ≥ 0.

With λ := u − v we obtain the dual problem (D). Note that λ = u − v has no sign
constraints.

Here are some computing rules for dualizing.

Table 6.1: Dualizing rules.

Primal LP Dual LP

(P1) max cx,Ax ≤ b, x ≥ 0 (D1) min λb, λA ≥ c, λ ≥ 0

(P2) min cx,Ax ≥ b, x ≥ 0 (D2) max λb, λA ≤ c, λ ≥ 0

(P3) max cx,Ax = b, x ≥ 0 (D3) min λb, λA ≥ c

(P4) min cx,Ax = b, x ≥ 0 (D4) max λb, λA ≤ c

(P5) max cx,Ax ≤ b (D5) min λb, λA = c, λ ≥ 0

(P6) min cx,Ax ≥ b (D6) max λb, λA = c, λ ≥ 0

We give a general version now.

Lemma 6.2. Consider matrices A,B,C,D and vectors a,b, c,d. For the primal LP

maximize cx+ dy

Ax+ By ≤ a

Cx+Dy = b

x ≥ 0,

(LP)

we get the dual LP
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minimize ua+ vb

uA+ vC ≥ c

uB+ vD = d

u ≥ 0.

(DP)

Proof. Exercise.

6.2 The Strong Duality Theorem

minimize z(x) = cx

Ax = b

x ≥ 0,

(P)

maximize z∗(λ) = λb

λA ≤ c.
(D)

The feasible sets of the LPs are denoted by K and K∗.
We get the following relationshship of (P) and (D).

Theorem 6.3 (Weak-Duality). For x ∈ K, λ⊺ ∈ K∗ we have λb ≤ cx.

Proof. Let x ∈ K and λ⊺ ∈ K∗. We get

b = Ax⇒ λb = λAx ≤
λ⊺∈K∗

cx.

Corollary 6.4. Let x∗ ∈ K and (λ∗)⊺ ∈ K∗ with λ∗b = cx∗. Then, x∗ and (λ∗)⊺ are
optimal for the respective problems (P) and (D).

Proof. For arbitrary x ∈ K we get

cx ≥ λ∗b = cx∗.

For arbitrary λ ∈ K∗

λb ≤ cx∗ = λ∗b.

Theorem 6.5 (Strong Duality for Linear Optimization). If one of the problems (P) or (D)
admits a finite optimal solution, then also the other admits a finite optimal solution and
their objective values are equal:

min{cx|x ∈ K} = max{λb|λ⊺ ∈ K∗}.
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Proof. W.l.o.g. x∗ ∈ K is optimal with cx∗ = z0 finite. Define

C := {(r,w) = t(cx− z0,b−Ax)⊺|x ≥ 0, t > 0} ⊂ Rm+1.

C is a convex and closed cone containing 0. We get the following alternative representation
of C:

C = {(r,w) = (cx− tz0, tb−Ax)⊺|x ≥ 0, t > 0} ⊂ Rm+1.

(Define x̃ = x/t).
We claim that (−1, 0) /∈ C. This follows since t > 0 and z0 ≤ cx for all x ∈ K. Hence,
we can us the separation theorem for convex and closed cones (cf. Thm. 2.9). There is
(λ0, λ)⊺ ∈ Rm+1 \ {0} with λ0 ∈ R, λ⊺ ∈ Rm such that

(λ0, λ)

−1

0

 = −λ0 < 0 ≤ (λ0, λ)

cx− tz0
tb−Ax


for all t > 0, x ≥ 0. We get λ0 > 0 and w.l.o.g. λ0 = 1 (multiply with 1/λ0). Computing
the scalar products, we get for t > 0, x ≥ 0

0 ≤ (cx− tz0) + λ(tb−Ax)⇔ tz0 − cx ≤ λ(tb−Ax). (6.1)

Take limit t ↓ 0:
cx ≥ λAx for all x ≥ 0

and hence
c ≥ λA

implying λ ∈ K∗. Insert in (6.1) the values t = 1, x = 0 to obtain

z0 ≤ λb.

With weak duality (cf. Thm. 6.3) we get z0 = λb and using Corollary 6.4 we get that
x∗ ∈ K and λ ∈ K∗ are optimal.

Remark 6.6. The proof does not use rank(A) = m.

With Theorems (6.3) and (6.5) we obtain the following existence- and optimality criteria.

Theorem 6.7 (Existence). The following statements are equivalent.

1. (P) and (D) admit feasible solutions.

2. (P) has a finite optimal solution.

3. (P) and (D) have finite optimal solutions with equal optimal value.
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4. (D) admits a finite optimal solution.

5. (P) admits feasible solutions and the objective is bounded from below or (D)
admits feasible solutions and the objective is bounded from above.

Proof. (1) ⇒ (2) : With Thm. (6.3) we get that the objective of (P) is bounded from
below. Hence, (since (P) admits feasible solutions by assumption) with the Thm. of
Weierstrass we get the existence of an optimal finite solution.
(2)⇒ (3) : The is the statement of Thm. (6.5).
(3)⇒ (4)⇒ (5)⇒ (1) : Trivial.

Theorem 6.8 (Complementarity). Let x ∈ K and λ ∈ K∗ be feasible for (P) and (D).
Then, the following statements are equivalent.

1. x and λ are optimal.

2. (λA− c)x = 0

3. For all i = 1, . . . ,n, we get

xi > 0⇒ λai = ci

λai < ci ⇒ xi = 0.

Proof: Exercise (trivial).

6.3 The Dual Simplex-Method

Consider the primal-dual programms

min{cx|Ax = b, x ≥ 0} (P)

max{λb|λA ≤ c}. (D)

We assume rank(A) = m. The basic solution w.r.t. a basis B of (P) is given as

xB = A−1
B b, xN = 0.

The row vector
λ := cBA−1

B ∈ Rm (6.2)

is called Simplex- or Lagrange-Multiplier. Hence, the reduced cost read as

rN = cBA
−1
B AN − cN = λAN − cN.

We obtain:
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Theorem 6.9. 1. λ = cBA
−1
B is feasible for (D) ⇔ rN ≤ 0.

2. Let the basic solution x be optimal and non-degenerate, i.e.,

xB = A−1
B b > 0, xN = 0.

Then, λ = cBA
−1
B is optimal for (D) and we get

λb = cx.

Proof. For (1): With λ = cBA
−1
B we get

λA ≤ c⇔ (λAB, λAN) ≤ (cB, cN)⇔ λAN ≤ cN⇔ rN = λAN − cN ≤ 0.

For (2): Is x optimal and non-degenerate, then rN ≤ 0 (see Corollary 5.4). Thus, λ =

cBA
−1
B is feasible for (D) (using (1)) and we have

λb = cBA
−1
B b = cBxB = cx.

Because of Corollary (6.4) we get that λ = cBA
−1
B is optimal for D.

The connection of primal optimality and dual feasibility is visible in the following defini-
tion.

Definition 6.10. A basic-solution x with

xB = A−1
B b, xN = 0

is called dual feasible for (P), if and only if

λ = cBA
−1
B

is feasible for (D), i.e., if rN ≤ 0.

Let us now explain the idea of the dual simplex-method. Suppose we have a basis B and
a basic solution x that is

• primal infeasible, i.e., xB = A−1
B b ≥ 0 is not valid

• dual feasible, i.e., rN ≤ 0.

We consider the primal tableau (P) but solve it from the dual point of view:

1. maintain rN ≤ 0

2. until we have feasibility of x, i.e. xB = A−1
B b ≥ 0
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3. The objective of (P) grows.

Assuming AB = I the tableau for (P) is given via (5.13)

xj, j ∈ N

z(x)

xi, i ∈ B

z0 rN

b AN

(6.3)

Figure 6.1: Reduced Simplex-Tableau.

with tableau-matrix:

T = (tij) =
z0 rN

b AN

0 ≤ i ≤ m

0 ≤ j ≤ n−m
(6.4)

The tableau (6.4) is

1. primal feasible, if b ≥ 0,

2. dual feasible, if rN ≤ 0,

3. optimal, if b ≥ 0, rN ≤ 0.

Let us write down the dual Simplex-Algorithms formally (see Fig.. 6.2).

We give an application. The primal problem is given as:

min{cx|Ax ≥ b, x ≥ 0}, c ≥ 0 (P)

Ax ≥ b is equivalent to
Ax− y = b,y ≥ 0.

Use Phase I of the simplex in order to compute a feasible start solution. Because of c ≥ 0,
we can solve problem (P) easily with the dual simplex. Consider

−Ax+ y = −b,y ≥ 0, x ≥ 0.

We obtain the start-tableau

B = (n+ 1, . . . ,n+m),N = (1, . . . ,n)

rN = −c ≤ 0.

Hence x = 0,y = −b is dual feasible and we get the tableau:
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1. Start: Let x be a dual feasible basis B.Compute T = (tij), as in (6.4). Denote
by B(i) the basis index for 1 ≤ i ≤ m that corresponds to the i-th row of T .
Analogously we denote by N(j) the index 1 ≤ j ≤ n−m that belongs to the j-th
column of T .

2. If ti0 ≥ 0(1 ≤ i ≤ m), then the current solution is optimal.
Set

xB(i) := ti0, 1 ≤ i ≤ m
xN(j) := 0, 1 ≤ j ≤ n−m

z := t00

Otherwise go to 3.

3. Compute exchange row: Choose p ∈ [m] (with B(p) smallest) such that

tp0 = min
1≤i≤m

ti0 (ti0 = bi).

4. If tpj ≥ 0, 1 ≤ j ≤ n−m, then (D) has no finite solution. Stop.
If there is some tpj < 0,go to Step 5.

5. Compute exchange column: Choose s ∈ [n −m] (with N(s) smallest) such
that

t0s

tps
= min

{
t0j

tpj

∣∣∣∣tpj < 0, j = 1, . . . ,n−m

}
(t0j = rN(j) ≤ 0).

Go to Step 6.

6. Exchange the s-th element of N with the p-th element of B:
B← (

B(1), . . . ,B(p− 1),N(s),B(p+ 1) . . . ,B(m)
)

N← (
N(1), . . . ,N(s− 1),B(p),N(s+ 1) . . . ,N(n−m)

)
Execute in T the pivot step with pivot element tps < 0 as in Fig. 5.2, point (6):

• Pivot elemet: t ′ps := 1/tps
• Pivot column: t ′is := − tis

tps
, i = 0, 1, . . . ,m, i ̸= p

• Pivot row: t ′pj := tpj
tps

, j = 0, 1, . . . ,n−m, j ̸= s

• other elements: t ′ij := tij − tis
tpj
tps

, i ̸= p, j ̸= s
• Set tij := t ′ij and go to Step 2.

Figure 6.2: Dual Simplex-Method

We solve the example from the last section:

minimize 3x1 + 4x2 + 5x3

x1 + 2x2 + 3x3 ≥ 5

2x1 + 2x2 + x3 ≥ 6

xi ≥ 0, i = 1, 2, 3
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x

z

y

z0 rN = −c ≤ 0

−b −A
(6.5)

The start-tableau has the form:

x1 x2 x3

z 0 −3 −4 −5

y1 −5 −1 −2 −3

y2 −6 -2 −2 −1

We get

min{−5,−6} = −6⇒ p = 2

min{3/2, 4/2, 5/1} = 3/2⇒ s = 1.

Exchange y2 and x1:

y2 x2 x3

z 9 −3/2 −1 −7/2

y1 −2 −1/2 -1 −5/2

x1 3 −1/2 1 1/2

Exchange y1 and x2:

y2 y1 x3

z 11 −1 −1 −1

x2 2 1/2 −1 5/2

x1 1 −1 1 −2

The tableau is optimal; the optimal solution is

x1 = 1, x2 = 2, x3 = 0.

The optimal dual solution is
λ = (1, 1).
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6.4 Sensitivity and Shadow Prices

Suppose the LP
min{cx|Ax = b, x ≥ 0} (6.6)

has an optimal basis B with non-degenerate basic solution

xB = A−1
B b > 0

An optimal dual solution is
λ = cBA

−1
B .

For small changes
b→ b+ ∆b

of the right hand side of (6.6) the basis B remains feasible, as xB is non-degenerate.
Moreover, for B, the reduced costs

rN = cBA
−1
B AN − cN ≤ 0

do not depend on b and therefore x remains optimal as long as it stays feasible.
For b+ ∆b we have the optimal solution

x = A−1
B (b+ ∆b) = xB + ∆xB, with ∆xB = A−1

B ∆b.

The objective value z changes to

∆z = z(x) − z(xB)

= cB∆xB = λ∆b.
(6.7)

The dual λ measures the sensitivity of the optimal value wrt. to changes of the right-hand
side b; in particular we get the shadow price formula:

∂z

∂bj
= λj, j = 1, . . . ,m (6.8)

Hence, λj has the interpretation of the marginal price wrt. bj.
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Chapter 7

Nonlinear Optimization under Con-
straints

7.1 The Problem

We are given f : Rn → R and a subset S ⊂ Rn. The general optimization problem has the
form:

min {f(x)|x ∈ S}. (7.1)

Recall that maximization

max {f(x)|x ∈ S}

is equivalent to minimization

min {−f(x)|x ∈ S}.

