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Abstract We study a class of finite strategic games with the property that every
deviation of a coalition of players that is profitable to each of its members strictly
decreases the lexicographical order of a certain function defined on the set of strategy
profiles. We call this property the lexicographical improvement property (LIP) and
show that, in finite games, it is equivalent to the existence of a generalized strong
potential function. We use this characterization to derive existence, efficiency and
fairness properties of strong equilibria (SE). As our main result, we show that an
important class of games that we call bottleneck congestion games has the LIP and
thus the above mentioned properties. For infinite games, the LIP does neither imply the
existence of a generalized strong potential nor the existence of SE. We therefore intro-
duce the slightly more general concept of the pairwise LIP and prove that whenever
the pairwise LIP is satisfied for a continuous function, then there exists a SE. As a
consequence, we show that splittable bottleneck congestion games with continuous
facility cost functions possess a SE.
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1 Introduction

The theory of non-cooperative games studies situations that involve rational and self-
ish agents who are motivated by optimizing their own utilities rather than reaching
some social optimum. In his seminal work Nash (1950) showed that every finite non-
cooperative game has an equilibrium in mixed strategies. It is well known that mixed
or correlated strategies have no meaningful physical interpretation for many strategic
games arising in practice; see also the discussion by Osborne and Rubinstein (1994,
§ 3.2) about critics on mixed Nash equilibria. For such games, one usually resorts to
pure strategies, and pure Nash equilibria (PNE) are the solution concept of choice. A
PNE is a strategy profile such that no player has an incentive to unilaterally change
her pure strategy. While the PNE concept excludes the possibility that a single player
can unilaterally improve her utility, it does not necessarily imply that a PNE is stable
against coordinated deviations of a group of players if their joint deviation is profitable
for each of its members. So when coordinated actions are possible, the Nash equilib-
rium concept is not sufficient to analyze stable states of a game. To cope with the issue
of coordination, we adopt the solution concept of a strong equilibrium (SE for short)
proposed by Aumann (1959). In a SE, no coalition (of any size) can deviate and strictly
improve the utility of each of it members (while possibly lowering the utility of players
outside the coalition). Clearly, every SE is a PNE, but not conversely. Thus, although
SE may rarely exist, they constitute a very robust and appealing stability concept.

One of the most successful approaches to establish the existence of PNE in finite
games is the potential function method introduced by Rosenthal (1973) and later for-
malized by Monderer and Shapley (1996). One defines a real-valued function P on the
set of strategy profiles of the game and shows that every improving move of a single
player strictly reduces the value of P . Since the set of strategy profiles of such a (finite)
game is finite, every sequence of improving moves reaches a PNE. In particular, every
local minimum1 of P is a PNE. Holzman and Law-Yone (1997) generalized this con-
cept to generalized strong potential functions. Here, it is required that every improving
move of a coalition (that is profitable to each of its members) strictly reduces the value
of P . Clearly, the global minimum of a generalized strong potential is an SE, while
the local minima of P correspond to (potentially non-strong) PNE.

In a recent line of research (Fabrikant et al. 2004; Even-Dar et al. 2007; Andelman
et al. 2009), lexicographical arguments have been used to prove the existence of
SE. Here, it is argued that the strategy profile that minimizes the vector of the play-
ers’ private costs with respect to the lexicographical order is a PNE or an SE. In
this paper, we formalize and generalize this approach. We consider strategic games
G = (N , X, π), where N is the set of players, X the strategy space, and players
experience non-negative private costs πi (x), i ∈ N , for a strategy profile x . We say

1 Here, a local minimum is a strategy profile with the property that each other strategy profile that is
reachable by a unilateral deviation has no smaller value of P .
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that G has the lexicographical improvement property (LIP) if there exists a vector-
valued function φ : X → R

q
+, q ∈ N, such that every improving move (profitable

deviation of an arbitrary coalition) from x ∈ X strictly reduces φ(x) with respect to
the sorted lexicographical order. We say that G has the π -LIP if G satisfies the LIP
with φi (x) = πi (x), i ∈ N . Clearly, requiring q = 1 in the definition of the LIP
reduces to the case of a generalized strong potential.

The main focus of this paper is twofold. First, we show that arbitrary finite games
with the π -LIP possess at least one SE with certain efficiency and fairness properties
(a formal definition of these properties will be given in Sect. 3). Second, we identify
an important and quite general class of games, the bottleneck congestion games, for
which we can prove the π -LIP and, hence, prove that these games possess SE with
the above mentioned properties.

