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1. Introduction
Resource allocation problems play a key role in many
applications. Whenever a set of resources needs to be
matched to a set of demands, the goal is to find the most
profitable or least costly allocation of the resources to
the demands. Examples of such applications come from
a wide range of areas, including traffic networks (Beck-
mann et al. 1956, Knight 1924, Roughgarden 2005, Smith
1979, Wardrop 1952), telecommunication networks (Johari
and Tsitsiklis 2006, Kelly et al. 1998, Srikant 2003), and
economics (Mas-Colell et al. 1995, Moulin 2008, Novshek
1985). In most of the above applications, the allocation of
resources is determined by a finite number of independent
players, each optimizing an individual objective function.
A natural framework for analyzing such noncooperative
games are congestion games as introduced by Rosenthal
(1973). Congestion games model the interaction of a finite
set of strategic players that compete over a finite set of
resources. A pure strategy of a player consists of a subset
of resources, and the payoff of a player depends only on
the number of players choosing the same or overlapping
strategies.

An important variant of congestion games is known as
resource allocation games in which each player assigns a
nonnegative demand to each of its subsets available. The

payoff for a player is defined as the difference between the
utility associated with the sum of the demands and the costs
associated with the resources used. A prominent example
of such a game is the traffic routing game of Haurie and
Marcotte (1985), which builds upon the classical model of
Wardrop (1952): the arcs in a given network represent the
resources, the different origin-destination pairs correspond
to the players, and the subsets of resources are the paths
available in the network for each origin-destination pair.
A strategy of a player is a distribution of traffic flow over
its available paths. The latency that a player experiences
traversing an arc is given by a (nondecreasing) function of
the total flow on that arc. The cost for a player on an arc
is given by the product of the latency and the player’s flow
contribution on the arc.

Resource allocation games also play a key role in
telecommunication networks, where users want to route
packets from their source node to some sink node in the
network. In this type of application it is frequently assumed
that each user receives a nonnegative utility from transmit-
ting at a certain packet rate and that each link (resource)
determines a congestion-dependent price per unit flow that
is charged to its users; see Kelly et al. (1998) and Srikant
(2003). In Kelly et al. it is assumed that every link has
a total cost function (modeling total delay or packet loss)

1491



Harks and Miller: The Worst-Case Efficiency of Cost Sharing Methods
1492 Operations Research 59(6), pp. 1491–1503, © 2011 INFORMS

and the price per unit flow is defined by the marginal cost
function.

The above two examples can be cast in the light of
cost sharing methods: every resource incurs a cost that is
passed on to its users by charging every user a cost share.
In the terminology of the cost sharing literature, the pre-
vailing cost sharing method in transportation networks is
average cost sharing, because the cost of a resource is the
total delay, while every user pays the product of the cur-
rent latency and its flow contribution. In telecommunica-
tion networks (see Kelly et al. 1998), every user is charged
the marginal cost per unit of resource, which corresponds
to marginal cost pricing. Note that in both cases the cost
sharing method charges a single price per unit of resource.
This property is considered desirable and indispensable for
large-scale networks, because every resource needs only to
pass a one-dimensional information to its users; see also
the motivation given in Johari and Tsitsiklis (2009), Kelly
et al. (1998), and Srikant (2003).

An important question in all these areas is the degree
of suboptimality caused by selfish resource allocation.
Because this suboptimality crucially depends on the spe-
cific cost sharing method used, we first have to define the
design space of cost sharing methods. To this end, we
define the following five properties listed below, which are
defined more formally in §3.

1. Separability: The cost sharing method of a resource
is a function only of the consumption of the considered
resource.

2. Cost-covering: The cost of a resource is covered by
the cost shares collected from the users.

3. No charge for zero demand: The cost share for every
player is zero on resources not used by her.

4. Nash-inducing: The cost sharing method is a non-
negative, nondecreasing, differentiable, and convex func-
tion in the resource consumption of every player.

5. Scalability: The cost sharing method charges a single
price per unit of resource.

We briefly discuss the above five requirements. The
first assumption requires that the cost share of a resource
depends only on the vector of its consumption by the play-
ers. This implies that the cost shares of a resource are inde-
pendent of the usage of other resources and thus precludes
any coordination between different resources. While this
property seems restrictive, it is crucial for practical applica-
tions in which cost sharing methods have only local infor-
mation about their own usage (see for instance the TCP/IP
protocol design, where routers drop packets based on some
function of the number of packets in the queue; see Srikant
2003). Assumptions (2) and (3) are standard in the eco-
nomics literature and are the least controversial. The fourth
assumption gives a sufficient condition on the existence of
a pure Nash equilibrium of the induced resource allocation
game and is frequently used in the economics literature;
see Moulin (2008). The last requirement, certainly the most
restrictive one, is motivated by focusing on cost sharing

methods that are applicable in the context of large-scale
networks; see the discussion above. In the following, we
will call a cost sharing method basic if it satisfies Assump-
tions (1)–(4). We will call a cost sharing method scalable
if it satisfies Assumptions (1)–(5).

1.1. Our Results

We study the efficiency loss of Nash equilibria in the con-
text of resource allocation games with basic and scalable
cost sharing methods. Given a class of cost functions C
and a class of basic cost sharing methods Dn for n play-
ers, we develop a general lower bound on the worst-case
efficiency of Nash equilibria that depends only on C and
Dn but not on the player’s private utilities. We show that
among all basic cost sharing mechanisms, there is an opti-
mal mechanism (incremental cost sharing) that achieves full
efficiency. Because the incremental cost sharing method is
not scalable, we analyze the worst-case efficiency of two
well-known scalable cost sharing methods: marginal cost
pricing and average cost sharing. By applying our generic
lower bound to marginal cost pricing and average cost shar-
ing, we obtain the following results that are summarized
below.

Results for Marginal Cost Pricing. For differentiable,
nondecreasing, and convex marginal cost functions, we
prove a lower bound of 4/43 +

√
5 + 4n5 on the worst-

case efficiency. In particular, this bound carries over to
practically relevant M/M/1 functions that model queu-
ing delays with arc-capacities. We complement this bound
by presenting an asymptotically matching upper bound of
24n −

√
n5/4

√
n4n − 155, leaving only a gap for small n.

We completely characterize the worst-case efficiency for
polynomial cost functions with nonnegative coefficients
(previous results covered only affine marginal costs). For
symmetric games (players have equal utility functions and
equal strategy space), we present a series of results show-
ing that the worst-case efficiency of Nash equilibria signif-
icantly improves. In particular, we prove a lower bound of
2n/42n+ 15 for differentiable, nondecreasing, and convex
marginal cost functions. For polynomial cost functions with
nonnegative coefficients we prove a tight bound of 3/4.

Results for Average Cost Sharing. For differentiable,
nondecreasing, and convex cost functions, we prove a lower
bound of 1/n on the worst-case efficiency. If we further
assume that the average cost functions are convex (e.g.,
polynomials with nonnegative coefficients), we present a
tight bound of 4/4n+ 35. For symmetric games this bound
improves to 4n/4n+ 152.