Definition 7.1 (Local Minimum). x̄ ∈ S is called local minimum of (7.1), if there is an
open neighbourhood U ⊂ Rn of x̄ with

f(x̄) ≤ f(x) for all x ∈ S ∩U.

x̄ ∈ S is called strong local minimum of (7.1), if there is an open neighbourhood U ⊂ Rn

of x̄ with
f(x̄) < f(x) for all x ∈ S ∩U, x ̸= x̄.

Definition 7.2 (Global Minimum). x̄ ∈ S is a global minimum of (7.1), if

f(x̄) ≤ f(x) for all x ∈ S.
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x̄ ∈ S is strict global minimum of (7.1), if

f(x̄) < f(x) for all x ∈ S, x ̸= x̄.

Usually S is described by functional equations and inequalities. A general form reads as

S := {x ∈ Rn|g(x) ∈ K}, (7.2)

where g : Rn → Rm and K ⊂ Rm is convex. The problem (7.1) then reads as

min {f(x)|g(x) ∈ K}. (7.3)

Let k be the dimension of the affine hull of K ⊂ Rm, (0 ≤ k ≤ m). W.l.o.g., we can replace
K with

K× {0m−k},K ⊂ Rk,
o

K ̸= ∅.

Accordingly, we can replace g = (g1, . . . ,gm)⊺ with

g := (g1, . . . ,gk)⊺ und h := (gk+1, . . . ,gm)⊺.

The feasible set S is represented via a system of inclusions and equalities g(x) ∈ K,
o

K ̸= ∅
and h(x) = 0:

S := {x ∈ Rn|g(x) ∈ K,h(x) = 0,
o

K ̸= ∅}.

The problem (7.3) is then equivalent to

min {f(x)|g(x) ∈ K,h(x) = 0,
o

K ̸= ∅}. (7.4)

7.2 Formulation for the Standard Cone

If we choose in (7.4) for K the standard cone

K := Rk− = {x ∈ Rk|xi ≤ 0, i = 1, . . . ,k},

we get the standard problem of nonlinear optimization:
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min {f(x)|g(x) ≤ 0,h(x) = 0}. (7.5)

The inequalities g(x) ≤ 0 need to be component-wise valid. Equivalently

min f(x)

s.t.:

gi(x) ≤ 0, i = 1, . . . ,k

gj(x) = 0, j = k+ 1, . . . ,m.

(7.6)

For k = 0, i.e. g(x) = 0 the problem is only meaningful if m ≤ n. Sign-constraints

xi ≥ 0, i = 1, . . . , r (r ≤ n),

or variable bounds
ai ≤ xi ≤ bi, i = 1, . . . , r, (r ≤ n)

are modeled as inequalities.
We study differentiable optimization problems, thus, f and g are assumed to be continu-
ously differentiable in an open neighbourhood of x̄. The first derivtives f ′(x) or g ′(x) at
x̄ are given as

f ′(x̄) =

(
∂f

∂x1
(x̄), . . . ,

∂f

∂xn
(x̄)

)
and the m× n-matrix

g ′(x̄) =


∂g1
∂x1

(x̄) · · · ∂g1
∂xn

(x̄)

...
...

∂gm
∂x1

(x̄) · · · ∂gm
∂xn

(x̄)

 .

We will derive in the following necessary and sufficient optimality conditions for the stan-
dard optimization problem.
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Chapter 8

Tangent Cone and Regularity

In order to set up a theory of necessary and sufficient optimality conditions we introduce
the tangent cone T(S, x̄) of a set S ⊂ Rn at x̄ ∈ S.

Example 8.1. Let S = Rn and consider

min{f(x)|x ∈ S}.

Let x̄ be a local minimum of f over S, see Fig. 8.1. By definition of a local minimum
of f if we move away from x̄ along a feasible direction the objective may not decrease.
Suppose we speak of linear feasible directions d ∈ Rn at x̄ ∈ S, that is, there is ᾱ > 0 with
x = x̄+ αd ∈ S for all α ≤ ᾱ.

−1

1
−1

1

1

2

Figure 8.1: Example of a local min. at x̄ = 0.

For x̄ ∈
o

S, every d ∈ Rn is a feasible direction. For x̄ ∈ S̄ the concept of linearly feasible
directions is not enough.

Example 8.2. Let S = {x ∈ R2|x2
1 + x

2
2 = 1} and consider

min{2x1 + x
2
2|x ∈ S}.
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Here
o

S = ∅ and for no x̄ ∈ S, there is ᾱ > 0 with x = x̄+ αd ∈ S for all α ≤ ᾱ. Hence, we
need a more general concept: infinitesimally feasible directions at x̄.

8.1 Motivation of the Theory

minimize f(x)

s.t. hi(x) = 0, i ∈ {1, . . . ,k},

gj(x) ≤ 0, j ∈ {k+ 1, . . . ,m}. (8.1)

with x ∈ Rnand smooth functions f,hi,gj for all i, j. Notation: h = (h1, . . . ,hk),g =

(gk+1, . . . ,gm)

Kg1(x) ≤ 0

g2(x) ≤ 0

h(x) = 0

Figure 8.2: Illustration of S.

Let us now explain the idea of infinitesimally feasible directions. Consider the case h(x) =
0 as in Fig. 8.3. Under some assumptions (regularity as introduced later) the tangent
plane Th(x) = {v : ∇h(x)⊺ · v = 0} conaints the set of infinitesimally feasible directions at
x (proof later).
Consider f(x1, x2) = −x1 − x2 with −∇f(x1, x2) = (1, 1).
The intuition is as follows: Suppose there is a force tracking x with a rope along the
hypersurface h(x) = 0 in the direction of the gradient −∇f(x). The rope tracks the
moving point continuously along h(x) = 0 in the direction of the force −∇f(x). Note
that there are two forces acting: the rope tracks x along the descent direction −∇f(x̄)
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Th(ȳ)

∇h(ȳ)

x2

h(x) = 0

x1

Th(x̄)

∇h(x̄)

x2

h(x) = 0

x1

Figure 8.3: The set S is defined via h(x) = 0. The tangent plane is illustrated for ȳ and
x̄.

−∇f(ȳ)
x2

h(x) = 0

x1

−∇f(x̄)

−∇h(x̄)

x2

h(x) = 0

x1

Figure 8.4: Gradients of h and f in a local minimum.

of f and the force −∇h(x̄) keeps x̄ on the hypersurface. The movement will stop if the
forces −∇f(x) and ∇h(x) act in opposite direction and an equilibrium of the two forces
is reached.
Formally, for a local minimum at x̄ for any movement from x̄ along v for some v in
the tangent plane, ∇f(x̄)⊺v may only be nonnegative, that is, ∇f(x̄)⊺v ≥ 0. As with
v ∈ Th(x̄) we get −v ∈ Th(x̄) we follow ∇f(x̄)⊺v = 0. Hence, ∇f(x̄)⊺ and ∇h(x̄)⊺ are
linearly dependent (without proof) and in x̄ we have the condition

f ′(x̄) + λh ′(x̄) = 0.

8.2 Tangent Cone and Variational Inequality

Definition 8.3 (Tangent Cone). The tangent cone T(S, x̄) of S ⊂ Rn in x̄ is defined as:

T(S, x̄) :=
{
v ∈ Rn| ∃ xi ∈ S, ti > 0, with lim

i→∞ ti = 0, v = lim
i→∞ xi − x̄

ti

}
. (8.2)

The definition v ∈ T(S, x̄) is equivalent to

xi = x̄+ tiv+ ri, ri ∈ Rn, lim
i→∞ ri

ti
= 0. (8.3)
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With the Landau calculus, we have ri = o(ti). In particular:

lim
i→∞ xi = x̄, lim

i→∞ ∥xi − x̄∥
ti

= ∥v∥ .

S

x̄ = 0

T(S, x̄)

S

x̄ = 0

T(S, x̄)

Figure 8.5: Tangent cone pointed at 0.

Notation.

Let us recap some terminology for sets in Rn. For K ⊂ Rn we zse:

aff(K): the smallest affine subspace in Rn containing K,

span(K) : the smallest linear subspace in Rn containing K,

int(K) =
o

K : topological interior of K wrt. Rn,

Ki: relative topological interior of K wrt. aff(K),

cℓ(K) =: K̄ : topological closure of K,

∂K = K̄ \
o

K : boundary of K.

Conic hull: Let K ⊂ Rn and x ∈ K. The cone

K(x) := {α(y− x)|y ∈ K,α > 0} =
⋃
α>0

α(K− x)

is called conical hull of K wrt. x. Per definition K(x) corresponds to the conic hull
of K− x.
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K− x

K(x)

Figure 8.6: Illustration of the conic hull K(x).

Lemma 8.4. For every S ⊂ Rn and x̄ ∈ S the set T(S, x̄) is a closed cone pointed at 0.

Proof. Obviously T(S, x̄) is a cone pointed at 0. It remains to show that T(S, x̄) is closed.
Let v ∈ cℓ(T(S, x̄)) and (vl)l∈N a sequence with

vl → v, vl ∈ T(S, x̄), for which w.l.o.g. ∥vl − v∥ ≤ 1
l
.

We need to show that v ∈ T(S, x̄). Per definition of the tangent cone for every l ∈ N there
are sequences (xl,k)k∈N and (tl,k)k∈N with

xl,k ∈ S, tl,k > 0, with lim
k→∞ tl,k = 0, vl = lim

k→∞
xl,k − x̄

tl,k
. (8.4)

Hence, for all l ∈ N there is an index kl with∥∥∥∥xl,kl − x̄tl,kl
− vl

∥∥∥∥ ≤ 1
l
, ∥xl,kl − x̄∥ ≤ 1

l
und tl,kl ≤

1
l
.

For l→∞ we get xl,kl → x̄ and tl → 0. Moreover, wit the triangle inequality we get∥∥∥∥xl,kl − x̄tl,kl
− v

∥∥∥∥ ≤
∥∥∥∥xl,kl − x̄tl,kl

− vl

∥∥∥∥+ ∥vl − v∥ ≤ 2
l
.

It follows that
xl,kl−x̄

tl,kl
→ v and hence v ∈ T(S, x̄).

For convex sets K ⊂ Rn we can easily compute the tangent cone.

Lemma 8.5. Let K ⊂ Rn be convex and let x̄ ∈ K. Then, T(K, x̄) is the closure of the
conical hull of K in x̄, i.e.,

T(K, x̄) = cℓ (∪α>0α(K− x̄)) =: K(x̄).

Proof. T(K, x̄) ⊃ K(x̄) : Let x ∈ K and α > 0. We need to show that α(x − x̄) ∈ T(K, x̄).



90 | Chapter 8. Tangent Cone and Regularity

As K convex and x ∈ K, we get

xi = x̄+
α

i
(x− x̄) ∈ K, for i ≥ α

⇒ xi − x̄

1/i
= α(x− x̄)

⇒ α(x− x̄) = lim
i→∞ xi − x̄

1/i
= v ∈ T(K, x̄).

As T(K, x̄) is closed, we get T(K, x̄) ⊃ K(x̄).
T(K, x̄) ⊂ K(x̄) : Let v ∈ T(K, x̄) with

xi = x̄+ tiv+ ri, ri ∈ Rn, lim
i→∞ ri

ti
= 0.

Then,
xi − x̄

ti︸ ︷︷ ︸
∈K(x̄)

= v+
ri
ti
⇒ v = lim

i→∞ xi − x̄

ti
∈ K(x̄).

We derive a fundamental necessary optimality criterion.

Theorem 8.6 (Variational Inequality). Let x̄ be a local minimum of

min {f(x)|x ∈ S}

Then,
f ′(x̄)v ≥ 0 for all v ∈ T(S, x̄).

Proof. Let v ∈ T(S, x̄). With xi = x̄+ vti + ri we get

f(xi) = f(x̄) + f
′(x̄)(xi − x̄) + o(∥xi − x̄∥)

= f(x̄) + f ′(x̄)vti + o(ti).

We obtain
lim
i→∞ f(xi) − f(x̄)

ti
= lim
i→∞

(
f ′(x̄)v+

o(ti)

ti

)
= f ′(x̄)v.

Since x̄ is a local minimum, we get for i large enough

f(xi) ≥ f(x̄).

Thus,

0 ≤ lim
i→∞ f(xi) − f(x̄)

ti
= f ′(x̄)v.
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T(S, x̄)

Set of y ∈ Rn with yv ≥ 0 ∀v ∈ T(S, x̄)

Figure 8.7: Set of vectors y for which yv ≥ 0 for all v ∈ T(S, x̄).

8.3 Linearized Cone

We consider the case that S is given as

S = {x ∈ Rn|g(x) ∈ K},

where g : Rn → Rm is C1 and K ⊂ Rm is convex. As the tangent cone is hard to compute,
we introduce the linearized cone of S in x̄.
As motivation for that cone, let us linearize the inclusion g(x) ∈ K in x̄, i.e., for v ∈ Rn

we consider
g(x̄) + g ′(x̄)v ∈ K,

hence
g ′(x̄)v ∈ K− g(x̄) ⊂ ∪α>0α(K− g(x̄)) =: K(g(x̄)).