Before we outline our results in more detail, let us give an informal definition of
bottleneck congestion games. In a standard congestion game, there is a set of facil-
ities, and the pure strategies of players are subsets of this set. Each facility f has
a cost that is a function of its load that is usually defined as the number (or total
weight) of players that select strategies containing f . The private cost of a player’s
strategy in a standard congestion game is the sum of the costs of the facilities in her
strategy. In a bottleneck congestion game, the private cost of a player is equal to the
cost of the most expensive facility that she uses (L∞-norm of the vector of players’
costs of the strategy). Bottleneck congestion games occur in many real-world applica-
tions, e.g., communication networks. Referring to Banner and Orda (2007), Cole et al.
(2006), Keshav (1997) and Qiu et al. (2006), the throughput of a stream of packets
in a communication network is usually determined by the available bandwidth or the
capacity of the weakest links. This aspect is captured more realistically by bottleneck
congestion games in which the individual cost of a player is the maximum (instead of
the sum) of the delays in her strategy. Although these games constitute a more realistic
model for network routing than classical congestion games, they have not received
similar attention in the literature.

1.1 Our results

We first show that a finite game has the LIP if and only if it has a generalized strong
potential. The proof is constructive, that is, given a game G having the LIP for a func-
tion φ, we explicitly construct a generalized strong potential P . We further investigate
games having the π -LIP with respect to efficiency and fairness of SE. Our character-
ization implies that each game with the π -LIP possesses at least one SE that satisfies
various efficiency and fairness properties, e.g., Pareto efficiency and min–max fairness.
Moreover, we derive tight bounds on the strong prices of stability and anarchy.

One of our main results shows that bottleneck congestion games have the π -LIP
and, thus, possess SE with the above mentioned properties. Moreover, our characteriza-
tion of games having the LIP implies that bottleneck congestion games have the strong
finite improvement property (FIP). Note that for congestion games with singleton strat-
egies (where the concepts of standard congestion games and bottleneck congestion
games coincide), Even-Dar et al. (2007) and Fabrikant et al. (2004) have already proved
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existence of PNE by arguing that the vector of facility costs decreases lexicographically
for every improving move. Andelman et al. (2009) used the same argument to even
establish existence of SE in this case. Our work generalizes these results to arbitrary
strategy spaces and more general facility cost functions. In contrast to most congestion
games considered so far, we require only that the facility cost functions satisfy three
properties: “non-negativity”, “independence of irrelevant choices”, and “monotonic-
ity”. Roughly speaking, the second and third condition assume that the cost of a facility
solely depends on the set of players using that facility and that the cost decreases if
some players leave that facility, respectively. Thus, this framework extends classical
load-based models in which the cost of a facility depends on the number or total
weight of players using it. Our assumptions are weaker than in the load-based models
and even allow that the cost of a facility may depend on the set of players using it.

We then study infinite games, that is, games with infinite strategy spaces that can
be described by compact subsets of R

p, p ∈ N. We slightly generalize the LIP by
introducing the notion of a pairwise vector-valued potential function φ : X → R

q
+ ×

R
q
+, q ∈ N. Informally, G has the pairwise LIP if every coalitional improving move

from x ∈ X strictly reduces a certain lexicographical order of φ(x) (see Sect. 5 for the
formal definition). We prove that continuity of φ in the definition of the pairwise LIP
is sufficient for the existence of SE. We then introduce splittable bottleneck congestion
games. A splittable bottleneck congestion game arises from a bottleneck congestion
game G by allowing players to fractionally distribute a certain demand over the pure
strategies of G. We prove that these games have the pairwise LIP provided that the
facility cost functions satisfy the three properties of “non-negativity”, “independence
of irrelevant choices”, and “monotonicity”. If the facility cost functions are also con-
tinuous, we obtain the pairwise LIP for a continuous function φ and thus obtain the
existence of SE for splittable bottleneck congestion games. For bounded cost functions
on the facilities (that may be discontinuous), we show that α-approximate SE exist for
every α > 0.

1.2 Further related work

The concept of a SE was introduced by Aumann (1959) and refined by Bernheim
et al. (1987) to coalition-proof Nash equilibria (CPNE). These are states that are sta-
ble against those deviations that are themselves stable against further deviations by
subsets of the original coalition. This implies that every SE is also a CPNE, but not
conversely.

Congestion games were introduced by Rosenthal (1973) and have been further stud-
ied by Monderer and Shapley (1996). Holzman and Law-Yone (1997) explored the
existence of SE in congestion games with monotone increasing cost functions. They
showed that SE need not exist and gave a structural characterization of the strategy
space for symmetric (and quasi-symmetric) congestion games that admit SE. Based
on the previous work of Monderer and Shapley (1996), they also introduced the con-
cept of a generalized strong potential function, i.e. a function on the set of strategy
profiles that decreases for every profitable deviation of a coalition. Rozenfeld and
Tennenholtz (2006) further explored the existence of (correlated) SE in congestion
games with non-increasing cost functions.
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Another generalization of congestion games has been proposed by Milchtaich
(1996), who allows for player-specific facility cost functions (for subsequent work
on weighted congestion games with player-specific facility cost functions see also
Mavronicolas et al. 2007; Gairing et al. 2006; Ackermann et al. 2009). Milchtaich
proves existence of PNE under restrictions on the strategy space (singleton strate-
gies). As shown by Voorneveld et al. (1999), the model of Konishi et al. (1997a)
is equivalent to that of Milchtaich, which is worth noting as Konishi et al. (1997a)
established the existence of SE in these games.