1.2. Significance and Techniques Used

Our main technical contribution is a general template to
derive an upper bound on the efficiency loss of basic cost
sharing methods in resource allocation games. This gen-
erality stems from two aspects: On one hand, the restric-
tion to basic cost sharing methods requires only mild
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assumptions on the feasible design space; see also the
discussion in Moulin (2008). On the other hand, our tem-
plate works for general resource allocation games, includ-
ing the single resource case as in Moulin (2008) as well
as multi-commodity network variants considered in Johari
and Tsitsiklis (2006). We see this as a nontrivial general-
ization of previous works as, for instance, in Johari and
Tsitsiklis (2006), the network structure is explicitly used to
prove bounds on the price of anarchy (essentially through
max-flow computations).

Our proof technique is quite simple and different from
Johari and Tsitsiklis (2006) and Moulin (2008). In Johari
and Tsitsiklis (2006), the authors consider marginal cost
pricing and explicitly identify the worst possible game by
analytically solving a sequence of quadratic optimization
problems (assuming linear marginal cost functions). The
resulting optimization problem explicitly involves the coef-
ficients a and b of an affine marginal cost function c4x5=

ax + b. Hence, this approach becomes increasingly tech-
nical if this optimization problem involves, e.g., polyno-
mial cost functions of higher degree. For general convex
marginal cost functions it is not clear whether the approach
of Johari and Tsitsiklis (2006) gives an optimization prob-
lem that is structured enough to be solved.

Moulin (2008) derives lower bounds on the worst-case
efficiency (using a different measure of efficiency) of three
cost sharing methods: average cost sharing, serial cost
sharing, and incremental cost sharing. His bounds are
valid for resource allocation games with a single resource.
Clearly, this assumption simplifies the subsequent analysis.
From a technical point of view, Moulin proves an upper
bound on the efficiency loss for each of the three cost shar-
ing methods separately. Our approach gives a unified bound
on the efficiency loss for an entire class of cost sharing
methods, including those considered in Moulin (2008) and
Johari and Tsitsiklis (2006).

Key to our approach is the use of variational inequali-
ties, which allow us to relate the surplus of a Nash equi-
librium to that of an optimal profile. Because variational
inequalities do not rely on the specific combinatorial struc-
ture of the strategy spaces, this approach is applicable to
general resource allocation games, which contain games
with network structure as a special case. We note here that
variational inequalities have been used before for bound-
ing the efficiency loss of Nash equilibria; see Cominetti
et al. (2009), Correa et al. (2004), Roughgarden (2002),
and Yang et al. (2008).

1.3. Outline

The remainder of this paper is structured as follows. After
reviewing the related work in §2, we introduce in §3 the
fundamentals of a resource allocation game consisting of a
congestion model and a cost sharing method. For the class
of basic cost sharing methods, we develop in §4 a general
lower bound on the worst-case efficiency of Nash equilib-
ria that depends only on the used cost functions and cost

sharing methods but not on the player’s private utilities.
We use this general bound to show that the incremental
cost sharing method is optimal. Because the incremental
cost sharing method is basic but not scalable, we focus in
the rest of the paper on two scalable cost sharing methods:
marginal cost pricing and average cost sharing. In §5, we
apply our general lower bound to marginal cost pricing, and
we derive several lower and upper bounds on the worst-
case efficiency of Nash equilibria depending on the used
cost functions. In §6, we subsequently apply our generic
bound to average cost sharing. We conclude the paper in §7
with a brief summary of our results and a discussion of
open problems. Appendix A provides a table of notation.
All missing proofs can be found in the e-companion to this
paper. An electronic companion to this paper is available
as part of the online version that can be found at http://
or.journal.informs.org/.

2. Related Work
Network Resource Allocation Games. Kelly (1997)

and Kelly et al. (1998) studied network resource alloca-
tion games and proposed a pricing mechanism termed pro-
portionally fair pricing in which every resource charges a
price per unit resource equal to marginal cost. Despite the
simplicity and scalability of this mechanism, Kelly et al.
showed that an optimal solution can be achieved as an equi-
librium if players are price takers, that is, if they do not
anticipate the consequence of price change in response to
a change of their flow.

Johari et al. (2005) and Johari and Tsitsiklis (2004) stud-
ied network resource allocation games, where players sub-
mit a bid to each resource in the network and resources are
allocated to the players according to Kelly’s proportionally
fair allocation mechanism. For this mechanism they estab-
lished a bounded efficiency loss of the marginal pricing
scheme with fixed and elastic resource capacities. However,
the proposed mechanism is not scalable since each player
has to submit an individual bid to each resource. If, instead,
players can submit only a single bid per path, it was proved
that the efficiency can be arbitrarily low for the case of
hard capacities by Yang and Hajek (2006) and for the case
of elastic capacities by Johari (2004).

Johari and Tsitsiklis (2005, 2006) studied network re-
source allocation games with marginal cost pricing. On
the negative side, they showed that for nondifferentiable
marginal cost functions, the price of anarchy is unbounded
even for games with two players. For the special case of
linear marginal cost functions, Johari and Tsitsiklis (2006)
showed that the efficiency loss is bounded by 2/3. Remark-
ably, this result holds for an arbitrary collection of concave
utility functions and arbitrary networks. For a game with
one resource and n players having equal utility functions,
Johari and Tsitsiklis (2005) proved a bound of 2n/42n+15
for convex marginal cost functions.

Chen and Zhang (2010) recently presented a class
of pricing mechanisms for network resource allocation
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games satisfying four axioms that are considered desirable.
In particular, their mechanisms are characterized by the
axioms rescaling, additivity, positivity, and weak consis-
tency, which have been proposed by Samet and Tauman
(1982). This family of price mechanisms includes marginal
cost pricing, Aumann-Shapley pricing, and average cost
pricing. The main objective of Chen and Zhang (2010) is
to find among all mechanisms that satisfy the four axioms
an optimal mechanism, i.e., one that minimizes the induced
price of anarchy. Their main result states that for affine cost
functions, the optimal mechanism is obtained by an affine
transformation of marginal cost prices, and that marginal
cost pricing itself is nearly optimal (achieving a slightly
better efficiency guarantee (0.686) than the bound (2/3)).

Cost Sharing in Cournot Games. Cournot’s oligopoly
model clearly is one of the cornerstones of economic the-
ory; see Mas-Colell et al. (1995), Owen (1982) for an
overview of classical work in this area. Johari and Tsitsiklis
(2005) proved that Cournot oligopoly games are basi-
cally equivalent (in terms of the worst-case efficiency of
Nash equilibria) to resource allocation games with a single
resource (which are termed Cournot oligopsonies in Johari
and Tsitsiklis 2005). Moulin (2008) studied the price of
anarchy for resource allocation games on a single resource
with three different pricing mechanisms: average cost shar-
ing, incremental cost sharing, and serial cost sharing. An
important difference between our approach and that of
Moulin is the definition of the efficiency loss of a cost-
sharing method. The total surplus of a Nash equilibrium in
Moulin (2008) is defined as the sum of the player’s pay-
offs, which inevitably involve the cost shares collected. In
our model (and that of Johari and Tsitsiklis 2005, 2006),
we assume that the collected cost shares are internalized,
so that we count only the player’s utilities for using the
resources minus the actual cost of using the resources. Only
for exactly balanced cost sharing methods (such as average
cost sharing) this difference vanishes as the actual costs and
the collected cost shares coincide. In fact, it turns out that
two of our results for average cost sharing (the bound 1/n
in Theorem 6.1 and 4/43 + n5 in Theorem 6.2) coincide
with Moulins bounds.