This leads directly to the definition of the linearized cone of S in x̄:

L(S, x̄) = {v ∈ Rn|g ′(x̄)v ∈ K(g(x̄))}. (8.5)

Lemma 8.7. L(S, x̄) is a convex cone pointed at 0.

Proof. We have 0 ∈ L(S, x̄), because 0 ∈ K(g(x̄)), which in turn follows from g(x̄) ∈ K.
The cone property v ∈ L(S, x̄) ⇒ αv ∈ L(S, x̄) for all α ≥ 0 is also satisfied. We need to
show convexity. Let u, v ∈ L(S, x̄) and λ ∈ (0, 1). For w = λ u+ (1 − λ)v, we get

g ′(x̄)w = λ g ′(x̄)u︸ ︷︷ ︸
∈K(g(x̄))

+(1 − λ) g ′(x̄)v︸ ︷︷ ︸
∈K(g(x̄))

∈ K(g(x̄))

where the last inclusion follows by convexity of K(g(x̄)) (see exercise).
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Exercise 8.8. Let K ⊂ Rm convex and g : Rn → Rm a C1 mapping. Let x ∈ Rn with
g(x) ∈ K. Show that the conical hull of K w.r.t. g(x), that is, K(g(x)) = ∪α>0α(K−g(x)),
is convex.

Note that L(S, x̄) depends not only on the set S but also on the chosen mapping g in order
to represent S; see the following example.

Example 8.9. Let S := {0} ⊂ R, x̄ = 0. With K = {0} ⊂ R,g(x) = x2 we get that S can
be represented as S = {x ∈ R|g(x) ∈ K}. With g ′(x̄) = 0 we have

L(S, x̄) = {v ∈ R|g ′(x̄)v = 0} = R.

If we choose g(x) = x, we still get S = {x ∈ R|g(x) ∈ K}. But with g ′(x̄) = 1 we get
L(S, x̄) = {0}.

Another special case is K = {0}. Here

S = {x ∈ Rn|g(x) = 0}

is an equation-defined mannifold and S in x̄ is the linear subspace

L(S, x̄) = {v ∈ Rn|g ′(x̄)v = 0}.

Another important special case is the standard cone K = Rk− × {0m−k}. Here, S is given as

S =

{
x ∈ Rn

∣∣∣∣∣ gi(x) ≤ 0, i = 1, . . . ,k,

gi(x) = 0, i = k+ 1, . . . ,m

}
.

Let
I(x̄) := {i ∈ {1, . . . ,k}|gi(x̄) = 0}

be the set for which the inequalities gi(x̄) ≤ 0 are active. We denote this set as the set of
active indices.

We get that K(g(x̄)) has the following form:

K(g(x̄)) =

{
y ∈ Rm

∣∣∣∣∣ yi ≤ 0, i ∈ I(x̄),

yi = 0, i = k+ 1, . . . ,m

}
and hence the linearized cone can be computed as

L(S, x̄) =

{
v ∈ Rn

∣∣∣∣∣ g
′
i(x̄)v ≤ 0, i ∈ I(x̄),

g ′
i(x̄)v = 0, i = k+ 1, . . . ,m

}
. (8.6)

We obtain the following relationship between T(S, x̄) and L(S, x̄).
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Lemma 8.10. If K(g(x̄)) is closed, then

T(S, x̄) ⊂ L(S, x̄).

Proof. Let v ∈ T(S, x̄) with

v = lim
i→∞ (xi − x̄)

ti
, xi ∈ S, ti > 0.

As in the proof of Thm. 8.6 we get

g ′(x̄)v = lim
i→∞ g(xi) − g(x̄)

ti
.

With xi ∈ S ⇒ g(xi) ∈ K and ti > 0 using the definition of K(g(x̄)) we get g(xi)−g(x̄)
ti

∈
K(g(x̄)). Closedness of K(g(x̄)) implies

g ′(x̄)v ∈ K(g(x̄)), i.e. v ∈ L(S, x̄).

The reverse inclusion L(S, x̄) ⊂ T(S, x̄) is not valid in general as shown by the following
example.

Example 8.11. Let S := {0} ⊂ R, x̄ = 0, T(S, x̄) = {0}.

1. With K = {0} ⊂ R,g(x) = x2 the set S is given as S = {x ∈ R|g(x) ∈ K}. With
g ′(x̄) = 0 we get

L(S, x̄) = {v ∈ R|g ′(x̄)v = 0} = R

and therefore T(S, x̄) ⊊ L(S, x̄).

2. With K = {0} ⊂ R,g(x) = x we can represent S as S = {x ∈ R|g(x) ∈ K}. With
g ′(x̄) = 1 we get L(S, x̄) = {0} and therefore T(S, x̄) = L(S, x̄).

8.4 Regularity Conditions

For obtaining L(S, x̄) ⊂ T(S, x̄) one needs to impose additional conditions on g and K.
Such conditions are known as constraint qualifications or regularity conditions. For a
motivation, consider the case

S = {x ∈ Rn|g(x) = 0}.

Definition 8.12. x̄ ∈ S is called regular, if

Im g ′(x̄) = Rm (8.7)

where Im g ′(x̄) is the image of the linear mapping x 7→ g ′(x̄)x for x ∈ Rn.
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x̄ is regular iff the gradients g ′
i(x̄)

⊺, i = 1, . . . ,m are linearly independent, or, equivalently

g ′(x̄)g ′(x̄)⊺ is non-singular.

For later, we recap that exactly one of the following statements is true:

1. x̄ is regular.

2. there is λ ∈ Rm, λ ̸= 0 with λg ′(x̄) = 0.

Theorem 8.13. Let S = {x ∈ Rn|g(x) = 0} and let x̄ ∈ S be regular. Then,

1. For v ∈ Rn with g ′(x̄)v = 0 there is ϵ > 0 and a curve x : [−ϵ, ϵ]→ S with

x(0) = x̄, ẋ(0) = lim
t→0

x(t) − x̄

t
= v.

2. We have T(S, x̄) = L(S, x̄) = {v ∈ Rn|g ′(x̄)v = 0}.

Proof. For (1): We define F : Rm+1 → Rm via

F(y, t) := g(x̄+ tv+ g ′(x̄)⊺y), y ∈ Rm, t ∈ R.

We have F(0m, 0) = g(x̄) = 0 and the partial derivatives of F wrt. y read as

∂F

∂y
(0m, 0) = g ′(x̄)g ′(x̄)⊺.

This matrix is non-singular as x̄ is regular. With the Implicit Function Theorem, there is
ϵ > 0 and a function y : [−ϵ, ϵ] → Rm that is continuously differentiable in t = 0 with
y(0) = 0 and

F(y(t), t) = 0 for t ∈ [−ϵ, ϵ].

We obtain ẏ(0) := limt→0
y(t)−y(0)

t and with the assumption g ′(x̄)v = 0 we get

0 =
dF(y(t), t)

dt

∣∣∣
t=0

= Fy(y(0), 0)ẏ(0) + Ft(y(0), 0) = g ′(x̄)g ′(x̄)⊺ẏ(0),

where we used Ft(y(0), 0) = g ′(x̄)v = 0. Hence, ẏ(0) = 0. By setting

x(t) = x̄+ vt+ g ′(x̄)⊺y(t), t ∈ [−ϵ, ϵ],

we obtain a cruve x(t) with the desired properties: g(x(t)) = 0, i.e. x(t) ∈ S, x(0) = x̄

and ẋ(0) = v, because ẏ(0) = 0.
For (2): The claim follows from (1) and Lemma 8.10.

We consider now the general case.

S = {x ∈ Rn|g(x) ∈ K}, K convex. (8.8)
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Definition 8.14. Let S as in (8.8). x̄ ∈ S is called regular, if

Im g ′(x̄) − K(g(x̄)) = Rm. (8.9)

This condition generalizes (8.7) and means geometrically that the linear subspace Im g ′(x̄)

and the cone K(g(x̄)) are transversal to each other.
In the following, we derive easier but equivalent conditions.

Lemma 8.15. Let K be convex. The following conditions are equivalent:

1. Im g ′(x̄) − K(g(x̄)) = Rm,

2. 0 ∈ int (Im g ′(x̄) − K(g(x̄))) ,

3. 0 ∈ int (Im g ′(x̄) + g(x̄) − K) ,

Proof. The proof is done in the following ordfer: 1.⇒ 3.⇒ 2.⇒ 1.
1.⇒ 3. : The set Im g ′(x̄)+g(x̄)−K is convex and contains 0 because g(x̄) ∈ K. Suppose
0 /∈ int (Im g ′(x̄) + g(x̄) − K). With the separating hyperplane theorem (Theorem 2.8)
there is λ ∈ Rm, λ ̸= 0 with

λ
(
g ′(x̄)v+ g(x̄) − y

)
≥ 0 for all v ∈ Rn,y ∈ K.

With the definition
K(g(x̄)) = ∪α>0α (K− g(x̄))

we get
λ
(
g ′(x̄)v− y

)
≥ 0 for all v ∈ Rn,y ∈ K(g(x̄)). (8.10)

The assumption Im g ′(x̄)−K(g(x̄)) = Rm yields λ = 0 in contradiction to the choice of λ.
3.⇒ 2. : Follows from K− g(x̄) ⊂ K(g(x̄)).
2.⇒ 1. : Let Bϵ(0) := {y ∈ Rm| ∥y∥ ≤ ϵ}. Per assumption there is ϵ > 0 with

Bϵ(0) ⊂ Im g ′(x̄) − K(g(x̄)).

Since Im g ′(x̄) − K(g(x̄)) is a cone, we get

Rm = ∪α≥0αBϵ(0) ⊂ Im g ′(x̄) − K(g(x̄)),

implying 1.

These conditions are due to S. Robinson (1976).
Using the proof of 1.⇒ 3. we get the following.
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Corollary 8.16. x̄ ∈ S is not regular if and only if there is λ ∈ Rm, λ ̸= 0 with

λg ′(x̄) = 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)).

Exercise 8.17. Prove the statement of Corollary 8.16.

We specalize the conditions of Lemma 8.15 to the following case

S = {x ∈ Rn|g(x) ∈ K,h(x) = 0},
o

K ̸= ∅,K konvex, (8.11)

with g = (g1, . . . ,gk)⊺,h = (gk+1, . . . ,gm)⊺. Then, 2. from 8.15 is equivalent to

Im h ′(x̄) = Rm−k and there is v ∈ Rn with h ′(x̄)v = 0, g ′(x̄)v ∈ int(K(g(x̄))). (8.12)

and 3. is equivalent to

Im h ′(x̄) = Rm−k and there is v ∈ Rn with h ′(x̄)v = 0, g(x̄) + g ′(x̄)v ∈
o

K. (8.13)

The conditions (8.12) and (8.13) are called local Slater-Conditions. For K = Rk− we get
from (8.12) the Mangasarian-Fromowitz-Conditions (cf. Mangasarian 1969).

Definition 8.18 (Mangasarian-Fromowitz). The gradients g ′
k+1(x̄)

⊺, . . . ,g ′
m(x̄)

⊺ are lin-
early independent and there is v ∈ Rn with

g ′
i(x̄)v < 0, i ∈ I(x̄) (set of active indices)

g ′
i(x̄)v = 0, i = k+ 1, . . . ,m.

We now derive the central statement L(S, x̄) ⊂ T(S, x̄) under the aforementioned regularity
conditions. We will do this for the case S being in the form (8.11).

Theorem 8.19. Let x̄ be a regular point in

S = {x ∈ Rn|g(x) ∈ K,h(x) = 0},
o

K ̸= ∅,K convex.

Then:

1. For v ∈ Rn with h ′(x̄)v = 0, and g(x̄) + g ′(x̄)v ∈
o

K there is ϵ > 0 and a curve

x : [0, ϵ]→ S

with
x(0) = x̄, ẋ(0) = lim

t↓0 x(t) − x̄t
= v.

2. We have L(S, x̄) ⊂ T(S, x̄).
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Proof. For 1.: In case k = m we set x(t) = x̄ + tv for t ∈ [0, ϵ] and ϵ > 0 small enough.
If k < m then using Thm. 8.13,(1.), there is δ > 0 and a curve x : [0, δ]→ Rn with

h(x(t)) = 0 for t ∈ [−δ, δ], x(0) = x̄, ẋ(0) = v.

Using

g(x̄) + g ′(x̄)v ∈
o

K, lim
t→0

g(x(t)) − g(x̄)

t
= g ′(x̄)v,

there is ϵ ≤ min{δ, 1} with

g(x̄) +
g(x(t)) − g(x̄)

t
∈ K für t ∈ [−ϵ, ϵ].

As g(x̄) ∈ K and with convexity of K, we get

g(x(t)) = (1 − t)g(x̄) + t

(
g(x̄) +

g(x(t)) − g(x̄)

t

)
∈ K for 0 ≤ t ≤ ϵ.

Thus, x(t) ∈ S for all 0 ≤ t ≤ ϵ.
For 2.: We repeat the definition of L(S, x̄):

L(S, x̄) = {v ∈ Rn|g ′(x̄)v ∈ K(g(x̄)), h ′(x̄)v = 0}.