Several authors studied the existence and efficiency of PNE and SE in specific
classes of congestion games. For example, Even-Dar et al. (2007) showed that job
scheduling games (on unrelated machines) have a PNE by arguing that the load-lexi-
cographically minimal schedule is a PNE. Fabrikant et al. (2004) considered a sched-
uling model in which the processing time of a machine may depend on the set of jobs
scheduled on that machine. For this model, they proved existence of PNE analogous
to the proof of Even-Dar et al. Andelman et al. (2009) considered scheduling games
on unrelated machines and proved that the load-lexicographically minimal schedule
is even an SE. They also studied differences between PNE and SE and derived bounds
on the (strong) price of anarchy and stability, respectively. Chien and Sinclair (2009)
recently studied the strong price of anarchy of SE in general congestion games.

Bottleneck congestion games with network structure have been considered by Ban-
ner and Orda (2007). They studied existence of PNE in the unsplittable flow and in the
splittable flow setting, respectively. They observed that standard techniques (such as
Kakutani’s fixed-point theorem) for proving existence of PNE do not apply to bottle-
neck routing games, as the players’ private cost functions may be discontinuous. They
proved existence of PNE by showing that bottleneck games are better reply secure,
quasi-convex, and compact. Under these conditions, they recall Reny’s existence the-
orem (1999) for better reply secure games with possibly discontinuous private cost
functions. Banner and Orda, however, do not study SE. Note that our proof of the
existence of SE is direct and constructive. Bottleneck routing with non-atomic players
and elastic demands has been studied by Cole et al. (2006). Among other results, they
derived bounds on the price of anarchy. For subsequent work on the price of anarchy
in bottleneck routing games with atomic and non-atomic players, we refer to the paper
by Mazalov et al. (2006).

After publication of a preliminary version of this paper (Harks et al. 2009), there
has been subsequent work on the computational complexity of SE and their worst-case
inefficiency. Harks et al. (2010) settled the complexity of computing SE for the unit-
demand model. Werth et al. (2011) studied bottleneck congestion games on networks
with weighted demands and identified cases in which there are efficient algorithms
computing SE; de Keijzer et al. (2010) investigated the worst-case inefficiency of SE
in bottleneck congestion games with affine linear cost functions.

2 Preliminaries

We consider strategic games G = (N , X, π), where N = {1, . . . , n} is the non-
empty and finite set of players, X = ×i∈N

Xi is the non-empty strategy space, and
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π : X → R
n+ is the combined private cost function that assigns a private cost vector

π(x) to each strategy profile x ∈ X . These games are cost minimization games and we
assume additionally that the private cost functions are non-negative. A strategic game
is called finite if X is finite. We use standard game theory notation; for a coalition
S ⊆ N we denote by −S its complement and by X S = ×i∈S

Xi we denote the set
of strategy profiles of players in S.

Definition 1 (Strong equilibrium (SE)) A strategy profile x is a SE if there is no
coalition ∅ �= S ⊆ N that has an alternative strategy profile yS ∈ X S such that
πi (yS, x−S)− πi (x) < 0 for all i ∈ S.

A pair
(
x, (yS, x−S)

) ∈ X × X is called an improving move (or profitable devia-
tion) of coalition S if πi (xS, x−S)−πi (yS, x−S) > 0 for all i ∈ S. We denote by I (S)
the set of improving moves of coalition S ⊆ N in a strategic game G = (N , X, π)
and we set I = ⋃

S⊆N I (S). We call a sequence of strategy profiles γ = (x0, x1, . . .)

an improvement path if every pair (xk, xk+1) ∈ I for all k = 0, 1, 2, . . . . One
can interpret an improvement path as a path in the improvement graph G(G) derived
from G, where every strategy profile x ∈ X corresponds to a node in G(G) and two
nodes x, x ′ are connected by a directed edge (x, x ′) if and only if (x, x ′) ∈ I . An
important property of finite strategic games is the FIP. This property requires that
each improvement path of unilateral improvements is finite. Equivalently, we say that
G has the strong FIP (SFIP) if every improvement path is finite. Clearly, the SFIP
implies the FIP, but not conversely. A necessary and sufficient condition for the SFIP
is the existence of a generalized strong potential function, which we define below (see
also Monderer and Shapley 1996; Holzman and Law-Yone 1997).