Guo and Yang (2005) studied Cournot oligopoly models
and derived bounds on the price of anarchy for marginal
cost pricing. In a Cournot oligopoly game, there is a set
of players that each produce quantities so as to satisfy an
elastic demand. The production cost for every player is
modeled by a convex cost function, and the market price
is modeled by a decreasing function in the total supplied
quantity. The goal of every player is to maximize revenue.
Guo and Yang (2005) derived, among other results, a lower
bound of the worst-case efficiency of 4/4

√
4n+ 5 + 35 for

concave marginal price functions. Using the equivalence
result of Johari and Tsitsiklis (2005), this bound translates
to the case of resource allocations games with a single
resource, marginal cost pricing, and convex marginal cost

functions. We show in Theorem 5.1 that the same bound
holds even for general resource allocation games.
Nonatomic Network Routing. In nonatomic network

routing games, Roughgarden and Tardos (2002) showed
that the price of anarchy for network routing games with
nonatomic players and linear latency functions is 4/3. The
case of more general families of latency functions has been
studied by Roughgarden (2002) and Correa et al. 2004.
(For an overview of related results, we refer to the book by
Roughgarden 2005 and the survey by Altman et al. 2006.)
Despite these bounds for specific classes of latency func-
tions, it is known that the price of anarchy in routing games
with general latency functions is unbounded even on sim-
ple parallel-arc networks (Roughgarden and Tardos 2002).
Chau and Sim (2003) studied the price of anarchy for
nonatomic network games with elastic demands and gen-
eral cost functions. They obtain bounds for the more gen-
eral case of separable cost functions and elastic demands.
The case of asymmetric cost functions has been studied
by Perakis (2007). Yang et al. (2010) presented a detailed
study on the worst-case efficiency loss of different variants
of marginal cost pricing for the case of nonatomic users
with fixed and elastic demands, respectively.
Atomic Splittable Network Routing. In atomic split-

table network routing games there is a finite number of
players who can split the flow along available paths; see
Altman et al. (2002), Cominetti et al. (2009), Harks (2011),
Haurie and Marcotte (1985), Hayrapetyan et al. (2006),
Yang et al. (2008). Haurie and Marcotte presented a general
framework for studying atomic splittable network games
with elastic demands. Haurie and Marcotte, however, do
not study the efficiency of Nash equilibria with respect to
an optimal solution. Along similar lines as Haurie and Mar-
cotte (1985), Harker (1988) considers games with atomic
players and nonatomic players at the same time. Harker
referred to the equilibria of those games as mixed behavior
equilibria and gave a characterization of these equilibria by
means of variational inequalities.

Hayrapetyan et al. (2006) studied congestion games with
colluding players. Their goal is to investigate the price of
collusion: the factor by which the quality of Nash equilibria
can deteriorate when coalitions form. Altman et al. (2002)
and Cominetti et al. (2009) studied the atomic splittable
selfish routing model. Altman et al. bounded the price of
anarchy for monomial latency functions (plus a constant).
They also derived conditions under which a Nash equilib-
rium is unique. Uniqueness of Nash equilibria has been fur-
ther studied by Bhaskar et al. (2009), Orda et al. (1993), and
Yang and Zhang (2008). Cominetti et al. observed that the
price of anarchy of the atomic splittable game might exceed
that of the standard nonatomic selfish routing game. Based
on the work of Catoni and Pallotino (1991), they presented
an instance with affine latency functions where the price
of anarchy is 1034. For affine latencies, they presented an
upper bound of 105 on the price of anarchy. In Harks (2011),
a general upper bound on the price of anarchy is derived
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that depends on the class of latency functions. This bound
is tight, as shown in Roughgarden and Schoppmann (2011).

An important difference between our model and that of
Hayrapetyan et al. (2006) and Cominetti et al. (2009) is
that our model involves elastic demands that are varied by
players. As a result, in our model the payoff of players is
a linear combination of utility (derived from sending flow)
and associated costs.
Tolls in Network Games. A large body of work in the

area of transportation networks is concerned with conges-
tion toll pricing; see, for example, Knight (1924), Beck-
mann et al. (1956), Smith (1979), and Hearn and Ramana
(1998). This mechanism assigns tolls to certain arcs of the
network that are charged to those users that decide to take
routes through them. The toll mechanism has the desirable
property that every user is charged a single price per unit
resource.

Beckmann et al. (1956) showed that for the Wardrop
model with homogeneous users, charging the difference
between the marginal cost and the real cost in the socially
optimal solution (marginal cost pricing) leads to an equi-
librium flow that is optimal. Cole et al. (2003) considered
the case of heterogeneous users, that is, users value latency
relative to monetary cost differently. For single-commodity
networks, the authors showed the existence of tolls that
induce an optimal flow as Nash flow. Fleischer et al. (2004),
Karakostas and Kolliopoulos (2004), and Yang and Huang
(2004) proved that there are tolls inducing an optimal flow
for heterogenous users even in general networks. Swamy
(2007) and Yang and Zhang (2008) proved the existence
of optimal tolls for the atomic splittable model with fixed
demands. Note that for computing the corresponding tolls,
the works by Cole et al. (2003), Fleischer et al. (2004),
Karakostas and Kolliopoulos (2004), Swamy (2007), and
Yang and Huang (2004), and Yang and Zhang (2008) use a
mathematical programming approach that requires central
knowledge about the users, including their locations, pri-
vate utility functions, and demands. In this sense, the toll
mechanisms are not scalable because the underlying cost
sharing method is a function of these private values.

Finally, Acemoglu and Ozdaglar (2007) and Ozdaglar
(2008) study a model of parallel arc networks in which
the arcs are owned by service providers that compete for
the available traffic by setting prices. For this model they
prove a tight worst-case bound for the efficiency loss of
equilibria.

3. The Model
In this section, we introduce resource allocation games as
natural generalizations of variants of congestion games.
As the two building blocks of a resource allocation game,
we first define a congestion model and then introduce the
notion of a cost sharing method.

3.1. Congestion Model

Definition 3.1 (Congestion Model). A tuple M =

4N 1R1 8Xi9i∈N 1 8Cr9r∈R5 is called a congestion model if
N = 811 0 0 0 1 n9 is a nonempty, finite set of players; R =

811 0 0 0 1m9 is a nonempty, finite set of resources; and for
each player i ∈ N , her collection of accessible sets Xi =

8Ri11 0 0 0 1Rimi
91mi ∈�1 is a nonempty, finite set of subsets

of R. We will use the shorthand notation Mi = 811 0 0 0 1mi9.
Every resource r ∈R has a cost function Cr 2 �+ →�+.

Assumption 3.1. Cost functions Cr 2 �+ → �+, r ∈ R,
are differentiable, convex, nondecreasing functions, with
limx→� Cr4x5/x = �.

Given a congestion model M= 4N 1R1 8Xi9i∈N 1 8Cr9r∈R5,
we derive a corresponding resource allocation model
RM = 4N 1R1 8Xi9i∈N 1ê1 8Cr9r∈R5, where ê =×i∈N êi1
and êi = �mi

+ defines the strategy space for player i. A
strategy profile �i = 4�i11 0 0 0 1�imi

5 of player i can be inter-
preted as a distribution of non-negative demands over the
elements in Xi. The total demand of player i is defined
by di4�5 =

∑mi

j=1 �ij . For i ∈ N , ê−i = ê1 × · · · × êi−1 ×

êi+1 × · · · × ên denotes the strategy space of all players
except for player i. With a slight abuse of notation we will
sometimes write a strategy profile as � = 4�i1�−i5, mean-
ing that �i ∈ êi and �−i ∈ ê−i. For a given profile �, the
load generated by player i ∈N on resource r ∈R is defined
by �r

i =
∑

j∈Mi 2 r∈Rij
�ij . We denote by �r = 4�r

i 1 i ∈N5 the
load vector of resource r ∈ R. The total load on resource
r ∈ R is defined by lr4�5 =

∑n
i=1 �

r
i . We will give two

examples of a resource allocation model.

