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Abstract

This paper deals with a new pricing approach in util-
ity fair networks, where the user’s application is associ-
ated with a utility function. We allow users to have concave
as well as non-concave utility functions. Bandwidth is al-
located such that utility values of applications are shared
fairly. In this work, we derive a fairness measure for util-
ity functions that takes their specific shape into account.
Based on this fairness measure, we present a simple pric-
ing mechanism: the user announces his utility function and
the network charges in accordance with the fairness mea-
sure. Then, we apply our pricing mechanism to a content
provider’s network. In our model, customers want to scale
their utilities to achieve their goals (e.g. file download, mul-
timedia streaming) in a cost optimal way. In this regard,
we formulate a download problem with predefined dead-
line as an optimal control problem and account for dynamic
changes of the state of congestion by using (online) model
predictive control techniques. Finally, we develop online
control strategies and implement them in a User Agent (UA)
that automatically scales the utilities.

1. Introduction

In the last years, congestion control of communication
networks has been interpreted as a distributed algorithm at
sources and links in order to solve a global optimization
problem [6, 9–11]. Each user is associated with an increas-
ing, strictly concave bandwidth utility function represent-
ing elastic traffic. The congestion control algorithms aim at
maximizing aggregate utility subject to capacity constraints
on the links. The solution to this problem is derived by de-
composing the overall problem into subproblems that can
be solved by links and sources using only local informa-
tion. The links communicate a price based on usage mea-
surements; the source collects the aggregate price on its path
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and adapts its sending rate in order to maximize its surplus.
Even though considerable progress has been made in this
direction, the existing work focuses only on elastic traf-
fic, such as file transfer (FTP, HTTP) or electronic mail
(SMTP). As shown in [15], some applications, especially
real-time applications, have non-concave bandwidth utility
functions. Several works [2, 7, 14] argue that it is an appli-
cation performance measure, i.e. the utility that should be
shared fairly among users. To achieve this, we have con-
structed in [4] a special class of concave functions, i.e. sec-
ond order utility functions and derived a utility fair operat-
ing point as the solution of an associated optimization prob-
lem. The objective is to maximize aggregate second order
utility subject to capacity constraints at the links.
In general, the resulting bandwidth allocation of a utility fair
operating point strongly depends on the bandwidth utility
functions that are used. In the existing literature on util-
ity fair networks, e.g. [2, 7, 14], a proper fairness metric
for utility functions is missing. In this paper, we address
this issue by defining a fairness metric for bandwidth utility
functions. Based on this metric, we associate priority costs
with bandwidth utility functions and derive a new pricing
framework for the interaction between the network and the
users. The users announce their utility function to the net-
work and are in turn charged priority costs depending on
the fairness index of their utility function. Then, we ap-
ply our pricing mechanism to a content provider’s network.
A network operator offers services such as video stream-
ing, web browsing, or file download to customers in their
network. Customers want to cost optimally scale their util-
ities to achieve their goals (e.g. file download, multimedia
streaming). We formulate the download problem as an op-
timal control problem and account for dynamic changes of
the state of congestion by using (online) model predictive
control techniques. Using Pontrjagin’s Minimum Principle,
we develop online control strategies and implement them
in a User Agent (UA) that automatically scales the utilities.
Based on different prediction approaches, we compare the
resulting control strategies with respect to cost efficiency by
ns-2 simulations.
The rest of the paper is organized as follows. After re-
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viewing the related work, and giving some background in
2, we introduce the new fairness metric for utility functions
in 3. Based on this metric, we outline the proposed pricing
scheme and apply the scheme to a content provider’s net-
work. Using a file-download problem in a given time inter-
val, we demonstrate the functionality of the UA in Section
4. We also give a brief introduction to the main principles
of model predictive optimal control theory. In Section 5, we
show simulation results that allows us to compare different
control strategies in terms of cost efficiency.

2. Background and Related Work

We model a packet switched network by a set of nodes
(routers) connected by a set L of unidirectional links (out-
put ports) with finite capacities c = (cl, l ∈ L). The set
of links is shared by a set S of sources indexed by s. A
source s represents an end-to-end connection and its route
involves a subset L(s) ⊂ L of links. Equivalently, each link
is used by a subset S(l) ⊂ S of sources. A transmission rate
xs(t) ∈ Xs = [xmin

s , xmax
s ] in packets per second is associ-

ated with each source s. A rate vector x(t) = (xs(t), s ∈ S)
is said to be feasible if it satisfies the conditions: xs(t) ∈
Xs ∀s ∈ S and

∑
s∈S(l) xs(t) ≤ cl ∀l ∈ L. With each link

l, a scalar positive congestion-measure pl(t), called price, is
associated. Let yl(t) =

∑
s∈S(l) xs(t−τf

ls) be the aggregate
transmission rate of link l, i.e. the sum of all rates using that
link in which the forward delays τf

ls between sources and
links are accounted for. Let qs(t) =

∑
l∈L(s) pl(t − τ b

ls) be
the end-to-end congestion measure of source s, where again
τ b
ls are the backward delays from links to sources. The total

RTT is given by τs = τf
ls + τ b

ls. If the transmission rate
of user s is xs, user s receives a benefit measured by the
bandwidth utility Us(xs).