Definition 2 (Generalized strong potential game) A strategic game G = (N , X, π)
is called a generalized strong potential game if there is a function P : X → R such
that P(x) − P(y) > 0 for all (x, y) ∈ I . P is called a generalized strong potential
of G.

In this paper, we define an equivalent property, the LIP. For this purpose, we will
first define the sorted lexicographical order.

Definition 3 (Sorted lexicographical order) Let a, b ∈ R
q
+ and denote by ã, b̃ ∈ R

q
+

be the sorted vectors derived from a, b by permuting the entries in non-increasing
order, that is, ã1 ≥ · · · ≥ ãq and b̃1 ≥ · · · ≥ b̃q . Then, a is strictly sorted lexico-
graphically smaller than b (written a ≺ b) if there exists an index m such that ãi = b̃i

for all i < m, and ãm < b̃m . The vector a is sorted lexicographically smaller than b
(written a � b) if either a ≺ b or ã = b̃.

The LIP of a strategic game requires that there is a vector-valued function φ : X →
R

q
+ that is strictly decreasing with respect to the sorted lexicographical order on R

q
+

for every improvement step.

Definition 4 (Lexicographical improvement property, π -LIP) A finite strategic game
G = (N , X, π) has the LIP if there exist q ∈ N and a function φ : X → R

q
+ such

that φ(x) � φ(y) for all (x, y) ∈ I . G has the π -LIP if G has the LIP for φ = π .
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If a game G has the LIP for a function φ, we will call φ a generalized strong
vector-valued potential of G. Clearly, the function φ is a generalized strong potential
if q = 1. The next proposition states that the LIP is equivalent to the existence of a
generalized strong potential, regardless of q.

Proposition 1 Let G = (N , X, π) be a finite strategic game. Then, the following
statements are equivalent.

1. G has a generalized strong vector-valued potential φ : X → R
q
+, q ∈ N.

2. G has a generalized strong potential function P : X → R+.

Proof We only prove 1. ⇒ 2. as the reverse direction is trivial. We will show
that PM (x) = ∑q

i=1 φi (x)M is a generalized strong potential for M large enough.
Let S ⊆ N and (x, (yS, x−S)) ∈ I (S) be arbitrary. We will calculate PM ′(x) −
PM ′(yS, x−S) = ∑q

i=1(φi (x)M ′ − φi (yS, x−S)
M ′
) for some M ′. To this end, let us

denote by φ̃(x) and φ̃(yS, x−S) the vectors that arise by sorting φ(x) and φ(yS, x−S)

in non-increasing order. As φ(yS, x−S) ≺ φ(x), there is an index m ∈ {1, . . . , q}
such that φ̃i (x) = φ̃i (yS, x−S) for all i < m and φ̃m(x) < φ̃m(yS, x−S). We then
obtain

PM ′(x)− PM ′(yS, x−S) =
q∑

i=1

φi (x)
M ′ −

q∑

i=1

φi (yS, x−S)
M ′

= φ̃m(x)
M ′ − φ̃m(yS, x−S)

M ′ +
q∑

i=m+1

φ̃i (x)
M ′ −

q∑

i=m+1

φ̃i (yS, x−S)
M ′

≥ φ̃m(x)
M ′ − φ̃m(yS, x−S)

M ′ − (q − m)φ̃m(yS, x−S)
M ′

≥ φ̃m(x)
M ′ − qφ̃m(yS, x−S)

M ′
. (1)

Standard calculus shows that the expression on the right hand side of (1) is positive if

M ′ > log(q)/
(
log(φ̃m(x))− log(φ̃m(yS, x−S))

)
> 0.

Clearly, M ′ depends on (x, y) ∈ I , but as the number of improvement steps is finite,
we may chose M = max(x, y)∈I M ′(x, y) and obtain the claimed result. ��

3 Efficiency and fairness of SE in games with the π -LIP

As the LIP implies the existence of SE, it is natural to investigate efficiency and fairness
properties of these SE. We here consider strict Pareto efficiency, min–max fairness,
strong price of anarchy, and strong price of stability.

3.1 Pareto efficiency

Pareto efficiency is one of the fundamental concepts studied in the economics liter-
ature, see Mas-Colell et al. (1995). For a strategic game G = (N , X, π), a strategy
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profile x is called weakly Pareto efficient if there is no y ∈ X such that πi (y) <
πi (x) for all i ∈ N . A strategy profile x is strictly Pareto efficient if there is no
y ∈ X such that πi (y) ≤ πi (x) for all i ∈ N , where at least one inequality is strict.
So strictly Pareto efficient strategy profiles are those for which every improvement
of a coalition of players is at the expense of at least one player not in the coalition.
Pareto efficiency has also been studied in the context of standard congestion games
(with sum-objective). Holzman and Law-Yone (1997) give sufficient conditions on
the strategy spaces of congestion games that guarantee the existence of an SE which
is strictly Pareto efficient, and Chien and Sinclair (2009) quantify the social welfare
achieved in weakly Pareto efficient PNE.

