
Nonadaptive Selfish Routing with Online
Demands

Tobias Harks1 and László A. Végh2,�

1 Institute of Mathematics, Technical University Berlin, 10623 Berlin, Germany
harks@math.tu-berlin.de

2 Department of Operations Research, Eötvös University, Budapest, Hungary, H-1117
veghal@cs.elte.hu

Abstract. We study the efficiency of selfish routing problems in which
traffic demands are revealed online. We go beyond the common Nash
equilibrium concept in which possibly all players reroute their flow and
form a new equilibrium upon arrival of a new demand.

In our model, demands arrive in n sequential games. In each game,
the new demands form a Nash equilibrium and their routings remain
unchanged afterwards. We study the problem both with nonatomic and
atomic player types and with continuous and nondecreasing latency func-
tions on the edges. For polynomial latency functions, we give constant
upper and lower bounds on the competitive ratio of the resulting online
routing in terms of the maximum degree, the number of games and in
the atomic setting the number of players. In particular, for nonatomic
players and affine latency functions we show that the competitive ratio is
at most 4n

n+2 . Finally, we present improved upper bounds for the special
case of two nodes connected by parallel arcs.

1 Introduction

Recent contributions in the field of algorithmic game theory provided much
insight into the structure and efficiency of Nash equilibria in networks that lack
a central coordination. Among others, a prominent result in this field states that
the price of anarchy for a nonatomic selfish routing game, is bounded by a small
constant depending on the class of feasible latency functions, see Roughgarden
and Tardos [30], Roughgarden [29], and Correa Schulz, and Stier-Moses [11].
It is well known that this kind of games applies to the source routing concept
in telecommunication networks, see Qiu, Yang, Zhang, and Shenker [25] and
Friedman [19] for an engineering perspective and Roughgarden [28] and Altman,
Basar, Jimenez, and Shimkin [1] for a theoretical perspective on this topic. In
the source routing model, sources are responsible for selecting paths to route
data to the corresponding sink.

� Supported by the Hungarian National Foundation for Scientific Research, OTKA
K60802 and NK 67867 and by European MCRTN ADONET, Grant Number 504438.
Work was done while visiting the Konrad Zuse Institute in Berlin.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 27–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 T. Harks and L.A. Végh

The main focus of the research done so far regarding the source routing con-
cept is to quantify the efficiency loss of a Nash equilibrium compared to the
system optimum. Here, one assumption is crucial: if the traffic matrix changes,
all sources may possibly change their routes and converge to a new equilibrium,
see Even-Dar and Mansour [16] for a further discussion about the convergence be-
havior. This assumption, however, has some important implications: Each source
would have to continuously maintain the current state of all available routes,
which in turn introduces additional traffic overhead by signaling these needed
informations. Furthermore, frequent rerouting attempts during data transmis-
sion may not only produce transient load oscillations as observed by Fischer
and Vöcking [18], but may also interfere with the widely used congestion control
protocol tcp that determines the data rate, as reported by La, Walrand, and
Anantharam in [24]. For these reasons, rerouting attempts in reaction to traffic
changes in the network are not necessarily beneficial and efficient.

In this paper, we study a different model in which demands of players are re-
leased in n sequential games in an online fashion. In each game, the new demands
form a Nash equilibrium, and their routing remains unchanged afterwards, that
is, the routing becomes nonadaptive.

We can interpret this model as follows. Let us introduce a cost for each player
quantifying the cost of rerouting after some initial time frame. Within the stan-
dard equilibrium concept, rerouting comes at no cost. On the other hand, if
this rerouting cost is sufficiently large for each player, then, fixing the initial
equilibrium routing is the best response strategy.

If rerouting is not allowed in general, then, the problem of finding efficient
routings becomes an online optimization problem. In this regard, nonadaptive
selfish routing constitutes an online algorithm, where the goal is to minimize
average congestion cost for all commodities. We present two distributed online
algorithms, called NSeqnash and ASeqnash for this setting. Upon release of a
set of commodities (network game), the online algorithm NSeqnash routes the
commodity such that the flow is at Nash equilibrium provided nonatomic agents
are carrying the flow. The atomic splittable variant is given by ASeqnash.

1.1 Related Work

The fact that the cost of a Nash equilibrium may strictly exceed that of a
system optimum is well known in the transportation literature, see Braess [6]
and Dubey [15]. A first successful attempt to exactly quantify this so called “price
of anarchy” is given by Papadimitriou and Koutsoupias [23] in the context of a
load balancing game in communication networks. Roughgarden and Tardos [30]
studied the price of anarchy in nonatomic selfish routing games. In nonatomic
games, a large number of players is assumed, each consuming an infinitesimal
part of the resources. In particular, they proved for affine latency functions a
bound of 4

3 on the price of anarchy. A series of several other follow-up papers
analyzed the price of anarchy for more general cost functions and model features;
see for example Czumaj and Vöcking [13], Correa Schulz, and Stier-Moses [11],
and Roughgarden [28].

Nonadaptive Selfish Routing with Online Demands 29

For atomic routing games, that is, some players may control a significant part
of the entire demand, Roughgarden and Tardos [30] examined the price of an-
archy for unsplittable flow. Awerbuch, Azar, and Epstein [2] and Christodoulou
and Koutsoupias [9] studied the price of anarchy for linear atomic congestion
games. Cominetti, Correa, and Stier-Moses [10] presented new bounds on the
price of anarchy for splittable atomic routing games that revised previous work
of Roughgarden [29] and Correa, Schulz, and Stier-Moses [12]. Hayrapetyan,
Tardos, and Wexler [22] improved these bounds for special network topologies.

In the online routing field, several papers considered online load balancing
in the context of machine scheduling. Awerbuch et al. [3] considered a greedy
online load balancing strategy, where the goal is to minimize the L2 norm of the
aggregated server loads. Similar to this paper, Suri et al. [31] and Caragiannis et
al. [7] studied Nash solutions for every released job and showed that the resulting
online algorithm outperforms the greedy strategy of [3]. These results, however,
are restricted to m parallel arcs and all jobs have to be assigned to exactly
one machine. In the paper by Awerbuch, Azar, and Plotkin [4], online routing
algorithms are presented to maximize throughput under the assumption that
routings are irrevocable. They presented online algorithms whose competitive
bounds depend on the number of nodes in the network.