Let v ∈ L(S, x̄). Per definition of K(g(x̄)) there is r > 0 with

g ′(x̄)v ∈ r(K− g(x̄)), h ′(x̄)v = 0.

This implies
g(x̄) + g ′(x̄)

v

r
∈ K, h ′(x̄)v = 0.

Using regularity of x̄ and consequently (8.13), there is v0 ∈ Rn with

g(x̄) + g ′(x̄)v0 ∈
o

K, h ′(x̄)v0 = 0.

We use the convex combination

vα := (1 − α)v0 + α
v

r
, for 0 ≤ α < 1.

and get using the following statement

Exercise 8.20. Let K be convex and x ∈
o

K,y ∈ K̄. Then,

(1 − α)x+ αy ∈
o

K, für 0 ≤ α < 1.

that
g(x̄) + g ′(x̄)vα ∈

o

K, h ′(x̄)vα = 0 for 0 ≤ α < 1.
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With part 1. we get
vα ∈ T(S, x̄) for 0 ≤ α < 1.

Using that T(S, x̄) is closed, we get

v = lim
α→1

rvα ∈ T(S, x̄).

We give some examples.

Example 8.21. The set S is given as

g1(x) = x2 − x
3
1 ≤ 0, g2(x) = x2 ≤ 0.

For x̄ = 0 we have I(x̄) = {1, 2}.

x1

x2

x̄

x2 = x3
1

S

Figure 8.8: Set S.

The derivatives
g ′

1(x̄) = g
′
2(x̄) = (0, 1)

are not linearly independent. Yet, the point x̄ = 0 is regular in the sense of Definition 8.18,
because for every v ∈ R2 with v2 < 0 we get

g ′
i(x̄)v = v2 < 0, i = 1, 2.

We obtain
T(S, x̄) = L(S, x̄) = {v ∈ R2|v2 ≤ 0}

according to Thm. 8.19, (2.).

Let us slightly change that example.
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Example 8.22. S is given as

g1(x) = x2 − x
3
1 ≤ 0, g2(x) = −x2 ≤ 0.

x1

x2

x̄

x2 = x3
1

S

Figure 8.9: Set S.

For x̄ = 0 we get I(x̄) = {1, 2}. The derivatives

g ′
1(x̄) = (0, 1) and g ′

2(x̄) = (0,−1).

are linearly dependent. x̄ = 0 is not regular in the sense of Definition 8.18, since for no
v ∈ R2, the conditions

g ′
1(0)v = v2 < 0, und g ′

2(0)v = −v2 < 0

are satisfiable. We compute

T(S, x̄) = {v ∈ R2|v1 ≥ 0, v2 = 0}

and with (8.6) we get
L(S, x̄) = {v ∈ R2|v2 = 0}.

Here we have T(S, x̄) ⊊ L(S, x̄).
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Chapter 9

First Order Necessary Optimality Con-
ditions

min {f(x)| g(x) ∈ K} (9.1)

We assume that f,g ∈ C1.
Let x̄ be a local minimum of (9.1). Then, there is a neighbourhood U of x̄ such that the
following subsets of R× Rm defined as

{f(x) − f(x̄),g(x)|x ∈ U} ∩ {(r,y)|r < 0,y ∈ K}

have an empty intersection. Thus, (0, 0m) lies on the boundary of

B = {(f(x) − f(x̄) + r,g(x) − y)|x ∈ U, r ≥ 0,y ∈ K} ⊂ R× Rm. (9.2)

Let us linearize the set B, i.e., we replace f(x) and g(x) with their first order Taylor
expansion (without rest term) in x̄, hence,

f(x̄) + f ′(x̄)v and g(x̄) + g ′(x̄)v with v = x− x̄,

and we obtain the convex set

B̃ = {(f ′(x̄)v+ r,g ′(x̄)v+ g(x̄) − y|v ∈ Rn, r ≥ 0,y ∈ K} ⊂ R× Rm.

The conical hull of this set wrt. (0, 0m) is the following convex cone:

A = {(f ′(x̄)v+ r,g ′(x̄)v− y|v ∈ Rn, r ≥ 0,y ∈ K(g(x̄))} ⊂ R× Rm. (9.3)

Exercise 9.1. Show that indeed A is the conical hull of B̃ wrt. (0, 0m).

The set A can be interpreted as a convex approximation of the non-convex set B. The
statement of the following theorem says that (0, 0m) lies on the boundary of A.

101
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Theorem 9.2. Let x̄ be a local minimum of (9.1). Then, the following statements are
true.

1. Necessary Optimality Conditions of Fritz John:
There is (λ0, λ) ∈ R× Rm, (λ0, λ) ̸= (0, 0m) with

λ0f
′(x̄) + λg ′(x̄) = 0 (9.4)

λ0 ≥ 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)). (9.5)

2. Necessary Optimality Conditions of Karush-Kuhn-Tucker:
If x̄ is regular, we get λ0 > 0 in (1) and w.l.o.g. λ0 = 1 holds. Thus, there is
λ ∈ Rm with

f ′(x̄) + λg ′(x̄) = 0 (9.6)

λ(−y) ≥ 0 for all y ∈ K(g(x̄)). (9.7)

Proof. Both statements are proven together.
1. Case: x̄ is not regular. With Corollary 8.16 there is λ ∈ Rm, λ ̸= 0 with

λg ′(x̄) = 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)).

The statement of the first part of the theorem follows with λ0 = 0.
2. Case: Let x̄ be regular. The variational inequality of Thm. 8.6 reads as:

f ′(x̄)v ≥ 0 for all v ∈ T(S, x̄), where S := {x | g(x) ∈ K}.

With the regularity of x̄, we get with Thm. 8.19 that

T(S, x̄) ⊃ L(S, x̄) = {v ∈ Rn|g ′(x̄)v ∈ K(g(x̄))},

and hence
f ′(x̄)v ≥ 0 for all v ∈ Rn with g ′(x̄)v ∈ K(g(x̄)). (9.8)

We consider the convex cone in (9.3):

A = {(f ′(x̄)v+ r,g ′(x̄)v− y|v ∈ Rn, r ≥ 0,y ∈ K(g(x̄))} ⊂ R× Rm.

Because of (9.8) we have that (0, 0m) lies on the boundary of A (set v = 0, r = 0,y = 0)
and with the separating hyperplane theorem there is (λ0, λ) ∈ R× Rm, (λ0, λ) ̸= 0, with

λ0(f
′(x̄)v+ r) + λ(g ′(x̄)v− y) ≥ 0 for all v ∈ Rn, r ≥ 0,y ∈ K(g(x̄)). (9.9)

For r = 0 and y = 0 we get

λ0(f
′(x̄)v) + λg ′(x̄)v ≥ 0 for all v ∈ Rn
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and therefore
λ0(f

′(x̄)) + λg ′(x̄) = 0.

For v = 0 and y = 0 we get λ0r ≥ 0 for all r ≥ 0 and hence λ0 ≥ 0. Finally, (9.9) implies
for v = 0 and r = 0

λ(−y) ≥ 0 for all y ∈ K(g(x̄)).

The case λ0 = 0 contradicts the statement of Cor. 8.16 for regular points x̄. Thus, λ0 > 0
and w.l.o.g. λ0 = 1.

9.1 Lagrange-Function and Multipliers

The last theorem is known as the Lagrange-Multiplier rule. The vector λi, i = 0, . . . ,m is
called Lagrange-Multiplier. The Lagrange-Function is defined as

L(x, λ0, λ) := λ0f(x) + λg(x), (λ0, λ) ∈ R× Rm

and for regular points
L(x, λ) := f(x) + λg(x), λ ∈ Rm.

The last theorem then reads as:

1. John: Lx(x̄, λ0, λ) = 0, λ0 ≥ 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄))

2. KKT: Lx(x̄, λ) = 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)),

where Lx denote the partial derivative of L wrt. x.

Exercise 9.3. Show that the following sets

Λ(x̄) := {λ ∈ Rm|Lx(x̄, λ) = 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄))} (9.10)

are convex and closed.
If x̄ is regular, then the above set is the set of Lagrange-Multipliers at x̄.

Theorem 9.4. Let x̄ be a local minimum of (9.1). Then, the following statements are
equivalent.

1. x̄ is regular.

2. Λ(x̄) ̸= ∅ and Λ(x̄) are bounded.

Proof. 1.⇒2.: Λ(x̄) ̸= ∅ follows from Theorem 9.2, (2.).
Assumption: Λ(x̄) is unbounded. Then, there is a sequence λi ∈ Λ(x̄), i ∈ N, with
∥λi∥→∞ for i→∞. Per definition of Λ(x̄) we have
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f ′(x̄) + λig
′(x̄) = 0, λi(−y) ≥ 0 for all y ∈ K(g(x̄)).

With λi ̸= 0 for i large enough, we get

1
∥λi∥

f ′(x̄) +
λi
∥λi∥

g ′(x̄) = 0,
λi

∥λi∥
(−y) ≥ 0 for all y ∈ K(g(x̄)). (9.11)

As the boundary of B1(0) is compact in Rm we may assume that λi
∥λi∥ → λ with ∥λ∥ = 1.

Equation (9.11) yields for i→∞
λg ′(x̄) = 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)).

With Corollary 8.16 we get a contradiction to the regularity at x̄.
1.⇐2.: Let λ1 ∈ Λ(x̄).
Assumption: x̄ is not regular.
With Corollary 8.16 there is λ2 ∈ Rm, λ2 ̸= 0 with

λ2g
′(x̄) = 0, λ2(−y) ≥ 0 for all y ∈ K(g(x̄)).

This implies λ1+rλ2 ∈ Λ(x̄) for all r ≥ 0 in contradiction to the boundedness of Λ(x̄).

We get the following implication.

Corollary 9.5. If x̄ is a regular local minimum of (9.1), then Λ(x̄) is a nonempty,
compact and convex subset of Rm.

Now we discuss uniqueness of the Lagrange-Multipliers.

Definition 9.6. x̄ is called normal, if

Im g ′(x̄) − V = Rm, V := K(g(x̄)) ∩ (−K(g(x̄))). (9.12)

Recall that V = K(g(x̄)) ∩ (−K(g(x̄))) is the largest linear subspace contained in K(g(x̄)).
With K(g(x̄)) ⊃ V we get: x̄ is normal ⇒ x̄ is regular.

Theorem 9.7. If x̄ is a normal local minimum of (9.1), then Λ(x̄) is a singleton.

Proof. We get Λ(x̄) ̸= ∅, as x̄ is regular. For λ1, λ2 ∈ Λ(x̄) we show λ1 = λ2. Per definition
of Λ(x̄) we have

f ′(x̄) + λig
′(x̄) = 0, λi(−y) ≥ 0 for all y ∈ K(g(x̄)) (i = 1, 2).

The vector λ := λ1 − λ2 satisfies

λg ′(x̄) = 0, λy = 0 for all y ∈ V.

Current Version: January 23, 2024.



9.2. Specialization for the Standard Cone | 105

With condition (9.12) in Definition 9.6 (note Im g ′(x̄) − V = Rm) we get λ = 0 and
therefore λ1 = λ2.

9.2 Specialization for the Standard Cone

Exercise 9.8. Show that if the set K in formulation 9.1 is a convex cone, we get
K(g(x̄)) = K+ R g(x̄).

λ(−y) ≥ 0 for all y ∈ K(g(x̄))

is in this case equivalent to

λ(−y) ≥ 0 for all y ∈ K, λg(x̄) = 0. (9.13)

The equation λg(x̄) = 0 is called complementarity conditions.

Exercise 9.9. Show that for K(g(x̄)) = K+ R g(x̄) we get that

λ(−y) ≥ 0 for all y ∈ K(g(x̄))

is equivalent to
λ(−y) ≥ 0 for all y ∈ K, λg(x̄) = 0.

Now we consider the standard problem of nonlinear optimization.

min {f(x)| gi(x) ≤ 0, i = 1, . . . ,k,

gi(x) = 0, i = k+ 1, . . . ,m}
(9.14)

This problem is obtained as special case of 9.1 by setting K = Rk− × {0m−k}. Recall:

I(x̄) := {i ∈ {1, . . . ,k}| gi(x̄) = 0}

J(x̄) := I(x̄) ∪ {k+ 1, . . . ,m}

For the Lagrange-Multipliers λ = (λ1, . . . , λm) we get from (9.13)

λi ≥ 0 for all i ∈ I(x̄), λi = 0 for all i /∈ J(x̄).

We compute

K(g(x̄)) = {y ∈ Rm|yi ≤ 0, i ∈ I(x̄), yi = 0, i = k+ 1, . . . ,m}

and the linear subspace V in (9.12) is given by

V = {y ∈ Rm|yi = 0 for all i ∈ J(x̄)}.
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Corollary 9.10. x̄ is normal for 9.14 if and only if the gradients

g ′
i(x̄) i ∈ J(x̄) are linearly independent. (9.15)

Theorem 9.11. Let x̄ be a local minimum of (9.14). Then, there is λ0 ≥ 0 and λ ∈ Rm

with (λ0, λ) ̸= (0, 0m), such that:

1. Lx(x̄, λ0, λ) = λ0f
′(x̄) + λg ′(x̄) = λ0f

′(x̄) +
∑m
i=1 λig

′
i(x̄) = 0 ∈ Rn.