Clearly, every SE is weakly Pareto optimal as it is resilient against a profitable devi-
ation of the whole player set N . In games with theπ -LIP this result can be strengthened
in the sense that there always is an SE, that is even strictly Pareto efficient.

Theorem 1 Let G be a finite strategic game having the π -LIP. Then there exists an
SE that is strictly Pareto optimal.

Proof The sorted lexicographical minimum x of π is an SE. To see that it also strictly
Pareto efficient, assume by contradiction that there is y ∈ X and a player i such that
πi (y) < πi (x) and π j (y) ≤ π j (x) for all j ∈ N \ {i}. Then, y ≺ x , contradicting the
minimality of x . ��

3.2 Min–max-fairness

Min–max fairness is a central topic in resource allocation in communication networks,
see Srikant (2003) for an overview and pointers to the large body of research in this
area. While strict Pareto efficiency requires that there is no alternative profile that
improves the cost for a single player without strictly deteriorating the costs of the
other players, the notion of min–max-fairness is stronger. A profile x is called min–
max fair if for any other strategy profile y with πi (y) < πi (x) for some i ∈ N , there
exists either j ∈ N \ {i} such that π j (x) ≥ πi (x) and π j (y) > π j (x), or there exists
j ∈ N \{i} such thatπ j (x) < πi (x) andπ j (y) ≥ πi (x). Note that in contrast to Pareto
efficiency, an improvement that increases the cost of a player with smaller original
cost is allowed (up to the threshold πi (x)). It is easy to see that every min–max-fair
strategy profile is a strictly Pareto efficient state, but not conversely.

Theorem 2 Let G be a finite strategic game having the π -LIP. Then, there exists an
SE that is min–max fair.

Proof We show that the strategy profile x minimizing π with respect to the sorted lex-
icographical order � is min–max fair. Assume by contradiction that there is another
strategy profile y such that πi (y) < πi (x) for some i ∈ N and the following two
statements hold:

1. π j (y) ≤ π j (x) for all j ∈ N \ {i} with π j (x) ≥ πi (x).
2. π j (y) < πi (x) for all j ∈ N \ {i} with π j (x) < πi (x).
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We observe that every entry of π(x), that is larger than πi (x) only decreases under
y, while every entry strictly smaller than πi (x) may only increase to a value strictly
smaller than the threshold πi (x). Since the value πi (x) strictly decreases under y, we
obtain π(y) ≺ π(x), contradicting the minimality of x . ��

3.3 Price of stability and price of anarchy

To quantify the efficiency loss of selfish behavior with respect to a predefined social
cost function, two notions have evolved. The price of anarchy has been introduced
by Koutsoupias and Papadimitriou (1999) in the context of congestion games and is
defined as the ratio of the cost of the worst PNE and that of the social optimum. A
more optimistic performance index termed the price of stability measures the ratio
of the cost of the best PNE and that of the social optimum (Anshelevich et al. 2004,
2008). Both concepts have been studied extensively in computer science and opera-
tions research, see Nisan et al. (2007, Part III) for a survey. More recently, they have
also been studied in economics, see e.g. Johari and Tsitsiklis (2004), Moulin (2008).

Andelman et al. (2009) propose to study also the worst case ratio of the cost of an
SE and that of a social optimum, which they term the strong price of anarchy. Clearly,
the strong price of anarchy is not larger than the price of anarchy. For some classes of
games this inequality is strict, see e.g. the results of Czumaj and Vöcking (2007) and
Fiat et al. (2007) on the price of anarchy and strong price of anarchy of scheduling
games on related machines, respectively. Andelman et al. (2009) also define the strong
price of stability in the obvious way as the ratio of the cost of a best SE and that of a
social optimum. Formally, given a game G = (N , X, π) and a social cost function
C : X → R+, whose minimum is attained in a strategy profile y ∈ X , let XSE ⊆ X
denote the set of SE. Then, the strong price of anarchy for G with respect to C is
defined as supx∈XSE C(x)/C(y) and the strong price of stability for G with respect
to C is defined as inf x∈XSE C(x)/C(y). We will consider the following natural social
cost functions: the sum-objective or L1-norm defined as L1(x) = ∑

i∈N πi (x), the
L p-objective or L p-norm, p ∈ N, defined as L p(x) = (

∑
i∈N πi (x)p)1/p, and the

min–max objective or L∞-norm defined as L∞(x) = maxi∈N {πi (x)}.
Theorem 3 Let G be a finite strategic game with the π -LIP. Then, the strong price of
stability wrt L∞ is 1, and, for any p ∈ N, the strong price of stability wrt L p is less
than or equal to n1/p.

