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Abstract. We study competitive resource allocation problems in which
players distribute their demands integrally over a set of resources subject
to player-specific submodular capacity constraints. Each player has to pay
for each unit of demand a cost that is a non-decreasing and convex function
of the total allocation of that resource. This general model of resource allo-
cation generalizes both singleton congestion games with integer-splittable
demands and matroid congestion games with player-specific costs. As our
main result, we show that in such general resource allocation problems a
pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial
algorithm computing a pure Nash equilibrium.

1 Introduction

In an influential paper, Rosenthal [23] introduced congestion games, a class of
strategic games, where a finite set of players competes over a finite set of re-
sources. Fach player is associated with a set of allowable subsets of resources
and a pure strategy of a player consists of an allowable subset. In the context
of network games, the resources may correspond to edges of a graph and the
allowable subsets correspond to the paths connecting a source and a sink. The
utility a player receives by using a resource depends only on the number of
players choosing the same resource and each player wants to maximize (min-
imize) the utility (cost) of the sum of the resources contained in the selected
subset. Rosenthal proved the existence of a pure Nash equilibrium. Up to day
congestion games have been used as reference models for describing decentral-
ized systems involving the selfish allocation of congestible resources (e.g., selfish
route choices in traffic networks [4,25,29] and flow control in telecommunication
networks [17,18,27]) and for decades they have been a focal point of research in
(algorithmic) game theory, operations research and theoretical computer science.
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In the past, the existence of pure Nash equilibria has been analyzed in
many variants of congestion games such as singleton congestion games with
player-specific cost functions (cf. [11,16,21,22]), congestion games with weighted
players (cf. [1,2,5,10,13]), nonatomic and atomic splittable congestion games
(cf. [4,14,18,29]) and congestion games with player- and resource-specific and
variable demands (cf. [12]).

Most of these previous works can be classified according to the following two
categories: (i) the demand of each player is unsplittable and must be completely
assigned to exactly one subset of the allowable subsets; (ii) the demand of a
player may be fractionally split over the set of allowable subsets. While these
assumptions and the resulting models are obviously important (and also realistic
for some applications), they do not allow for the requirement that only integral
fractions of the demand may be assigned to allowable subsets of resources. This
requirement is clearly important in many applications, where the demand repre-
sents a collection of indivisible items or tasks that need to be placed on subsets
of resources. Examples include the scheduling of integer-splittable tasks in the
context of load balancing on server farms (cf. [19]) or in logistics where a player
controls a fleet of vehicles and each must be assigned to a single route.

Although Rosenthal proposed congestion games with integer-splittable de-
mands as an important and meaningful model already back in 1973 — in his
first work on congestion games [24] even published prior to his more famous
work [23] — not much is known regarding existence and computability of pure
Nash equilibria. Rosenthal gave an example showing that in general, pure Nash
equilibria need not exist. Dunkel and Schulz [7] strengthened this result showing
that the existence of a pure Nash equilibrium in integer-splittable congestion
games is NP-complete to decide. Meyers [20] proved that in games with linear
cost functions, a pure Nash equilibrium is always guaranteed to exist. For sin-
gleton strategy spaces and non-negative and convex cost functions, Tran-Thanh
et al. [28] showed the existence of pure Nash equilibria. They also showed that
pure Nash equilibria need not exist (even for the restricted strategy spaces) if
cost functions are semi-convex.

Our Results. We introduce congestion games on integral polymatroids, where
each player may fractionally assign the demand in integral units among the
allowable subsets of resources subject to player-specific submodular capacity
constraints. This way, the resulting strategy space for each player forms an inte-
gral polymatroid base polyhedron (truncated at the player-specific demand). As
our main result, we devise an algorithm that computes a pure Nash equilibrium
for congestion games on integral polymatroids with player-specific non-negative,
non-decreasing and strongly semi-conver cost functions. The class of strongly
semi-convex functions strictly includes convex functions but is included in the
class of semi-convex functions (see Section 2.2 for a formal definition). The run-
time of our algorithm is bounded by n%*! . m%§°*!, where n is the number of
players, m the number of resources, and ¢ is an upper bound on the maximum
demand. Thus, for constant §, the algorithm is polynomial.
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Our existence result generalizes that of Tran-Thanh et al. [28] for singleton
congestion games with integer-splittable demands and convex cost functions and
that of Ackermann et al. [1] for matroid congestion games with unit demands and
player-specific non-decreasing costs. For the important class of network design
games, where players need to allocate bandwidth in integral units across multiple
spanning trees of a player-specific communication graph (cf. [3,6,9]), our result
shows for the first time the existence of pure Nash equilibria provided that the
cost on each edge is a strongly semi-convex function of total bandwidth allocated.