2.1. Elastic Traffic

The existing work on congestion control algorithms us-
ing the utility framework is focused on elastic traffic such
as TCP. Congestion control mechanisms are regarded as a
distributed algorithm carried out by sources and links in or-
der to solve a global optimization problem [6, 9–11]. The
objective is to maximize aggregate source utility over trans-
mission rates subject to capacity constraints:

max
xs∈Xs

∑
s∈S

Us(xs) s.t.
∑

s∈S(l)

xs ≤ cl, l ∈ L (1)

Source rates can be interpreted as primal variables, con-
gestion measures as dual variables. Using the dual ap-
proach [10], a gradient projection method to generate op-
timal prices is applied to the dual objective function:

ṗl =

{
1
cl

(yl − cl) if pl > 0
1
cl

[yl − cl]
+ if pl = 0.

(2)

In [12], it is shown that if the utility functions are strictly
concave, (2) combined with the dynamic source law

τsξ̇s = βs

(
U

′

s(xs) − qs

)
xs = xmax

s e(ξs−
αsqs
Msτs

)

converges to the unique optimal solution x∗
s = U

′−1
s (q∗s )

starting from any initial condition (Ms is an upper bound
on the number of bottlenecks, αs and βs are positive param-
eters). Furthermore, this approach has the appealing prop-
erty that the equilibrium is locally stable within given delay
bounds [13].
Following [11], we can associate a class of concave utility
functions with corresponding bandwidth fairness-criteria as
follows:

Us(xs, ηs) =

{
−ws

x1−ηs

1−ηs
, ηs > 0, ηs �= 1,

ws log(xs), ηs = 1.
(3)

Then, in the case ηs = 1, we have proportional fairness
[6]. In the case ηs = 2, we have minimum potential delay
fairness, and for ηs → ∞, we have max-min fairness.

2.2. Utility Fairness

Another line of research focuses on utility fairness rather
than bit-rate fairness [2, 4, 7, 14]. An equilibrium point
should result in roughly equal utility values for different ap-
plications. To motivate this paradigm, let us consider a sin-
gle link of capacity c shared by two users. One user trans-
fers data according to an elastic application with strictly in-
creasing, and concave bandwidth utility U1(·). The other
user transfers real-time video data with a non-concave band-
width utility function U2(·) (steps represent encoding lay-
ers). Figure 1 shows, how different bandwidth allocations
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Figure 1: Utility functions with U1(x1) < U2(x2), x ∈ X

affect the received utility. If bandwidth is shared equally,
what is referred to as max-min bandwidth allocation in this
example, user 1 receives a much larger utility than user
2. Conversely, user 2 would not be satisfied since he re-
ceives a utility value zero (e.g. minimum encoding rate is
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not achieved). If we want to share utility equally instead
of bandwidth, we would like to have a resource allocation,
where the received utilities are equal or utility max-min fair,
i.e. U1(x1) = U2(x2) = u∗. Using this fairness approach,
it is possible to include real-time applications with associ-
ated non-concave utility functions into a unified resource al-
location framework. In [14], only mild assumptions on the
feasible utility functions are required (non-decreasing, not
necessarily continuous, min. bandwidth exists for a given
utility value). The drawbacks of this approach are that the
links have to maintain per-flow states in order to allocate
bandwidth utility fair, and that there are no stability results
given in the presence of communication delay.
In [4], we adopt a middle course by transforming non-
concave bandwidth utility functions into strictly concave
second order utility functions:

Fs(xs) =

∫
f−1

s (Us(xs))dxs, (4)

where fs(qs) is a strictly decreasing function. Analogous
to (1), we interpret an equilibrium as the solution of the
optimization problem:

max
xs∈Xs

∑
s∈S

Fs(xs) s.t.
∑

s∈S(l)

xs ≤ cl, l ∈ L

In equilibrium, the following equation Us(x
∗
s) = fs(q

∗
s )

holds. The value fs(qs) can be interpreted as the available
utility the network can offer to source s. This approach en-
ables us to use scalable, decentralized, and stable conges-
tion control algorithms in the line of [9, 10, 13]. Yet, we
relax the concavity assumption on the bandwidth utilities,
and achieve utility fairness in equilibrium [4]. If not stated
otherwise, we set in the following fs(qs) := 1/qs. For a de-
tailed discussion about different choices of fs(qs) and cor-
responding fairness criteria we refer to [4].
We assume throughout the paper associated bandwidth util-
ity functions for various applications, such as VoIP, video-
streaming, file download or web browsing are available. As
shown in [8], it is possible to generate bandwidth utility
functions for various application types online. Thus, this
assumption is by all means realistic.

2.3. Our Contribution

After we have outlined the different fairness notions of
utility based networks, we want to point out some open is-
sues. Fig. 1 shows that the actual bandwidth share of a user
depends on the chosen utility function.
In recent works on utility fair networks, e.g. [2, 7, 14], a
pricing mechanism that reflects the choice of utility func-
tions is missing. In this paper, we tackle this issue by pro-
viding a regulating mechanism that takes the choice of util-
ity functions into account. We define a fairness measure

for utility functions that allows us to compare different util-
ity functions based on the induced fairness metric. Using
this metric, we outline a pricing mechanism that connects
the specific course of bandwidth utility functions with pri-
ority costs. Unlike the proportional fair pricing framework
of Kelly [6], in our pricing model users pay for utility func-
tions rather than bandwdith. We believe, this is more appro-
priate to respect the inelastic behavior of real-time applica-
tions and serves as a framework for both traffic classes.
On the user side, we identify several scenarios where a
strategic scaling of the utility functions is reasonable. In
this regard, we explicitly address the issue of cost-optimally
scaling the utility function in the context of a download
problem, where the user wants to download a file in a given
time interval. We model the download problem as an op-
timal control problem and analytically derive the optimal
control strategy. In order to account for dynamic changes of
the state of congestion, we further refine the optimal control
model by model predictive control techniques. The derived
control algorithms are implemented in a user agent that au-
tomatically scales the utility function. We further compare
different controller types by simulations.