2. λi = 0 for i /∈ J(x̄), i.e., i ∈ {1, . . . ,k} with gi(x̄) < 0.

3. λi ≥ 0 for i ∈ I(x̄).

We have λ0 > 0, if x̄ regular. Then, w.l.o.g. λ0 = 1 (divide Lagrange-Function by
λ0 > 0). If x̄ is normal, then λ ∈ Rm is unique.

Every feasible x̄ with multipliers (λ0, λ) satisfying the conditions of Thm. 9.11are called
critical point. It turns out that not every critical point is a local minimum of (9.14). In
particular, for problems 9.11 with equations, the required conditions for the minimization

min{f(x)|g(x) = 0}

and maximization variant
max{f(x)|g(x) = 0}

coincide.

Example 9.12.
min {f(x) = x1 + x2

g(x) = x2
1 + x

2
2 − 2 = 0.}

(1, 1)

(−1,−1)
S

Figure 9.1: Set S and critical points.
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Every point of S defined as

S := {(x1, x2) ∈ R2|x2
1 + x

2
2 − 2 = 0}

is regular. The necessary KKT-conditions are

f ′(x̄) + λg ′(x̄) = (1 + 2λx̄1, 1 + 2λx̄2) = 0.

This implies λ ̸= 0. Together with g(x̄) = 0 we get

ȳ = (1, 1)⊺, λ = −1/2

x̄ = (−1,−1)⊺, λ = 1/2

Obviously ȳ is a local maximum, while x̄ is a local minimum. With the sufficient optimality conditions
that come up in the next section, we can show this formally.

We slightly modify the example.

Example 9.13.
min {f(x) = x1 + x2

g(x) = x2
1 + x

2
2 − 2 ≤ 0.}

Every x̄ ̸= 0 of the set S defined as

S := {(x1, x2) ∈ R2|x2
1 + x

2
2 − 2 ≤ 0}

is regular. Th necessary KKT-conditions read as

f ′(x̄) + λg ′(x̄) = (1 + 2λx̄1, 1 + 2λx̄2) = 0, λ ≥ 0 for g(x̄) = 0.

We get the unique solution
x̄ = (−1,−1)⊺, λ = 1/2

Hence, the sign constraint λ ≥ 0 sorts out the solution ȳ.

We give another example.

Example 9.14.
min {f(x) = −x2

g1(x) = x
2
1 + x2 ≤ 0

g2(x) = −x2
1 + x2 ≤ 0.}

x̄ = (0, 0)⊺ is the global minimum. We get I(x̄) = {1, 2} and

g ′
1(0, 0) = (0, 1),g ′

2(0, 0) = (0, 1)

are linearly dependent, thus, x̄ is not normal. But x̄ is regular, as it satisfies the Mangasarian-
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S

g2(x) = 0

g1(x) = 0

Figure 9.2: Set S and critical points.

Fromowitz-conditions for v = (0,−1)⊺.

g ′
1(0, 0)v = g ′

2(0, 0)v = (0, 1) · (0,−1)⊺ = −1 < 0.

The necessary KKT-conditions read as

f ′(x̄) + λg ′(x̄) = (0,−1 + λ1 + λ2) = 0, λ1 ≥ 0, λ2 ≥ 0.

The set of multipliers is given by

Λ(x̄) = {(λ1, λ2) ∈ R2
+| λ1 + λ2 = 1}.

This set is convex and compact in compliance with Corollary 9.5.
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Chapter 10

Second-Order Necessary and Suffi-
cient Optimality Conditions

min {f(x)| g(x) ∈ K} (10.1)

where we assume f,g ∈ C2.
The Hesse-matrix of f in x̄ is denoted by

f ′′(x̄) =

(
∂2f(x̄)

∂xi∂xj

)
i,j=1,...,n

.

The Hesse-matrix of the Lagrange function reads as

Lxx(x̄, λ0, λ) = λ0f
′′(x̄) + λg ′′(x̄) = λ0f

′′(x̄) +

m∑
i=1

λig
′′
i (x̄).

The linearized cone of S in x̄ is per definition in (8.5) given as

L(S, x̄) = {v ∈ Rn|g ′(x̄)v ∈ K(g(x̄))}.

We now derive second order conditions using the Hesse-matrix of the Lagrange-function

λ0f
′′(x̄) + λg ′′(x̄)

wrt. the convex cone

C := {v ∈ Rn|f ′(x̄)v ≤ 0, g ′(x̄)v ∈ K(g(x̄))}

= {v ∈ Rn|f ′(x̄)v ≤ 0} ∩ L(S, x̄).
(10.2)

The set C represents the set of vectors v of the linearized cone L(S, x̄) that constitute
descent directions of f in x̄.
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Theorem 10.1. Let x̄ ∈ S and K(g(x̄)) closed.

1. Second Order Necessary Conditions:
If x̄ is a local minimum of (10.1), then, for every v ∈ C there is (λ0, λ) ∈ R ×
Rm, (λ0, λ) ̸= 0 with

(a) λ0 ≥ 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)).

(b) λ0f
′(x̄) + λg ′(x̄) = 0

(c) v⊺(λ0f
′′(x̄) + λg ′′(x̄))v ≥ 0

2. Second Order Sufficient Conditions:
Suppose for every v ∈ C \ {0} there exists (λ0, λ) ∈ R× Rm, (λ0, λ) ̸= 0 with

(a) λ0 ≥ 0, λ(−y) ≥ 0 for all y ∈ K(g(x̄)).

(b) λ0f
′(x̄) + λg ′(x̄) = 0

(c) v⊺(λ0f
′′(x̄) + λg ′′(x̄))v > 0.

Then, there is ϵ > 0 and a constant c > 0 with

f(x) ≥ f(x̄) + c ∥x− x̄∥2 for all x ∈ S with ∥x− x̄∥ ≤ ϵ. (10.3)

In particular, x̄ is a strong local minimum of (10.1).

3. If x̄ is regular, then λ0 > 0, i.e., w.l.o.g. λ0 = 1 can be chosen in (1.) and (2.). If x̄
is normal, then λ0 = 1 and λ in (1.) and (2.) is unique and independent of v ∈ C.

Proof. For 1: The proof is similar to that for the first order conditions, see Lempio and
Zowe (1981) for a complete proof.
For 2: We assume that (10.3) is false. Then, there is a sequence {xi} ⊂ S with

xi ̸= x̄, lim
i→∞ xi = x̄.

and
f(xi) < f(x̄) +

1
i
∥xi − x̄∥2 . (10.4)

We set vi := xi − x̄ ̸= 0. The boundary of the unit ball is compact and hence we can
assume w.l.o.g. that

v := lim
i→∞ vi

∥vi∥
(with ∥v∥ = 1).

With (10.4) we get

f ′(x̄)v = lim
i→∞ f(xi) − f(x̄)

∥xi − x̄∥
≤ 0,

and with the closedness of K(g(x̄)) we get

g ′(x̄)v = lim
i→∞ g(xi) − g(x̄)

∥xi − x̄∥
∈ K(g(x̄)).
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Per definition of the cone (10.2) we get v ∈ C \ {0}. For such v there is per assumption
(λ0, λ) ∈ R× Rm, (λ0, λ) ̸= 0, satisfying (a), (b), (c). The Taylorexpansion in x̄ of second
order of f and g yields together with (10.4):

f ′(x̄)vi +
1
2
v
⊺
i f

′′(x̄)vi + o(∥vi∥2) = f(xi) − f(x̄) ≤
1
i
∥vi∥2 (10.5)

g ′(x̄)vi +
1
2
v
⊺
i g

′′(x̄)vi + o(∥vi∥2) = g(xi) − g(x̄) ∈ K(g(x̄)). (10.6)

Multiplying (10.5) with λ0 and (10.6) with λ, we get via addition of both equalities and
considering (a), (b) the inequality

1
2
v
⊺
i (λ0f

′′(x̄) + λg ′′(x̄))vi + o(∥vi∥2) ≤ λ0

i
∥vi∥2 .

(We use in particular (a), i.e., g(xi)−g(x̄) ∈ K(g(x̄)) and hence λ(g(xi)−g(x̄)) ≤ 0.) The
division by ∥vi∥2 yields in the limit i→∞ the inequality

1
2
v⊺(λ0f

′′(x̄) + λg ′′(x̄))v ≤ 0

in contradiction to (c).

For 3: If x̄ is regular, we get λ0 > 0 from Thm. 9.2(2.). If x̄ is normal, we get the statement
from Thm. 9.7.

The cone C in (10.2) can also described without using f. Suppose that x̄ is normal. If x̄
is a local minimum, then there is a unique λ ∈ Rm with

f ′(x̄) + λg ′(x̄) = 0, λ(−y) ≥ 0 for y ∈ K(g(x̄)). (10.7)

For v ∈ C we get per definition

f ′(x̄)v ≤ 0, λ(−y) ≥ 0 for y ∈ K(g(x̄)).

In conjunction with (10.7) we get

f ′(x̄)v = −λg ′(x̄)v ≤ 0, λ(−g ′(x̄)v) ≥ 0.

Hence,
f ′(x̄)v = 0 and λg ′(x̄)v = 0 for all v ∈ C.

Thus, C has the form

C = {v ∈ Rn|λg ′(x̄)v = 0, g ′(x̄)v ∈ K(g(x̄))}. (10.8)
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10.1 Specialization to the Standard Cone

For K = {0} we get
C = L(S, x̄) = {v ∈ Rn|g ′(x̄)v = 0}.

For the standard problem we get using I(x̄) and J(x̄) = I(x̄)∪ {k+1, . . . ,m} (see Section 9)
for the multiplier λ ∈ Rm:

λi ≥ 0 for all i ∈ I(x̄), λi = 0 for all i /∈ J(x̄).

Using
K(g(x̄)) = {y ∈ Rm|yi ≤ 0, i ∈ I(x̄), yi = 0, i = k+ 1, . . . ,m}

C has the form
C = {v ∈ Rn|g ′

i(x̄)v ≤ 0, i ∈ I(x̄), λi = 0,

g ′
i(x̄)v = 0, i ∈ I(x̄), λi > 0,

g ′
i(x̄)v = 0, i = k+ 1, . . . ,m}.

(10.9)

Altogether we obtain the following conditions for problem (10.1).

Theorem 10.2. Let x̄ ∈ S be normal, i.e., the gradients g ′
i(x̄)

⊺, i ∈ J(x̄) are linearly
independent.

1. Second-order necessary conditions:
If x̄ is a local minimum (10.1), then there is a unique λi ∈ R, i ∈ J(x̄), with

(a) λi ≥ 0 for i ∈ I(x̄),

(b) f ′(x̄) +
∑
i∈J(x̄) λig

′
i(x̄) = 0

(c) v⊺(f ′′(x̄) +
∑
i∈J(x̄) λig

′′
i (x̄))v ≥ 0 for all v ∈ C mit C as in (10.9).

2. Second-order sufficient conditions:
Suppose there are λi ∈ R, i ∈ J(x̄) with

(a) λi ≥ 0 for i ∈ I(x̄),

(b) f ′(x̄) +
∑
i∈J(x̄) λig

′
i(x̄) = 0

(c) v⊺(f ′′(x̄) +
∑
i∈J(x̄) λig

′′
i (x̄))v > 0 for all v ∈ C \ {0} with C as in (10.9).

Then, there is ϵ > 0 and c > 0 with

f(x) ≥ f(x̄) + c ∥x− x̄∥2 for all x ∈ S with ∥x− x̄∥ ≤ ϵ. (10.10)

In particular, x̄ is a strong local minimum of (10.1).
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10.2 Examples

We revisit the example 9.12

min {f(x) = x1 + x2

g(x) = x2
1 + x

2
2 − 2 = 0.}

which has the two critical points

x̄1 = (1, 1)⊺ with λ1 = −1/2

x̄2 = (−1,−1)⊺ with λ2 = 1/2.

The Hesse-matrix of the Lagrange-function in those points is

f ′′(x̄) + λg ′′(x̄) = λ

2 0

0 2

 .

For x̄2 and λ2 we get that the matrix is pos. def. on R2, hence, the conditions of
Thm. 10.2(2.) are satisfied with the subspace

C = {v ∈ R2|v2 = −v1}.

Thus, x̄2 is a strong local minimum.

For x̄1 and λ1 the matrix is negativ definite, and hence x̄1 is a strong local maximum.