Techniques. Our algorithm for computing pure Nash equilibria maintains data
structures for preliminary demands, strategy spaces, and strategies of the players
that all are set to zero initially. Then, it iteratively increases the demand of a
player by one unit and recomputes a preliminary pure Nash equilibrium (with
respect to the current demands) by following a sequence of best response moves
of players. The key insight to prove the correctness of the algorithm is based
on two invariants that are fulfilled during the course of the algorithm. As a
first invariant, we show that, whenever the demand of a player is increased by
one unit, there is a best response that assigns the new unit to some resource
without changing the allocation of previously assigned demand units. As second
invariant, we obtain that, after assigning this new unit to some resource, only
those players that use this particular resource with increased load may have an
incentive to deviate. Moreover, there is a best response that has the property
that at most a single unit of demand is shifted to some other resource. Given
the above two invariants, we prove that during the sequence of best response
moves a carefully defined vector of marginal costs lexicographically decreases,
thus, ensuring that the sequence is finite.

The first invariant follows by reducing an integral polymatroid to an ordinary
matroid (cf. Helgason [15]) and the fact that for a matroid, a minimum inde-
pendent set Iy with rank d can be extended to a minimum independent set I
with rank d+ 1 by adding a single element to I;. The second invariant, however,
is significantly more complex since a change of the load of one resource results
(when using the matroid construction in the spirit of Helgason) in changed ele-
ment weights for several elements simultaneously. To prove the second invariant
we use several exchange and uncrossing arguments that make use of the submod-
ularity of the rank functions and the fact that a non-optimal basis of a matroid
can be improved locally. This is the technically most involved part of our paper.

We note that the above invariants have also been used by Tran-Thanh et
al. [28] for showing the existence of pure Nash equilibria in singleton integer-
splittable congestion games. For singleton games, however, these invariants follow
almost directly. The algorithmic idea to incrementally increase the total demand
by one unit is similar to the (inductive) existence proof of Milchtaich [21] for
singleton congestion games with player-specific cost functions (see also Ackerman
et al. [1] for a similar proof for matroid congestion games). The convergence proof
for our algorithm and the above mentioned invariants, however, are considerably
more involved for general integral polymatroids.
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Besides providing new existence results for an important and large class of
games, the main contribution of this paper is to propose a unified approach to
prove the existence of pure Nash equilibria that connects the seemingly unrelated
existence results of Milchtaich [21] and Ackerman et al. [1] on the one hand, and
Tran-Thanh et al. [28] on the other hand.

2 Preliminaries

In this section, we introduce polymatroids, strong semi-convexity, and congestion
games on integral polymatroids.

2.1 Polymatroids

Let N denote the set of non-negative integers and let R be a finite and non-empty
set of resources. We write N shorthand for NIZl. Throughout this paper, vectors
x = (z,)rer will be denoted with bold face. An integral (set) function f : 2% — N
is submodular if f(U)+ f(V) > f(UUV)+ f(UNV) for all U,V € 2. Function
f is monotone if U C V implies f(U) < f(V), and normalized if f(0) = 0. An
integral submodular, monotone and normalized function f : 2% — N is called an
integral polymatroid rank function. The associated integral polyhedron is defined
as

Py = {XG N . Zx,« < f(U) for each U C R}.
relU

Given the integral polyhedron Py and some integer d € N with d < f(R), the
d-truncated integral polymatroid P¢(d) is defined as

Ps(d) = {x e NR . Zx,« < f(U) for each U C R,Zwr < d}.
relU reR

The corresponding integral polymatroid base polyhedron is

Bs(d) = {X e NE . Zxr < f(U) for each U C R,Zxr = d}.

relU reR

2.2 Strongly Semi-convex Functions

Recall that a function ¢ : N — N is convez if c(x +1) —¢(x) < e(x+2) —c(x +1)
for all 2 € N. A function c is called semi-convez if the function x - ¢(z) is convex,
ie.,

(+ De(x+ 1) —ze(z) < (x4 2)c(z +2) — (x4 De(xz + 1)

for all x € N.
For the main existence result of this paper, we require a property of each
cost function that we call strong semi-convezity, which is weaker than convexity
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but stronger than semi-convexity. Roughly speaking, it states that the marginal
difference c(a + z)x — c(a + x — 1)(x — 1) does not decrease as a or z increase.
We also introduce a slightly weaker notion, termed wu-truncated strong semi-
convexity, where strong semi-convexity is only required for values of x not larger
than u.