3. Pricing Utility Functions

In the preceding section we have presented various fair-
ness criteria depending on the choice of utility functions. To
achieve utility fairness in equilibrium, sources react to the
path price qs =

∑
l∈L(s) pl according to

τsξ̇s = βs

(
f−1

s (Us(xs)) − qs

)
(5)

xs = max
{

xmin
s , xmax

s e(ξs−
αsqs
Msτs

)
}

.

Using (5), in equilibrium the sending rates are given as:

x∗
s = U−1

s

(
[fs(qs)]

umax
s

umin
s

)
, (6)

where [w]ba := min{max{w, a}, b}. Since fs(·) is strictly
decreasing, the slower Us(xs) is increasing the more band-
width will user s get in equilibrium. Feasible utility func-
tions are defined as:

Assumption 3.1. A bandwidth utility function Us(xs) is
feasible, if it satisfies:

(i) Us(xs) ≥ 0, U
′

s(xs) ≥ γ1 > 0, xs ∈ Xs

(ii) Us(x
min
s ) =: umin

s ≥ umin,

(iii) Us(x
max
s ) =: umax

s ≤ umax, umin, umax ∈ R
+.

Note that we do not rely on concavity.
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3.1. Fair Utilities

Traditionally, bandwidth allocation is considered fair
if flows get (approximately) equal shares of the available
bandwidth, i.e. xi ≈ xj∀i, j ∈ S. In utility fair networks,
this relation holds for utilities, i.e. Ui(xi) ≈ Uj(xj). How-
ever, since the state of congestion changes over time it is
reasonable to consider long-term bandwidth fairness in util-
ity fair networks. To assess long-term bandwidth fairness
of utility functions we say that two utility functions U1(x1)
and U2(x2) are bandwidth fair with respect to a probability
distribution of the available utility f1,2(q), if the expected
bandwidth allocations are equal, i.e. E[x1] = E[x2]. In
the following, we assume that the available utility is equally
distributed. Then, we can define the following fairness mea-
sure to compare different utility functions:

Definition 3.2. The fairness measure δs(Us, X) on the in-
terval X = [xmin, xmax] is defined as

δs(Us, X) :=
∫

X∩Xs
Us(xs) dxs+∫ xmax

min{xmax,xmax
s }

umaxdxs

(7)

Then, Us(xs) is said to be δs(Us, X)-fair in X .
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Figure 2: Fairness measure δs(Us, X)

See Figure 2 for a graphical depiction of the terms in this
definition. This measure implies a fairness metric for util-
ity functions: an application/user s′ with fairness measure
δs′(Us′ , X) < δs(Us, X) for its utility function will get on
average more bandwidth on the interval X than user s. In
the following Lemma, we formalize this relation.

Lemma 3.3. Suppose, two users s = 1, 2 use the path Lp

through the network. Their utility functions have fairness
measures δ1(U1, X), and δ2(U2, X), X = [xmin, xmax].
Assume the path price q on Lp varies in the interval
[qmin, qmax], so that the available utility fs(q), s = 1, 2 is
equally distributed on the interval [umin, umax]. Then, the
following conditions hold:

(i) If δ1(U1, X) = δ2(U2, X), the expected bandwidth
share E[xs], s = 1, 2 for users s = 1, 2 is equal; i.e.
E[x1] = E[x2].

(ii) If δ1(U1, X) ≤ δ2(U2, X), we have E[x1] ≥ E[x2].

Proof. Using (6), and the assumption that fs(qs) is equally
distributed on [umin, umax], the expected bandwidth share
for user 1 on the interval [umin, umax] is given as

E[x1] =

∫ umax

umin

[U−1
1 (τ)]

xmax
s

xmin
s

umax − umin
dτ.

Due to symmetry, we have:

E[x1] =

umax∫
umin

[U−1
1 (τ)]

xmax
s

xmin
s

umax − umin
dτ

= (xmax − xmin)(umax − umin) − δ1(U1, X)

= (xmax − xmin)(umax − umin) − δ2(U2, X)

= E[x2]

Using δ1(U1, X) ≤ δ2(U2, X), we immediately get
E[x1] ≥ E[x2].

The above Lemma allows us to give an alternative defini-
tion of traditional TCP-friendliness in the context of utility
fair networks. As shown in [9], it is possible to reverse en-
gineer the underlying utility functions of TCP. In our alter-
native definition, we consider a real-time application to be
TCP-friendly over a certain bandwidth interval, if the cor-
responding utility function has the same fairness measure
as the underlying TCP utility function. The interpretation
is different from the original TCP-friendliness paradigm
though. Due to its inelasticity, a real-time flow may not
be able to adapt the sending rate with arbitrary granularity
(e.g. layered multimedia) and behave as aggressive as TCP
would. The alternative definition rather indicates that an
application with a TCP-fair utility function will get on av-
erage (light loaded network versus heavily loaded network)
as much bandwidth as a TCP flow would.
A pricing approach connecting the utility function with
some costs must consider that different applications operate
on different bandwidth scales. A VoIP application operates
on its encoding layers (8 kbit/s, 16 kbit/s), whereas the rate
of an elastic file transfer is only bounded by the bottleneck
link of the used path. To account for this diversity, we in-
troduce a reference utility function Uref(x) on the interval
X = [0, cmax], where cmax is an upper bound of the fastest
link in the network. For each interval X ⊂ X the reference
fairness measure is defined as:

δref(Uref, X) :=

∫
X

Uref(τ)dτ.