We give another example.

min {f(x) = x2
1 + x2

g1(x) = x
2
1 + x

2
2 − 9 ≤ 0,

g2(x) = x1 + x2 − 1 ≤ 0.}

As candidate for a local minimnum consider x̄ = (0,−3)⊺, for which g1(x̄) = 0 and
g2(x̄) < 0. Hence, I(x̄) = {1}. The point x̄ is normal and the KKT-conditions in Thm. 9.11
has with λ2 = 0 the solution λ1 = 1/6. The cone C in (10.9) is the subspace

C = {v ∈ R2|2x̄1v1 + 2x̄2v2 = 0}

= {v ∈ R2|v2 = 0}

The Hesse-matrix of the Lagrange-function

f ′′(x̄) + λ1g
′′
1 (x̄) =

2(1 + λ1) 0

0 2λ1

 .
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is positiv definite on R2 and in particular

v⊺(f ′′(x̄) + λ1g
′
1(x̄))v = 2v21(1 + λ1) > 0

for all v ∈ C\{0}. With Thm. 10.2(2.), we get that x̄ = (0,−3)⊺ is a strong local minimum.
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Chapter 11

Sensitivity Analysis

We consider the standard problem:

min {f(x)| gi(x) ≤ 0, i = 1, . . . ,k,

gi(x) = 0, i = k+ 1, . . . ,m}
(11.1)

Suppose that the right-hand side (11.1) is perturbed:

min {f(x)| gi(x) ≤ ϵi, i = 1, . . . ,k,

gi(x) = ϵi, i = k+ 1, . . . ,m}
(11.2)

We obtain a parameterized family of optimization problems depending on ϵ := (ϵ1, . . . , ϵm) ∈
Rm denoted by (11.1). For ϵ = 0 the perturbed problem (11.2) becomes (11.1) which we
denote as the unperturbed problem.
More generally for ϵ ∈ Rp,p ≥ 1, we obtain:

min {f(x, ϵ)| gi(x, ϵ) ≤ 0, i = 1, . . . ,k,

gi(x, ϵ) = 0, i = k+ 1, . . . ,m}
(11.3)

where f : Rn×Rp → R and g : Rn×Rp → Rm are mappings with certain differentiability
assumptions to be specified later and we allow even that f and g depend in a nonlinear
way on ϵ.
For K = Rk− × {0m−k}. we obtain:

min
x∈Rn

{f(x, ϵ)|g(x, ϵ) ∈ K}. (11.4)

The feasible set (11.4) is given as

S(ϵ) := {x ∈ Rn|g(x, ϵ) ∈ K}, ϵ ∈ Rp. (11.5)
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The optimal value function of (11.4) is denoted as:

w : Rp → R̄ := R ∪ {−∞,+∞} defined as

w(ϵ) := inf
x∈Rn

{f(x, ϵ)|g(x, ϵ) ∈ K}, ϵ ∈ Rp.
(11.6)

11.1 Local Sensitivity Analysis

Under which conditions can we embed a local minimum x(0) of the unperturbed problem
into a continuously differentiable family of perturbed local minima x(ϵ). W.l.o.g., we use
the following notation:

I(x̄) = {i ∈ {1, . . . ,k}|gi(x̄, 0) = 0} = {1, . . . ,k0},

J(x̄) = {1, . . . ,k0,k+ 1, . . . ,m},

m0 : = |J(x̄)| = m+ k0 − k.

(11.7)

Theorem 11.1. Let x̄ ∈ S(0) be a local minimum of (11.4). Let x̄ be normal, i.e.,
the gradients g ′

i(x̄)
⊺ are linearly independent for i ∈ J(x̄). Assume there are uniquely

determined λ̄i, i ∈ J(x̄) such that the second order sufficient optimality conditions of
Thm. 10.1, (2) are satisfied with

1. λ̄i > 0 for i = 1, . . . ,k0,

2. fx(x̄, 0) +
∑
i∈J(x̄) λ̄igix(x̄, 0) = 0,

3. v⊺
(
fxx(x̄, 0) +

∑
i∈J(x̄) λ̄igixx(x̄, 0)

)
v > 0 for all v ̸= 0 with

v ∈ C = {v ∈ Rn|gix(x̄, 0)v = 0, i ∈ J(x̄)}.

Then there is a neighbourhood E ⊂ Rp of ϵ = 0 and continuously differentiable functions
x : E→ Rn, λi : E→ R, i ∈ J(x̄), with:

1. x(0) = x̄, λi(0) = λ̄i, i ∈ J(x̄),

2. for all ϵ ∈ E: x(ϵ), λi(ϵ), i ∈ J(x̄) satisfy the conditions of Thm. 10.1(2.) for the
perturbed problem (11.4). In particular, x(ϵ) is a local minimum of (11.4).

Proof. We define
G : Rn × Rp → Rm0 , m0 = m+ k0 − k,

via
G(x, ϵ) = (g1(x, ϵ), . . . ,gk0(x, ϵ),gk+1(x, ϵ), . . . ,gm(x, ϵ))⊺.

Per construction, x̄ is a strong local minimum of

min{f(x, 0)| G(x, 0) = 0}.
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The wanted function x(ϵ) of local minima to (11.4) should be C1, thus, they should satisfy

gi(x(ϵ), ϵ) < 0 for i /∈ J(x̄), ∥ϵ∥ small enough.

Hence, x(ϵ) should be a local minimum of the perturbed problem with equality constraints

min{f(x, ϵ)| G(x, ϵ) = 0}. (11.8)

The Lagrange-function therefore is constructed as

L(x,ν, ϵ) = f(x, ϵ) + νG(x, ϵ), ν ∈ Rm0 . (11.9)

x(ϵ) and the multiplier ν(ϵ) = (λi(ϵ))i∈J(x̄) needs to solve

F(x,ν⊺, ϵ) :=

Lx(x,ν, ϵ)⊺
G(x, ϵ)

 = 0, (11.10)

where
F : Rn × Rm0 × Rp → Rn × Rm0 .

Note that ν⊺ as the argument of F appears as a column vector. For ϵ = 0 we get per
assumption F(x̄, ν̄⊺, 0) = 0 with ν̄ := (λ̄i)i∈J(x̄) and F is C1 in a neighbourhood of (x̄, ν̄⊺, 0).
The Jacobi-matrix of F wrt. (x,ν⊺) in (x̄, ν̄⊺, 0) is given by the (n+m0)× (n+m0) matrix

A0 :=
∂F

∂(x,ν⊺)
(x̄, ν̄⊺, 0) =

Lxx(x̄, ν̄, 0) Gx(x̄, 0)⊺

Gx(x̄, 0) 0

 . (11.11)

In order to apply the implicit function theorem, we will show that A0 is non-singular. Let
(v,w) ∈ Rn × Rm0 with

A0

 v
w

 =

Lxx(x̄, ν̄, 0) v+Gx(x̄, 0)⊺ w
Gx(x̄, 0) v

 = 0. (11.12)

Multiplying the equation with (v, 0)⊺ from the left and using Gx(x̄, 0)v = 0, we get

v⊺Lxx(x̄, ν̄, 0)v = 0.

The assumption of the Thm. yield v = 0. The equation (11.12) reduces to

Gx(x̄, 0)⊺ w = 0.

Using that x̄ is normal, the matrix Gx(x̄, 0)⊺ has rank m0 and therefore w = 0. Thus, A0

is non-singular.

We can apply the implicit function theorem on the system of equations (11.10) and get
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the existence of a neighbourhood E ⊂ Rp of ϵ = 0 and C1 functions x : E → Rn,ν(ϵ) =
(λi(ϵ))i∈J(x̄) : E→ Rm0 , with:

F(x(ϵ),ν(ϵ)⊺, ϵ) = 0 for all ϵ ∈ E,

x(0) = x̄, ν(0) = ν̄.
(11.13)

For completing the proof, we need to verify that x(ϵ) and (λi(ϵ))i∈J(x̄) satisfy the 2. order
sufficient optimality conditions. Because of

λi(0) = λ̄i > 0, i = 1, . . . ,k0,

gi(x(0), 0) = gi(x̄, 0) < 0, for i = k0, . . . ,k

and the continuity of the functions, we can choose E small enough, such that for all ϵ ∈ E
we get

λi(ϵ) > 0, i = 1, . . . ,k0,

gi(x(ϵ), ϵ) < 0, for i = k0, . . . ,k

With (11.10) and (11.13) we get that x(ϵ) ∈ S(ϵ) for all ϵ ∈ E and moreover the KKT-
conditions are satisfied:

Lx(x(ϵ),ν(ϵ), ϵ) = 0 for all ϵ ∈ E.

Again using continuity, we can choose E small enough such that for all ϵ ∈ E:

v⊺
(
λ0fxx(x(ϵ), ϵ) +

∑
i∈J(x(ϵ))

λ̄igixx(x(ϵ), ϵ)
)
v > 0

for all v ̸= 0 with

v ∈ C = {v ∈ Rn|gix(x(ϵ), ϵ)v = 0, i ∈ J(x(ϵ))}.

The matrix Gx(x(ϵ), ϵ) has rank m0 implying that x(ϵ) is normal. Altogether, x(ϵ) is a
strong local minimum of the perturbed problem (11.4).

Corollary 11.2. For the functions x : E→ Rn,ν(ϵ) = (λi(ϵ))i∈J(x̄) : E→ Rm0 appearing
in Thm. 11.1, the following statements are true:

1. With the non-singular (n+m0)× (n+m0) matrix A0 and the (n+m0)×p matrix

B0 =

Lxϵ(x̄, ν̄, 0)
Gϵ(x̄, 0)


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we can compute ẋ(0) and ν̇(0) as ẋ(0)
ν̇(0)⊺

 = −A−1
0 B0.

2. Generalized Shadow-Price:

d

dϵ
f(x(ϵ), ϵ)

∣∣∣
ϵ=0

= Lϵ(x̄, ν̄, 0) = fϵ(x̄, 0) + ν̄Gϵ(x̄, 0).

Proof. For (1): The differentiation of (11.13) yieds with (11.10) and (11.11):

d

dϵ
F(x(ϵ),ν(ϵ)⊺, ϵ)

∣∣∣
ϵ=0

= A0

 ẋ(0)
ν̇(0)⊺

+ B0 = 0.

For (2): From G(x(ϵ), ϵ) = 0 we get

0 =
d

dϵ
G(x(ϵ), ϵ)

∣∣∣
ϵ=0

= Gx(x̄, 0) ẋ(0) +Gϵ(x̄, 0).

Together with
fx(x̄, 0) = −ν̄Gx(x̄, 0)

we get

d

dϵ
f(x(ϵ), ϵ)

∣∣∣
ϵ=0

= fx(x̄, 0) ẋ(0) + fϵ(x̄, 0)

= −ν̄Gx(x̄, 0) ẋ(0) + fϵ(x̄, 0)

= ν̄Gϵ(x̄, 0) + fϵ(x̄, 0)

= Lϵ(x̄, ν̄, 0).

11.2 Application to Real-Time Optimization

Part (1) of the Corollary allows to represent the solution x(ϵ) of the perturbed problem
via a Taylor-expansion at the unperturbed solution : x(ϵ)

ν(ϵ)⊺

 ≈

 x̄
ν̄⊺

+

 ẋ(0)
ν̇(0)⊺

 ϵ. (11.14)

The formula 2. becomes for (11.2):
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d

dϵi
f(x(ϵ), ϵ)

∣∣∣
ϵ=0

=

−λ̄i for i ∈ J(x̄)

0, for i /∈ J(x̄).
(11.15)

This formula shows how to interpret the Lagrange multipliers as shadow prices.

The formula (11.14) allows for an application in the area of real-time optimization. Sup-
pose we compute offline a solution of the unperturbed problem. If the system data changes,
a new solution can be computed in real-time (without resolving the equation system) via
the approximation (11.14).

Example 11.3.
min f(x, ϵ) = −(0.5 + ϵ)

√
x1 − (0.5 − ϵ)x2

x1 + x2 ≤ 1,

x1 ≥ 0.1,

x2 ≥ 0.

for ϵ = 0 the assumptions of Thm. 11.1 are satisfied with

x̄ = (0.25, 0.75), x̄ is normal

J(x̄) = {1}, G1(x1, x2) = x1 + x2 − 1

ν̄ = λ̄1 = 0.5 > 0.

The Lagrange-function (11.9) is given by

L(x̄, ν̄, ϵ) = −(0.5 + ϵ)
√
x̄1 − (0.5 − ϵ)x̄2 + ν̄(x̄1 + x̄2 − 1).

The sufficient conditions of 2. order are valid, because

Lxx(x̄, ν̄, ϵ) =

1 0

0 0


C = {v ∈ R2|Gx(x̄)v = v1 + v2 = 0}

v⊺Lxx(x̄, ν̄, ϵ)v = v21 > 0 for all v ∈ C \ {0}.

The formula gives

A0 =

Lxx G
⊺
x

Gx 0

 =


1 0 1

0 0 1

1 1 0


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B0 =

Lxϵ
Gϵ

 =


−1

1

0



ẋ1(0)

ẋ2(0)

ẋ3(0)

 = −A−1
0 B0 =


2

−2

−1

 .

Hence, the approximation of first order yields
x1(ϵ)

x2(ϵ)

x3(ϵ)

 =


0.25

0.75

0.5

+


2

−2

−1

 ϵ.

For ϵ = 0.05 we get

approximation : (0.35, 0.65, 0.45)

exact value : (0.373, 0.627, 0.45).
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Chapter 12

Duality

min {f(x)| gi(x) ≤ 0, i = 1, . . . ,k,

gi(x) = 0, i = k+ 1, . . . ,m}
(12.1)

with equivalent representation min{f(x)|x ∈ S}, where S = {x ∈ Rn|g(x) ∈ K} and
K = Rk− × {0m−k}.