Example 3.1 (Network Resource Allocation).
A resource allocation model RM = 4N 1R1 8Xi9i∈N 1ê1
8Cr9r∈R5 is called a network resource allocation model
if the set of resources correspond to the set of arcs of a
directed or undirected graph G, every player i corresponds
to a commodity having two distinguished vertices 4si1 ti5
(si is the source and ti the terminal vertex in G, respec-
tively), and the collection of player i’s accessible sets (Xi)
is the set of corresponding 4si1 ti5-paths. Thus, a strategy
for player i corresponds to sending a nonnegative demand
along the available 4si1 ti5-paths.

Example 3.2 (Matroid Resource Allocation).
A resource allocation model RM = 4N 1R1 8Xi9i∈N 1ê1
8Cr9r∈R5 is called matroid resource allocation model if for
every i ∈ N , there is a matroid Mi = 4R1Ii5 (note that
Ii refers to an independence system in R; see Schrijver
2003 for an introduction to matroids) such that Xi equals
the set of bases of Mi. A prominent example of a matroid
resource allocation models arises if the resources form
a graph and the set of bases correspond to the set of
spanning trees in G. In this case, a strategy for player i
corresponds to sending a nonnegative demand along the
available spanning trees of G.
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3.2. Cost Sharing Methods

We define a cost sharing method as a collection of func-
tions, one for each resource that takes as input the vector
of the players’ loads on the resource and outputs a vector
of cost shares for each player. We restrict the set of feasible
cost sharing methods as defined below.

Definition 3.2. Given a resource allocation model RM=

4N 1R1 8Xi9i∈N 1ê1 8Cr9r∈R5, a cost sharing method for a
resource r ∈ R is a mapping �R2 �n

+
→ �n

+
. We define the

following conditions:
1. Cost-covering:

∑n
i=1 �

r
i

(

�r
)

¾ Cr

(

lr4�55 for all
� ∈ê;

2. Nash-inducing: �r
i 4�

r5 is nondecreasing, differen-
tiable, and convex in �r

i for all i ∈N ;
3. No charge for zero demand: �r

i 4�
r5= 0 for all � ∈

ê with �r
i = 0, for all i ∈N ;

4. Scalability: �r
i 4�

r5/�r
i = 4�r

j 4�
r55/�r

j for all i1 j ∈N ,
and all � ∈ê with �r

i 1 �
r
j > 0.

A cost sharing method is called basic if it satisfies
Assumptions 1–3, and it is called scalable if it satisfies the
Assumptions 1–4. Note that a basic cost sharing method is
automatically separable in the sense of condition (1) in §1
because every �r has only �r as argument.

We next discuss the above assumptions in detail. The
first assumption is standard in the economics literature and
the least critical: the cost of using a resource is passed to
its users. The second assumption ensures the existence of
a pure Nash equilibrium of the induced resource alloca-
tion game. Moreover, a positive charge for zero resource
consumption prevents users from participation and is thus
considered undesirable; see Moulin (2008). Assumption 4
stating that the price per unit resource consumption must
be equal for all players is perhaps the most restrictive and
controversial one. In the context of large-scale networks
(e.g., the TCP/IP protocol suite used in the Internet), this
property is considered desirable and indispensable because
every resource needs only to pass a one-dimensional infor-
mation to its users. For a detailed discussion on this subject,
we refer the reader to Johari and Tsitsiklis (2009), Kelly
et al. (1998), and Srikant (2003). We give in the follow-
ing three examples of cost sharing methods that we will
analyze throughout this paper.

Example 3.3 (Verage Cost Sharing). In average cost
sharing, the cost share for player i on resource r under
profile � is defined as �r

i 4�
r5 = �r

i ·Cr4lr4�55/lr4�5. This
cost sharing method is frequently used in the transporta-
tion literature (cf. Beckmann et al. 1956, Haurie and Mar-
cotte 1985) for modeling the experienced travel time, where
the term cr4lr4�55 2= Cr4lr4�55/lr4�5 models the load-
dependent latency function on r . Note that average cost
sharing is a scalable cost sharing method.

Proposition 3.1. The only cost sharing method that is
exactly budget balanced and fulfills Assumption 4 (single
price per unit) in Definition 3.2 is average cost sharing.

Example 3.4 (Marginal Cost Pricing). In marginal cost
pricing, the cost share for player i on resource r under
profile � is defined as �r

i 4�
r5 = �r

i · C ′
r4lr4�55. Note that

marginal cost pricing is a scalable cost sharing method.

Example 3.5 (Incremental Cost Sharing). In incremen-
tal cost sharing, the cost share for player i on resource
r under profile � is defined as �r

i 4�
r5 = Cr4lr4�55 −

Cr4lr401�−i55. One can easily show that incremental cost
sharing is not scalable.

Remark 3.1. While the incremental cost sharing method
is not scalable, it still satisfies the symmetry condition:
�r
i 4�

r5 = �r
j 4�

r5 for all i1 j ∈ N and � ∈ ê with �r
i = �r

j .
The above property is considered desirable in the eco-
nomics literature and refers to the notion of fairness
between resource consumers: if two players have an equal
resource consumption, their cost share must be equal.

3.3. Resource Allocation Games

We are now ready to formally define a resource alloca-
tion game. By choosing a strategy �i, player i receives a
certain benefit measured by a utility function Ui4di4�55.
We assume that utility functions satisfy the following
conditions.

Assumption 3.2. Each utility function Ui2 �+ →�+ is dif-
ferentiable, strictly increasing, and concave.

Definition 3.3 (Resource Allocation Game). Given
a resource allocation model RM = 4N 1R1 8Xi9i∈N 1ê1
8Cr9r∈R5, the corresponding resource allocation game is
the strategic game G4RM5 = 4N 1ê1�5, where the pay-
off � = 4�11 0 0 0 1�n5 is defined as �i4�5 2= Ui4di4�55 −
∑

r∈R �
r
i 4�

r5, where �r
i 2 �n

+
→ �n

+
is the cost sharing

method of resource r ∈R.

For the remainder of this paper, we will write G instead of
G4RM5.

Remark 3.2. Assumptions 3.1, 3.2, and Definition 3.2
imply lim��i�→� �i4�i3�−i5 = −�, hence we can effec-
tively restrict the strategy space for every player to a com-
pact set. Because the payoff functions are concave, a pure
Nash equilibrium exists; see the result of Rosen (1965).

The total surplus of a profile � is defined as U4�5 2=
∑n

i=1 Ui4di4�55 − C4�5, where C4�5 =
∑

r∈RCr4lr4�55 is
the total cost function for the profile �. A profile of max-
imum total surplus is called optimal. We define the fol-
lowing functions: �̂r

i 4�
r5 2= ¡�r

i 4�
r5/¡�r

i and �̂ij4�5 2=
∑

r∈Rij
�̂r
i 4�

r5. The next lemma establishes necessary and
sufficient conditions for a profile to be optimal and a Nash
equilibrium, respectively.