We assume that each user is associated with a normal-
ized δref(Uref, Xs)-fair feasible application specific stan-
dard utility Us(xs) on its operating interval Xs; i.e.
δs(Us, Xs) = δref(Uref, Xs).
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3.2. Dynamic Scaling

The course of a standard utility function is designed to
reflect the specific properties of the corresponding applica-
tion (e.g. multiple step function for layered video, linear or
concave utility function for elastic traffic). In this section,
we extend this framework by giving users the freedom to
dynamically scale their standard utility. For instance, a user
running a file transfer may specify a hard deadline for the
job to be accomplished. In this context, at increasing con-
gestion a user may choose to scale down its standard utility:
maintaining the level of service required to meet the dead-
line, at the expense of higher priority costs. A user running
a video application may want to keep a high encoding rate.
Hence, an appropriate down-scaling of the standard video
utility function can be applied. This is illustrated in the Fig-
ures 3(a) and 3(b). In the following, we consider scaled
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Figure 3: Scaled Utility Functions

standard utilities, i.e. users can choose a function out of:

Ωs :=

{
1

λs

Us(xs)| 0 < ε ≤ λs ≤ 1

ε

}

The parameter ε bounds the feasible scaling space and can
be chosen arbitrarily small. The sending rate of user s
changes to:

x∗
s = U−1

s

(
[λsfs(qs)]

umax
s

umin
s

)
(8)

As defined in (7), the fairness measure of the scaled utility
function becomes

δs(Xs, λsUs) =

∫
Xs

1

λs

Us(xs)dxs =
1

λs

δref(Uref, Xs).

3.3. Priority Cost

In order to prevent users from using arbitrary utility
functions, we introduce priority costs depending on the cur-
rent fairness measure. To simplify the following pricing
scheme, we redefine the fairness measure as

δ̃s(Xs, λsUs) :=
1

δs(Xs, λsUs)
, s ∈ S

and set w.l.o.g. δref(Uref, Xs) ≡ 1. The larger δ̃s(Xs, λsUs)
is, the higher will be the average bandwidth share of user
s. We associate with every fairness measure δ̃s(Xs, λsUs)
a non-negative, increasing, and strictly convex cost function
Cs(δ̃s(Xs, λsUs)).

Assumption 3.4. The cost function Cs(·), is assumed to be
non-negative, strictly increasing and strictly convex:

(i) Cs(·) ≥ 0, C
′

s(·) ≥ 0, C
′′

s (·) ≥ γ2 > 0

(ii) for a network without price-differentiation, we set
Cs(δ̃s(Xs, λsUs)) = C(δ̃s(Xs, λsUs)) , s ∈ S.

We call this function priority cost function. The prior-
ity cost function Cs(δ̃s(Xs, λsUs)) for the scaled standard
utility becomes:

Cs(δ̃s(Xs, λsUs)) = Cs(λs/δref(Uref, Xs)) = Cs(λs)

Hence, priority costs only depend on the scaling factor λs.

3.4. Priority Pricing Scenario

We apply our pricing approach to a content provider net-
work. A network operator offers services such as video
streaming, web browsing, or file download to customers in
his network. We consider a single server from which cus-
tomers can receive data streams in real-time or just down-
load files. In our scenario, the server offers two pricing
variants: fixed prices for standard utilities and priority pric-
ing for scaled utilities. In the first variant, a fixed price is
charged depending on the type of service (e.g. streaming or
download) and requested data object (e.g. music file, block-
buster movie, etc.). By paying the fixed price, data transfer
will be controlled by a standard normalized utility function
and the download duration or streaming quality will depend
on the level of congestion in the network.
In some cases, customers might request enhanced services
for which they are willing to pay higher prices. This leads to
our dynamic pricing approach. The quality of a service (i.e.
the data transfer rate) depends on the background load im-
posed on the network by other users. This is reflected in the
path’s congestion measure qs. Customers can control and
influence their service quality by dynamically scaling their
bandwidth utility function ( 1

λs
Us(xs)). Due to (8) this has

an immediate effect on the customer’s data rate. Based on
the fairness measure for the scaled utility functions, priority
costs Cs(λs) are charged.1

1In our scenario, the priority costs are charged instead of the fixed price.
However, this approach could also be modified such that priority cost are
charged in addition to a base price.
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4. Strategic Scaling by User Agents

The previously presented pricing scenario allows the
scaling of utilities where users are in turn charged prior-
ity costs. From a user perspective, a crucial question re-
mains: what is a strategic scaling procedure? In the follow-
ing, we answer this questions in terms of cost efficiency for
a download problem with predefined deadline. We model
the download problem as an optimal control problem and
further refine this model by using Model Predictive Control
(MPC) techniques [1] that take dynamic changes of the state
of congestion into account. We present two priority con-
trollers of different complexity that try to solve the down-
load problem with minimal cost. To carry out the derived
algorithms, we propose to place an intelligent user agent
(UA) on top of the application.