Definition 1 (Strong Semi-Convexity). A function ¢ : N — N is strongly
semi-convex if

cla+x)z—cla+x—1)(z-1)<clb+yy—clb+y—1)(y—1) (1)

forallz,y e Nwith1 <z <y and all a,b € N with a < b. For an integer u > 1,
¢ is u-truncated strongly semi-convex, if the above inequality is only required to
be satisfied for all x,y € N with 1 <z <y <wu and all a,b € N with a <b.

We note that a similar definition is also given in Tran-Thanh et al. [28]. It is not
hard to show that strong semi-convexity is indeed strictly weaker than convexity.
In the interest of space, we defer a formal proof to the full version of the paper.

Proposition 1. FEvery convexr and non-decreasing function ¢ : N — N is also
strongly semi-convex, but not vice versa.

Finally, we remark that every non-decreasing function is 1-truncated strongly
semi-convex.

Remark 1. A function is 1-truncated strongly semi-convex if and only if it is
non-decreasing.

2.3 Congestion Games on Integral Polymatroids

In a congestion game on integral polymatroids, there is a non-empty and finite
set N of players and a non-empty and finite set R of resources. Each resource
is endowed with a player-specific cost function ¢;, : N = N, r € R,¢ € N and
each player ¢ is associated with a demand d; € N, d; > 1 and an integral poly-
matroid rank function f : 2% — N that together define a d;-truncated integral
polymatroid P (d;) with base polyhedron B« (d;) on the set of resources. A
strategy of player ¢ € N is to choose a vector x; = (z;,)rer € B (di), ie.,
player i chooses an integral resource consumption z;, € N for each resource
r such that the demand d; is exactly distributed among the resources and for
each U C R not more than f()(U) units of demand are distributed to the re-
sources contained in U. Using the notation x; = (x;)rer, the set X; of feasible
strategies of player 7 is defined as

Xi =B (di) = {xi e NR . in,r < f(i)(U) for each U C R, in,r = di}.
relU reR

The Cartesian product X = Xien Xi of the players’ sets of feasible strategies

is the joint strategy space. An element x = (x;);en € X is a strategy profile.
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For a resource r, and a strategy profile x € X, we write x,, = >,y @ . The
private cost of player ¢ under strategy profile x € X is defined as m;(x) =
> rer Cir(%7) 2 p. In the remainder of the paper, we will compactly represent
the strategic game by the tuple G = (N, X, (d;)ien, (Ci,r)ieN reRr)-

We use standard game theory notation. For a player ¢ € N and a strategy
profile x € X, we write x as (x;,x—;). A best response of player i to x_; is a
strategy x; € X; with m;(x;,x—;) < mi(y:,x—;) for all y; € X;. A pure Nash
equilibrium is a strategy profile x € X such that for each player i the strategy
X; is a best response to x_;.

Throughout this paper, we assume that the player-specific cost function c¢;
of each player i on each resource r is u; ,-truncated strongly semi-convex, where
w;r = f@({r}). Note that u; , is a natural upper bound on the units of demand
player i can allocate to resource r in any strategy x; € X;.

Assumption. For alli € N,r € R, the cost function ¢; , : N = N is non-negative,
non-decreasing and wu; .-truncated strongly semi-convex, where u; , = £ ({r}).

2.4 Examples

We proceed to illustrate that we obtain the well known classes of integer-splittable
singleton congestion games and matroid congestion games as special cases of con-
gestion games on integer polymatroids.

Ezample 1 (Singleton integer-splittable congestion games). For the special case
that, for each player i, there is a player-specific subset R; C R of resources
such that fO({r}) = d;, if r € R;, and f@({r}) = 0, otherwise, we obtain
integer-splittable singleton congestion games previously studied by Tran-Thanh
et al. [28]. While they consider the special case of convex and player-independent
cost functions, our general existence result implies existence of a pure Nash
equilibrium even for player-specific and strongly semi-convex cost functions.