Lemma 3.1. Consider a resource allocation game G with
basic cost sharing methods

(

�r 1 r ∈R
)

. The profiles � and
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� are a Nash equilibrium and an optimal profile, respec-
tively, if and only if for all players i the following condi-
tions hold:

ï�i4�i3�−i5 · 4�i −�i5¶ 01 for all �i ∈êi1 (1)

U ′
i 4di4�55= �̂ij4�51 for all j ∈Mi with �ij > 01

U ′
i 4di4�55¶ �̂ij4�51 for all j ∈Mi with �ij = 01

(2)

U ′

i 4di4�55=
∑

r∈Rij

C ′

r4lr4�551

for all j ∈Mi with �ij > 01

U ′

i 4di4�55¶
∑

r∈Rij

C ′

r4lr4�551

for all j ∈Mi with �ij = 00

(3)

In the following sections we analyze the worst-case effi-
ciency of Nash equilibria for several cost sharing methods.
In §4 we first develop a general lower bound for basic cost
sharing methods. We proceed by studying marginal cost
pricing and average cost sharing in §§5 and 6, respectively.

4. Worst-Case Efficiency of Basic Cost
Sharing Methods

In the following, we will study the worst-case efficiency
loss for a class of basic cost sharing methods. Throughout
the analysis we assume that cost functions satisfy Assump-
tion 3.1 and utility functions satisfy Assumption 3.2. Before
we give a formal definition of the worst-case efficiency
loss, we prove an auxiliary lemma, showing that basic cost
sharing methods always guarantee a nonnegative total sur-
plus for every Nash equilibrium.

Lemma 4.1. Let G be a resource allocation game with n
players, cost functions in C, and basic cost sharing meth-
ods �r ∈Dn for all r ∈R. Let äG be the set of Nash equi-
libria. Then, U4�5¾ 0 for all � ∈äG.

Next, we provide a formal definition of the worst-case
efficiency loss.

Definition 4.1. Let C be a class of cost functions. Let
Gn4C1Dn5 be the set of all resource allocation games with
n players, cost functions in C, and basic cost sharing meth-
ods �r ∈ Dn for all r ∈ R. For G ∈ Gn4C1Dn5, let �G

be an optimal profile and let äG be the set of pure Nash
equilibria, respectively. Then the worst-case efficiency is
defined by

�n

(

C1Dn

)

=











inf
G∈Gn4C1Dn5

inf
�∈äG

UG4�5

UG4�G5
1 if UG4�G5>01

11 otherwise0

Here, UG denotes the total surplus function for game G.
Conversely, 1−�n4C1Dn5 defines the worst-case efficiency
loss or price of anarchy.

Remark 4.1. Note that by Lemma 4.1 the case
UG4�G5= 0 implies that for basic cost sharing methods,
every Nash equilibrium is optimal. Therefore, we can
assume without loss of generality that every optimal profile
recovers a strictly positive total surplus, i.e., UG4�G5 > 0.

We show next that for bounding the worst-case efficiency
of basic cost sharing methods it is sufficient to consider
games with only linear utility functions. The next lemma
can be proved using ideas of Johari and Tsitsiklis (2006),
Moulin (2008), and Chen and Zhang (2010).

Lemma 4.2. Let Gn4C1Dn5 be the set of all resource allo-
cation games with n players, cost functions in C, and basic
cost sharing methods �r ∈ Dn for all r ∈ R. Then, for
bounding the worst-case efficiency it is enough to consider
resource allocation games in which all utility functions are
linear.

We proceed by calculating the surplus of an optimal solu-
tion and that of a Nash equilibrium in terms of the cost
functions and cost sharing methods involved, respectively.

Lemma 4.3. Consider a game G with basic cost sharing
methods and linear utility functions, that is, Ui4x5= ui · x,
ui ¾ 0, i ∈ N . Let � be an optimal profile and � be a
Nash equilibrium. Then � and � generate a total surplus of
U4�5 =

∑

r∈R4lr4�5 ·C ′
r4lr4�55−Cr4lr4�555 and U4�5 =

∑n
i=1

∑mi

j=1 �̂ij4�5�ij −C4�50

We provide in this section a general proof template
that enables us to derive a bound on the worst-case effi-
ciency for a resource allocation game with basic cost shar-
ing methods. The main idea for proving such bounds is
an application of the variational inequality. Let � and �
be an optimal and a Nash profile, respectively. Observe
that for any �, the following inequality holds: U4�5 ¶
�U4�5+U4�5+

∑n
i=1 ï�i4�i3�−i5 · 4�i − �i5− �U4�50

If we can derive an inequality of the form 4U4�5 +
∑n

i=1 ï�i4�i3�−i5 · 4�i −�i5− �U4�55/U4�5¶ �4�5 for
some �4�5 < 1, we would obtain the inequality U4�5 ¶
�U4�5+�4�5U4�51 which yields a bound on the worst-
case efficiency of 41 − �4�55/�. As a consequence, we
could then optimize over � (which of course involves �4�5)
so as to derive the best possible bound. This technique
(�-technique) has been previously applied to bound the
price of anarchy in atomic splittable congestion games; see
Harks (2011).

In the following, we denote by Dn a class of basic cost
sharing methods for n players. For a cost function C, a cost
sharing method � ∈ Dn, and a parameter � > 0, we define
the following value:

�n4C1�1�5

2= sup
x1 y∈�n

+

∑n
i=1 �̂i4x54yi −�xi5+�C4l4x55−C4l4y55

C ′4l4y55 · l4y5−C4l4y55
1 (4)

where l4x5 =
∑n

i=1 xi. For a class of cost functions C
and a class of basic cost sharing methods Dn, we define
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�n4C1Dn1�5 2= sup�∈Dn
supC∈C�n4C1�1�5. We define the

feasible �-region as å4C1Dn5 2=8�>0 ��n4C1Dn1�5<190

Theorem 4.1. Consider the set Gn

(

C1Dn

)

of resource
allocation games with basic cost sharing methods �r ∈Dn,
r ∈ R, and cost functions in C. Then the worst-case effi-
ciency is at least

�4C1Dn5¾ sup
�∈å4C1Dn5

[

1 −�n4C1Dn1�5

�

]

0

Proof. Let G ∈ Gn4C1Dn5. Using Lemma 4.2 we may
assume that utility functions are linear. Let � and � be an
optimal and a Nash profile, respectively. Observe that for
any �, the following inequalities hold:

U4�5¶ �U4�5+U4�5+

n
∑

i=1

ï�i4�i3�−i5

· 4�i −�i5−�U4�5 (5)

= �U4�5−C4�5+

n
∑

i=1

ui ·di4�5

+
∑

r∈R

n
∑

i=1

�̂r
i 4�

r54�r
i −� r

i 5−�U4�5

= �U4�5−C4�5+
∑

r∈R

n
∑

i=1

�̂r
i 4�

r5�r
i −�U4�5 (6)

= �U4�5−C4�5

+
∑

r∈R

n
∑

i=1

�̂r
i 4�

r54�r
i −�� r

i 5+�C4�50 (7)

Here, (5) and (6) follow from Lemma 3.1, while (7) follows
from Lemma 4.3. To complete the proof, we need to show
that