4.1. File Download Problem

Consider a user who wants to download a file of fixed
size L in a given fixed time T . Clearly, users are assumed
to be rational; they want to minimize the costs for achiev-
ing their goals. In a first step, we assume a large network
scenario, i.e. the impact of the users rate xs is negligible on
the path price qs. We introduce the state variable

ls(t) =

t∫
0

xs(τ)dτ, 0 ≤ t ≤ T

describing the received amount of data at time t. Un-
der the assumption that the path-price qs lies in the inter-
val [qmin

s , qmax
s ], the user’s optimal control problem can be

stated as follows:

min
λs∈Λs

T∫
0

Cs(λs(t))dt

s.t. : l̇s = U−1
s (λsfs(qs))

ls(T ) = L, ls(0) = 0, Λs = [ε,
1

ε
].

(9)

Solving this kind of problems with the use of Pontrjagin’s
Minimum Principle, the Hamiltonian and adjoint variable
ρs have to be introduced. An introduction to optimal control
theory can be found in [5]. For optimal control problems
of the type considered here (Bolza type), the Hamiltonian
denoted by Hs may be written as

Hs := Hs(ls, λs, ρs) = Cs(λs) + ρsU
−1
s (λsfs(qs)) .

The first order necessary conditions for a control λs to be
optimal can be found by solving:

∂Hs

∂λs

= C
′

s(λs) + ρs

∂
(
U−1

s (λsfs(qs))
)

∂λs

= 0. (10)

ρ̇s =
∂Hs

∂ls
= 0 ⇒ ρs = const. (11)

Assuming the strict Legendre-Clebsch Condition2

∂2Hs

∂2λs
(t) > 0, a unique optimal control λ∗

s(ρs; qs) can
be derived. The inequality is a short formulation for Hs

to be positive definite. Since a closed form solution to
(10) is difficult to obtain, we use the fact (11) that the
adjoint function ρs is constant. Hence, the optimal control
λ∗

s(ρs; qs) = λ∗
s is also constant and can be calculated by

solving:

ls(T ) = L ⇒ λ∗
s =

Us

(
L
T

)
fs(qs)

The optimal controller is not surprising: since qs is assumed
to be constant, and the cost function is convex, it is optimal
to choose the average sending rate xs = L

T
over the control

horizon [0, T ]. This is exactly, what the control λ∗
s does. In

the following, we call this type of controller the mean rate
controller (MRC).

4.2. Model Predictive Control Approach

In a realistic network, the congestion price qs for user s
will vary with the level of usage. Unfortunately, it is un-
likely that the user has detailed information about the evo-
lution of qs on arbitrary long horizons. Nevertheless, it is
reasonable to predict the evolution of qs in a short time in-
terval. In this context, we will use model predictive control
techniques to cope with model uncertainties.
A model predictive control problem is in general formulated
as solving a finite horizon open-loop optimal control prob-
lem online subject to system dynamics and constraints on
the state and control. Based on measurements at time t, a
prediction on the future dynamic behavior of the system is
made. Using this prediction, a controller is determined such
that a predetermined performance objective, i.e. cost func-
tional, is optimized [1]. If there were no disturbances and
no model-plant mismatches (constant qs), assuming that the
optimal control has a solution, the control can be deter-
mined offline and applied in the whole (in)finite horizon in-
terval. However, this is not realistic. Due to disturbances,
the real system will not behave as the predicted system. In
order to incorporate some feedback mechanism, the open
loop optimal control will only be implemented until new
measurements of the real system are available. We assume
that new measurements are updated in fixed time intervals.
Using this new measurements, the process of predicting and
solving the open loop optimal control problem is repeated
and a new controller is applied.
The crucial assumption of problem (9) is that the congestion
level qs does not vary over time. To relax this unrealistic as-
sumption, the user can convey the evolution of qs and adapt

2This condition is fulfilled for many combinations of realistic utilities
and convex cost functions, but does not hold in general.
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Figure 4: Principle of model predictive control

its strategy at every predefined control point ti = t0 + hi,
i = 1, ..., N , where h = T

N
is a chosen step size. At

each control point ti, the information about the real system
ls(t), qs is updated and the next open loop optimal control
problem is solved. In order to distinguish between the real
system and the predicted model, we use the bar notation
for the predicted internal variables x̄s, q̄s, l̄s, λ̄s. See Fig-
ure 4 for an illustration of the prediction principle. In gen-
eral, the prediction q̄s gives accurate approximations only
locally. Hence, we restrict the optimal control problem to
the horizon [ti, ti+1], where we pose the terminal condition
ls(ti+1) = hL−ls(ti)

T−ti
: the residual file length at time ti is

dived by the residual time left and multiplied by the interval
length; this gives the average file length to be downloaded in
the interval [ti, ti+1].3 Using the constrained state variable

l̄s(t) =

t∫
ti

x̄s(τ)dτ, ti ≤ t ≤ ti+1,

we get for every time interval [ti, ti+1], i = 0, ..N − 1 the
open loop optimal control problem:

MRCi : min
λ̄s∈Λs

ti+1∫
ti

Cs(λ̄s(t))dt

s.t. : ˙̄ls = U−1
s

(
λ̄sfs(q̄s)

)
,

l̄s(ti) = 0, l̄s(ti+1) = h
L − ls(ti)

T − ti

q̄s(ti) = q̄s, Λs = [ε,
1

ε
].

