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Abstract In resource buying games a set of players jointly buys a subset of a finite
resource set E (e.g., machines, edges, or nodes in a digraph). The cost of a resource e
depends on the number (or load) of players using e, and has to be paid completely by the
players before it becomes available. Each player i needs at least one set of a predefined
family Si ⊆ 2E to be available. Thus, resource buying games can be seen as a variant
of congestion games in which the load-dependent costs of the resources can be shared
arbitrarily among the players. A strategy of player i in resource buying games is a tuple
consisting of one of i’s desired configurations Si ∈ Si together with a payment vector
pi ∈ R

E+ indicating how much i is willing to contribute towards the purchase of the
chosen resources. In this paper, we study the existence and computational complexity
of pure Nash equilibria (PNE, for short) of resource buying games. In contrast to
classical congestion games for which equilibria are guaranteed to exist, the existence
of equilibria in resource buying games strongly depends on the underlying structure
of the families Si and the behavior of the cost functions. We show that for marginally
non-increasing cost functions, matroids are exactly the right structure to consider, and
that resource buying games with marginally non-decreasing cost functions always
admit a PNE.
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1 Introduction

We introduce and study resource buying games as a means to model selfish behavior
of players jointly designing a resource infrastructure. In a resource buying game, we
are given a finite set N of players and a finite set of resources E . We do not specify
the type of the resources, they can be just anything (e.g., edges or nodes in a digraph,
processors, trucks, etc.). In our model, the players jointly buy a subset of the resources.
Each player i ∈ N has a predefined family of subsets (called configurations) Si ⊆ 2E

from which player i needs at least one set Si ∈ Si to be available. For example, the
families Si could be the collection of all paths linking two player-specific terminal-
nodes si , ti in a digraph G = (V, E), or Si could stand for the set of machines on
which i can process her job on. The cost ce of a resource e ∈ E depends on the
number of players using e, and needs to be paid completely by the players before it
becomes available. As usual, we assume that the cost functions ce are non-decreasing
and normalized in the sense that ce never decreases with increasing load, and that ce is
zero if none of the players is using e. In a weighted variant of resource buying games,
each player has a specific weight (demand) di , and the cost ce depends on the sum of
demands of players using e. In resource buying games, a strategy of player i can be
regarded as a tuple (Si , pi ) consisting of one of i’s desired sets Si ∈ Si , together with
a payment vector pi ∈ R

E+ indicating how much i is willing to contribute towards the
purchase of the resources. The goal of each player is to pay as little as possible by
ensuring that the bought resources contain at least one of her desired configurations.
A pure strategy Nash equilibrium (PNE, for short) is a strategy profile {(Si , pi )}i∈N

such that none of the players has an incentive to switch her strategy given that the
remaining players stick to the chosen strategy. A formal definition of the model will
be given in Sect. 2.

1.1 Previous Work

As the first seminal paper in the area of resource buying games, Anshelevich et al. [6]
introduced connection games to model selfish behavior of players jointly designing a
network infrastructure. In their model, one is given an undirected graph G = (V, E)

with non-negative (fixed) edge costs ce, e ∈ E, and the players jointly design the
network infrastructure by buying a subgraph H ⊆ G. An edge e of E is bought if the
payments of the players for this edge cover the cost ce, and, a subgraph H is bought
if every e ∈ H is bought. Each player i ∈ N has a specified source node si ∈ V
and terminal node ti ∈ V that she wants to be connected in the bought subgraph. A
strategy of a player is a payment vector indicating how much she contributes towards
the purchase of each edge in E . Anshelevich et al. show that these games have a PNE
if all players connect to a common source. They also show that general connection
games might fail to have a PNE (see also Sect. 1 below). Several follow-up papers
(cf.[3–5,7,9,11,14,16]) study the existence and efficiency of pure Nash and strong
equilibria in connection games and extensions of them. In contrast to these works, our
model is more general as we assume load-dependent congestion costs and weighted
players. Load-dependent cost functions play an important role in many real-world
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Fig. 1 (a) Scheduling game and
(b) connection game

(a) (b)

applications as, in contrast to fixed cost functions, they take into account the intrinsic
coupling between the quality or cost of the resources and the resulting demand for
it. A prominent example of this coupling arises in the design of telecommunication
networks, where the installation cost depends on the installed bandwidth which in turn
should match the demand for it.

Hoefer [15] studied resource buying games for load-dependent non-increasing mar-
ginal cost functions generalizing fixed costs. He considers unweighted congestion
games modeling cover and facility location problems. Among other results regard-
ing approximate PNEs and the price of anarchy/stability, he gives a polynomial time
algorithm computing a PNE for the special case, where every player wants to cover a
single element.

1.2 First Insights

Before we describe our results and main ideas in detail, we give two examples moti-
vating our research agenda.

Consider the scheduling game illustrated in Fig.1(a) with two resources (machines)
{e, f } and three players {1, 2, 3} each having unit-sized jobs. Any job fits on any
machine, and the processing cost of machines e, f is given by c j (� j (S)), where
� j (S) denotes the number of jobs on machine j ∈ {e, f } under schedule S. In our
model, each player chooses a strategy which is a tuple consisting of one of the two
machines, together with a payment vector indicating how much she is willing to pay
for each of the machines. Now, suppose the cost functions for the two machines are
ce(0) = c f (0) = 0, ce(1) = c f (1) = 1, ce(2) = c f (2) = 1 and ce(3) = c f (3) = M
for some large M > 0. One can easily verify that there is no PNE: If two players
share the cost of one machine, then a player with positive payments deviates to the
other machine. By the choice of M , the case that all players share a single machine
can never be a PNE. In light of this quite basic example, we have to restrict the set of
feasible cost functions. Although the cost functions ce and c f of the machines in this
scheduling game are monotonically non-decreasing, their marginal cost function is
neither non-increasing, nor non-decreasing, where we call cost function ce : N→ R+
marginally non-increasing [non-decreasing] if

ce(x + δ)− ce(x) ≥ [≤] ce(y + δ)− ce(y) ∀x ≤ y; x, y, δ ∈ N. (1)
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Note that marginally non-increasing cost functions model economies of scale and
include fixed costs as a special case. Now, consider a scheduling game with unit-sized
jobs and marginally non-increasing cost functions. It is not hard to establish a simple
polynomial time algorithm to compute a PNE for this setting: Sort the machines with
respect to the costs evaluated at load one. Iteratively, let the player whose minimal
cost among her available resources is maximal exclusively pay for that resource, drop
this player from the list and update the cost on the bought resource with respect to a
unit increment of load.

While the above algorithm might give hope for obtaining a more general existence
and computability result for PNEs for non-increasing marginal cost functions, we recall
a counter-example given by [6]. Consider the connection game illustrated in Fig.1(b),
where there are two players that want to establish an si -ti path for i = 1, 2. Any
strategy profile (state) of the game contains two paths, one for each player, that have
exactly one edge e in common. In a PNE, no player would ever pay a positive amount
for an edge that is not on her chosen path. Now, a player paying a positive amount for
e (and at least one such player exists) would have an incentive to switch strategies as
she could use the edge that is exclusively used (and paid) by the other player for free.
Note that this example uses fixed costs which are marginally non-increasing.