Ezample 2 (Matroid congestion games with player-specific costs). For the special
case, that for each player i, f(*) is the rank function of a player-specific matroid
defined on R, and d; = f (i)(R), we obtain ordinary matroid congestion games
with player-specific costs and unit demands studied by Ackermann et al. [1] as
a special case.

Note that the rank function rk : 2 — N of a matroid is always subcardinal,
ie., tk(U) < |U| for all U C R. Thus, we obtain in particular that rk({r}) <1
for all » € R. This implies that our existence result continues to hold if we only
require that the player-specific cost functions are 1-truncated strongly semi-
convex, which is equivalent to requiring that cost functions are non-decreasing
as in [1]. Like this, we obtain the existence result of [1] as a special case of
our existence result for congestion games on integer polymatroids. As a strict
generalization, our model includes the case in which players have a demand
d; € N that can be distributed in integer units over bases (or even arbitrary
independent sets) of a given player-specific matroid. A prominent application
arises in network design (cf. [3,6,9]), where a player needs to allocate bandwidth



Resource Competition on Integral Polymatroids 195

along several spanning trees and the cost function for installing enough capacity
on an edge is a convex function of the total bandwidth allocated.

3 Equilibrium Existence

In this section, we give an algorithm that computes a pure Nash equilibrium
for congestion games on integral polymatroids. Our algorithm relies on two key
sensitivity properties of optimal solutions minimizing a linear function over an
integral polymatroid base polyhedron (see Lemma 1 and Lemma 2 below). Af-
ter reducing the usual reduction of integer polymatroids to ordinary matroids
(cf. [15]), Lemma 1 follows more or less directly from the respective property for
matroids. The proof of Lemma 2 is considerably more involved and relies heavily
on uncrossing arguments. The two lemmata will be proven formally in Section 4.

3.1 Key Sensitivity Results

For two vectors x;,y; € N we denote their Hamming distance by H(x;,y;) =
> rer |Tir — yir| Lemma 1 shows that, whenever a strategy x; minimizes the
cost of player i over the base polyhedron By (d;), then we only need to increase
z; r for some r € R by one unit to obtain a strategy y; minimizing the player’s
cost over the base polyhedron By (d; + 1).

Lemma 1 (Demand Increase). Let x; € By (d;) be a best response of player i
to x_; € X_;. Then there exists a best response y; € Bfm(di + 1) to x—; such
that H(x;,y:) = 1.

The second result shows that, when some other player j # i increases her
demand for some resource r that is also used by player ¢ with at least one unit,
then player ¢ can simply shift one unit from resource r to some resource s € R
in order to retain minimal costs.

Lemma 2 (Load Increase). Let x; € By (d;) be a best response of player i to
x_; € X_; and for each resource r let a, = Z#i xjr be the induced allocation.
If for a resource r, the value a, is increased by 1, then there exists a best response
yi € By (d;) towards the new profile with H(x;,y;) € {0,2}.

3.2 The Algorithm

Both sensitivity results are used as the main building blocks for Algorithm 1
that computes a pure Nash equilibrium for congestion games on integral polyma-
troids. Algorithm 1 maintains preliminary demands, strategy spaces, and strate-
gies of the players denoted by d; < d;, X; = X;(d;), and x; € X;, respectively.
Initially, the preliminary demand d; of each player i is set to zero. Trivially, for
this game the strategy profile where the strategy of each player equals the zero
vector is a pure Nash equilibrium.
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Then, in each round, for some player i, the demand is increased from d; to
d; + 1, and a best response y; € X(d; + 1) with H(x;,y;) = 1 is computed,
see Line 5 in Algorithm 1. By Lemma 1, such a best response always exists.
In effect, the load on exactly one resource r increases and only those players j
with z;, > 0 on this resource can potentially decrease their private cost by
a unilateral deviation. By Lemma 2, it is without loss of generality to assume
that a best response of such players consists of moving a single unit from this
resource to another resource, see Line 8 of Algorithm 1. As a consequence, during
the while-loop (Lines 7-10), only one additional unit (compared to the previous
iteration) is moved preserving the invariant that only players using a resource
to which this additional unit is assigned may have an incentive to profitably
deviate. Thus, if the while-loop is left, the current strategy profile x is a pure
Nash equilibrium for the reduced game G = (N, X, d, (¢;»)icn rer). Now we are
ready to prove the main existence result.