Proof To see that the strong price of stability wrt L∞ is 1, note that a lexicographical
minimum x∗ of π is an SE. By construction, x∗ minimizes L∞.

For L p we first show that for arbitrary p, q ∈ N with p < q and x ∈ R
n+ we

have L p(x) ≤ n1/p−1/q Lq(x) and L p(x) ≤ n1/p L∞(x). To see the first inequality,
let a = q

p > 1 and b > 0 be such that 1
a + 1

b = 1. With Hölder’s inequality we obtain

L p(x) =
( n∑

i=1

x p
i

)1/p≤
(( n∑

i=1

x p·a
i

)1/a( n∑

i=1

1
)1/b

)1/p

= n1/(pb)Lq(x) = n1/p−1/q Lq(x).
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(a) (b)

Fig. 1 a Private costs received by the players for strategy profiles X1 × X2 of the game considered in
Example 1. b A game with unbounded price of anarchy wrt any L p-norm as considered in Example 2

For the L∞-norm we have a = ∞ and b = 1, thus, we obtain L p(x) ≤ n1/p L∞.
Next, let x∗ be a lexicographical minimum of π . Fix p ∈ N and let y be a strat-

egy profile minimizing L p. We derive L p(x∗) ≤ n1/p L∞(x∗) ≤ n1/p L∞(y) ≤
n1/p L p(y), where we use for the second inequality that x∗ minimizes L∞ and for the
third inequality that the L p-norm is decreasing in p. ��

We now provide an example of a class of games with the π -LIP whose parameters
can be chosen in such a way that the strong price of stability wrt L p is arbitrarily close
to n1/p, implying that the result of Theorem 3 is tight.

Example 1 (Strong price of stability) Consider the game G = (N , X, π) with N =
{1, . . . , n}, X1 = {u, d}, X2 = {l, r} and Xi = {z} for 3 ≤ i ≤ n. For k > ε, the
private costs are shown in Fig. 1a. It is straightforward to check that this game has
the π -LIP. The unique SE is the strategy profile (u, l, z, . . . , z) realizing a private
cost vector of (k − ε, . . . , k − ε). For any p ∈ N, there is ε > 0 such that L p(·) is
maximized in strategy profile (d, l, z, . . . , z) realizing a cost vector of (k, 0, . . . , 0).
Hence the price of stability approaches n1/p.

So far, our results concern the strong price of stability only. The next example shows
that games with the π -LIP may have an unbounded strong price of anarchy.

Example 2 (Strong price of anarchy) Consider the game G = (N , X, π) with N =
{1, 2}, X1 = {u, d}, X2 = {l, r} and private costs given in Fig. 1b for any k > 0.
It is straightforward to check that this game has the π -LIP and that both (u, l) and
(d, r) are SE. Hence, the price of anarchy wrt any L p norm is unbounded from above.

4 Bottleneck congestion games

We now present a rich class of finite games satisfying the π -LIP. We call these games
bottleneck congestion games. They are natural generalizations of variants of congestion
games. In contrast to standard congestion games, we focus on bottleneck-objectives,
that is, the cost of a player only depends on the highest cost of the facilities she uses.
For the sake of a clean mathematical definition, we introduce the general notion of a
congestion model.

Definition 5 (Congestion model) A tuple M = (N , F, X, (c f ) f ∈F ) is called a con-
gestion model if N = {1, . . . , n} is a non-empty, finite set of players, F = {1, . . . ,m}
is a non-empty set of facilities, and X = ×i∈N

Xi is the set of strategies. For each
player i ∈ N , her collection of pure strategies Xi is a non-empty set of subsets of F .
Given a strategy profile x , we define N f (x) = {i ∈ N : f ∈ xi } for all f ∈ F. Every
facility f ∈ F has a cost function c f : X → R+ satisfying
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Non-negativity: c f (x) ≥ 0 for all x ∈ X ,
Independence of Irrelevant Choices:c f (x)=c f (y) for all x, y ∈ X with N f (x)=
N f (y),
Monotonicity: c f (x) ≤ c f (y) for all x, y ∈ X with N f (x) ⊆ N f (y).

We now define bottleneck congestion games relative to a congestion model.

Definition 6 (Bottleneck congestion game) Let M = (N , F, X, (c f ) f ∈F ) be a
congestion model. The corresponding bottleneck congestion game is the strate-
gic game G(M) = (N , X, π) in which π is defined as π = ×i∈N

πi and

πi (x) = max f ∈xi c f
(
x
)
.

A bottleneck congestion game with |xi | = 1 for all xi ∈ Xi and i ∈ N will be called
a singleton bottleneck congestion game. Note that for singleton strategies, congestion
games with bottleneck objective and congestion games with sum-objective coincide.