1.3 Our Results and Outline

We study unweighted and weighted resource buying games and investigate the exis-
tence and computability of pure-strategy Nash equilibria (PNEs, for short). In light of
the examples illustrated in Fig. 1, we find that equilibrium existence is strongly related
to two key properties of the game: the monotonicity of the marginal cost functions
and the combinatorial structure of the allowed strategy spaces of the players.

We first consider non-increasing marginal cost functions and investigate the com-
binatorial structure of the strategy spaces of the players for which PNEs exist. As
our main result we show that matroids are exactly the right structure to consider in
this setting: In Sect. 3, we present a polynomial-time algorithm to compute a PNE
for unweighted matroid resource buying games. This algorithm can be regarded as a
far reaching, but highly non-trivial extension of the simple algorithm for scheduling
games described before: starting with the collection of matroids, our algorithm iter-
atively makes use of deletion and contraction operations to minor the matroids, until
a basis together with a suitable payment vector for each of the players is found. The
algorithm works not only for fixed costs, but also for the more general marginally non-
increasing cost functions. Matroids have a rich combinatorial structure and include,
for instance, the setting where each player wants to build a spanning tree in a graph.

In Sect. 4, we study weighted resource buying games. We prove that for non-
increasing marginal costs and matroid structure, every (socially) optimal configuration
profile can be obtained as a PNE. The proof relies on a complete characterization of
configuration profiles that can appear as a PNE. We lose, however, polynomial running
time as computing an optimal configuration profile is NP-hard even for simple matroid
games with uniform players.
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In Sect. 5, we show that our existence result is ”tight” by proving that the matroid
property is also the maximal property of the configurations of the players that leads to
the existence of a PNE: For every two-player weighted resource buying game having
non-matroid set systems, we construct an isomorphic game that does not admit a PNE.

In Sect. 6, we consider resource buying games having non-decreasing marginal
costs. We show that every such game possesses a PNE regardless of the strategy space.
We prove this result by showing that an optimal configuration profile can be obtained
as a PNE. We further show that one can compute a PNE efficiently whenever one can
compute a best response efficiently. It follows that, for example, in multi-commodity
network games, PNE can be computed in polynomial time.

The previously described results imply that the price of stability is one for resource
buying games with either non-decreasing marginal costs, or non-increasing marginal
costs and matroid structure. In Sect. 7, we investigate the price of anarchy of resource
buying games and show that the price of anarchy is exactly n for (weighted) resource
buying games with marginally non-increasing cost functions. In contrast, we show
that for marginally non-decreasing cost functions, the price of anarchy is unbounded
even for two-player games and singleton strategies.

1.4 Connection to Classical Congestion Games

We briefly discuss connections and differences between resource buying games and
classical congestion games. Recall the congestion game model: the strategy space
of each player i ∈ N consists of a family Si ⊆ 2E of a finite set of resources E .
The cost ce of each resource e ∈ E depends on the number of players using e. In a
classical congestion game, each player i chooses one set Si ∈ Si and needs to pay
the cost of every resource in Si . Rosenthal [17] proved that congestion games always
have a PNE. This stands in sharp contrast to resource buying games for which PNE
need not exist even for unweighted singleton two-player games with non-decreasing
costs, see Fig.1(a). For congestion games with weighted players, Ackermann et al. [2]
showed that for non-decreasing cost functions matroids are the maximal combina-
torial structure of strategy spaces admitting PNE. Harks and Klimm [13] showed
that weighted congestion games always admit pure Nash equilibria for a given set
of allowable cost functions on the resources if and only if the cost functions are
either affine or belong to a well-defined class of exponential functions. In contrast to
these results for weighted congestion games, Theorem 6.1 shows that resource buying
games with non-decreasing marginal cost functions always have a PNE regardless of
the strategy space and regardless of the functional form of the cost functions (except
that marginal costs need to be non-decreasing). Our characterization of matroids as
the maximal combinatorial structure admitting PNE for resource buying games with
non-increasing marginal costs is also different to the one of Ackermann et al. [2] for
classical weighted matroid congestion games with non-decreasing costs. Ackermann
et al. prove the existence of PNE by using a potential function approach. Our existence
result relies on a complete characterization of PNE implying that there exist payments
so that the optimal profile becomes a PNE. For unweighted matroid congestion games,
Ackermann et al. [1] prove polynomial convergence of best-response by using a (non-
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trivial) potential function argument. Our algorithm and its proof of correctness are
completely different relying on matroid minors and cuts (cocircuits).

These structural differences between the two models become even more obvious
in light of the computational complexity of computing a PNE. In classical network
congestion games with non-decreasing costs it is PLS-hard to compute a PNE [1,12]
even for unweighted players. It is worth noting that Ackermann et al. [1] prove PLS-
hardness even for linear cost functions exhibiting non-decreasing marginal costs.
For network games with weighted players and non-decreasing costs, Dunkel and
Schulz [10] showed that it is NP-complete to decide whether a PNE exists. In resource
buying (network) games with non-decreasing marginal costs one can compute a PNE
in polynomial time even with weighted players (Theorem 6.2).

2 Preliminaries

2.1 The Model

A tuple M = (N , E,S, (di )i∈N , (cr )r∈E ) is called a congestion model, where N =
{1, . . . , n} is the set of players, E = {1, . . . , m} is the set of resources, and S =
×i∈N Si is a set of states (also called configuration profiles). For each player i ∈ N ,
the set Si is a non-empty set of subsets Si ⊆ E , called the configurations of i . If di = 1
for all i ∈ N we obtain an unweighted game, otherwise, we have a weighted game. We
call a configuration profile S ∈ S (socially) optimal if its total cost c(S) =∑

e∈E ce(S)

is minimal among all S ∈ S.
Given a state S ∈ S, we define �e(S) = ∑

i∈N :e∈Si
di as the total load of e in S.

Every resource e ∈ E has a cost function ce : S → N defined as ce(S) = ce(�e(S)). In
this paper, all cost functions are non-negative, non-decreasing and normalized in the
sense that ce(0) = 0. We now obtain a weighted resource buying game as the (infinite)
strategic game G = (N ,S × P, π), where P = ×i∈N Pi with Pi = R

|E |
+ is the set

of feasible payments for the players. Intuitively, each player chooses a configuration
Si ∈ Si and a payment vector pi for the resources. We say that a resource e ∈ E is
bought under strategy profile (S, p), if

∑
i∈N pe

i ≥ ce(�e(S)), where pe
i denotes the

payment of player i for resource e. Similarly, we say that a subset T ⊆ E is bought
if every e ∈ T is bought. The private cost function of each player i ∈ N is defined
as πi (S) = ∑

e∈E pe
i if Si is bought, and πi (S) = ∞, otherwise. We are interested

in the existence of pure Nash equilibria, i.e., strategy profiles that are resilient against
unilateral deviations. Formally, a strategy profile (S, p) is a pure Nash equilibrium,
PNE for short, if πi (S, p) ≤ πi ((S′i , S−i ), (p′i , p−i )) for all players i ∈ N and all
strategies (Si , pi ) ∈ Si × Pi . Note that for PNE, we may assume w.l.o.g that a pure
strategy (Si , pi ) of player i satisfies pe

i ≥ 0 for all e ∈ Si and pe
i = 0, else.