Our work is motivated by the paper by Harks, Heinz, and Pfetsch [21], where
online multicommodity routing problems are considered. They considered affine
latency functions and presented a greedy online algorithm for a different convex
cost function that is 4K2

(1+K)2 competitive, where K is the number of commodities.
In their framework, only single demands are released consecutively.

1.2 Our Results and Techniques

We introduce the framework Online Network Games (OnlineNG) to analyze
nonadaptive selfish routing under the assumption that demands (network games)
are released online. For the online algorithm NSeqnash that is characterized
by selfish routing of nonatomic players for a sequence of network games, we
obtain the following results. The online algorithm NSeqnash that produces a
flow that is at Nash equilibrium for every game is 4n

2+n -competitive for affine
latency functions, where n is the number of games within a given sequence.
This result contains the bound on the price of anarchy of 4

3 for affine latency
functions of Roughgarden and Tardos [30] as a special case of our result, where
n = 1. We prove a lower bound of 3n−2

n of NSeqnash showing that for n = 2, the
upper bound is tight. For linear latency functions, we further improve this bound
to 4n2

(1+n)2 . For polynomial latency functions with nonnegative coefficients, we
prove lower and upper bounds on the competitive ratio of NSeqnash that grow
both exponentially in the degree of the considered polynomials. We further show
that for parallel arcs, the competitive ratio is significantly lower. In particular, we
show that in this case, the competitive ratio of the online algorithm NSeqnash

does not exceed the price of anarchy of a related nonatomic network game in
which all games of a given sequence are considered at the same time.

30 T. Harks and L.A. Végh

Furthermore, we consider online network games in which atomic players route
their demand selfishly. Note that the atomic players may split their flow along
different paths. The online algorithm ASeqnash, which produces a flow that is
at Nash equilibrium for every game is min{ 2(3K+1)n

nK+3n+3K+1 , 5K+1
K+5 , 4.92}-competitive

for affine latency functions Here, K denotes the total number of players and n
is the number of games within a given sequence. For general polynomial latency
functions, we prove lower and upper bounds on the competitive ratio of ASeq-

nash that grow both exponentially in the degree of the considered polynomials.
Finally, we prove better bounds for the parallel arc case for ASeqnash, relating
the cost of ASeqnash to the cost of a nonatomic game, generalizing a result of
Hayrapetyan, Tardos, and, Wexler [22].

To prove our main results (Theorem 1 and 2) we generalize the variational
inequality approach previously used by Correa, Schulz, and Stier-Moses [11],
Roughgarden [27], Cominetti, Correa, and Stier-Moses [10], and Harks [20]. The
techniques used to prove upper bounds for ASeqnash in the parallel arc case
(Theorem 4) are based on ideas of Hayrapetyan, Tardos, and, Wexler [22]. Our
extended approach incorporates the known price of anarchy results as a special
case with n = 1.

Note that the online algorithms NSeqnash and ASeqnash are fully dis-
tributed, hence, no coordination mechanism is needed to implement these al-
gorithms. Furthermore, all results for the parallel arc case directly carry over
to the online load balancing problem with parallel (splittable) jobs, where the
objective is to minimize the L2 norm of the server loads.

2 Online Network Games

An instance of the Online Network Game (OnlineNG) consists of a directed
network D = (V, A) together with nondecreasing continuous and convex latency
functions �a : �+ → �+ for each arc a ∈ A. Furthermore, a sequence σ =
1, . . . , n of network games are given. A network game i is characterized by a set
of commodities [Ki] := {i1, . . . , i ni}. For each commodity ij ∈ [Ki], a flow of
rate dij > 0 must be routed from the origin sij to the destination tij . The routing
decision for game i is online, that is, it only depends on the routings of previous
games 1, . . . , i−1. Once the commodities of a game have been routed, they remain
unchanged. Let [K] =

⋃n
i=1[Ki] denote the union of the sets [K1], . . . , [Kn]. The

total number of commodities is given by K =
∑n

i=1 ni.
A routing assignment, or flow, for commodity ij ∈ [Ki] is a nonnegative vector

f ij ∈ �A
+. This flow is feasible, if for all v ∈ V

∑

a∈δ+(v)

f ij
a −

∑

a∈δ−(v)

f ij
a = γij(v),

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; further-
more, γij(v) = dij , if v = sij , −dij if v = tij , and 0, otherwise. Alternatively, one
can consider a path flow for a commodity ij ∈ [Ki]. Let Pij be the set of all paths

Nonadaptive Selfish Routing with Online Demands 31

from sij to tij in D. A path flow is a nonnegative vector (f ij
P)P∈Pij . The corre-

sponding flow on link a ∈ A for commodity ij ∈ [Ki] is then f ij
a :=

∑
P�a f ij

P .
We denote by f i

a =
∑

ij∈[Ki] f
ij
a the aggregated flow of game i on link a. The

total aggregate flow on link a is given by fa =
∑n

i=1 f i
a. We define Fi with

i ∈ [n] to be the set of vectors (f1, . . . , f i) such that f j is a feasible flow for
games j = 1, . . . , i. If (f1, . . . , f i) ∈ Fi, we say that it is feasible for the sequence
of network games 1, . . . , i. The entire flow for the sequence 1, . . . , n of games is
denoted by f = (f1, . . . , fn).

The current cost of a feasible flow for game i on link a ∈ A is given by
�a

(∑i
j=1 f j

a

)
f i

a. This expression can be obtained as the routing cost on arc a for
a feasible flow for game i, given the flows (f1, . . . , f i−1) of previous games 1, . . . ,
i − 1 and without knowing about future games j = i + 1, . . . , n. The individual
current cost for commodity ij ∈ [Ki] on arc a is given by �a

(∑i
j=1 f j

a

)
f ij

a . Note
that this individual current cost on arc a may increase if later commodities are
routed on a. The total cost of all sequentially played games is given by:

C(f) =
∑

a∈A

�a(fa) fa =
∑

a∈A

�a

(n∑

i=1

f i
a

)(n∑

i=1

f i
a

)
. (1)

This cost function reflects the routing cost provided all commodities of the entire
sequence of games have been routed. Thus, the cost of routing commodities of
a sequence of games is not separable with respect to the games. That is, if an
online algorithm routes flow for the games i+1, . . . , n along arcs that are used by
commodities of games 1, . . . , i, the latter commodities may face higher individual
cost on these arcs compared to their initial routing costs.