(12)

Problem (12) has the same structure as (9) and can be solved
analytically. This enables us to implement the optimal con-
trol (MRC) in real-time. Simulation results for the MRC
controller are given in the last section.

3If more accurate knowledge of the evolution of qs is available, a more
efficient scheduling of the amount of data per interval that is to be down-
loaded can be designed.

4.3. Linear Predicting Control

To account for model uncertainty, we relax the assump-
tion that the congestion price qs is constant over the control
horizon. We approximate the local evolution of qs by a lin-
ear function that leads to the differential equation:

˙̄qs(t) = ζi
s, t ∈ [ti, ti+1], for some ζi

s ∈ R.

This equation is aimed to predict the behavior of qs over
the interval [ti, ti+1]. We get for every time interval
[ti, ti+1], i = 0, .., N − 1 the open loop optimal control
problem:

LPCi min
λ̄s∈Λs

ti+1∫
ti

Cs(λ̄s(t))dt (13)

s.t. : ˙̄ls = U−1
s

(
λ̄sfs(q̄s)

)
, (14)

˙̄qs = ζi
s, ζ

i
s ∈ R (15)

l̄s(ti) = 0, l̄s(ti+1) = hL−ls(ti)
T−ti

(16)

q̄s(ti) = qs(ti), Λs = [ε, 1
ε
]. (17)

Using the Minimum Principle, we solve problem instance
LPCi analytically. Let ρs, s be the adjoint variables to the
differential equations (14),(15). Then, the Hamiltonian is
given by Hs = Cs(λ̄s) + ρsU

−1
s

(
λ̄sfs(q̄s)

)
+ sζ

i
s. The

Minimum Principle gives the necessary optimality condi-
tions:

∂Hs

∂λ̄s

= C
′

s(λ̄s) + ρs

∂
(
U−1

s

(
λ̄sfs(q̄s)

))
∂λ̄s

= 0.

ρ̇s = −∂Hs

∂l̄s
= 0 ⇒ ρs = ρ̄s = const.

The boundary value problem (15),(17) can be solved in
[ti, ti+1]:

q̄s(t) = qs(ti) + (t − ti)ζ
i
s, t ∈ [ti, ti+1]. (18)

If Hs(t) is positive definite, i.e. ∂2Hs

∂2λ̄s
(t) > 0, then a unique

optimal control λ̄∗
s can be derived. We call this controller

linear predicting control (LPC).

4.4. Example

We consider a data application s with a linear bandwidth
utility function Us(xs) = ksxs, ks > 0. The transforma-
tion function is given by fs(qs) = 1

qs
, and the priority cost

function is given by Cs(λs) = 1
2λ2

s. Using (4), the second
order utility has the form

Fs(xs) =

∫
1

ksxs

dxs =
log(xs)

ks

.

The final time is T , and the file length L. The user predicts
the path price by (15). The dynamics in (14) is given by:
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˙̄ls(t) = λ̄s(t)
ksq̄s(t) . Thus, at every control point ti measure-

ments are updated and the optimal control problem (13)–
(17) must be solved. Using the Minimum Principle, we ob-
tain:

∂Hs

∂λ̄s

= λ̄s +
ρs

q̄s

= 0 ⇒ λ̄∗
s = −ρs

q̄s

The sufficient Legendre-Clebsch condition for a unique op-
timum is fulfilled: ∂2Hs

∂2λs
(t) = 1 > 0. q̄s(t) is given by (18)

and the optimal controller is then given by

λ̄∗
s(ρs) = − ρs

ks(qs(ti) + (t − ti)ζi
s)

.

Since ρs is constant, we can eliminate ρs using the terminal
constraint l̄s(ti+1) = hL−ls(ti)

T−ti
.

5. Simulations

In this section we present simulation results of the mean-
rate (MRC) and linear-predicting controllers (LPC). The
simulation setup models the content provider scenario de-
scribed earlier in Section 4 in which the provider offers
download and streaming services to the customers in his
network. In our setup, up to 60 customers perform down-
loads, one of them using either the MRC or the LPC in or-
der to download a 215MB file in 30 minutes with minimum
cost. We compare the two deadline controller variants with
respect to to a cost function. Further, we compare the con-
trollers with an optimal control strategy that has full a priori
knowledge of the congestion measure.

5.1. Scenario

We consider a single network, where the network oper-
ator is both access and content provider. In our setup there
is a single server S from which up to 60 users download
files. Figure 5 shows the network topology. Downloads of
customers start and end at random times (Figure 7(a)). The
customer that requests a deadline from the server starts the
download after 100 seconds with a deadline of 30 minutes
(1800 seconds). Depending on the type of download, the
server assigns one of three δ-fair utility functions to each
connection.4 For real-time video streaming, we define a
multi-layer bandwidth utility function Ur(x) with three dis-
crete data rates. A linear bandwidth utility function Ul(x) is
used for downloads that want to use a priority controller.Six
customers will use the real-time, another six the linear util-
ity functions, one of them using a controller. The remaining

4We assume that every sender uses the utility fair congestion control
framework, i.e. every user is collaborative. For a detailed discussion about
equilibrium properties of heterogeneous protocols (if users react to differ-
ent congestion signals, e.g. packet loss, delay, or explicit prices), we refer
to [16].

downloads are assigned a concave bandwidth utility func-
tion Ue(x). We set the packet size to 1500 bytes and mea-
sure sending rates xs and link capacities cl in packets per
second (p/s). Each link in the network provides feedback

1

2

3 R S

.