ALGORITHM 1. Compute PNE
Input: G = (N, X, (di)ien, (Ci,r)ieN,reRr)
Output: pure Nash equilibrium x
1 d; + 0,X; «+ X;(0) and x; < O for all i € N;
2 fork=1,...,% . ydido

3 Choose i € N with d; < d;;

4 JZ (—d;+].; XZ (—Xl(dz),

5 Choose a best response y; € X; with H (y;, z;) = 1;

6 Xi < Yi;

7 while 3i € N who can improve in G = (N, X, d, (¢ci,r)ienrer) do
8 Compute a best response y; € X; with H(yi, x;) = 2;

9 Xi < Yi;
10 end
11 end

12 Return x;

Theorem 1. Congestion games on integral polymatroids with player-specific
non-negative, non-decreasing, and strongly semi-convex cost functions possess
a pure Nash equilibrium.

Proof. We prove by induction on the total demand d = ), d; of the input
game G = (N, X, (d;)ien, (¢i,r)icN,rer) that Algorithm 1 computes a pure Nash
equilibrium of G.

For d = 0, this is trivial. Suppose that the algorithm works correctly for
games with total demand d — 1 for some d > 1 and consider a game G with total
demand d. Let us assume that in Line 3, the algorithm always chooses a player
with minimum index. Consider the game G’ = (N, X, (d}):en, (¢ir)ienN rer) that
differs from G only in the fact that the demand of the last player n is reduced
by one, i.e. d; = d; for all i < n and d), = d, — 1. Then, when running the
algorithm with G’ as input, the d — 1 iterations (of the for-loop) are equal to the



Resource Competition on Integral Polymatroids 197

first d — 1 iterations when running the algorithm with G as input. Thus, with
G as input, we may assume that after the first d — 1 iterations, the preliminary
strategy profile that we denote by x’ is a pure Nash equilibrium of G’.

We analyze the final iteration k = d of the algorithm in which the demand
of player n is increased by 1 (see Line 4). In Line 5, a best reply y, with
H(x,,yn) = 1 is computed which exists by Lemma 1. Then, as long as there
is a player 7 that can improve unilaterally, in Line 8, a best response y; with
H(y;,x;) = 2 is computed which exists by Lemma 2.

It remains to show that the while-loop in Lines 7-10 terminates. To prove
this, we give each unit of demand of each player i € N an identity denoted by
i, =1,...,d;. For a strategy profile x, we define r(i;,x) € R to be the resource
to which unit i; is assigned in strategy profile x. Let x! be the strategy profile
after Line 8 of the algorithm has been executed the I-th time, where we use the
convention that x° denotes the preliminary strategy profile when entering the
while-loop. As we chose in Line 5 a strategy of player n with Hamming distance
one, there is a unique resource rg such that xQO =z, + 1 and 20 = 2! for all
r € R\ {ro}. Furthermore, because we choose in Line 8 a best response with
Hamming distance two, a simple inductive claim shows that after each iteration I
of the while-loop, there is a unique resource r; € R such that xil =z, + 1 and
zl =a! forallr € R\ {r}.

For any x! during the course of the algorithm, we define the marginal cost of
unit ¢; under strategy profile x! as

i@, +1)af, —cip@)) (af, — 1), if r=r(ij,x)#n.

)

) Iyl I _ r . — (i _
A, (Xl) _ {Q,r(%«) L cir(z, — 1) ($m« 1), ifr=r(,x)=mn @)

Intuitively, if 7(i;,x) = 1, the value 4A;, (x) measures the cost saving on resource
r(i;,%) if 4; (or any other unit of player ¢ on resource r(i;,x)) is removed from
r(ij,x). If r(i;,x) # 1, the value 4A;, (x) measures the cost saving if i; is removed
from r(i;,x) after the total allocation has been increased by one unit by some
other player. For a strategy profile x we define Ax) = (Aij (X))i=1,....n=1,....ds
to be the vector of marginal costs and let A(x) be the vector of marginal costs
sorted in non-increasing order. We claim that A(x) decreases lexicographically
during the while-loop. To see this, consider an iteration ! in which some unit i;
of player 7 is moved from resource r;_1 to resource ;.