2.2 Matroid Games

We call a weighted resource buying game a matroid (resource buying) game if each
configuration set Si ⊆ 2Ei with Ei ⊆ E forms the base set of some matroid Mi =
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(Ei ,Si ). As it is usual in matroid theory, we will throughout write Bi instead of Si , and
B instead of S, when considering matroid games. Recall that a non-empty anti-chain1

Bi ⊆ 2Ei is the base set of a matroid Mi = (Ei ,Bi ) on resource (ground) set Ei if
and only if the following basis exchange property is satisfied: whenever X, Y ∈ Bi

and x ∈ X \ Y , then there exists some y ∈ Y \ X such that X \ {x} ∪ {y} ∈ Bi . For
more about matroid theory, the reader is referred to [18, Chapt. 39 – 42].

3 An Algorithm for Unweighted Matroid Games

Let M = (N , E,B, (ce)e∈E ) be a model of an unweighted matroid resource buying
game. Thus, B = ×i∈N Bi where each Bi is the base set of some matroid Mi =
(Ei ,Bi ), and E =⋃

i∈N Ei . In this section, we assume that the cost functions ce, e ∈
E are marginally non-increasing.

Given a matroid Mi = (Ei ,Bi ), we denote by Ii = {I ⊆ E | I ⊆ B for some B ∈
Bi } the collection of independent sets in Mi . Furthermore, we call a set C ⊆ Ei a
cut (or co-circuit) of matroid Mi if C is inclusion-wise minimal with the property
that Ei \ C does not contain a basis of Mi . Let Ci (Mi ) denote the collection of all
cuts of Mi . Note that Ci (Mi ) is exactly the set of all circuits of the dual matroid
M∗

i = (Ei ,B∗i ) with B∗i = {E \ B | B ∈ Bi } (therefore the name ”co-circuit”). We
will need the following basic insight at several places.

Lemma 3.1 [18, Chapters 39 – 42] Let M be a weighted matroid with weight function
w : E → R+. A basis B is a minimum weight basis of M if and only if there exists
no basis B∗ with |B \ B∗| = 1 and w(B∗) < w(B).

In a strategy profile (B, p) of our game with B = (B1, . . . , Bn) ∈ B (and n = |N |)
players will jointly buy a subset of resources B̄ ⊆ E with B̄ = B1 ∪ . . . ∪ Bn . Such
a strategy profile (B, p) is a PNE if none of the players i ∈ N would need to pay
less by switching to some other basis B ′i ∈ Bi , given that all other players j �= i
stick to their chosen strategy (B j , p j ). By Lemma 3.1, it suffices to consider bases
B̂i ∈ Bi with B̂i = Bi − g + f for some g ∈ Bi \ B̂i and f ∈ B̂i \ Bi . Note that
by switching from Bi to B̂i , player i would need to pay the additional marginal cost
c f (l f (B)+ 1)− c f (l f (B)), but would not need to pay for element g. Thus, (B, p) is
a PNE iff for all i ∈ N and all B̂i ∈ Bi with B̂i = Bi − g + f for some g ∈ Bi \ B̂i

and f ∈ B̂i \ Bi holds pg
i ≤ c f (l f (B)+ 1)− c f (l f (B)).

We now give a polynomial time algorithm (see Algorithm 1 below) computing a
PNE for unweighted matroid games with marginally non-increasing costs. The idea
of the algorithm can roughly be described as follows: In each iteration, for each
player i ∈ N , the algorithm maintains some independent set Bi ∈ Ii , starting with
Bi = ∅, as well as some payment vector pi ∈ R

E+, starting with the all-zero vector.
It also maintains a current matroid M′

i = (E ′i ,B′i ) that is obtained from the original
matroid Mi = (Ei ,Bi ) by deletion and contraction operations. Recall that, given
a matroid M = (E,B), the contraction of element e ∈ E yields a new matroid
M/e = (E \ e,B/e), where B/e = {B ⊆ E \ e | B + e ∈ B}, and the deletion of

1 Recall that Bi ⊆ 2Ei is an anti-chain (w.r.t. (2Ei ,⊆)) if B, B′ ∈ Bi , B ⊆ B′ implies B = B′.
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element e yields the new matroid M \ e = (E \ e,B \ e), where B \ e = {B ⊆ E \ e |
B ∈ B}. (see e.g., [18].) The algorithm also keeps track of the current marginal cost
c′e = ce(�e(B) + 1) − ce(�e(B)) for each element e ∈ E and the current sequence
B = (B1, . . . , Bn). Note that c′e denotes the amount that needs to be paid if some
additional player i selects e into its set Bi . A variable te denotes the current load of
element e ∈ E throughout the algorithm. In each iteration, while there exists at least
one player i such that Bi is not already a basis, the algorithm chooses among all cuts
in C = {C ∈ Ci (M′

i ) | for some i ∈ N } an inclusion-wise minimal cut C∗ whose
bottleneck element (i.e., the element of minimal current weight in C∗) has maximal
c′-weight (step 3). (We assume that some fixed total order (E,�) is given to break
ties, so that the choices of C∗ and e∗ are unique.) It then selects the bottleneck element
e∗ ∈ C∗ (step 4), and some player i∗ with C∗ ∈ Ci (M′

i ) (step 5). In an update step, the
algorithm lets player i∗ pay the marginal cost c′e∗ (step 14), adds e∗ to Bi∗ (step 7), and
contracts element e∗ in matroid M′

i∗ (step 11). If Bi∗ is a basis in the original matroid
Mi∗ , the algorithm drops i∗ from the player set N (step 9). Finally, the algorithm
deletes the elements in C∗ \ {e∗} in all matroids M′

i for i ∈ N (step 16), and iterates
until N = ∅, i.e., until a basis has been found for all players.

Algorithm 1 Computing PNE in Matroids
Input: (N , E, {Mi = (Ei , Bi )}i∈N , c)
Output: PNE (B, p)

1: Initialize B′i = Bi , E ′i = Ei , Bi = ∅, pe
i = 0, te = 0, and c′e = ce(1) for each i ∈ N and each e ∈ E ;

2: while N �= ∅ do
3: choose C∗ ← argmax{min{c′e : e ∈ C} | C ∈ C inclusion-wise minimal}

where C = {C ⊆ E | C ∈ Ci (M′
i ) for some player i ∈ N };

4: choose e∗ ← argmin{c′e | e ∈ C∗};
5: choose i∗ with C∗ ∈ Ci∗ (M′

i∗ );
6: pe∗

i∗ ← c′e∗ ;
7: Bi∗ ← Bi∗ + e∗;
8: if Bi∗ ∈ Bi∗ then
9: N ← N − i∗;
10: end if
11: B′i∗ ← B′i∗/e∗ = {B ⊆ E ′i∗ \ {e∗} | B + e∗ ∈ B′i∗ };
12: E ′i∗ ← E ′i∗ \ {e∗};
13: te∗ ← te∗ + 1;
14: c′e∗ ← ce∗ (te∗ + 1)− ce∗ (te∗ );
15: for all players i ∈ N do
16: B′i ← B′i \ (C∗ \ {e∗}) = {B ⊆ E ′i \ (C∗ \ {e∗}) | B ∈ B′i }
17: E ′i ← E ′i \ (C∗ \ {e∗});
18: end for
19: end while
20: B = (B1, . . . , Bn), p = (p1, . . . , pn);
21: Return (B, p)

Obviously, the algorithm terminates after at most |N | · |E | iterations, since in each
iteration, at least one element e∗ is dropped from the ground set of one of the players.
Note that the inclusion-wise minimal cut C∗ whose bottleneck element e∗ has maximal
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weight (step 3), as well as the corresponding player i∗ and the bottleneck element e∗,
can be efficiently found, see subsection 3.3 for a corresponding subroutine.