∑

r∈R

n
∑

i=1

�̂r
i 4�

r54�r
i −�� r

i 5+�C4�5−C4�5

¶�n4C1Dn1�5 ·U4�50 (8)

By definition of �n4C1Dn1�5, we have

∑n
i=1 �̂

r
i 4�

r54�r
i −�� r

i 5+�Cr4lr4�55−Cr4lr4�55

lr4�5 ·C ′
r4lr4�55−Cr4lr4�55

¶�n4C1Dn1�5

for all r ∈ R. Multiplying this inequality by lr4�5 ·

C ′
r4lr4�55−Cr4lr4�55, summing up over r ∈ R, and using

Lemma 4.3, we obtain (8). �
We briefly pause here to discuss implications of the

above result. Theorem 4.1 provides a lower bound on the
worst-case efficiency of Nash equilibria that depends only
on C and Dn but neither on the player’s private utili-
ties nor on the strategy space. If the sets C and Dn have
a specific form (e.g., convex cost functions and marginal

cost pricing), then evaluating the concrete bound in Theo-
rem 4.1 amounts to solving a highly structured optimization
problem. In the remainder of the paper we will actually
solve this optimization problem for three specific cost shar-
ing methods (incremental cost sharing, marginal cost pric-
ing, and average cost sharing) and different classes of cost
functions. We will first apply Theorem 4.1 to prove that
the incremental cost sharing method is actually an optimal
mechanism among all basic mechanisms.

Proposition 4.1. For incremental cost sharing, every
Nash equilibrium is optimal.

Moulin (2008) showed that incremental cost sharing
is optimal for resource allocation games with a single
resource. Proposition 4.1 generalizes Moulin’s result to
hold for general resource allocation games.

5. The Worst-Case Efficiency of
Marginal Cost Pricing

In the previous section, we showed that among all basic
cost sharing mechanisms, there is an optimal mechanism
(incremental cost sharing) that achieves full efficiency.
Because the incremental cost sharing method is not scal-
able, we will focus in this section on marginal cost pric-
ing which is a well-known scalable cost sharing method.
More precisely, we will study the price of anarchy in games
where all resources use marginal cost pricing as cost shar-
ing method. We thus have �r

i 4�
r5 = �r

i ·C ′
r4lr4�55 for all

r ∈ R, i ∈ N , and � ∈ ê. We will call C ′
r4 · 5 the marginal

cost function of resource r ∈ R. For the rest of this sec-
tion, we assume that all cost functions Cr4 · 5 are twice
differentiable for all r ∈ R. Instead of Gn4C1Dn5, we will
use the shorthand Gn4C5 assuming that Dn corresponds to
marginal cost pricing. In Lemma 4.3, we represented the
total surplus of a Nash equilibrium and that of an optimal
profile in terms of the involved cost functions for a general
cost sharing method. The following lemma is a special case
of this result for marginal cost pricing.

Lemma 5.1. Consider a game G with marginal cost pric-
ing and linear utility functions, that is, Ui4x5= ui · x, ui ¾
0, i ∈ N . Let � be a Nash equilibrium. Then, � generates
total surplus of

U4�5=
∑

r∈R

(

lr4�5 ·C ′

r4lr4�55

+

n
∑

i=1

4� r
i 5

2
·C ′′

r 4lr4�55−Cr4lr4�55

)

0 (9)

The proof follows from Lemma 4.3. We proceed by deriv-
ing an upper bound for �n4C1�1�5 using that � corre-
sponds to marginal cost pricing.
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Lemma 5.2. Let � be a marginal cost pricing method for
n players. Then, �n4C1�1�5¶�mcp

n 4C1�5, where

�mcp
n 4C1�5

2= sup
x1 y∈�+

�∈809∪61/n117

(

C ′4x5y+C ′′4x5�xy−�4C ′4x5x

+ 4�2
+ 41 −�52/4n− 155C ′′4x5x25+�C4x5−C4y5

)

·
(

C ′4y5 · y−C4y5
)−1

0 (10)

An essential element of the definition of �mcp
n 4C1�5 is

the parameter � defined as the largest ratio of the load
of a single player and the overall load on a resource. We
note that this ratio has been used before in the context of
bounding the price of anarchy in atomic splittable network
games with fixed demands; see Cominetti et al. (2009),
Harks (2011), and Yang et al. (2008).

5.1. Cost Functions with a Convex Derivative

We start by applying Lemma 5.2 to convex marginal cost
functions, that is, we consider cost functions with a convex
derivative.

Theorem 5.1. Let CconvD be a class of cost function that
have a convex derivative. Consider the set Gn4C

convD5 of
games with at most n players. Then, �n4C

convD5¾ 4/43 +√
5 + 4n5.

Proof. We define � = 43 +
√

5 + 4n5/4 and prove the
claim by showing that �mcp

n 4C3�5 ¶ 0 for all C ∈ CconvD.
We bound the nominator of (10) by a case distinction. First,
we assume x¾ y. We get

C ′4x5y+C ′′4x5�xy−�4C ′4x5x

+

(

�2
+

41 −�52

n− 1

)

C ′′4x5x25+�C4x5−C4y5

¶C ′′4x5

(

�xy−�

(

�2
+

41 −�52

n− 1

)

x2

)

¶C ′′4x5x2

(

�−�

(

�2
+

41 −�52

n− 1

)

0

For the first inequality, we used that C ′4x5y − �C ′4x5x +

�C4x5−C4y5¶ 01 because y ¶ x, �¾ 1, and C ′4 · 5 is con-
vex. The second inequality follows from y ¶ x and C ′′4x5¾
0 (since C4 · 5 convex). Then, � = 43 +

√
5 + 4n5/4 yields

�mcp
n 4C3�5¶ 0, because

max
�∈809∪61/n117

�−

(3 +
√

5 + 4n
4

)(

�2
+

41 −�52

n− 1

)

¶ 00

Now we consider the case x < y. We define � 2= x/y ∈

60115. Observe that C4y5 − �C4�y5 = C4y5 − C4�y5 −

4�−15C4�y50 Then we use the following inequality, which
is illustrated in Figure 1.

C4y5−C4�y5¾ 4y−�y5C ′4�y5+
4y−�y52

2
C ′′4�y50 (11)

Figure 1. Illustration of the inequality (11) in the proof
of Theorem 5.1.

0
0

C�(z)

∆1

∆2

L�y(z)

C�(�y)

y�y

Note. The shaded area illustrates the term C4y5−C4�y5=ã1 +ã2. The
linear approximation L�y4 · 5 of the convex function C ′4 · 5 bounds C ′4z5

from below, i.e., L�y4z5¶C ′4z5. Then we have ã1 = 4y−�y5C ′4�y5 and
ã2 ¾ 44y−�y52/25C ′′4�y5.

Together with 4�−15C4�y5¶ 4�−15C ′4�y5�y, we obtain

�mcp
n 4C3�5

¶ sup
�∈601151 y∈�+

�∈809∪61/n117

(

C ′′4�y5y24��−�4�2
+ 41 −�52/4n− 155

·�2
− 441 −�525/25

)

·
(

C ′4y5y−C4y5
)−1

0

We then use max�∈601151�∈601174�� − �4�2 + 41 − �52/
4n−155�2 − 41−�52/25¶ 4n−4�2 +6�−15/4�4n+2�51
where �∗ = 4n + 15/4n + 2�5 and �∗ = 4n − 1 + 4�5/
2�4n+15 are the unique maximizer. The value of � solves
n − 4�2 + 6� − 1 = 0, thus, we obtain �mcp

n 4C3�5 ¶ 0.
Applying Lemma 5.2 for both cases proves the claim. �
Remark 5.1. The bound of Theorem 5.1 has been estab-
lished before by Guo and Yang (2005) for the case of a
single resource.