Consider the Lagrange-Function:

L(x, λ) := f(x) + λg(x), λ ∈ Rk+ × Rm−k.

We define the Lagrangian-Dual:

µ : Rm → R

µ(λ) = inf
x∈Rn

L(x, λ) = inf
x∈Rn

{f(x) + λg(x)}.

We assume µ(λ, x) = −∞, if L(x, λ) is not bounded from below on Rn.

Theorem 12.1. If µ is finite on R ⊂ Rm, them µ is concave on R.

Proof. Let λ1, λ2 ∈ R and let α ∈ [0, 1]. We obtain:

µ(αλ1 + (1 − α)λ2) = inf
x∈Rn

{f(x) + (αλ1 + (1 − α)λ2)g(x)}

≥ inf
y∈Rn

{αf(y) + αλ1g(y)}+ inf
z∈Rn

{(1 − α)f(z) + ((1 − α)λ2)g(z)}

= αµ(λ1) + (1 − α)µ(λ2).

12.1 Dual Problem and Weak Duality

Let p∗ = min{f(x)|x ∈ S} be the optimal value of (12.1). We show that for every Lagrange
multiplier, i.e., λi ≥ 0, i = 1, . . . ,k, every value of µ(λ) yields a lower bound on p∗.
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Theorem 12.2. For λ ∈ Rm with λi ≥ 0, i = 1, . . . ,k, we have:

µ(λ) ≤ p∗. (12.2)

Proof. Let x̄ ∈ S, i.e. gi(x̄) ≤ 0, i = 1, . . . ,k and gi(x̄) = 0 for i = k+ 1, . . . ,m. Then,

k∑
i=1

λi gi(x̄) +

m∑
i=k+1

λi gi(x̄) ≤ 0.

We get

L(x̄, λ) = f(x̄) +
k∑
i=1

λi gi(x̄) +

m∑
i=k+1

λi gi(x̄) ≤ f(x̄)

and obtain
µ(λ) = inf

x∈Rn
L(x, λ) ≤ L(x̄, λ) ≤ f(x̄).

For every Lagrange multiplier λ, the corresponding value µ(λ) yields a lower bound on
p∗. The dual problem maximizes this lower bound:

max{µ(λ)| λ ∈ Rm, λi ≥ 0, i = 1, . . . ,k} (12.3)

This problem is termed dual problem while the original problem (12.1) is the primal
problem.
We say that λ with λi ≥ 0, i = 1, . . . ,k is dual feasible, if µ(λ) > −∞. We denote with λ∗

the optimal Lagrange multiplier.

Remark 12.3. Problem (12.3) is a convex optimization problem, because the objective
is concave and the feasible region is convex. This property is independent on whether
or not the primal is convex.

Let d∗ be an optimal solution to the dual problem. Thm. 12.2 implies weak duality:

d∗ ≤ p∗.

Note that weak duality also holds, if d∗ and p∗ are infinite. If p∗ = −∞, then d∗ = −∞
and the dual is infeasible. Otherwise, if d∗ =∞, we get p∗ =∞, hence the primal problem
is infeasible. The difference p∗ − d∗ is known as duality gap.

12.2 Strong Duality and Saddle Points

If
d∗ = p∗,
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we say that strong duality holds.

Theorem 12.4. Let x∗ be feasible for (12.1) and λ∗ feasible for (12.3). Suppose that
strong duality holds, i.e.

f(x∗) = µ(λ∗).

Then:

1. x∗ and λ∗ are globally optimal for (12.1) and (12.3).

2. λ∗i gi(x
∗) = 0 for all i = 1, . . . ,m.

Proof. For 1. let x̄ be a global optimal solution of (12.1).

f(x̄) ≥ µ(λ∗) = f(x∗),

where the first inequality follows from (12.2).
For 2. we observe that for all i > k, the feasibility of x∗ yields gi(x∗) = 0 and therefore
λ∗i gi(x

∗) = 0 is implied. For i ≤ k we consider the inequality:

f(x∗) = µ(λ∗) ≤ L(x∗, λ∗) = f(x∗) + λ∗g(x∗).

We get λ∗g(x∗) ≥ 0. On the other hand λ∗g(x∗) ≤ 0, and hence we get λ∗g(x∗) = 0. As
for every i ≤ k we have λ∗i ≥ 0 and gi(x∗) ≤ 0, the claim follows for all i ≤ k.

We define a saddle point.

Definition 12.5. We are given a problem of the form (12.1). Let (x̄, λ̄) satisfy:

1. λ̄i ≥ 0, i = 1, . . . ,k

2. L(x̄, λ) ≤ L(x̄, λ̄) for all λ ∈ Rm with λi ≥ 0, i = 1, . . . ,k.

3. L(x̄, λ̄) ≤ L(x, λ̄) for all x ∈ Rn.

Then, (x̄, λ̄) is called saddle point for (12.1). The conditions are called saddle point
conditions.

Theorem 12.6 (saddle point theorem). Let (x̄, λ̄) be a saddle point for (12.1). Then
strong duality holds for x̄ and λ̄.

Proof. Condition 2. implies

f(x̄) + νg(x̄) ≤ f(x̄) + λ̄g(x̄) for all ν ∈ Rm with νi ≥ 0, i = 1, . . . ,k.

After basic manipulations, we get

(ν− λ̄)g(x̄) ≤ 0 for all ν ∈ Rm with νi ≥ 0, i = 1, . . . ,k. (12.4)
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Inserting νi = λ̄i for i = 1, . . . ,k, we get

m∑
i=k+1

(νi − λ̄i)gi(x̄) ≤ 0 for all νi ∈ R, i = k+ 1, . . . ,m. (12.5)

This implies gi(x̄) = 0 for all i = k+ 1, . . . ,m. Hence, inequality (12.4) reduces to

k∑
i=1

(νi − λ̄i)gi(x̄) ≤ 0 for all νi ≥ 0, i = 1, . . . ,k. (12.6)

This condition implies gi(x̄) ≤ 0 for all i = 1, . . . ,k. Thus, x̄ ∈ S. Moreover, (12.6) yields

λ̄igi(x̄) = 0, for all i = 1, . . . ,k.

Exercise 12.7. Show that (12.6) implies the following:

1. gi(x̄) ≤ 0 for all i = 1, . . . ,k.

2. λ̄igi(x̄) = 0, for all i = 1, . . . ,k.

Altogether, we obtain

f(x̄) = f(x̄) +

k∑
i=1

λ̄igi(x̄) = f(x̄) +

m∑
i=1

λ̄igi(x̄) = L(x̄, λ̄).

The condition 3. yields
L(x̄, λ̄) ≤ L(x, λ̄) for all x ∈ Rn.

Hence,
f(x̄) = L(x̄, λ̄) ≤ L(x, λ̄) for all x ∈ Rn,

which in turn implies
f(x̄) ≤ inf

x∈Rn
L(x, λ̄) = µ(λ̄).

With weak duality, we get f(x̄) = µ(λ̄).

Exercise 12.8. Show that for any saddle point (x̄, λ̄) of (12.1) the KKT-conditions of
Thm. 9.2 are satisfied.

12.3 Strong Duality for Convex Problems

We consider a convex optimization problem:

min f(x)

gi(x) ≤ 0, i = 1, . . . ,k (12.7)

Ax = b,
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x ∈ S̄,

where S̄ ⊂ Rn convex, A being a (m − k) × n matrix of full rank and f and gi convex
for i = 1, . . . ,k. We assume that the following regularity conditions are satisfied (Slater):
there is x̄ ∈ int(S̄) with

gi(x̄) < 0, i = 1, . . . ,k, A x̄ = b.

Theorem 12.9 (Strong Duality). Consider (12.7) and assume that the Slater-regularity
conditions are satisfied. Then, d∗ = p∗.

Proof. Suppose that p∗ is finite. As the primal problem is feasible, only the case p∗ = −∞
can occur which implies d∗ = −∞ by weak duality. We define

A1 ⊆ Rk × Rm−k × R

A1 = {(u, v, t)|∃x ∈ S̄, gi(x) ≤ ui, i = 1, . . . ,k, Aj x− bj = vj, j = 1, . . . ,m− k, f(x) ≤ t}

Note that A1 is convex. We define the convex set:

A2 = {(0, 0, s) ∈ Rk × Rm−k × R|s < p∗}.

We get that A1 and A2 do not intersect: Assume by contradiction (u, v, t) ∈ A1 ∩ A2.
With (u, v, t) ∈ A2 we get u = 0, v = 0, and t < p∗. Because (u, v, t) ∈ A1, we get x with
gi(x) ≤ 0, i = 1, . . . ,k, Ax − b = 0, and f(x) ≤ t < p∗, in contradiction to the optimality
of p∗.
With the separating hyperplane theorem we get (w1,w2,w3) ̸= 0 and α ∈ R with

(u, v, t) ∈ A1 ⇒ wT1 u+wT2 v+w3 t ≥ α. (12.8)

and
(u, v, t) ∈ A2 ⇒ wT1 u+wT2 v+w3 t ≤ α. (12.9)

From (12.8) follows w1 ≥ 0 and w3 ≥ 0, as otherwise wT1 u + w3 t is unbounded from
below on A1 in contradiction to (12.8). Condition (12.9) implies w3 t ≤ α for all t ≤ p∗

and hence w3 p
∗ ≤ α. Together with (12.8) we get for all x ∈ S̄ (choose g(x) = u and

Ax− b = v), such that

k∑
i=1

(w1)i gi(x) +w
T
2(Ax− b) +w3 f(x) ≥ α ≥ w3 p

∗. (12.10)

We argue by a case distinction: If w3 > 0, we divide (12.10) by w3 and obtain

L(x,w1/w3,w2/w3) ≥ p∗,

for all x ∈ S̄. We get µ(λ,ν) ≥ p∗, where λ = w1/w3 and ν = w2/w3. (Here λ ∈ Rk and
ν ∈ Rm−k are the corresponding multipliers for g(x) ≤ 0 and Ax = b). With weak duality
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µ(λ,ν) ≤ p∗ we get equality.
Now, we consider the case w3 = 0 and lead this to a contradiction. From (12.10), we get
for all x ∈ S̄:

m∑
i=1

(w1)i gi(x) +w
T
2(Ax− b) ≥ 0. (12.11)

We apply this to the point x̄ satisfying the Slater-conditions and get

k∑
i=1

(w1)i gi(x̄) ≥ 0.

As gi(x̄) < 0 and w1 ≥ 0 we get w1 = 0.
From (w1,w2,w3) ̸= 0 and w1 = 0,w3 = 0, we get w2 ̸= 0. Hence, (12.11) implies
wT2(Ax− b) ≥ 0 for all x ∈ S̄. The point x̄ satisfies wT2(Ax̄− b) = 0. With x̄ ∈ int(S̄) we
get that x̄±ϵ ∈ int(S̄) for ϵ ∈ Rn with ∥ϵ∥ small enough. We get ATw2 = 0, as otherwise
there are points in int(S̄) with wT2(Ax− b) < 0, contradiction. Conditions ATw2 = 0 and
w2 ̸= 0 contradict the assumption of A having full rank.
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Numerical Methods

13.1 Unconstrained Optimization Problems

We first consider
min{f(x)| x ∈ Rn} (13.1)

without constraints, where f ∈ C2 on Rn.

Definition 13.1. v ∈ Rn is called descent direction of f in x̄ ∈ Rn, if there is t̄ > 0 with

f(x̄+ tv) < f(x̄) for all t ∈ (0, t̄).

We obtain the following Lemma.

Lemma 13.2. If f ′(x̄)v < 0, then v is a descent direction of f in x̄.

Proof. Definie Φ(t) := f(x̄+ tv). We get ϕ̇(0) = f ′(x̄)v < 0 and the claim follows.

Remark 13.3.

• The condition f ′(x̄)v < 0 means that the angle ϕ between v and −f ′(x̄) in x̄ is less
than π/2 (or 90o). Consider:

0 > f ′(x̄)v⇒ 0 < −f ′(x̄)v = cos(ϕ)
∥∥−f ′(x̄)∥∥ ∥v∥ .

We get cos(ϕ) > 0 and hence ϕ ∈ [0,π/2).

• The criterion f ′(x̄)v < 0 is not necessary. If x̄ is a strict local maximum, then all
v ∈ Rn are directions of descent for f in x̄, but f ′(x̄)v < 0 need not be satisfied.

Exercise 13.4. Let B ∈ Rn×n be symmetric and positive definit. Then, v = −B f ′(x̄)

is a descent direction of f in x̄, if f ′(x̄) ̸= 0.

We describe a descent method to compute x̄ with f ′(x̄) = 0.

129
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1. Choose x0 ∈ Rn, k = 0 and fix ϵ0 > 0;

2. If
∥∥f ′(xk)∥∥ ≤ ϵ0 :STOP (Termination);

3. Compute a descent direction vk with f ′(xk)vk < 0;

4. Compute a step-length tk with f(xk + tkvk) < f(xk);

5. Set xk+1 ← xk + tkv
k; k← k+ 1 and go to step 2.

Figure 13.1: Generic Method of Descent.

Definition 13.5 (Gradient-Method, Newton-Method, Quasi-Newton-Method).