Our assumptions on the cost functions are weaker than in the load-based models
often used in the congestion games literature, e.g., Banner and Orda (2007). In our
approach, we only require that the cost function c f (x) of facility f for strategy profile
x depends on the set of players using f in x and that costs are increasing with larger
sets. Note that this may cover, e.g., dependencies on the identities of players using
f . Our condition “Independence of Irrelevant Choices” is also weaker than the one
frequently used in the literature. In Konishi et al. (1996, 1997a,b), the definition of
“Independence of Irrelevant Choices” requires that the strategy spaces are symmetric
and, given a strategy profile x = (x1, . . . , xn), the utility of a player i depends only
on her own choice xi and the cardinality of the set of other players who also choose
xi . On the one hand, our model is more general as it does neither require symmetry of
strategies, nor that the utility of player i only depends on the set-cardinality of other
players who also choose xi . On the other hand, the model of Konishi et al. allows for
player-specific facility cost functions, which our model does not. For the relationship
between games considered by Konishi et al. (1996, 1997a,b) and congestion games,
see the discussion in Voorneveld et al. (1999).

Before we prove that bottleneck congestion games have the π -LIP and thus possess
an SE with the efficiency and fairness properties shown in the last section, we give a
series of examples of games that fit into the rich class of bottleneck congestion games
and show how they are related to the literature.

4.1 Scheduling games

Scheduling games model situations in which each player controls a task that needs
to be processed by one machine out of a finite number of available machines, see
Vöcking (2007) for a survey. In each strategy profile every player i ∈ N selects a single
machine on which her job is processed. In the most general machine model of unre-
lated machines each job is associated with a machine-dependent weight wi, f ∈ R+.
Scheduling games are singleton bottleneck congestion games where the cost func-
tion of machine f is defined as c f (x) = ∑

i∈N : xi ={ f }wi, f . This function satisfies
non-negativity, independence of irrelevant choices and monotonicity. The existence

123



T. Harks et al.

of SE in scheduling games has been established before by Andelman et al. (2009) by
arguing that the lexicographically minimal schedule is a SE. They also showed that the
strong price of stability wrt L∞ is 1. Note that our general framework of bottleneck
congestion games allows more complex cost structures on the machines than in these
classical load-based models. One such example are dependencies between the weights
of jobs on the same machine.

4.2 Resource allocation in wireless networks

Interference games are motivated by resource allocation problems in wireless net-
works. Consider a set of n terminals that want to connect to one out of m available
base stations. Terminals assigned to the same base station impose interferences among
each other as they use the same frequency band. We model the interference relations
by an undirected interference graph D = (V, E), where V = {1, . . . , n} is the set of
vertices/terminals and an edge e = (v, w) between terminals v, w has a non-negative
weight we ≥ 0 representing the level of pair-wise interference. We assume that the
service quality of a base station j is proportional to the total interferencew( j), which
is defined as w( j) = ∑

(v,w)∈E : xv=xw= j w(v,w).

We now obtain an interference game as follows. The nodes of the graph are the
players, the set of strategies is given by Xi = {{1}, . . . , {m}}, i = 1, . . . , n, that is,
the set of base stations, and the private cost function for every player is defined as
πi (x) = w(xi ), i = 1, . . . , n. Interference games fit into the framework of singleton
bottleneck congestion games with m facilities.

Note that in interference games, we crucially exploit the property that facility cost
functions depend on the set of players using the facility, that is, their identity deter-
mines the resulting cost. The existence of an SE in all interference games follows from
our main theorem, while most previous game-theoretic works addressing wireless net-
works only considered Nash equilibria, see for instance Liu and Wu (2008) and Etkin
et al. (2007).

4.3 Bottleneck routing in networks

A special case of bottleneck congestion games are bottleneck routing games. Here,
the set of facilities are the edges of a directed or undirected graph D = (V, E). Every
edge e ∈ E has a load dependent cost function ce. Every player is associated with a
pair of vertices (si , ti ) and a fixed demand di > 0 that she wishes to send along the
chosen path in D connecting si to ti . The private cost for every player is the maximum
arc cost along the path, which is a common assumption for data routing in computer
networks, see Keshav (1997), Banner and Orda (2007), Cole et al. (2006), Qiu et al.
(2006). The existence of PNE in bottleneck routing games has been studied before
by Banner and Orda (2007). They, however, did not study the existence of SE. To the
best of our knowledge, our main result (Theorem 4) establishes for the first time that
bottleneck routing games have the FIP, while Banner and Orda (2007) only proved
that best-response dynamics converge.
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4.4 Existence of SE

We are now ready to state our main result for bottleneck congestion games, providing
a large class of games that satisfies the π -LIP.

Theorem 4 Every bottleneck congestion game has the π -LIP.