2.1 Player Types

Motivated by the source routing model in telecommunication networks, we focus
on selfish behavior of players routing the demands dij , ij ∈ [K]. In the following,
we use the word commodity ij interchangeably with player ij to indicate that
this player decides on the routing assignment f ij for the demand dij .

In the nonatomic routing variant, we assume infinitely many agents carrying
the flow of a player, where each agent controls only an infinitesimal fraction of
the flow. This is in contrast to the atomic routing variant, where it is assumed
that each player ij controls and coordinates the entire flow for his demand dij .
For a sequence of games, we investigate the online algorithms NSeqnash and
ASeqnash (a formal definition follows) that produce a feasible flow f1, . . . , fn ∈
Fn, where each f i is at Nash equilibrium for the corresponding network game i.

2.2 Nash Equilibria for Nonatomic and Atomic Players

A flow for game i is at Nash equilibrium, if no player has an incentive to uni-
laterally change her strategy. We assume that players of game i decide on their
strategies without taking future games j = i+1, . . . , n into account. It is straight-
forward to check that a Nash flow f i for nonatomic players minimizes the

32 T. Harks and L.A. Végh

potential function Φi(f) =
∑

a∈A

∫ fi
a

0 �a(
∑i−1

k=1 fk
a +z) dz, see for example Rough-

garden and Tardos [30]. Furthermore, using convexity of the potential function
two different Nash equilibria incur the same cost. The following conditions are
necessary and sufficient to characterize a Nash equilibrium for game i.

Lemma 1. A feasible flow f i for the nonatomic game i is at Nash equilibrium
if and only if it satisfies:

∑

a∈A

�a

(i∑

k=1

fk
a

)
(f i

a − xi
a) ≤ 0 for all feasible flows xi for game i. (2)

The proof is based on the first order optimality conditions and the convexity of
the potential function Φi(f), see Dafermos and Sparrow [14].

Definition 1 (�������� for the 	�
�����). Consider an instance of the
OnlineNG with a given sequence σ of n network games. The deterministic
online algorithm NSeqnash produces a feasible flow f = (f1, . . . , fn) ∈ Fn,
such that each flow fk minimizes Φk(f), that is, each fk is at Nash equilibrium
for the corresponding games k ∈ [n].

Note that the problem of minimizing Φk(f) is well defined and admits an optimal
solution with a unique objective value. Hence, NSeqnash is also well defined
by this property. Since this convex program may have several different solutions
(with the same objective value), the flow that NSeqnash produces is not nec-
essarily unique. As this might contradict the notion of a deterministic online
algorithm, we can advise a selection rule to make the flow unique. We omit this
issue in the following, since our results hold for every sequence of Nash flows for
the games 1, . . . , n.

In network games with atomic players, some players may control a signif-
icant part of the entire demand. In the following, we characterize the strat-
egy of an atomic player. It is straightforward to see that a best reply strategy
for player ij of game i is to minimize its individual current cost Cij(f) :=
∑

a∈A �a(
∑i

k=1 fk
a)f ij

a .
The following conditions are necessary and sufficient to characterize a Nash

equilibrium for game i.

Lemma 2. A feasible flow f i for the atomic game i is at Nash equilibrium if
and only if for every player ij ∈ [Ki] the following inequality is satisfied:

∑

a∈A

(
�a

(i∑

k=1

fk
a

)
+ �′a

(i∑

k=1

fk
a

)
f ij

a

)
(f ij

a − xij
a) ≤ 0, (3)

for all feasible flows xij for game i.

The proof relies on the convexity of �a(z) z.

Definition 2 (������� for the 	�
�����). Consider an instance of the
OnlineNG with a given sequence σ of n network games. The deterministic

Nonadaptive Selfish Routing with Online Demands 33

online algorithm ASeqnash produces a feasible flow f = (f1, . . . , fn) ∈ Fn,
such that each flow f ij , ij ∈ [Ki], i ∈ [n] minimizes Cij(f), that is, each f i is
at Nash equilibrium for the corresponding games i ∈ [n].

Since we assume convex latency functions, the minimization problem is well
defined and admits an optimal solution with a unique objective value. Then, the
existence of a flow at Nash equilibrium is guaranteed by the result of Rosen [26].
Hence, ASeqnash is also well defined by this property.

Finally, the total offline optimum minimizes the total cost C(f) among all
feasible flows. For a given sequence σ, we denote by Opt(σ) the optimal value
of this convex problem.

3 Competitive Analysis

For a solution f produced by an online algorithm Alg for a given sequence of
games σ, we denote by Alg(σ) = C(f) its cost. An online algorithm Alg is
called (strictly) c-competitive, if the cost of Alg is never larger than c times the
cost of an optimal offline solution. The competitive ratio of Alg is the infimum
over all c ≥ 1 such that Alg is c-competitive, see for instance Borodin and
El-Yaniv [5] and Fiat and Woeginger [17].

3.1 Competitive Analysis for ��������

In order to derive competitive results for NSeqnash for a sequence of games,
we make use of the variational inequality (2). Using the notation ϑn

a (�a, fa) :=
�a(fa)fa −

∑n
i=1 �a

(∑i
k=1 fk

a

)
f i

a, we define for every a ∈ A, nonnegative vectors
fa, xa ∈ �K

+, and a nonnegative real number λ ≥ 0, the following value (we
assume by convention 0/0 = 0):

ω(�a; n, λ) := sup
xa,fa≥0

(
�a(fa) − λ �a(xa)

)
xa + ϑn

a (�a, fa)
�a(fa)fa

. (4)

Figure 1 illustrates the value ω(�a; n, λ) for n = 3. For a given class L of nonde-
creasing latency functions we further define ω(L; n, λ) := sup

�a∈L
ω(�a; n, λ). Fur-

thermore, we define the following feasible set for the parameter λ.

Definition 3. The feasible scaling set for λ is defined as

Λ(L, n) :=
{
λ ∈ �+|

(
1 − ω(L; n, λ)

)
> 0

}
.