1. For
vk := −f ′(xk)⊺

we obtain the Gradient-Method.

2. For the Newton-Method, we choose:

vk := −f ′′(xk)−1f ′(xk)⊺.

In every point xk in which the Hesse-matrix f ′′(xk) is positive definite, the vector
vk is a descent direction (assuming f ′(xk) ̸= 0).

3. The Quasi-Newton-Method chooses

vk := −H−1
k f

′(xk)⊺,

for a suitable positive definite matrix Hk.

Theorem 13.6. If H ∈ Rn×n is symmetric, positive definite and f ′(x) ̸= 0, then the
gradient direction

v :=
H−1f ′(x)⊺

∥H−1f ′(x)⊺∥H
maximizes the descent of f ′(x)v over all v ∈ Rn with ∥v∥H = 1, where ∥x∥H :=

√
x⊺Hx.

Proof. We prove the theorem only for H = I. With Cauchy-Schwarz-inequality we get
using ∥v∥ = 1:

|f ′(x)v| ≤
∥∥f ′(x)∥∥ ∥v∥ =

∥∥f ′(x)∥∥ .

This bound is attained for v := ± f ′(x)⊺

∥f ′(x)⊺∥ .

We go back to the angle-condition discussed before.
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Definition 13.7 (Angle-Condition). A generic descent method of the form (13.1) satisfies
the angle-condition, if:

there is c > 0, such that for all k ∈ N we have: ck := −
f ′(xk)vk

∥f ′(xk)∥ ∥vk∥
≥ c. (13.2)

A weaker condition is the Zoutendijk-Condition, which only requires
∑∞
k=0 ck =∞.

13.2 Choice of the Step-Length

We discuss the degree of freedom regarding the step-length choice in 13.1. Let x0 be the
initial point and assume that N(f, f(x0)) = {x ∈ Rn|f(x) ≤ f(x0)} is compact. With the
continuity of f ′′(x) on N(f, f(x0)), there is C > 0 with∥∥f ′′(x)∥∥ ≤ C for all x ∈ N(f, f(x0)).

We apply Taylor expansion of f in x in direction of tv, v ∈ Rn:

f(x+ tv) = f(x) + tf ′(x)v+
t2

2
v⊺f ′′(z)v

≤ f(x) + tf ′(x)v+ t2

2
C ∥v∥2 .

(13.3)

Here z = x + ξtv is an intermediate point with 0 < ξ < 1. The bound (13.3) is valid for
all t > 0 with x+ [0, t]v ⊂ N(f, f(x0)).

The last term of (13.3) is a polynomial p(t) of degree two in t and attains at

t∗ = −
f ′(x)v

C ∥v∥2 > 0

its strict global minimum. Let t̄ be the unique maximal step-length with

x+ tv ∈ N(f, f(x0)) for all t ∈ [0, t̄].

We get
p(t̄) ≥ f(x+ t̄v) ≥ f(x) = p(0).

Using p ′(0) = f ′(x)v < 0 we get that t∗ lies in (0, t̄) and thus x + t∗v ∈ N(f, f(x0)).
With (13.3) we get

f(x+ t∗v) ≤ p(t∗) = f(x) − 1
2C

(
f ′(x)v

∥v∥

)2

.

This bounds the minimum descent. Since C is not known a priori, we define the following.

Definition 13.8. A step-length strategy t(x, v) is called efficient, if for every x0 ∈ Rn,
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there is ξ > 0 with

f(x+ t(x, v)v) ≤ f(x) − ξ
(
f ′(x)v

∥v∥

)2

for all x ∈ N(f, f(x0)),

and v is a descent direction of f in x with f ′(x)v < 0.

Under the assumptions we get that t := arg min{f(x+ tv)|t > 0} is efficient.

We obtain the following theorem on the general descent method (13.1) with efficient step-
length strategies.

Theorem 13.9. Let f ∈ C2 and let (13.1) with ϵ0 = 0 satisfy the condition (13.2). Sup-
pose we choose an efficient step-length strategy. Then, one of the following statements
is true:

1. After finitely many iterations we have f ′(xk) = 0.

2. limk→∞ f(xk) = −∞
3. limk→∞ f ′(xk) = 0, i.e., every accumulation point of xk,k ∈ N is a zero of f ′(x).

Proof. If 13.1 terminates after finitely many iterations, we get using ϵ0 = 0 the condition
f ′(xk) = 0.

So suppose that this does not hold. Using the angle- and efficiency condition we get for
iteration k:

f(xk+1) − f(xk) ≤ −ξ

(
f ′(xk)vk)

∥vk∥

)2

= −ξc2k

∥∥∥f ′(xk)∥∥∥2
.

After N ∈ N iterations we get

f(xN) − f(x0) =

N−1∑
k=0

f(xk+1) − f(xk) ≤ −ξ

N−1∑
k=0

c2k

∥∥∥f ′(xk)∥∥∥2
.

We divide by −ξ < 0 and get

−
f(xN) − f(x0)

ξ
≥
N−1∑
k=0

c2k

∥∥∥f ′(xk)∥∥∥2
.

If f is bounded from below we get

lim
N→∞ f(xN) > −∞

and therefore

lim
N→∞−

f(xN) − f(x0)

ξ
<∞.
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Hence we get ∞∑
k=0

c2k

∥∥∥f ′(xk)∥∥∥2
<∞.

Using the angle- and efficiency condition, we get
∥∥f ′(xk)∥∥→ 0.

We provide two additional step-length methods, the Armijo-Rule and the Goldstein-Rule.

Definition 13.10 (Armijo-Rule). For σ ∈ (0, 1),α ∈ (0, 1) we choose t := αℓ with

ℓ := min{j ∈ N0|f(x+ α
jv) ≤ f(x) + σαj(f ′(x)v)}.

As for the interpretation of the Armijo-Rule, we define for

Φ(t) = f(x+ tv), t ≥ 0

the auxiliary function
Ψ(t) = Φ(t) − (f(x) + σt(f ′(x)v)).

Per construction, we get Ψ(0) = 0 and

Ψ ′(0) = Φ ′(0) − σf ′(x)v

= f ′(x)v− σf ′(x)v = (1 − σ)f ′(x)v < 0.

Assuming N(f, f(x0)) to be compact, we know that Φ(t) grows for t large enough. Hence,
there is a unique ℓ ∈ N0 and thus a maximal t = αℓ > 0 satisfying the Armijo-Condition.
This t is usually computed via enumeration ℓ = 1, 2, . . . .

Remark 13.11. • The Armijo-Method may not be efficient in general.

• The scaled Armijo-step-length works with a scaling factor s > 0 and is defined as

ℓ := min{j ∈ N0|f(x+ sαjv) ≤ f(x) + σsαj(f ′(x)v)}.

For large enough s, the Armijo-Variant is efficient.

Definition 13.12 (Goldstein-Rule). In order to avoid small step-length, we bound the
feasible space from below. The step-length t > 0 satisfies the Goldstein-Condition, if for
fixed σ ∈ (0, 0.5), we have

Φu(t) ≤ Φ(t) ≤ Φo(t), (13.4)

where Φu(t) and Φo(t) are defined as follows:

Φo(t) := Φ(0) + σtΦ ′(0),Φu(t) := Φ(0) + (1 − σ)tΦ ′(0). (13.5)
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Φ(0) + σtΦ ′(0)

Φ(t)

t = αe t = αe−1

Figure 13.2: Armijo-step-length strategy.

Φo(t)

Φu(t)

Φ(t)

t

Figure 13.3: Goldstein-step-length strategy.

Any step-length method satisfying the Goldstein-Rule is efficient. We provide a concrete
implementation.

Theorem 13.13. Let f ∈ C2 and x ∈ Rn with N(f, (f(x)) compact. Let v ∈ Rn be a
descent direction with f ′(x)v < 0 and

C := max
{∥∥f ′′(y)∥∥2

| y ∈ N(f, (f(x))
}

.

Then, every step-length t which satisfies the Goldstein-Rule also satisfies the following
efficiency condition:

f(x+ tv) ≤ f(x) − σ

C

(
f ′(x)v

∥v∥

)2

.

Proof. Let t∗ be the infimum of the positive local minimizers of Φ. The value t∗ is then
a stationary point and Φ is strictly decreasing in [0, t∗].
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1. Set tu := 0, to > 0 (arbitrary);

2. If Φ(to) < Φu(to), set tu := to, to := 2to.
Repeat until Φ(to) ≥ Φu(to);

3. If Φ(to) ≤ Φo(to), set t := to, Stop.;

4. Repeat: set t := (tu + to)/2
If Φ(t) < Φu(t), set tu := t;
If Φ(t) > Φo(t), set to := t;
Until: Φu(t) ≤ Φ(t) ≤ Φo(t), Stop.

Figure 13.4: Step-length choice after Goldstein.

Case 1: t ≤ t∗

With Φu(t) := Φ(0) + (1 − σ)tΦ ′(0) ≤ Φ(t) we get using Taylor expansion

(1 − σ)tΦ ′(0) ≤ Φ(t) −Φ(0) = tΦ ′(0) +
t2

2
Φ ′′(t̃) ≤ tΦ ′(0) + C ∥v∥2

and therefore

−σtΦ ′(0) ≤ t2

2
C ∥v∥2 ,

or equivalently

t ≥ −
2σ
C

Φ ′(0)
∥v∥2 := t̂ > 0.

Using monotonicity of Φ on 0 < t̂ ≤ t ≤ t∗, we get

Φ(t) ≤ Φ(t̂) ≤ Φ(0) + t̂Φ ′(0) +
t̂2

2
C ∥v∥2

= Φ(0) −
2σ(1 − σ)

C

(
Φ ′(0)
∥v∥2

)2

≤ Φ(0) −
σ

C

(
Φ ′(0)
∥v∥2

)2

The last inequality uses σ ∈ (0, 0.5).

Case 2: t > t∗

We get
0 = Φ ′(t∗) = Φ ′(0) + t∗Φ ′′(t̃) ≤ Φ ′(0) + C ∥v∥2
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F(x)

xx0x1

F(x0)

Figure 13.5: Illustration of the Newton-Method.

and thus t∗ ≥ − Φ ′(0)
C∥v∥2 . We obtain

Φ(t) ≤ Φo(t) = Φ(0) + σtΦ ′(0)

≤ Φ(0) + σt∗Φ ′(0) ≤ Φ(0) −
σ

C

(
Φ ′(0)
∥v∥2

)2

.

13.3 Lagrange-Newton Method

We recap the Newton-Method. Given is a C1 function

F : Rn → Rn

and we search for
F(x) = 0.

The linear approximation in xk is defined as

Fk(x) := F(xk) + F ′(xk)(x− xk).

Hence,
xk+1 = xk − F ′(xk)−1F(xk),

if the inverse F ′−1 exists. In a concrete implementation, we don’t compute the inverse but
a direction vector v = x− xk solving the Newton-Equation:

F ′(xk)v = −F(xk).

For a solution vk we set
xk+1 := xk + vk.
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Theorem 13.14. Let F : Rn → Rn be C1, x̄ a root of F and the Jacobi-Matrix F ′(x̄) be
regular. Then, there is an open ball U around x̄ such that:

1. The Newton-Method is well-defined and produces a convergent sequence xk,k ∈ N
with limit point x̄.

2. The convergence is superlinear.

3. If F ′ is locally Lipschitz, then the convergence is quadratic.

For a proof, see Kanzow und Geiger (Satz, 5.26).
We consider now a constrained optimization problem:

min {f(x)| g(x) = 0}, where g : Rn → Rm. (13.6)

Using the Lagrange-Function

L(x, λ) = f(x) + λg(x) = f(x) +
m∑
i=1

λigi(x)

the KKT-conditions read as

F(x, λ) :=

Lx(x, λ)
Lλ(x, λ)

 =

f ′(x) + λg ′(x)

g(x)

 =

0

0

 . (13.7)

The equation (13.7) is a nonlinear system of n+m equations in x, λ. The corresponding
Newton-Update reads asxk+1

λk+1

 =

xk
λk

− F ′(xk, λk)−1F(xk, λk). (13.8)

Formally, we get:
We obtain the following result regarding the Lagrange-Newton method.

Theorem 13.15. Let (x̄, λ̄) be a normal KKT-point of 13.6, satisfying the second order
sufficient optimality conditions of Thm. 10.1, Condition (2). Then, the Lagrange-Newton
method converges quadratically against a KKT-point of 13.6, where ϵ0 = 0 is assumed.

Proof. We only need to show that the Jacobi-Matrix F ′(x̄, λ̄) is regular. This was already
shown in the proof of Thm. 11.1.
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1. Choose x0 ∈ Rn, λ0 ∈ Rm, k = 0 and fix ϵ0 > 0;

2. If
∥∥F(xk, λk)∥∥ ≤ ϵ0 :STOP (Termination);

3. Compute (∆xk,∆λk) as solution of

F ′(xk, λk)

∆x
∆λ

 = −F(xk, λk). (13.9)

4. Set xk+1 ← xk + ∆xk; λk+1 ← λk + ∆λk; k← k+ 1 and go to step 2.

Figure 13.6: Lagrange-Newton Method.
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