For proving A(x!) <jex A(x!71), we first observe that we only have to care
for A-values that correspond to units 7; of the deviating player ¢, because for
all players h # i we obtain Ap,(x'7!) = Ay, (x!) for all j = 1,...,ds. This
follows immediately if h; is neither assigned to r;_1 nor to r;. If h; is assigned
to r;—1 or ry, then we switch the case in (2), and the claimed equality still holds.
It remains to consider the A-values corresponding to the units of the deviating
player i. Recall that the deviation of player ¢ consists of moving unit i; from
resource r;_1 to resource r;. We obtain

Aij (Xl_l) =Cir_, (xl )xl —Cir_y (xl - 1) (xl - 1)

ri—1/ YT -1 1,T—1

l l l l l
> Ci""l, (x’l‘l + ]‘) (l,i,’l‘l, + ]') - Ci,Tl (:Erl)xi,rl = AZJ (X )’
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where the inequality follows since player i strictly improves. For every unit i,,
of player i that is assigned to resource 7; as well, i.e, 7(im,x!) = r(i;,x) = r,
we have A; (x') = A;,, (x') since the A-value is the same for all units of a single
player assigned to the same resource. The A-values of such units i,, might have
increased, but only to the A-value of unit ;.

Next, consider the A-values of a unit i, assigned to resource r;_1, i.e.,
7(im,x') = r(ij,x!) = r,_1. We obtain

Ap, (x') = iy (a7, ) (@0, — 1) = ciny (2, — 1) (24, —2)

Ti—1 4,T—1 Ti—1 4,T—1
S civrl—l(xi‘lfl)xé,mfl - civrl—l(‘r'lr‘l,1 - 1) ("I"é,f‘l,1 - 1) = Aim (Xlil)’

where for the inequality we used that ¢; ,(zr,_,) > ¢ir(@r,_, — 1) as ¢;» is non-
decreasing.

Altogether, the A-values of all units of all players h # i have not changed,
for player i, the A-values of remaining units assigned to resource r;_; decreased,
and the A-values assigned to resource r; increased exactly to 4A;; (x!) which is
strictly smaller than A;, (x'~1). Thus, A(x') <jex A(x'™1) follows. O

The following corollary states an upper bound on the number of iterations of
the algorithm in terms of § = max;cn d;.

Corollary 1. The number of iterations is at most n®T *mo6%+1, which yields a
polynomial algorithm computing a pure Nash equilibrium for constant d.

Proof. We analyze the worst-case runtime of Algorithm 1. To this end, let us fix
an iteration of the for-loop. In the proof of Theorem 1, we showed that during
this iteratioe, for each player, the sorted vector of marginal costs as defined
in (2) decreases lexicographically during the while-loop. Moreover, the marginal
cost of a particular unit of demand i; of player ¢ assigned to a resource r does
not depend on the aggregated demand ) jeN Tir of all players for resource r,
but only on the number of units of demand z;, assigned to r by player i. We
derive that for each player ¢ and each resource r at most d; different marginal
cost values can occur. This observation bounds the number of different marginal
cost vectors of player i by (m - d;)%, where m = |R|. Since the marginal cost
vectors lexicographically decrease, the total number of iterations of the while-
loop for each iteration of the for-loop is bounded by Y,y (m - d;)%. Setting
§ = max;en d;, this expression is bounded by (n - m - §)?, where n = |N|. Using
that there are ), \ d; < n -4 iterations of the for-loop, one for each unit of
demand in the game, we obtain the following corollary. O

4 Sensitivity Analysis for Integral Polymatroids

It remains to show the key sensitivity results of Lemma 1 and Lemma 2. For
ease of notation, let us drop the index i form the statements of the lemmata and
let us consider a fixed integral polymatroid base polyhedron

Bs(d) = {X e NE . Zxr < f(U) for each U C R,Zxr = d}.

relU reR
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w.r.t. some submodular, monotone, and normalized function f : 2% — N, and
some demand value d € N.