It is not hard to see that Algorithm 1 corresponds exactly to the procedure described
in Sect.1 to solve the scheduling game (i.e., the matroid game on uniform matroids)
with non-increasing marginal cost functions. We show below in Sect. 3.2, that the
algorithm returns a pure Nash equilibrium also for general matroids. But before, we
describe the algorithm in more detail on the example of graphical matroids:

3.1 Example: Spanning Tree Game

A spanning tree game is a matroid game (N , {Bi }i∈N , {ce}e∈E }) in which each matroid
Mi = (Ei ,Bi ) is a graphical matroid. That is, each player i ∈ N is identified with
a graph Gi on edge set Ei ⊆ E , and the base set Bi ⊆ 2E corresponds to the set of
spanning trees in Gi . Without loss of generality, we assume that each Gi is connected.
Each player’s strategy now consists of a spanning tree (basis) Bi ⊆ E together with
payments pi ∈ R

E indicating how much she is willing to contribute towards the
purchase of the edges in Bi . Note that a cut in a graphical matroid Mi corresponds
to an inclusion wise minimal subset of edges in Gi whose deletion disconnects Gi .
Initially, the players start with empty sets Bi = ∅ and zero payments. In each iteration,
the algorithm chooses among the union of all cuts of all players an inclusion wise
minimal one C∗ in, say, graph Gi∗ , together with a ”bottleneck edge” e∗ ∈ Ei∗ by
the following max-min-rule: among all candidate cuts C , it chooses the one whose
edge of minimal current cost has maximal current weight (see subsection 3.3 for an
efficient subroutine to find C∗, i∗, and e∗). Now, player i∗ adds e∗ to Bi∗ (step 7),
pays the current marginal cost of e∗ (step 6), and contracts e∗ in graph Gi∗ (step 11).
Player i∗ is dropped from the list, as soon as the resulting graph consists of a single
vertex. The load of e∗ is increased by one (step 13), and all resources in C∗ \ e∗ are
deleted in all graphs Gi (steps 16 and 17). Note that all remaining graphs remain
connected by the choice of C∗ as inclusion wise minimal cut. The algorithm iterates
with the remaining players in the list, and the graphs obtained by the contraction
and deletion operations described above. Note that these graph-theoretic contraction
and deletion operations correspond exactly to the matroid-theoretic contraction and
deletion operation described at the beginning of this section.

3.2 Correctness of the Algorithm

As a key Lemma, we show that the current weight of the chosen bottleneck element
monotonically decreases.

Theorem 3.1 The output (B, p) of the algorithm is a PNE.

Proof Obviously, at termination, each set Bi is a basis of matroid Mi , as otherwise,
player i would not have been dropped from N , in contradiction to the stopping criterium
N = ∅. Thus, we first need to convince ourselves that the algorithm terminates, i.e.,
constructs a basis Bi for each matroid Mi . However, this follows by the definition of
contraction and deletion in matroids:
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To see this, we denote by N (k) the current player set, and by B(k)
i and M(k)

i =
(E (k)

i ,B(k)
i ) the current independent set and matroid of player i at the beginning of

iteration k. Suppose that the algorithm now chooses e∗ in step 4 and player i∗ in step 5.
Thus, it updates B(k+1)

i∗ ← B(k)
i∗ +e∗ in step 7 and considers the base set B(k)

i∗ /e∗ of the

contracted matroid M(k)
i∗ /e∗. Note that for each B ∈ B(k)

i∗ /e∗, the set B+ e∗ is a basis

in B(k)
i∗ , and, by induction, B + B(k+1)

i∗ is a basis in the original matroid Mi∗ . Thus,

B(k+1)
i∗ is a basis in Mi∗ (and i∗ is dropped from N (k)) if and only if B(k)

i∗ /e∗ = {∅}.
Now consider any other player i �= i∗ with B(k)

i �= {∅} (and thus i ∈ N (k)). Then,

for the new base set B(k+1)
i = B(k)

i \ (C∗ \ {e∗}) we still have B(k+1)
i �= {∅}, since

otherwise C∗ \ {e∗} is a cut in matroid M(k)
i , in contradiction to the choice of C∗.

Thus, since the algorithm only terminates when N (k) = ∅ for the current iteration k,
it terminates with a basis Bi for each player i .

Note that throughout the algorithm it is guaranteed that the current payment vec-
tors p = (p1, . . . , pn) satisfy

∑
i∈N pe

i = ce(�e(B)) for each e ∈ E and the current
independent sets B = (B1, . . . , Bn). This follows, since the payments are only mod-
ified in step 14, where the marginal payment pe∗

i∗ = ce∗(�e∗(B) + 1) − ce∗(�e∗(B))

is assigned just before e∗ was selected into the set Bi∗ . Since we assumed the ce’s to
be non-decreasing, this also guarantees that each component pe

i is non-negative, and
positive only if e ∈ Bi .

It remains to show that the final output (B, p) is a PNE. Suppose, for the sake of
contradiction, that this were not true, i.e., that there exists some i ∈ N and some basis
B̂i ∈ Bi with B̂i = Bi − g + f for some g ∈ Bi \ B̂i and f ∈ B̂i \ Bi such that
pg

i > c f (l f (B+1))−c f (l f (B)). Let k be the iteration in which the algorithm selects

the element g to be paid by player i , i.e., the algorithm updates B(k+1)
i ← B(k)

i + g.

Let C∗ = C(k) be the cut for matroid M(k)
i = (E (k)

i ,B(k)
i ) chosen in this iteration.

Thus, the set E (k)
i \ C∗ contains no basis in B(k)

i , i.e., no set B ⊆ E (k)
i \ C∗ with

B + B(k)
i ∈ Bi . Note that the final set Bi contains no element from C∗ other than g,

as all elements in C∗ \ {g} are deleted from matroid M(k)
i /g. We distinguish the two

cases where f ∈ C∗, and where f �∈ C∗.
In the first case, if f ∈ C∗, then, since the algorithm chooses g of minimal current

marginal weight, we know that pg
i = cg(lg(B(k)+ 1)− cg(lg(B(k))) ≤ c f (l f (B(k)+

1)− c f (l f (B(k))). Thus, the marginal cost of f must decrease at some later point in
time, i.e., c f (l f (B + 1)) − c f (l f (B)) < c f (l f (B(k) + 1) − c f (l f (B(k))). But this
cannot happen, since f is deleted from all matroids for which the algorithm has not
found a basis up to iteration k.