The above result gives a bound on the efficiency loss
for differentiable and convex marginal cost functions scal-
ing with the number of players. This result complements
a negative result of Johari and Tsitsiklis (2005) for two-
player games with nondifferentiable convex marginal cost
functions, where the efficiency loss might be arbitrar-
ily high. For nondifferentiable marginal cost functions, a
Nash equilibrium can be characterized by optimality con-
ditions expressed by the left and right directional deriva-
tives of the marginal cost function. The key ingredient of
the instance in Johari and Tsitsiklis (2005) is to increase
the difference between two such values (for a point of
non-differentiability) giving rise to a Nash equilibrium
with low total surplus. In contrast, if marginal cost func-
tions are differentiable, then by Lemma 5.1 the total sur-
plus of an arbitrary Nash equilibrium can be expressed in
terms of the involved cost functions and their well-defined
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derivatives ruling out the instance constructed in Johari and
Tsitsiklis (2005). Note that in many applications the consid-
ered marginal cost functions are differentiable, e.g., polyno-
mial delay functions considered in transportation networks
(Branston 1976) and M/M/1 functions modeling queuing
delays in telecommunication networks (Srikant 2003).

Remark 5.2. In the next section (Proposition 5.1), we
present an asymptotically matching upper bound for the
efficiency loss of �n4C

convD5 ¶ 424n −
√
n55/

√
n4n − 15,

which grows as O41/
√
n5.

5.2. Polynomial Cost Functions

In practice, the most frequently used functions modeling
delay are polynomials whose degrees and coefficients are
determined from real-world data through statistical evalua-
tion methods; see Patriksson (1994) and Branston (1976).
Thus, we will explicitly calculate the price of anarchy for
the class Cd 2= 8C4z5=

∑d
j=0 ajz

j , aj ¾ 09, d ∈ 82131 0 0 09.
Note that we have to demand d ¾ 2 because otherwise
Assumption 3.1 would be violated and a Nash equilibrium
might not exist.

To simplify the analysis, we focus on the gen-
eral case n ∈ �∗ ∪ 8�9. Let us define �mcp

�
4C3�5 2=

limn→� �mcp
n 4C3�5. It is easy to see that �mcp

�
4C3�5 ¾

�mcp
n 4C3�5 for any n ∈�∗, implying ��4C5¶ �n4C5.

Remark 5.3. We observe that for marginal cost pricing,
the payoff functions �i4 · 5 are affine linear in each of
the cost functions Cr4 · 5. We can reduce the analysis
to monomial cost functions subdividing each resource r
into d + 1 resources r01 0 0 0 1 rd with monomial cost func-
tions Crs

4lr4�55 = ars
· 4lr4�55

s for s ∈ 80111 0 0 0 1 d9. By
extending the accessible sets of every player accordingly,
we obtain a transformed game in which the set of Nash
equilibria, optimal profiles, and corresponding surplus val-
ues coincide.

We present in the next lemma an upper bound for the
value �mcp

�
4Md3�5.

Lemma 5.3. Consider the class Md 2= 8C4z5 = adz
d1

ad ¾ 01 d ∈ 82131 0 0 099. Then, it holds that

�mcp
�

4Md3�5¶
(

1 +�4d− 15
�41 +�2d5

)d−1(
d

d− 1
+�− 1

)

−
1

d− 1
1 where �4d5=

1
√
d− 1 + 1

0

Given the above upper bound on �mcp
�

4Md3�5 we now give
a precise bound for �4Cd5.

Theorem 5.2. Let Cd be the class of polynomial cost func-
tions with nonnegative coefficients and maximum degree
d ∈ 82131 0 0 09. Then �4Cd5 = 41 + �4d52d5/41 + �4d5 ·

4d− 1551+1/4d−15, where �4d5= 1/4
√
d− 1 + 15.

Proof. We define � = 441 + �4d54d − 1551+1/4d−15/
41 + �4d52d5. Then Lemma 5.3 implies ��4Md′3�5 ¶ 0
for all d′ <d and ��4Md3�5= 0. Thus, using Lemma 5.2
and Theorem 4.1, we have �4Cd5 ¾ 41 + �4d52d5/
41 +�4d54d− 1551+1/4d−15.

Now we prove the upper bound. Consider a game with
one resource having the cost function C4x5 = 41/d5xd for
some d ∈ 82131 0 0 09. Assume we have n players, where
player 1 has the utility function U14�15 = �1 while the
remaining n−1 players have utility functions Uk4�k5= b�k

for some b ∈ 60117 specified later. Consider a Nash equilib-
rium �4n5 in this game. Without loss of generality, we can
assume l4�4n55 > 0. Using Lemma 3.1, we obtain �14n5=

41 − l4�4n55d−15/44d − 15l4�4n55d−15 for player 1 and
�k4n5= 4b− l4�4n55d−15/44d− 15l4�4n55d−15 for players
k = 21 0 0 0 1 n. Summing all demands, we get

l4�4n55=
1−l4�4n55d−1

4d−15l4�4n55d−1
+4n−15

b−l4�4n55d−1

4d−15l4�4n55d−1

⇔ l4�4n55=

(

1+b4n−15
d−1+n

)1/4d−15

0

In the limit, we get

lim
n→�

l4�4n55= b1/4d−151 lim
n→�

�14n5=
b1/4d−1541 − b5

b4d− 15
1

and

lim
n→�

b4n− 15�k4n5=
b1/4d−154bd− 15

d− 1
0

Thus, we get as limit for the total surplus of the Nash
equilibrium �4n5

lim
n→�

U
(

�4n5
)

=
b1/4d−1541 − b5

b4d− 15
+

b1/4d−154bd− 15
d− 1

−
b1/4d−15b

d
0

An optimal solution is given by � = 41101 0 0 0 105 with
total surplus of U4�5 = 1 − 1/d. Now choosing b = 41 +

4d − 153/25/4d2 − d + 25 the ratio U4�5/U4�5 coincides
with the lower bound of the theorem. �
Remark 5.4. The worst-case efficiency for cost func-
tions in Cd is asymptotically bounded from below by
ì41/

√
d− 15.

Note that the example used in the previous proof can
also be used to construct an upper bound for �n4C

convD5
complementing Theorem 5.1.

Proposition 5.1. Let CconvD be a class of cost functions
with a convex derivative. Consider the set Gn4C

convD5 of
games with at most n ∈ �∗ players. Then �n4C

convD5 ¶
24n−

√
n5/

√
n4n− 15, which grows as O41/

√
n5.
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5.3. Symmetric Games

In this section, we consider symmetric games in which
all players have the same utility function Ui = Uj for all
i1 j ∈N and the same strategy space, that is, êi =êj for all
i1 j ∈ N . Symmetric resource allocation games have been
considered before in the context of single-commodity net-
work games with atomic players, unit demands, and split-
table flows, see Cominetti et al. (2009) and Altman et al.
(2002). Another example of a symmetric resource alloca-
tion game arises in scheduling games in which there are
m machines used by n players having the same utility func-
tion. The strategy of every player is simply a distribution of
her workload over the machines. We prove that the symme-
try assumption implies improved bounds on the worst-case
efficiency loss. Consider a symmetric game with n play-
ers. Then, there exists a symmetric optimal profile � in
the sense that �r

i = 41/n5�r for all i ∈ N . We obtain the
following bound for �n4C1�1�5.