Theorem 1. Consider an instance of the OnlineNG involving a sequence of
n games and latency functions in L. Then, the competitive ratio of NSeqnash

is at most

inf
λ∈Λ(L,n)

[
λ

1 − ω(L; n, λ)

]

.

34 T. Harks and L.A. Végh

0
0

�a(·)

�a(f1
a)

�a(f1
a + f2

a)

λ �a(xa)

�a(f1
a + f2

a + f3
a)

f1
a xa f1

a + f2
a + f3

af1
a + f2

a

Fig. 1. Illustration of the value ω(�a; λ, n) for n = 3. The entire shaded area corre-
sponds to the value ϑn

a(�a, f). For some λ > 1, the dark-gray shaded rectangle corre-
sponds to the first term

�
�a(fa) − λ �a(xa)

�
xa.

Proof. Let f be the flow generated by NSeqnash and let x be any feasible flow
for a given sequence of games σ = 1, . . . , n. Then, we obtain:

C(f) ≤
∑

a∈A

(
�a(fa) fa +

n∑

i=1

�a(
i∑

j=1

f j
a)

(
xi

a − f i
a)

)
(5)

≤
∑

a∈A

(
ϑn

a(�a, fa) + �a(fa)xa

)

= λC(x) +
∑

a∈A

(
ϑn

a (�a, fa) +
(
�a(fa) − λ �a(xa)

)
xa

)

≤ λC(x) + ω(L; n, λ)C(f). (6)

Here, (5) follows by applying the variational inequality in Lemma 1. The last
inequality (6) follows from the definition of ω(L; n, λ) and since λ ∈ Λ(L, n).
Taking x as the optimal offline solution yields the claim.

In the following we relate the value ω(L; n, λ) to the anarchy value α(L) in-
troduced by Roughgarden in [27], the parameter β(L) introduced by Correa,
Schulz, and Stier-Moses in [11], and the value ω(L; λ) introduced in Harks [20].
Our definition of ω(L, n, λ) is equal to ω(L; 1) = β(L) = 1 − 1

α(L) if we have
λ = 1 and n = 1. For arbitrary λ ≥ 0 and n = 1, we have ω(L, n, λ) = ω(L, λ) as
defined in Harks [20]. The difference between these two values is the nonnegative
value ϑn

a(�a, fa), which accounts for the online setting. It increases for n ≥ 1
making the value ω(L, n, λ) larger and, hence, increases the competitive ratio.

Upper Bounds for Linear Latency Functions. In the following, we bound
the value ω(L; n, λ) for affine linear latency functions. We start with some useful
prerequisites.

Lemma 3. For affine functions �(z) = c1z + c0, c1 ≥ 0, c0 ≥ 0, the value
ω(L; n, 1) is at most 3n−2

4n .

Nonadaptive Selfish Routing with Online Demands 35

The proof of the lemma follows from the Cauchy-Schwarz inequality and the
inequality (f − x)x ≤ 1

4 f2.
Equipped with the above lemma, we can apply Theorem 1 to derive an upper

bound on the competitive ratio of NSeqnash for affine latency functions.

Corollary 1. If the latency functions of the OnlineNG are affine, the online
algorithm NSeqnash is 4n

n+2 -competitive, where n is the number of games.

For n = 1, we obtain the bound of 4
3 for nonatomic network games involving

affine latency functions first proved in Roughgarden and Tardos [30].
For purely linear latency functions we can improve the upper bound by defin-

ing λ := n
n+1 below 1.

Corollary 2. If the latency functions of the OnlineNG are linear, the online
algorithm NSeqnash is 4n2

(n+1)2 -competitive, where n is the number of games.

Using a geometric proof as illustrated in Figure 1 the upper bound of 4 also
holds for general continuous, nondecreasing, and concave latency functions.

Corollary 3. If the latency functions of the OnlineNG are concave, the online
algorithm NSeqnash is 4-competitive.

Upper Bounds for Polynomial Latency Functions. Now we consider the
class Ld of polynomials with nonnegative coefficients and degree at most d ∈ �:

Ld := {cd xd + · · · + c1 x + c0 : cs ≥ 0, s = 0, . . . , d}.

Note that polynomials in Ld are nonnegative for nonnegative arguments, nonde-
creasing, and convex. We can easily see that supfa≥0 ϑn

a(�a, fa) ≤ d
d+1 �a(fa) fa

for �a ∈ Ld. Observe that the cost function C(f) is linear in each of the latency
functions �a(·). Therefore, we can reduce the analysis to monomial price func-
tions by subdividing each arc a into d arcs a1, . . . , ad with monomial latency
functions �as(x) = cs xs for every s = 1, . . . , s.

Lemma 4. For the class Md of monomials cs xs of degree 1 ≤ s ≤ d and λ ≥ 1,
we have

ω(Md; n, λ) ≤ max
0≤μ

μ − λμd+1 +
d

d + 1
.

Proof. For �a(·) ∈ Md, we can assume that �a(fa) fa > 0, since otherwise
ω(Md; n, λ) = 0 and the claim is trivially true. By definition, we have

ω(�a; n, λ) = sup
xa,fa≥0

(
�a(fa) − λ �a(xa)

)
xa + ϑn

a(�a, fa)
�a(fa) fa

.

Defining μ := xa

fa
(recall that fa > 0), we obtain

ω(�a; n, λ) ≤ sup
0≤μ

(
�a(fa) − λ �a(μ fa)

)
μ fa

�a(fa) fa
+

d

d + 1
.

36 T. Harks and L.A. Végh

Consider now the monomial price function �a(xa) = cs xs
a of degree s ∈ [d]. To

bound the value ω(�a; n, λ) from above, we have to consider:

sup
0≤μ

(cs fs
a − λ cs μs fs

a)μ fa

cs fs+1
a

= max
0≤μ

μ − λμs+1. (7)

Because of the assumption λ ≥ 1 the maximum is attained at a point with μ ≤ 1.
Thus, it follows that max0≤μ μ − λμs+1 ≤ max0≤μ μ − λμd+1. This shows the
claim.