However, also the latter case cannot be true: Suppose f �∈ C∗. If f ∈ E (k)
i , then

B̂i \B(k)
i ⊆ E (k)

i \C∗, but B̂i = B̂i \B(k)
i +B(k)

i ∈ Bi , in contradiction to C∗ being a cut

in M(k)
i . Thus, f must have been dropped from Ei in some iteration l prior to k by either

some deletion or contraction operation. We show that this is impossible (which finishes
the proof): A contraction operation of type M(l)

i →M(l)
i /el drops only the contracted

element el from player i’s ground set E (l)
i , after el has been added to the current set
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B(l)
i ⊆ Bi . Thus, since f �∈ Bi , f must have been dropped by the deletion operation in

iteration l. Let C(l) be the chosen cut in iteration l, and el the bottleneck element. Thus,
f ∈ C(l)− el . Now, consider again the cut C∗ = C(k) of player i which was chosen
in iteration k. Recall that the bottleneck element of C(k) in iteration k was g. Note that
there exists some cut C ′ ⊇ C(k) such that C ′ is a cut of player i in iteration l and C(k)

was obtained from C ′ by the deletion and contraction operations in between iterations
l and k. Why did the algorithm choose C(l) instead of C ′? The only possible answer is,
that the bottleneck element a of C ′ has current weight c(l)

a ≤ c(l)
el ≤ c(l)

f . On the other

hand, if f was dropped in iteration l, then c(l)
f = c f (l f (B+1))−c f (l f (B)). Thus, by

our assumption, c(l)
f < pg

i = c(k)
g . However, since the cost function cg is the marginally

non-increasing, it follows that c(k)
g ≤ c(l)

g . Summarizing, we yield c(l)
a ≤ c(l)

el ≤ c(l)
f <

c(k)
g ≤ c(l)

g , and, in particular, c(l)
el < c(k)

g , in contradiction to Lemma 3.2 below. ��
Lemma 3.2 Let ĉk denote the current weight of the bottleneck element chosen in step 4
of iteration k. Then this weight monotonically decreases, i.e., l < k implies ĉl ≥ ĉk

for all l, k ∈ N.

Proof For each iteration k let c(k)
e denote the current weight of element e, and C(k)

i

denote the current set of all cuts for player i . Note that for each cut C ∈ C(k)
i with

k > 1, there exists some C ′ ∈ C(k−1)
i such that C ⊆ C ′ and C is obtained from C ′ by

the contraction and deletion operations of iteration k−1. For the sake of contradiction,
suppose that k is the first iteration such that ĉk > ĉk−1. Let e be the bottleneck element
chosen in step 4 of iteration k − 1. Thus, the corresponding cut C(k) that was chosen
in step 3 of iteration k must be obtained from some larger cut C ′ by removing at least
one element a ∈ C ′ with c(k−1)

a ≤ ĉk−1 = c(k−1)
e , and, if equality, with a ≺ e. Since

the deletion operation of iteration k − 1 removes only elements e′ ∈ E of weight
c(k−1)

e′ ≥ c(k−1)
e , and if equality, those with e′ � e, the element a must have been

dropped from C ′ by contracting e, i.e., a = e. Since this contraction operation touches
only the matroid of the player chosen in iteration k−1, say i , it suffices to consider only
the cut sets C(k)

i and C(k−1)
i and the base sets B(k)

i and B(k−1)
i of player i in iterations k

and k−1. So far, we observed that a ∈ C ′ ∩C(k−1) where C ′ and C(k−1) are both
cuts in C(k−1)

i , and that the element a vanishes from cut C ′ by the contraction operation

M(k−1)
i →M(k−1)

i /a. Thus, C ′ −a must contain a cut in M(k−1)
i /a. However, since

C ′ is an inclusion-wise minimal cut in M(k−1)
i , the set E (k−1)

i − (C ′ − a) contains

some basis B̂ ∈ B(k−1)
i with a ∈ B̂. Thus, B := B̂ − a is a set in E (k−1)

i − (C ′ − a)

with B + a ∈ B(k−1)
i , in contradiction to C ′ − a being a cut in M(k−1)

i /a. ��

3.3 A Subroutine to Detect C∗, e∗ and i∗

In this subsection, we describe how the inclusion wise minimal cut C∗ whose bot-
tleneck element has maximum current c′-weight can be efficiently found. In a first
phase, we search for the bottleneck element e∗ by the following procedure. We order
the elements of the current ground set E = {e1, . . . , em} by non-increasing current
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c′-weights. (Note that in each iteration, only the c′-weight of the chosen bottleneck
element e∗ might change to some smaller weight. The c′-weight of the remaining
elements keeps the same.) Initially, we set C = {em} and k = m. We check iteratively,
whether E \C does not contain a basis for at least one player i . If not, i.e. if all players
have a basis in E \ C , we iterate with C ← C + ek−1 and k ← k − 1. Otherwise,
e∗ = ek is the desired bottleneck element and we proceed with phase 2:

In phase 2, we are given a set C such that E \C does not contain a basis for at least
one player i . In order to get an inclusion wise minimal cut, we simply search whether
there exists some e ∈ C \ {e∗} such that E \ (C \ {e}) does still not contain a basis for
at least some player i∗. If so, we iterate with C = C \ {e}. Otherwise, C∗ = C is the
desired cut, and i∗ the desired player.

4 Weighted Matroid Games

For proving the existence of PNE in weighted matroid games with non-increasing
marginal costs our algorithm presented before does not work anymore. We prove,
however, that there exists a PNE in matroid games with non-increasing marginal
costs even for weighted demands. To obtain our existence result, we now derive a
complete characterization of configuration profiles B ∈ B in weighted matroid games
(N , E,B, d, c) that can be obtained as a PNE. For our characterization, we need a
few definitions: For B ∈ B, e ∈ E and i ∈ Ne(B) := {i ∈ N | e ∈ Bi } let
exi (e) := { f ∈ E − e | Bi − e + f ∈ Bi } ⊆ E denote the set of all resources f
such that player i could exchange the resources e and f to obtain an alternative basis
Bi − e + f ∈ Bi . Note that exi (e) might be empty, and that, if exi (e) is empty, the
element e lies in every basis of player i (by the matroid basis exchange property). Let
F := {e ∈ E | e lies in each basis of i for some i ∈ N } denote the set of elements
that are “fixed” in the sense that they must lie in one of the players’ chosen basis.
Furthermore, we define for all e ∈ E − F and all i ∈ Ne(B) and all f ∈ exi (e)
the value �i (B; e → f ) := c f (� f (Bi + f − e, B−i )) − c f (� f (B)) which is the
marginal amount that needs to be paid in order to buy resource f if i switches from
Bi to Bi − e + f . Finally, let �e

i (B) be the minimal value among all �i (B; e→ f )

with f ∈ exi (e).