We identify the points in By(d) with a set family F(d) on a largely extended
ground set E as follows: For each resource r € R, let u, = f({r}) and let
K, ={r1 < ... <y} beatotally ordered set (chain) with |u,| distinct elements
T1y...,Ty,. Let further £ = UreRKT be the disjoint union of these chains.
Then, P = (F, =) is a partially ordered set (poset) where two elements e, e’
are comparable if and only if they are contained in the same chain K, for some
r € R. Furthermore, let D(P) denote the set of ideals of P, i.e., D(P) consists
of all subsets I C FE such that for each e € I all elements g < e also belong
to I. Note that there is a one-to-one correspondence between the sets in D(P)
and the integral points in {x € N : . < f({r}) Vr € R}. As a consequence,
the feasible points in the integral polymatroid Py can be identified with the set
family

F={FeD(p):||J K NF| < fU)for cach U C R}. (3)
reU

Accordingly, the vectors contained in the polymatroid base polyhedron Bj(d)
for d € N can be identified with the set family

F(d) = {Fe]-‘: |F| :d}. (4)

In fact, it is known (see, e.g., [26] and [15]) that any integral polymatroid P
can be reduced to an ordinary matroid M = (F,r) on ground set E with rank
function r : 2F — N defined via

=g UK
- reT

for all U C E. It turns out that the independent sets in M of cardinality d are
exactly the ideals in F(d) as defined above. Applying this kind of transformation
for each player i, we can identify the strategy set By« (d;) of each player i with
the set family F;(d;), and this set family, in turn, with the matroid M; = (E;, r;).

With this notation, let us now return to the problem of finding a best re-
sponse x; of player i towards a strategy profile a = x_; € N of the remaining
players. Note that, for a € N, the player-specific strongly semi-convex cost
functions ¢;» : N — N induce weight functions w? : E — N on the ground set
constructed above via

+ /(1))

wi(ry) = teir(ar +t) — (t—Dejp(ar+t—1) forallre Rt e{l,...,d;}.

Hence, finding a best response x; € B (d;) reduces to the problem of minimiz-
ing a linear function over the independent sets of cardinality d; of the matroid
M; = (E;,r;) associated with the submodular function f @,

However, the ground set E; can be of exponential size, so that it is not a priori
clear whether the matroid greedy algorithm minimizes a linear weight function
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over the base polyhedron B« (d;) in strongly polynomial time. Still, since we
assume that the cost functions ¢;, : N — N are strongly semi-convex, it follows
that the induced weight functions w2 : E — N are admissible in the sense that
e < g implies w;(e) < w;(g).

Given an ideal F' € D(P), we denote by F't the set of <-maximal elements in
F, and by (E'\ F')~ the set of <-minimal elements in F'\ F. For F(d) as defined
in (4), and any admissible weight functions w : E — N, Faigle [8] showed that
the following ordered greedy algorithm determines an ideal of minimal weight in
F(d) (provided F(d) # 0):

ALGORITHM 2. Ordered Greedy Algorithm
1 F <+ 0
2 for k=1,...,ddo
3 Let ey « argmin{w(e) :e € (E\ F)” and F +e € F};
4 F +— F +eyg;
5 end
6 Return F;

In fact, the greedy algorithm determines in each iteration £ < d an ideal of
minimal weight in F(k). The following proposition arises as a consequence of
the discussion above and implies Lemma 1.

Proposition 2. Let F C D(P) as defined in (3), k € N, and w : E — R
admissible. Suppose F' is of minimal w-weight in F (k). Then there exists e €
E\ F such that F + e is of minimal w-weight in F(k + 1)

Due to the reduction of integral polymatroids to ordinary matroids, most of
the structural properties of matroids carry over to integral polymatroids. For
example, the following proposition follows as a consequence of the well-known
fact, that for any basis B of an ordinary matroid M which is not of minimal
weight, there exists a local improvement step towards a basis B —e+ f of smaller
weight.

Proposition 3. Suppose F' € F(k) is not of minimal w-weight for some ad-
missible function w : E — R. Then there exists some local improvement step
F — F —e+g e F(k) such that w(e) > w(g).

The possibility to improve a non-optimal basis by local steps, as well as the
possibility to uncross tight constraints due to the submodularity of the rank
functions, are the main ingredients of the proof of the following theorem, which
implies Lemma 2. We defer the proof to the full version of the paper.

Theorem 2. Let F' € F(k) be of minimal weight w.r.t. the admissible weight
Sfunction w. If the weight function w differs from w only on chain K- such that

_ _Jw(rk), if v £ ¥,
o(re) = {w(rkﬂ), else,

then there exists F' = F — e + g € F(k) of minimal weight w.r.t. .
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