Proposition 1. For polynomial latency functions � ∈ Ld and λ := (d+1)(d−1),
the value ω(L; n, λ) is at most d2+2 d

(d+1)2 .

Proof. The unique solution of the maximization problem in Lemma 4 is given
by μ∗ = 1

d+1 . Evaluating the objective with λ := (d + 1)(d−1) proves the claim:

ω(�a, n; λ) ≤ 1
d + 1

− (d + 1)(d−1) (
1

d + 1
)d+1 +

d

d + 1
=

d2 + 2 d

(d + 1)2
.

Corollary 4. Consider the OnlineNG with latency functions in Ld. Then, the
competitive ratio of the online algorithm NSeqnash is at most (d + 1)d+1.

Proof. Let the flow f be produced by the online algorithm NSeqnash and let
x be an arbitrary feasible flow for the OnlineNG. We define λ := (d + 1)(d−1)

and apply Proposition 1, which yields ω(L; n, λ) ≤ d2+2 d
(d+1)2 . In order to apply

Theorem 1, we have to verify that λ ∈ Λ(L, n). What remains to be shown
is that 1 − d2+2 d

(d+1)2 > 0 holds. This inequality is equivalent to 1
d+1 > 0. Then,

applying Theorem 1 yields

C(f) ≤ (d + 1)d−1
(
1 − d2+2 d

(d+1)2
) C(x) = (d + 1)d+1 C(x).

Taking x as the optimal offline solution proves the claim.

3.2 Competitive Analysis for �������

In this section, we analyze the efficiency of the online algorithm ASeqnash,
which produces a flow f i that is at Nash equilibrium for every game i provided
that we also allow for atomic players. Recently, Cominetti, Correa, and Stier-
Moses [10] discovered that the price of anarchy may be quite large in network
games with atomic players. Based on the work of Catoni and Pallotino [8], they
presented an example, where the price of anarchy in a network game with atomic
players is larger than that of the corresponding nonatomic game. As we show in
this section, our upper bounds on the competitive ratio of the online algorithm
ASeqnash also exceed that of NSeqnash. In the following we only present the
main ideas. Complete proofs are left for the full version of this paper.

Nonadaptive Selfish Routing with Online Demands 37

We define for every a ∈ A, for any nonnegative vectors fa, xa ∈ �K
+ the value

θa(�a; fa, xa) :=
n∑

i=1

(
�′a(

i∑

k=1

fk
a)

∑

ij∈[Ki]

(
f ij

a xij
a − f ij

a f ij
a

))
.

By assuming 0/0 = 0, we further define

ω(�a; n, K, λ) := sup
fa,xa≥0

(
�a(fa) − λ �a(xa)

)
xa + ϑn

a(�a, fa) + θa(�a; fa, xa)
�a(fa)fa

.

(8)

For a given class L of nondecreasing latency functions and a nonnegative real
number λ ≥ 0, we further define ω(L; n, K, λ) := sup

�a∈L
ω(�a, n, K; λ). We define

the following feasible set for the parameter λ.

Definition 4. The feasible scaling set for λ is defined as

Λ(L, n, K) :=
{
λ ∈ �+|

(
1 − ω(L; n, K, λ)

)
> 0

}
.

Theorem 2. Consider an instance of the OnlineNG involving a sequence of
n games with K players and latency functions in L. Then, the competitive ratio
of ASeqnash is at most

inf
λ∈Λ(L,n,K)

[
λ

1 − ω(L; n, K, λ)

]

.

The proof proceeds along the same lines as the proof of Theorem 1 except that
the value ω(�a; n, K, λ) contains derivatives �′, which account for the ability of
atomic players to coordinate their flow .

Linear and Polynomial Latency Functions. To facilitate the result of The-
orem 2, we bound ω(L; n, K, λ) for linear latency functions.

Lemma 5. For affine latency functions �(z) = c1 z + c0, c1 ≥ 0, c0 ≥ 0, and
λ ≥ 1 the value ω(L; n, K, λ) is less than or equal to 4(K−1)

5K+1 .

Applying Theorem 2 with λ = 1 yields the following result.

Corollary 5. If the latency functions of the OnlineNG are affine, the online
algorithm ASeqnash is 5K+1

K+5 -competitive, where K is the total number of play-
ers.

Corollary 5 gives abound that only depends on the total number of players in
the sequence σ of games. This bound states that ASeqnash is asymptotically 5-
competitive for online atomic network games. By choosing λ = 1.13 and applying
Theorem 2 it is possible to improve the upper bound to 4.92.

In the following, we derive a bound that depends on the number of games.

Corollary 6. If the latency functions of the OnlineNG are affine, the on-
line algorithm ASeqnash is 2(3K+1)n

nK+3n+3K+1 -competitive, where n is the number of
games and K is the total number of players.

38 T. Harks and L.A. Végh

s1

t1

s2

t2

. . .

. . .

sk

tk

s

t

1 2 kz

0 0 0

0 0 0

Fig. 2. Graph construction for the proof of the lower bound in Proposition 2 and
Corollary 9

This bound is asymptotically 6-competitive. It provides, however, an explicit
dependency on the number of games and players involved. For n = 1, we ob-
tain a bound of 3K+1

2K+2 for atomic network games with affine latency functions;
this bound has previously been established by Cominetti, Correa and Stier-
Moses [10]. For K → ∞ we can establish a bound of 6 n

n+3 that only depends on
the number of games.

For latency functions in Ld, we can show the following bounds.

Corollary 7. If the latency functions of the OnlineNG are in Ld, the compet-
itive ratio of the online algorithm ASeqnash is at most

(
1 + 5

4 d + 1
4 d2

)d+1
.

3.3 Lower Bounds

Based on an an instance presented in Harks, Heinz, and Pfetsch [21], we can
easily show that any deterministic online algorithm for the OnlineNG has a
competitive ratio greater then or equal to 4

3 even for linear latencies. In the fol-
lowing, we present an increased lower bound for NSeqnash. Note that all lower
bounds for NSeqnash also provide lower bounds for ASeqnash since we can
simulate a nonatomic player by infinitely many atomic players each controlling
a negligible fraction of the demand.

Proposition 2. In case of affine latency functions, the online algorithm NSe-

qnash for the OnlineNG has a competitive ratio greater than or equal to 3n−2
n ,

where n is the number of games.