Lemma 5.4. Consider a symmetric game with � being
marginal cost pricing. Then it holds that �n4C1�1�5 ¶
�mcp1 sym

n 4C1�5, where

�mcp1 sym
n 4C3�5

2= sup
x1 y∈�+

(

C ′4x5y+C ′′4x54xy/n5

−�4C ′4x5x+C ′′4x544x25/n5−C4x55−C4y5
)

·
(

C ′4y5 · y−C4y5
)−1

0

Note that the above Lemma uses only the existence of a
symmetric optimal profile but does not rely on symmetry
of every Nash equilibrium. The following result for cost
functions with a convex derivative has been obtained pre-
viously by Johari and Tsitsiklis (2005) for the special case
of games with a single resource. We present here a more
general result (arbitrary symmetric strategy space) with a
simpler proof.

Proposition 5.2. Let CconvD be the class of cost func-
tions with a convex derivative. Consider the set Gn4C

convD5

of symmetric games with at most n ∈ �∗ players. Then
�n4C

convD5¾ 2n/42n+ 150

For polynomials with nonnegative coefficients and arbi-
trary degree d ∈ 82131 0 0 09, we prove the following.

Theorem 5.3. Let Cd be the class of polynomial cost func-
tion with nonnegative coefficients and arbitrary degree d ∈

82131 0 0 09. Consider the set Gn4Cd5 of symmetric games
with n players and cost functions in Cd. Then �n4Cd5=

3
4 0

Note that the above bound on the worst-case efficiency
does neither depend on the maximum degree d of the poly-
nomial nor on the number of players n.

6. The Worst-Case Efficiency of
Average Cost Sharing

In this section, we derive lower bounds on the worst-case
efficiency of average cost sharing, which is the prevail-
ing cost sharing method in transportation networks (cf.
Beckmann et al. 1956, Haurie and Marcotte 1985). In
the context of transportation networks, there is a load-
dependent latency function cr4lr4�55 on every resource
and the cost of resource r under profile � is defined as
Cr4lr4�55 = cr4lr4�55lr4�5, while the cost share for user
i on resource r is determined as �r

i 4�5 = cr4lr4�55�
i
r =

4Cr4lr4�55/lr4�55�
i
r . Note that average cost sharing is

a scalable cost sharing method. Given a cost function
Cr , we define the per-unit cost function by cr4lr4�55 =

4Cr4lr4�555/4lr4�55. Instead of Gn

(

C1Dn

)

, we will use the
shorthand Gn4C5 assuming that Dn corresponds to average
cost sharing.

Similar to the analysis of the marginal cost sharing
method, we study the worst-case efficiency of average cost
sharing for three types of cost functions. First, we consider
general convex cost functions and derive a lower bound for
the worst-case efficiency of 1/n. Second, we consider cost
functions with convex per-unit costs and characterize the
price of anarchy for this case. Finally, we conclude the sec-
tion by analyzing average cost sharing in symmetric games.

Theorem 6.1. Let Cconv be a class of convex cost func-
tions. Consider the set Gn4C

conv5 of games with at most
n ∈� players. Then �n4C

conv5¾ 1/n.

We proceed by considering average cost functions, where
the per-unit cost function is convex, that is, the functions
cr 1 r ∈R are convex.

Theorem 6.2. Let CconvU be a class of cost functions with
convex unit costs. Then, �4CconvU5= 4/4n+ 35.

Remark 6.1. The bounds of Theorems 6.1 and 6.2 have
been established before by Moulin (2008) for the case of a
single resource.

We close this section by analyzing the efficiency loss of
average cost sharing in symmetric games.

Theorem 6.3. Let CconvU be a class of cost functions with
convex unit costs. Consider the set Gn4C

convD5 of symmet-
ric games with at most n ∈ �∗ players. Then �4CconvD5 =

4n/4n+ 152.

7. Conclusions and Future Work
In this work, we studied the worst-case efficiency of Nash
equilibria in resource allocation games for different cost-
sharing methods. We derived various new results about the
efficiency loss for marginal cost pricing and average cost
sharing depending on the structure of allowable cost func-
tions. In particular, we were able to prove tight bounds
for the worst-case efficiency loss for average cost sharing
and marginal cost pricing involving polynomial costs with
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nonnegative coefficients. Because this class of functions is
quite rich and widely used for modeling, for instance, queu-
ing delays at resources, we see our results as an important
contribution toward the applicability of these cost sharing
methods in practice. While we proved that the incremen-
tal cost sharing method is optimal among all basic cost
sharing methods, such a strong result is not known for the
class of scalable cost sharing methods. In light of the high
practical relevance of the scalability property of cost shar-
ing methods, we see the design of an optimal cost sharing
method among all scalable mechanisms for differentiable
and convex cost functions as the most important open
problem.

Appendix A
This appendix provides a table of notation.

A. Table of Notation

N = 811 0 0 0 1 n9, R= 811 0 0 0 1m9 Set of players, set of resources
In the following: i = 11 0 0 0 1 n and r = 11 0 0 0 1m

Rij ⊂R jth accessible set of player i

Xi = 8Ri11 0 0 0 1Rimi
9, mi ∈� Set of accessible sets of player i

Mi = 811 0 0 0 1mi9 Set of indices of accessible sets of player i

M= 4N 1R1 8Xi9i∈N 1 8Cr9r∈R5 Congestion model

êi =�mi
+ , ê−i Strategy space of player i and all players except i

�i = 4�i11 0 0 0 1�imi
5 ∈êi, �= 4�i1 i ∈N5 Strategy of player i, strategy profile

ê =×i∈N êi Space of strategy profiles

di4�5=

mi
∑

j=1

�ij Total demand of player i

RM= 4N 1R1 8Xi9i∈N 1ê1 8Cr9r∈R5 Resource allocation model

CR2 �+ →�+ Cost function of resource r

C4�5=
∑

r∈R

Cr4lr4�55, C Total cost for �, class of cost functions

�r
i =

∑

j∈Mi 2 r∈Rij

�ij Load of player i on resource r

�r = 4�r
i 1 i ∈N5, lr4�5=

n
∑

i=1

�r
i Load vector of resource r , total load of r

�r 2 �n
+ →�n

+ Cost sharing method for a resource r

�̂r
i 4�

r5=
¡�r

i 4�
r5

¡�r
i

, �̂ij4�5=
∑

r∈Rij

�̂r
i 4�

r5 Short notation

Dn Class of cost sharing methods for n players

Ui2 �+ →�+ Utility function of player i

U4�5=

n
∑

i=1

Ui4di4�55−C4�5 Total surplus of a profile �

�i4�5=Ui4di4�55−
∑

r∈R

�r
i 4�

r5 Payoff of player i

� = 4�11 0 0 0 1�n5 Payoff vector of all players

G4RM5= 4N 1ê1�5 or G Resource allocation game

�1äG, �G Nash equilibrium, set of Nash equilibria, optimal profile

Gn4C1Dn5, �n4C1Dn5 Set of games with n players, worst-case efficiency

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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