Theorem 4.1 Consider a weighted matroid resource buying game (N , E,B, d, c).
There is a payment vector p such that the strategy profile (B, p) with B ∈ B is a PNE
if and only if

ce(B) ≤
∑

i∈Ne(B)

�e
i (B) for all e ∈ E \ F. (2)

Proof We first proof the ”only if” direction. Let (B, p) be a PNE. Then, by Lemma 3.1
and the definition of a PNE, we obtain for all e ∈ E \ F :

ce(B) =
∑

i∈Ne(B)

pe
i ≤

∑

i∈Ne(B)

�e
i (B).
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Note that the �e
i (B) are well defined as we only consider elements in E \ F . Now we

prove the ”if” direction. For all e ∈ F we pick a player i with exi (e) = ∅ and let her
pay the entire cost, i.e., pe

i = ce(B). For all e ∈ E \ F and i ∈ Ne(B), we define

pe
i =

�e
i (B)

∑
j∈Ne(B) �e

j (B)
· ce(B),

if the denominator is positive, and pe
i = 0, otherwise. Using (2), we obtain

pe
i ≤ �e

i (B)for alle ∈ E \ F

proving that (B, p) is a PNE. ��

Note that the above characterization holds for arbitrary non-negative and non-
decreasing cost functions. In particular, if property (2) were true, it follows from
the constructive proof that the payment vector p can be efficiently computed. The
following Theorem 4.2 states that matroid games with non-increasing marginal costs
and weighted demands always possess a PNE. We prove Theorem 4.2 by showing that
any socially optimal configuration B ∈ B satisfies (2).

Theorem 4.2 Every weighted matroid resource buying game with marginally non-
increasing cost functions possesses a PNE.

Proof We prove that any socially optimal configuration profile B ∈ B satisfies (2)
and, thus, by Theorem 4.1 there exists a payment vector p such that (B, p) is a PNE.
Assume by contradiction that B does not satisfy (2). Hence, there is an e ∈ E \ F with

ce(B) >
∑

i∈Ne(B)

�e
i (B). (3)

By relabeling indices we may write Ne(B) = {1, . . . k} for some 1 ≤ k ≤ n, and
define for every i ∈ Ne(B) the tuple (B̂i , fi ) ∈ Bi × (Ei − e) as the one minimizing
�i (B; e→ f ) among all tuples (B ′i , f ) ∈ Bi × (Ei − e) with B ′i = Bi + f − e ∈ Bi .

Note that (B̂i , fi ) is well defined as e ∈ E \ F . We now iteratively change the current
basis of every player in Ne(B) in the order of their indices to the alternative basis
B̂i , i = 1, . . . k. This gives a sequence of profiles (B0, B1, . . . Bk) with B0 = B
and Bi = (B̂i , Bi−1

−i ) for i = 1, . . . k. For the cost increase of the new elements
fi , i ∈ Ne(B), we obtain the key inequality c fi (� fi (Bi−1))− c fi (� fi (Bi )) ≤ �e

i (B).
This inequality holds because cost functions are marginally non-increasing, that is, the
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marginal costs only decrease with higher load. Plugging everything together, yields

c(B)− c(Bk) =
k∑

i=1

(
c(Bi−1)− c(Bi )

)

=
k∑

i=1

(
ce(�e(Bi−1))+ c fi (� fi (Bi−1))− ce(�e(Bi ))− c fi

(
Bi )

)

= ce(�e(B))− ce(�e(Bk))+
k∑

i=1

(c fi (� fi (Bi−1))− c fi (Bi ))

≥ ce(�e(B))−
k∑

i=1

�e
i (B) > 0,

where the first inequality uses ce(�e(Bk)) = ce(0) = 0 (note that e ∈ E \ F) and the
assumption that cost functions have non-increasing marginal costs. The second strict
inequality follows from (3). Altogether, we obtain a contradiction to the optimality of
B. ��

Note that the above existence result does not imply an efficient algorithm for com-
puting a PNE: By a reduction from Hitting Set it is straightforward to show that
computing a socially optimal configuration profile is NP-hard even for unit demands
and singleton strategies.

5 Non-Matroid Strategy Spaces

In the previous section, we proved that for weighted matroid congestion games with
non-negative, non-decreasing, marginally non-increasing cost functions, there always
exists a PNE. In this section, we show that the matroid property of the configuration
sets is also the maximal property needed to guarantee the existence of a PNE for all
weighted resource buying games with marginally non-increasing costs (assuming that
there is no a priori combinatorial structure how the strategy spaces are interweaved).
This result and its proof is related to one of Ackermann et al. in [2] for the classical
weighted matroid congestion games with average cost sharing and marginally non-
decreasing cost functions. Recall that S ⊆ 2E is an anti-chain (with respect to (2E ,⊆))
if for every X ∈ S, no proper superset Y ⊃ X belongs to S. Also note that it suffices to
consider configuration sets Si that form an anti-chain, as (due to the non-negative cost
functions) player i would never have an incentive to switch her strategy to a superset
of her chosen one.

We call S a non-matroid set system if the tuple (E, {X ⊆ S : S ∈ S}) is not a
matroid. The following Lemma can also be derived from the proof of Lemma 16 in
[2].

Lemma 5.1 If S ⊆ 2E is a non-matroid anti-chain, then there exist X, Y ∈ S and
{a, b, c} ⊆ X ∪ Y such that each set Z ∈ S with Z ⊆ (X ∪ Y ) \ {a} contains both, b
and c.
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Proof Recall the basis exchange property for matroids: an anti-chain B ⊆ 2E is the
family of bases of some matroid if and only if for any X, Y ∈ B and x ∈ X \ Y there
exists some y ∈ Y \ X such that X − x + y ∈ B. Thus, if the anti-chain S ⊆ 2E is a
non-matroid, there must exist X, Y ∈ S and x ∈ X \ Y such that for all y ∈ Y \ X the
set X − x + y does not belong to S. We choose such X, Y and x ∈ X \Y with |Y \ X |
minimal (among all Y ′ ∈ S with X − x + y′ �∈ S for all y′ ∈ Y ′ \ X ). We distinguish
the two cases |Y \ X | = 1 and |Y \ X | > 1: In case |Y \ X | = 1, set {a} = Y \ X and
choose any two distinct elements {b, c} ∈ X \ Y . Note that |X \ Y | ≥ 2 as otherwise,
if X \ Y = {x}, then Y = X − x + a, in contradiction to our assumption. Now, for
any set Z ⊆ (X ∪ Y ) − a with Z ∈ S, the anti-chain property implies Z = X , and
therefore {b, c} ⊆ Z , as desired.

In the latter case |Y \ X | > 1, we choose any two distinct elements {b, c} ∈ Y \ X
and set a = x . Consider any Z ∈ S with Z ⊆ (X ∪ Y ) − a and suppose, for the
sake of contradiction, that {b, c} �⊆ Z . Since Z \ X ⊆ Y \ X , there cannot exist some
z ∈ Z \ X with X − a + z ∈ S. However, |Z \ X | < |Y \ X | in contradiction to our
choice of Y . ��
Theorem 5.1 For every non-matroid anti-chain S on a set of resources E, there exists
a weighted two-player resource buying game G = (Ẽ, (S1 × S2) × P, π) having
marginally non-increasing cost functions, whose strategy spaces S1 and S2 are both
isomorphic to S, so that G does not possess a PNE.