Proof. We consider the network presented in Figure 2 with the latency functions:
�(si,s)(z) = 0, �(t,ti)(z) = 0, �(si,ti)(z) = i, i = 1, . . . , k, and �(s,t)(z) = z. We
consecutively release a sequence of games (1, . . . , k), where in each game j, there
is a single player type j1. The demand of player type j1 is 1 that has to be routed
from si to ti, for i = 1, . . . , k. Due to the choice of the affine terms i, NSeqnash

routes for every game the corresponding demand over the arc from s to t. Then

Nonadaptive Selfish Routing with Online Demands 39

we release the (k + 1)-th game with demand d from s to t. Thus, the total cost
for the sequence σ = (1, . . . , k + 1) for NSeqnash with the new cost function is
given by: NSeqnash(σ) = (k + d)2. The optimal offline algorithm Opt routes
the demands of the first k games along the direct arcs from si to ti incurring cost
of:

∑k
i=1 i = k(k+1)

2 . The last demand in game k + 1 is routed from s to t with
cost d2. The total cost for Opt is given by: Opt(σ) = k(k+1)

2 + d2. Replacing
k = n − 1 and setting d = n

2 yields

NSeqnash(σ)
Opt(σ)

=
2(k + d)2

k(k + 1) + 2d2 =
3n − 2

n
, (9)

which proves the theorem.

Remark 1. For n = 2, the upper bound given in Corollary 1 is tight.

Based on the same instance, except using linear latency functions, we can prove
a lower bound for purely linear latency functions.

Corollary 8. For linear latency functions, the online algorithm NSeqnash for
OnlineNG has a competitive ratio greater than or equal to 33+5

√
33

33+
√

33
.

Corollary 9. For latency functions in Ld, the online algorithm NSeqnash for
OnlineNG has a competitive ratio greater than or equal to d+1

d+2 2d+1.

The proof is again based on the instance in Figure 2 except that we use a
monomial zd for the (s, t) arc and the constant terms i become id. The rest of
the proof then consists of technical calculations that are omitted.

The construction of the lower bounds show that the first player that routes its
demand along the arc (s, t) experiences individual cost of (k+x) after routing all
commodities. In the common Nash equilibrium, where all players are adaptive
and reroute their demand, this player would route its demand along the direct
arc incurring cost of 1. Thus, the ratio of the individual cost of a nonadaptive
player and that of an adaptive player is unbounded.

4 Parallel Arcs

For graphs that consist of two nodes and parallel arcs, we can show that NSe-

qnash performs not worse than a Nash flow for the entire game sequence that
is played in parallel. In other words, for a given sequence of games, we compare
the cost of NSeqnash to the cost of a Nash flow of a parallel game, where all
players of the entire game sequence route their demands simultaneously.

For a given instance of the OnlineNG involving a sequence of games σ,
we define the parallel game σ̄ as a single game that contains all players of the
sequence σ simultaneously.

Recall from the Wardrop condition [32] that a flow f is at Nash equilibrium
if and only if the following condition is satisfied:

40 T. Harks and L.A. Végh

s

b

a

t

1

x
0

1

x

Fig. 3. Bad Example 1 based on the Graph of the Braess Paradox

Lemma 6. A feasible flow f for the game σ̄ is a Nash equilibrium if and only
if:

�a(fa) ≤ �â(fâ), for all arcs a, â ∈ A such that fa > 0. (10)

Note that for nonatomic network games, Nash equilibria and Wardrop equilib-
ria are the same. A similar condition holds for the flow that is produced by
NSeqnash.

Lemma 7. A feasible flow f for the sequence of games σ is produced by NSe-

qnash if and only if for all k ∈ [n]:

�a(
k∑

i=1

f i
a) ≤ �â(

k∑

i=1

f i
â), for all edges a, â ∈ A, such that fk

a > 0. (11)

Theorem 3. Let D = (V, A) with V = {s, t} and A a set of edges from s to
t. We are given a sequence of games σ = 1, . . . , n. Let f be a flow produced
by NSeqnash for the nonatomic OnlineNG with a single nonatomic player
routing di from s to t in every game i ∈ [n]. Let f∗ be a flow at Nash equilibrium
for the corresponding game σ̄ with a single player routing

∑n
i=1 di from s to t.

Then, C(f) = C(f∗).

Proof. We prove that the flow f satisfies all conditions of Lemma 6 for the game
σ̄. By the uniqueness of the cost of a Nash equilibrium the claim is proven. The
latency of the flow f on edge a is equal �a(fa). By contradiction assume that
there exist edges a, â ∈ A with �a(fa) > �â(fâ), with fa > 0. Let k ∈ [n] be
the largest index with fk

a > 0. The existence of such an index k is granted since
fa =

∑n
i=1 f i

a > 0 is assumed. As in games k+1, . . . , n, the edge a is not used any
more, we have that �a(fa) = �a

(∑k
i=1 f i

a

)
. Using the assumption that latency

functions are nondecreasing it follows that �â(fâ) ≥ �â

(∑k
i=1 f i

â

)
. By Lemma 7

for game k, we have �â

(∑k
i=1 f i

â

)
≥ �a

(∑k
i=1 f i

a

)
, thus �â(fâ) ≥ �â

(∑k
i=1 f i

â

)
≥

�a

(∑k
i=1 f i

a

)
= �a(fa), a contradiction.

The intuition of the above proof fails, however, for general networks with a single
source and a single destination. To see this, we present an instance, where the
cost of a flow f produced by NSeqnash is larger than that of the corresponding
Nash flow f∗ for the game σ̄.

Nonadaptive Selfish Routing with Online Demands 41

Example 1. Consider the graph of Braess’s paradox in Figure 3 and two games
that are released consecutively. Each game has a single nonatomic player routing
one unit d1 = 1, d2 = 1 from s to t. The path system P1 for the first player
contains P1 = (s, a, t), P2 = (s, a, b, t), P3 = (s, b, t). A flow that is at Nash
equilibrium for the first game routes 1 unit of flow on P2, having path latency
�1(f1) = 2. In the second game, we route 1

2 unit on P1 and 1
2 on P3, both having

path latency �2(f) = 2.5. Now �2
P2

(f) = 3. Thus, the total cost is C(f) =
1 × 2.5 + 1 × 3 = 5.5. However, for the game σ̄ we route 2 units of flow from
s to t. Then, a flow f∗ at Nash equilibrium routes one unit along paths P1
and P3. The path latencies are �P1(f) = �P2(f) = 2, thus the total cost is
C(f∗) = 2 × 2 = 4.