.

.

60

20Mbit/s

5Mbit/s

1..20ms

15ms

Figure 5: Simulated network topology with one server and
up to 60 users

according to the link algorithm (2), where the link capac-
ity cl is pre-configured. The load yl is measured by count-
ing the number of packet arrivals in a constant time inter-
val. The individual prices of each link on a path between
server and user are summed in a double precision floating
point header field in each packet. When a packet arrives
at the receiver, it contains the path’s congestion measure
qs =

∑
l∈L(s) pl which the receiver returns to the sender in

acknowledgment packets. Note that real-world implemen-
tations have to make a trade-off between feedback precision
(i.e. number of bits), per-packet overhead and computa-
tional complexity (floating point vs integer).

5.2. Utility Functions

We construct three δ-fair utility functions with different
shapes: (i) a concave shaped function Ue(x) for elastic traf-
fic and arbitrarily high bandwidths; (ii) a linear function
Ul(x) for limited bandwidth but better performance (com-
pared to the elastic function) in lower bandwidth regions;
and (iii) a multiple step function Ur(x) for layered video
streaming up to 1.5Mbit/s.5 We chose Ue(x) = ke

√
x and

set xmax
e to 20Mbit/s ≈ 1666p/s which is the capacity of

the fastest link in our setup. Using Ue(x) as reference, we
also define

δref(Ue, Xe) =

∫ xmax
e

0

Ue(x)dx =
2

3
kex

max
e

3
2

For the linear utility function Ul(x) = klx, we set xmax
l

to 5Mbit/s ≈ 416p/s which is the speed of the users’
access links. To achieve δref(Ue, Xl)-fairness, we chose
kl = 0.027 which satisfies the fairness criterion:

δref(Ue, Xl) ≤
∫ xmax

l

0

klxdx =
1

2
klx

max
l

2

The real-time utility function represents a layered-video
coding scheme in which a base layer at 0.5Mbit/s is the

5We violate the minimum slope assumption for feasible utilities but due
to the presence of elastic flows the possible damage to convergence, and
stability is negligible.
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minimum encoding rate supported. In addition to the
base layer, we define two enhancement layers at cr,2 =
1.0Mbit/s ≈ 84p/s, and cr,3 = 1.5Mbit/s ≈ 125p/s that
is also the maximum data rate xmax

r . Before we construct
the δref(Ue, Xr)-fair real-time utility function, we specify
the relative step-sizes for the different encoding rates. We
set

Ur(x) =




0 if 0 ≤ x < cr,1

2kr if cr,1 ≤ x < cr,2

3.5kr if cr,2 ≤ x < cr,3

∞ if cr,3 = x

The area under Ur(x) for 0 ≤ x < cr,3 is simply
δr = 2kr(cr,2 − cr,1) + 3.5kr(cr,3 − cr,2) = 225.5kr.
With δref(Ue, Xr) = 372.68, we get the coefficient kr =
δref(Ue, Xr)/δr(Ur, Xr) = 372.68/225.5 ≈ 1.66 so that
Ur(x) becomes δref(Ue, Xr)-fair. The resulting three δref-
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Figure 6: Utility functions

fair utility functions are shown in Figure 6. Alternatively,
we could have used the linear utility function as reference.
In this case, ke and kl as given would remain δ-fair when
calculated for xmax

e = xmax
l = 5Mbit/s. For the real-time

utility function, the coefficient kr = δref(x
max
r )/δr ≈ 1.66

would have become kr ≈ 0.94, which is more aggressive.

5.3. Priority Costs

The total priority cost of a download is defined as:

Total cost =

∫ T

0

1

2
λ2

s(t)dt

We performed simulations of MRC and LPC with control
intervals between 1 and 600 seconds. Table 1 shows the
used priority costs for increasing control intervals. Since
MRC is a simplification of LPC, it requires higher costs
due to larger prediction errors. As the table indicates, the
savings of LPC depend on the chosen control interval. In
our setting, the savings increase with the interval length.
With longer intervals, the long-term trends in the conges-
tion state are better captured by LPC. With shorter intervals,
MRC can follow qs more closely, so the advantage of LPC
decreases.

Cost Cost Saving with
ti+1 − ti MRC LPC LPC [%]

1 955.3 954.9 0.1
5 958.3 955.7 0.3

15 964.8 957.6 0.7
30 973.9 960.4 1.4
60 990.9 965.7 2.5

120 1021.5 977.8 4.3
180 1048.4 989.4 5.6
240 1062.1 993.0 6.5
300 1096.7 1013.3 7.6
360 1113.6 1021.7 8.3
420 1103.5 1009.9 8.5
480 1140.2 1028.9 9.8
600 1113.3 1047.9 5.8

Table 1: Costs of mean-rate and linear-predictive control

5.4. Comparison with an Optimal Control

Now, we compare the two controllers with an almost op-
timal controller that has perfect a priori knowledge of qs(t).
We approximate the evolution of q(t) by a polynomial of
4th order (Figure 7(b)). Due to the complexity of an an-
alytic solution, we solved the optimal control problem nu-
merically using an interior point method based on the solver
LOQO [3, 17].
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Figure 7: Number of active flows and observed congestion
measure (LPC with 300 seconds control interval) and ap-
proximation used for optimal control