Proof Let S1 ⊆ 2E1 and S2 ⊆ 2E2 be the two strategy spaces for player one and player
two, respectively, both isomorphic to our given non-matroid anti-chain S ⊆ 2E . In the
following, we describe the game G by defining the demands and costs and describing
how the resources and strategy spaces interweave: For each player i = 1, 2, choose
Xi , Yi ∈ Si and {ai , bi , ci } ⊆ Ei as described in Lemma 5.1. In our game G, the
two players have only three resources in common, i.e., {x, y, z} = E1 ∩ E2. We set
x := a1 = b2, y := a2 = b1 and z := c1 = c2. All other resources in Ei \ {x, y, z}
are exclusively used by player i for i = 1, 2. We define the (load-dependent) costs
ce(t) , t ∈ R+ for the resources e ∈ Ẽ = E1 ∪ E2 as follows: all elements in
(X1 ∪ X2 ∪Y1 ∪Y2) \ {x, y, z} have a cost of zero, and all elements in E1 \ (X1 ∪ Y1)

and in E2 \ (X2 ∪ Y2) have some very large cost M . The costs on {x, y, z} are defined
as cx (t) = t, cy(t) = 5 1

2 and cz(t) = 4. Note that each of these cost functions is
non-negative, non-decreasing and marginally non-increasing .

Now, suppose that (Z∗, p∗) with Z∗ = (Z∗1 , Z∗2) ∈ S1 × S2 and p∗ = (p∗1, p∗2) ∈
R

E1+ × R
E2+ were a PNE for the game as described above with demands d1 = 5

and d2 = 4. Choosing M large enough ensures that Z∗i ⊆ Xi ∪ Yi for each player
i ∈ {1, 2}. Moreover, by the choice of Xi and Yi in the proof of Lemma 5.1, there exist
S1, T1 ∈ S1 with x ∈ S1, {y, z} ∩ S1 = ∅ and x �∈ T1 ⊇ {y, z}, as well as S2, T2 ∈ S2
with y ∈ S2, {x, z} ∩ S2 = ∅ and y �∈ T2 ⊇ {x, z}. By Lemma 5.1, it follows from
Z∗i ⊆ Xi ∪ Yi that

x �∈ Z∗1 �⇒ {y, z} ⊆ Z∗1 and y �∈ Z∗2 �⇒ {x, z} ⊆ Z∗2 . (4)

We now show that neither x ∈ Z∗1 , nor x �∈ Z∗1 can be true. This would be the desired
contradiction to our assumption that the game possesses a PNE.
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For each player i ∈ {1, 2}, and each configuration Si ∈ Si , let c∗i (Si ) denote
the price that player i would have to pay so that the resources in Si are bought,
given that the other player j ∈ {1, 2} \ {i} sticks to her strategy (Z∗j , p∗j ).
Consider the case x �∈ Z∗1 : By (4), it follows that {y, z} ⊆ Z∗1 . Thus, since
Z∗1 ⊆ X1 ∪ Y1, the only resources in Z∗1 of non-zero cost are y and z, i.e.,
p∗1(Z∗1) = p∗1(y) + p∗1(z) ≤ c∗1(S1) = d1 = 5. Note that y �∈ Z∗2 is not possi-
ble, as otherwise player 1 would need to pay c∗1(y) = 5 1

2 to buy resource y which is
more than the price of d1 = 5 needed to buy S1. Thus, y ∈ Z∗2 must be true. It fol-
lows that p∗2(z) = 0, as otherwise p∗2(Z∗2) ≥ p∗2(y) + p∗2(z) > p∗2(y) = c∗2(S2).
Thus, since z ∈ Z∗1 , player 1 has to pay p∗2(z) = 4 in order to buy resource
z. Since p∗1(Z∗1) ≤ c∗1(S1) = 5, it follows that p∗1(y) ≤ 1, and therefore, since
y ∈ Z∗2 , p∗2(y) ≥ 4 1

2 . However, in this case player 2 could use resource z for
free and therefore switch to strategy T2 for which she would only need to pay
the price for resource x which is d2 = 4. So, x �∈ Z∗1 is not possible in a
PNE.

It remains to consider case x ∈ Z∗1 : Then p∗1(Z∗1) = p∗1(x) + p∗1(y) + p∗1(z) ≥
p∗1(x) = c∗1(S1) implies p∗1(y) = p∗1(z) = 0. Thus, we obtain p∗1(x) ≥ 5 since, oth-
erwise, p∗2(x) > 4 implying p∗2(Z∗2) ≥ p∗2(x)+ p∗2(z) ≥ 8. This is, however, strictly
greater than 5 1

2 which player 2 would have to pay by switching to T2 and only paying
for y.

Therefore y �∈ Z∗2 , since otherwise, p∗2(y) = 5 1
2 , so that player 1 could use resource

y for free and therefore switch to strategy T1 ∈ S1 of cost 4 = cz . However, if
y �∈ Z∗2 , then {x, z} ⊆ Z∗2 by Eq. (4). Hence, p∗2(z) = 4 (since p∗1(z) = 0). It
follows that p∗2(x) ≤ 1 1

2 , since otherwise, player 2 would switch to strategy S2 ∈ S2

and pay only the price of 5 1
2 for resource y. Thus, p∗1(x) ≥ 7 1

2 which is strictly
greater than the price of 5 1

2 which player 1 would need to pay if she switches to
strategy T1. Hence, also x ∈ Z∗1 is not possible in a PNE, which finishes the proof.

��

6 Non-Decreasing Marginal Cost Functions

In this section, we consider non-decreasing marginal cost functions on weighted
resource buying games in general, i.e., S = ×i∈N Si is not necessarily the cartesian
product of matroid base sets anymore. We prove that for every socially optimal state
S∗ in a congestion model with non-decreasing marginal costs, we can define marginal
cost payments p∗ that result in a PNE. Formally, for a given socially optimal configu-
ration profile S∗ ∈ S and a fixed order σ = 1, . . . , n of the players, we let Ne(S∗) :=
{i ∈ N | e ∈ S∗i } denote the players using e in S∗, N j

e (S∗) := {i ∈ Ne(S∗) | i ≤σ j}
denote the players in Ne(S∗) prior or equal to j in σ , and �

≤ j
e (S∗) = ∑

i∈N j
e (S∗) di

denote the load of these players on e in S∗. Given these definitions, we allocate the cost
ce(�e(S∗)) for each resource e ∈ E among the players in Ne(S∗) by setting pe

i = 0 if

e �∈ S∗i and pi
e = ce(�

≤ j
e (S∗))− ce(�

≤ j−1
e (S∗)) if player i is the j-th player in Ne(S∗)

w.r.t. σ . Let us call this payment vector marginal cost pricing.
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Theorem 6.1 Let G be a weighted resource buying game with non-decreasing mar-
ginal costs and let S∗ be a socially optimal solution. Then, marginal cost pricing
induces a PNE.