In the following, we investigate the parallel arc setting for ASeqnash. For the
atomic case in a parallel arc network, Hayrapetyan, Tardos and, Wexler [22] have
proved a similar result. Assume we have a single game with an arbitrary number
of atomic players, and x �a(x) is a convex function for all edges a. Then, the equi-
librium cost is at most as much as the cost of the nonatomic Nash equilibrium of
the total demand. Now we generalize this result for the OnlineNG.

We will compare a sequence of games with an arbitrary number of atomic
players with a single game, where nonatomic players routes the flow g such that
the total demand of the entire sequence is satisfied. Instead of comparing the
usual costs, our result involves another cost function C2(f):

C2(f) =
n∑

i=1

∑

a∈A

�a

(i∑

j=1

f j
a

)
f i

a. (12)

C2(f) means that players in game i have to pay only after their current latency
in game i, and no cost according to the games i+1, . . . , n. Note that the relation
C2(f) ≤ C(f) holds because of the monotonicity of �a. In the following, we will
show that C2(f) ≤ C(g). Then, by defining δ := supf (C(f)/C2(f)), we are
still able to bound the usual cost: C(f) ≤ C2(g) ≤ δ C(g). For latency functions
� ∈ Ld, we have for instance δ ≤ d + 1. Now we are ready to state the following
theorem:

Theorem 4. Consider an instance of OnlineNG with a sequence of games
σ = 1, . . . , n and the underlying graph D = (V, A) with V = {s, t} and A
consisting of parallel st-edges. Let f be a flow produced by ASeqnash for this
game with ni atomic players in game i. Let d =

∑n
i=1

∑ni

j=1 dij denote the total
demand over all games. Let g be at Nash equilibrium for a single nonatomic
game with a single player routing d units from s to t. Then C2(f) ≤ C(g).

For n = 1, this gives Theorem 2.3 in [22]. To prove the theorem, we introduce
di =

∑ni

j=1 dij , the total demand in game i. The essence of the proof is the
following lemma:

Lemma 8. Assume we have a sequence of two games with D = (V, A) satisfying
the conditions of Theorem 4. In the first game, n1 atomic players route each d1j

42 T. Harks and L.A. Végh

units of flow from s to t. In the second game, there is a nonatomic player routing
z units. Let h = (h1, h2) be in equilibrium for this sequence, and let m be in
equilibrium for a single game with a single nonatomic player routing d1 +z from
s to t. Then C2(h) ≤ C(m).

Before proving this lemma, we show how it implies Theorem 4. The proof is by
induction. If n = 1, then we apply the lemma for z = 0. If n > 1, suppose we
have proved the theorem for n − 1. Fix the flows of the first game, and modify
the cost function �a to qa(x) = �a(x + f1

a). Consider the games 2, . . . , n − 1 with
cost function qa, and let Cq

2 denote the modified cost function. By definition,
(f2, . . . , fn) is in equilibrium for this sequence, and C2(f) =

∑
a∈A �a(f1

a)f1
a +

Cq
2 (f2, . . . , fn).
Let gq be a routing in Nash equilibrium of z =

∑n
i=2 di units for the cost

function qa; let Cq denote its cost. By induction, Cq
2 (f2, . . . , fn) ≤ Cq. Consider

now the game described in the lemma. h = (f1, gq) is in equilibrium, and the
game m is identical to g as d1 + z = d. By the lemma, C2(h) ≤ C(m) = C(g).

On the other hand,

C2(h) =
∑

a∈A

�a(f1
a)f1

a + Cq ≥
∑

a∈A

�1
a(f1

a)f1
a + Cq

2 (f2, . . . , fn) = C2(f),

and this is what we wanted to prove.
Before proving Lemma 8, we prove two other lemmas, which are motivated

by [22].

Lemma 9. For the game as in Lemma 8, h is in equilibrium if and only if for
any j ∈ [n1], and any edges a, â ∈ A with h1j

a > 0,

�a(h1
a) + h1j

a �′a(h
1
a) ≤ �â(h1

â) + h1j
â �′â(h1

â). (13)

Furthermore, for any edges a, â ∈ A, if h2
a > 0, then �a(ha) ≤ �â(hâ).

This easily follows as player 1j wants to minimize
∑

a∈A �a(h1
a)h1j

a . Let T denote
the minimum edge latency of game m in Lemma 8. We call an edge a overloaded,
if �a(ha) > T and underloaded if �a(ha) ≤ T . The idea is, following [22], that
moving a small flow from an overloaded edge to an underloaded increases the
cost.

Lemma 10. Assume a is overloaded and â is underloaded with ha > 0. Then
h1

a > 0, and modifying h1 by moving a small amount of flow from a to â does
not decrease C2(h).

Proof. Let T2 denote the minimum edge latency in the Nash equilibrium of h2.
We show that T2 ≤ T . Assume by contradiction that T2 > T . Then by moving
flows from edges with latency higher than T2 to edges of lower latency, we can
finally arrive in a Nash-equilibrium of edge latency at least T2, contradicting the
fact that the edge latency is the same in any two different Nash-equilibria, see
Roughgarden [28].