As can be seen in Figure 8(a), the optimal controller
uses its knowledge to buy priority and download data ag-
gressively at the beginning and at the end of the download,
when congestion is low. Figure 8(b) compares the cost evo-
lution with respect to the download progress. Interestingly,
the optimal control distributes priority costs equally among
packets, as can be seen from the linear increase of cost. Fig-
ure 8(c) shows the priority allocation of each controller. It
can be seen that priority allocation of LPC in sections ap-
proximates the behavior of the optimal controller. MRC
repeatedly underestimates q in the first half and thus needs
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Figure 8: Comparison of MRC, LPC and optimal control
(300 s control interval)

higher priority in the second half. Finally, the data rates re-
sulting from MRC, LPC and the optimal control are shown
in Figure 8(d). Again, the data rate of LPC approximates the
optimal behavior, while MRC has to catch up an increasing
lag due to the under-prediction of the congestion state.

6. Conclusion

The shape of bandwidth utility functions in utility fair
networks has an immediate impact on the resulting band-
width allocation. In this work, we have provided a fairness
measure that allows on the one hand to assess the aggres-
siveness of different application and gives on the other hand
a useful tool to design utility functions.

To connect the choice of utility functions with a pric-
ing mechanism, we associated priority costs with the utility
function’s fairness measure. The customer announces its
utility function (fairness measure) and the network provider
charges priority costs accordingly. We embedded our pric-
ing mechanism in a content provider scenario and presented
a sample customer strategy, where the customer wants to
cost-optimally download a file in a given time interval. We
derived different strategies by modeling the download prob-
lem as an optimal control problem. By taking system uncer-
tainties into account, the optimal control problem becomes
an online optimization problem. We addressed this online
aspect by using model predictive control techniques. Us-
ing ns-2 simulations, we compared different control strate-
gies with an adversary optimal control that has full knowl-
edge about the system. The results of our simulation sce-
nario (prediction horizon below 600s) show, that our linear
predictive control achieves the goal while maintaining effi-

ciency loss below 26% with respect to the optimal solution.
An open problem is to evaluate the performance of our con-
troller in arbitrary scenarios, e.g. when the offered load
to the network changes rapidly. We currently work on dy-
namic redesigns of the prediction horizon depending on the
state of congestion in the network. Another issue is to ad-
dress the stability of the system, when many users dynami-
cally scale their utilities to achieve certain goals.

References

[1] E. F. Camacho and C. Bordons. Model Predictive Control.
Springer, London, 1999.

[2] Z. Cao and E. Zegura. Utility max-min: An application-
oriented bandwidth allocation scheme. In Proceedings of
IEEE INFOCOM‘99, pages 793–801, 1999.

[3] J. Czyzyk, M. Mesnier, and J. More. The neos server. IEEE
Journal on Computational Science and Engineering, 5:68–
75, 1998.

[4] T. Harks. Utility Proportional Fair Resource Allocation: An
Optimization Oriented Approach. In Proceedings of QoS
in Multiservice IP Networks, pages 61–74, Catania, Italy,
February 2005. Springer.

[5] M. Hestenes. Calculus of Variations and Optimal Control
Theory. John Wiley, New York, 1966.

[6] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate Control
in Communication Networks: Shadow Prices, Proportional
Fairness, and Stability. Journal of the Operational Research
Society, 49:237–52, 1998.

[7] R. F. Liao and T. Campbell. A utility-based approach for
quantitative adaption in wireless packet networks. Wireless
Networks, 7(5):541–557, 2001.

[8] R. R.-F. Liao, P. Bouklee, and A. Campbell. Online Gen-
eration of Bandwidth Utility Function for Digital Video. In
Proceedings of Packet Video’99, New York City, 1999.

[9] S. Low, F. Paganini, and J. C. Doyle. Internet Congestion
Control. IEEE Control Systems Magazine, 22, 2002.

[10] S. H. Low and D. E. Lapsley. Optimization Flow Control I.
IEEE/ACM Trans. on Networking, 7(6):861–874, 1999.

[11] J. Mo and J. Walrand. Fair end-to-end window-based
congestion control. IEEE/ACM Trans. on Networking,
8(5):556–567, Oktober 2000.

[12] F. Paganini. A global stability result in network flow control.
Systems and Control Letters, 46:165–172, 2002.

[13] F. Paganini, Z. Wang, J. Doyle, and S. Low. Congestion con-
trol for high performance, stability and fairness in general
networks. IEEE/ACM Trans. on Networking, 13(1):43–56,
February 2005.

[14] S. Sarkar and L. Tassiulas. Fair allocation of utilities in
multirate multicast networks: A framework for unifying di-
verse fairness objectives. IEEE Trans. on Automatic Control,
47(6):931–944, June 2002.

[15] S. Shenker. Fundamental Design Issues for the Future Inter-
net. IEEE JSAC, 13:1176–88, 1995.

[16] A. Tang, J. Wang, S. Low, and M. Chiang. Network Equi-
librium of heterogeneous congestion control protocols. In
Proceedings of IEEE Infocom, Miami, FL, March 2005.

[17] R. Vanderbei. Loqo user’s manual - version 4.05. Princeton
University, 2000.

Proceedings of the 13th IEEE International Conference on Network Protocols (ICNP’05) 
0-7695-2437-8/05 $20.00 © 2005 IEEE 