Proof Let p = (p1, . . . , pn) be the payment vector obtained by marginal cost pricing.
Suppose there is a player that unilaterally improves by deviating to some (S′i , p′i ).
Thus, S′ = (S∗1 , . . . , S∗i−1, S′i , S∗i+1, . . . , Sn), and p′i differs from pi only on elements
in S′i�S∗i = S′i \ S∗i ∪ S∗i \ S′i , while p′j = p j for all other players i �= j ∈ N . For the
payoff difference, we therefore calculate that

πi (S′, p′)− πi (S∗, p) =
∑

r∈S′i\S∗i

(
cr (�r (S∗)+ di )− cr (�r (S∗))

)
−

∑

r∈S∗i \S′i
pr

i < 0.

Because costs are marginally non-decreasing, we obtain pr
i ≤ cr (�r (S∗)) −

cr (�r (S∗)− di ) for all r ∈ S∗i . Using this inequality we obtain

c(S′)− c(S∗) =
∑

r∈S′i\S∗i

(
cr (�r (S∗)+ di )− cr (�r (S∗))

)

−
∑

r∈S∗i \S′i

(
cr (�r (S∗))− cr (�r (S∗)− di )

)

≤
∑

r∈S′i\S∗i

(
cr (�r (S∗)+ di )− cr (�r (S∗))

)
−

∑

r∈S∗i \S′i
pr

i < 0,

a contradiction to S∗ being optimal. ��
We now show that there is a simple polynomial time algorithm computing a PNE

whenever we are able to efficiently compute a best-response. By simply inserting
the players one after the other using their current best-response with respect to the
previously inserted players, we obtain a PNE. It follows that for (multi-commodity)
network games we can compute a PNE in polynomial time.

Theorem 6.2 For multi-commodity network games with non-decreasing marginal
costs, there is a polynomial time algorithm computing a PNE.

The proof is straight-forward: Because payments of previously inserted players do
not change in later iterations and marginal cost functions are non-decreasing, the costs
of alternative strategies only increase as more players are inserted. Thus, the resulting
strategy profile is a PNE.

7 The Price of Anarchy

Our results of the previous sections imply that the price of stability is always one
for both, games with non-decreasing marginal costs and games with non-increasing
marginal costs and matroid structure. Regarding the price of anarchy, even on games
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with matroid structure, it makes a difference whether cost functions are marginally
non-increasing or marginally non-decreasing. For general resource buying games
with unweighted players and non-increasing marginal costs a result by Hoefer [15]
shows that the price of anarchy is exactly n. We show below that such a result is
impossible if weighted players are allowed. For resource buying games with non-
decreasing marginal costs and asymmetric configuration spaces the price of anarchy
is unbounded even for unweighted two-player games and singleton strategies. In con-
trast, for symmetric configuration spaces with singleton configurations, the price of
anarchy is n while for uniform rank two matroids the price of anarchy is unbounded
even for unweighted three-player games. For graphical matroids, the price of anarchy
is unbounded even for two-player games.

Proposition 1 For resource buying games with non-increasing marginal costs and
weighted players, the price of anarchy is unbounded even for two-player games and
singleton strategies.

Proof Consider a resource buying game with 2 players and E = {e1, e2} resources.
Player 1 has a demand d1 = 1 and player 2 has a demand d2 = M . Player 1 has a
single configuration {e1} while player 2 has the two configurations {e1} and {e2}. The
cost functions are given by ce1(�) = � for all � ≥ 0. For e2 we have ce2(�) = 0 for
all � ≥ 0. Clearly, a PNE is obtained if both players choose {e1} and player 1 pays
the total cost M + 1. As player 1 has no alternative and player 2 pays 0, this profile
constitutes a PNE with cost M + 1 while an optimal profile has cost 1. ��

We now turn to resource buying games with non-decreasing marginal costs.

Proposition 2 For resource buying games with non-decreasing marginal costs, the
price of anarchy is unbounded, even for unweighted games with only two players and
singleton configurations.

Proof We have two players N = {1, 2} and two resources E = {e1, e2}. Player 1 has
a single configuration {e1} while player 2 has the two configurations {e1} and {e2}.
The cost functions are given by ce1(�) = 0, if � ≤ 1 and M > 1, else. For e2 we
have ce2(�) = 0 for all � ≥ 0. A trivial Nash equilibrium is obtained by placing both
players on e1, and letting player 1 pay the total cost M . As player 1 has no alternative
and player 2 pays 0, this profile constitutes a PNE with cost M > 0 while an optimal
profile has cost 0. ��

The previous result shows that we need more assumptions on the strategy space
to obtain meaningful bounds. In the following, we consider symmetric singleton con-
figurations corresponding to bases of the uniform matroid of rank one. We assume
arbitrary non-decreasing costs.

Proposition 3 For symmetric singleton configurations (uniform matroid games of
rank one) with unweighted players and non-decreasing costs, the price of anarchy
is bounded by n. For symmetric unweighted uniform matroid games of rank two, the
price of anarchy is unbounded even for games with only three players.
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Fig. 2 Construction for the lower bound in Proposition 4

Proof We first prove the upper bound of n. Let B be a collection of bases that forms a
PNE and denote by B∗ an optimal collection of bases. As players are unweighted one
can interpret the profile B∗ as placing n balls into |E | different bins. If B �= B∗, by the
pigeon hole principle, there exists an element e ∈ E with �e(B) < �e(B∗). Hence, by
symmetry of the configurations, it follows that πi (B) ≤ ce(�e(B)+1)− ce(�e(B)) ≤
ce(�e(B∗)). Summing this inequality over all players proves the first statement. For the
second statement, consider a game with three elements e1, e2, e3. The cost functions
are all identical and given by c(�) = 0, if � ≤ 2 and 1, otherwise. Clearly, an optimal
configuration is given by B∗1 = {e1, e2}, B∗2 = {e1, e3}, and B∗3 = {e2, e3} with a
cost of 0. On the other hand, the configuration B1 = {e1, e2}, B2 = {e1, e2}, and
B3 = {e2, e3}, where player 1 and 2 pay zero and player 3 pays 1 constitutes a PNE.

��
Note that the above positive result trivially generalizes to partition matroids, where

for every partition a single element needs to be chosen.

Proposition 4 For symmetric graphical matroid games with non-decreasing marginal
costs, the price of anarchy is unbounded even for unweighted games with only two
players.

Proof Consider the instance given in Fig. 2, where every player needs to have a
spanning tree of G available. Clearly, the cost of the optimal configuration (B∗1 , B∗2 ) is
0. On the other hand, the configuration (B1, B2), where player 1 pays zero and player
2 pays M for the jointly used edge on the upper left of the graph constitutes a PNE.

8 Conclusions and Open Questions

We presented a series of results on the existence and computational complexity of
pure Nash equilibria in resource buying games. There are several open problems that
are left open:

• Convergence of best-response dynamics has not been addressed so far and deserves
further research.
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• Our characterization of PNE for weighted resource buying games and matroid
configurations may perhaps be useful to relate the complexity of computing a PNE
with the complexity classes PLS or PPAD.
• Is it possible to compute approximate equilibria for resource buying games with

configuration spaces beyond bases of matroids, e.g., by using similar techniques as
in Caragiannis et al. [8]?
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