Nonadaptive Selfish Routing with Online Demands 43

By T2 ≤ T , if a is overloaded, then h2
a = 0. This implies h1

a > 0, and �a(ha) =
�a(h1

a). Our aim is to prove, that decreasing h1
a a little bit and increasing h1

â

with the same amount, C2(h) does not decrease. The statement follows if we
can prove that ∂C2

∂h1
a

≤ ∂C2
∂h1

â
. This is equivalent with

�a(h1
a) + h1

a�′a(h
1
a) + h2

a�′a(h1
a + h2

a) ≤ �â(h1
â) + h1

â�′â(h
1
â) + h2

â�′â(h1
â + h2

â). (14)

Let B = {j : h1j
a > 0}. If we sum (13) for j ∈ B, we get

|B|�a(h1
a) + h1

a�′a(h1
a) ≤ |B|�â(h1

â) +
∑

j∈B

h1j
â �′â(h1

â)

Increasing the right hand side by
∑

j /∈B h1j
â �′â(h

1
â) + h2

â�′â(h1
â + h2

â), and adding
h2

a�′a(h1
a + h2

a) = 0 to the left hand side, we get

|B|�a(h1
a) + ha�′a(ha) + h2

a�′a(h
1
a + h2

a) ≤ |B|�â(h1
â) + h1

â�′â(h1
â) + h2

â�′â(h1
â + h2

â)

As a is overloaded and â is underloaded, we have �a(h1
a) = �a(h) > �â(h) ≥

�â(h1
â). This in turn implies (14).

Now we are ready to prove Lemma 8. We modify h by moving flow amounts
from overloaded to underloaded links. We avoid creating new overloaded links:
we increase the flow on the underloaded edge â so that �â(hâ) should not exceed
T . Applying such a modification maintains h2

a = 0 on any overloaded edge a.
Observe that (14) holds not only for h, but for any h̄ satisfying h̄1

a ≤ h1
a and

h̄1
â ≥ h1

â and h̄2 = h2. This is since the monotonicity and convexity of �a(x)
implies that x�a(x + c) is as well convex for c, x ≥ 0.

This ensures that we can always go on by moving flow from overloaded to
underloaded links, as far as some modifications are applicable. Suppose no more
modifications can be applied. In this case for each edge a, �a(ha) ≥ T . If �a(ha) =
T for all edges, then Lemma 8 follows. Otherwise we have some edge a with
�a(ha) > T , and for all edges â with �â(hâ) = T , increasing hâ by an arbitrary
small positive amount would result in �â(h) > T . But this is a contradiction, as
now the flows can be rerouted to obtain a Nash-equilibrium with edge latency
strictly larger than T . Again we use that the edge latency is the same in any
two different Nash-equilibria, and T was the latency of the equilibrium state m.

References

1. Altman, E., Basar, T., Jimenez, T., Shimkin, N.: Competitive routing in networks
with polynomial costs. IEEE Trans. Automat. Control 47(1), 92–96 (2002)

2. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
Proc. of the thirty-seventh annual ACM symposium on Theory of computing
(STOC), pp. 57–66. ACM Press, New York (2005)

3. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load
balancing in the Lp norm. In: IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 383–391 (1995)

44 T. Harks and L.A. Végh

4. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In:
Proc. 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
Palo Alto, pp. 32–40 (1993)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

6. Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmenforschung 11,
258–268 (1968)

7. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli,
L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322.
Springer, Heidelberg (2006)

8. Catoni, S., Pallotino, S.: Traffic equilibrium paradoxes. Transportation Science 25,
240–244 (1991)

9. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing (STOC), pp. 67–73 (2005)

10. Cominetti, R., Correa, J.R., Stier-Moses, N.: Network games with atomic players.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, Springer, Heidelberg (2006)

11. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated net-
works. Math. Oper. Res. 29, 961–976 (2004)

12. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: On the inefficiency of equilibria in
congestion games. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Com-
binatorial Optimization. LNCS, vol. 3509, pp. 167–181. Springer, Heidelberg (2005)

13. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proceedings
of the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pp. 413–420 (2002)

14. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general net-
work. J. Res. Natl. Bur. Stand. Sect. B 73, 91–118 (1969)

15. Dubey, P.: Inefficiency of Nash Equilibria. Math. Oper. Res. 11, 1–8 (1986)
16. Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings

of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), pp.
772–781 (2005)

17. Fiat, A. (ed.): Online Algorithms. LNCS, vol. 1442. Springer, Heidelberg (1998)
18. Fischer, S., Vöcking, B.: Adaptive routing with stale information. In: Aguilera,

M.K., Aspnes, J. (eds.) Proc. 24th Ann. ACM SIGACT-SIGOPS Symp. on Prin-
ciples of Distributed Computing (PODC), Las Vegas, NV, USA, July 2005, pp.
276–283. ACM Press, New York (2005)

19. Friedman, E.J.: Genericity and congestion control in selfish routing. In: Decision
and Control, CDC. 43rd IEEE Conference on, pp. 4667–4672 (2004)

20. Harks, T.: On the price of anarchy of network games with nonatomic and atomic
players. Technical report, avalaible at Optimization Online (January 2007)

21. Harks, T., Heinz, S., Pfetsch, M.E.: Online multicommodity routing problem. In:
Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, Springer, Hei-
delberg (2007)

22. Hayrapetyan, A., Tardos, E., Wexler, T.: The effect of collusion in congestion
games. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing (STOC), pp. 89–98 (2006)

23. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

Nonadaptive Selfish Routing with Online Demands 45

24. La, R.J., Walrand, J., Anantharam, V.: Issues in TCP Vegas. Electronics Re-
search Laboratory, University of California, Berkeley, UCB/ERL Memorandum,
No. M99/3 (January 1999)

25. Qiu, L., Yang, R.Y., Zhang, Y., Shenker, S.: On selfish routing in internet-like
environments. IEEE/ACM Trans. on Netw. 14(4), 725–738 (2006)

26. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person
games. Econometrica 33, 520–534 (1965)

27. Roughgarden, T.: The price of anarchy is independent of the network topology.
Journal of Computer and System Science 67, 341–364 (2002)

28. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The MIT Press, Cam-
bridge (2005)

29. Roughgarden, T.: Selfish routing with atomic players. In: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 973–974
(2005)

30. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2),
236–259 (2002)

31. Suri, S., Toth, C., Zhou, Y.: Selfish load balancing and atomic congestion games.
Algorithmica 47(1), 79–96 (2007)

32. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings
of the Institute of Civil Engineers, 1(Part II), pp. 325–378 (1952)

	Nonadaptive Selfish Routing with Online Demands
	Introduction
	Related Work
	Our Results and Techniques

	Online Network Games
	Player Types
	Nash Equilibria for Nonatomic and Atomic Players

	Competitive Analysis
	Competitive Analysis for $NSeqnash$
	Competitive Analysis for $ASeqnash$
	Lower Bounds

	Parallel Arcs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