Proof For an arbitrary improving move (x, (yS, x−S)) ∈ I , let j ∈ S be
a member of the coalition with highest cost before the improvement step, i.e.,
j ∈ arg maxi∈S πi (x). We set N+ = {i ∈ −S : πi (x) ≥ π j (x)} and claim
that πi (x) ≥ πi (yS, x−S) for all i ∈ N+. To see this, suppose there is i ∈ N+ such
that πi (x) < πi (yS, x−S). The independence of irrelevant choices and the monoto-
nicity of the cost functions imply that there is a member k ∈ S of the coalition with
yk ∩ xi �= ∅. We obtain

π j (x) ≥ πk(x) > πk(yS, x−S) ≥ πi (yS, x−S) > πi (x),

which contradicts i ∈ N+. Next, we define N− = {i ∈ −S : πi (x) < π j (x)} and
claim that πi (yS, x−S) < π j (x) for all i ∈ N−. To see this, suppose there is i ∈ N−
such that πi (yS, x−S) ≥ π j (x). Because π j (x) ≥ πi (x), the independence of irrele-
vant choices and the monotonicity of the cost functions, there is a member k ∈ S of
the coalition with yk ∩ xi �= ∅ giving rise to

π j (x) ≥ πk(x) > πk(yS, x−S) ≥ πi (yS, x−S) ≥ π j (x),

which is a contradiction. Note that N = N+ ∪ N− ∪ S and that we have shown
πi (x) ≥ πi (yS, x−s) for all i ∈ N+ and πi (yS, x−S) < π j (x) for all i ∈ N−. As the
private cost of the players with cost larger than π j (x) does not increase, the private
cost of player j strictly decreases, and the private costs of all other players may only
increase up to a value strictly smaller than π j (x), we have π(x) � π(yS, x−S) as
claimed. ��

As a corollary of Theorem 4 we obtain that bottleneck congestion games possess
SE with the efficiency and fairness properties shown in Sect. 3. Note that our exis-
tence result holds for arbitrary strategy spaces. This contrasts a result of Holzman and
Law-Yone (1997) who have shown that, for standard congestion games (with sum-
objective), a certain combinatorial property of the players’ strategy spaces (called good
configuration) is necessary and sufficient for the existence of SE.

In bottleneck congestion games, the vector-valued potential function need not be
unique. In fact, one can prove with similar arguments as in the proof of Theorem 4 that
the function ψ : X → R

mn+ defined as ψi, f (x) = c f (x), if f ∈ xi , and ψi, f = 0,
otherwise, decreases lexicographically along any improvement path. Moreover, if cost
functions are strictly monotonic, one can show along the same lines that also the func-
tion υ : X → R

m defined as υ(x) = (c f (x)) f ∈F has this property. Interestingly, the
lexicographical minima of the functions π, ψ , and υ need not coincide, as illustrated
in the following example.
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Fig. 2 Bottleneck routing game
with multiple SE

Example 3 Consider the symmetric bottleneck routing game with two players N =
{1, 2} depicted in Fig. 2. Here, edges correspond to facilities; the cost of each edge
depends only on the number of players using it and is given explicitly for the two possi-
ble values. The strategy set Xi of each player i ∈ N comprises all paths from s to t , that
are P1 = {(sa), (at)}, P2 = {(sb), (bc), (cd), (dt)} and P3 = {(sb), (ba), (at)}.
There are three types of SE. In the first type, one player plays P1 and the other player
plays P2. Here, the player on P1 experiences a cost of 0 while the player on P2 expe-
riences a cost of 1. It is easy to see, that (upon permutation of the two players) this
strategy profile is the unique lexicographical minimum of π . In the second type of SE
one player chooses P1 while the other player chooses P3. Here, both players expe-
rience a cost of 1, thus this SE is not strictly Pareto efficient. It is easy to see that
this equilibrium minimizes lexicographically both ψ and ν. There is a third SE where
both players choose P1. This profile minimizes none of the functions π,ψ , and υ.
These different SE have also different efficiency properties. While the lexicographical
minimum xπ of π is strictly Pareto efficient and min–max fair (as show in Theorems 1
and 2), the lexicographical minimum xυ of υ has the property that it is strictly Pareto
efficient with respect to using the resources, i.e., there is no strategy profile y ∈ X such
that c f (y) ≤ c f (xυ) for all f ∈ F where at least one of these inequalities is strict.

5 Infinite strategic games

We now consider infinite strategic games in which the players’ strategy sets are topo-
logical spaces and the private cost functions are defined on the product topology.
Formally, an infinite game is a tuple G = (N , X, π), where N = {1, . . . , n} is a set
of players, and X = X1 ×· · ·× Xn is the set of pure strategies, where we assume that
Xi ⊆ R

ni , ni ∈ N, i ∈ N are compact sets. The cost function of player i is defined by
a non-negative real-valued function πi : X → R+, i ∈ N . Turning from finite games
to infinite games, it becomes more complicated to characterize structural properties
of games having the LIP. First, Proposition 1 is no longer valid, that is, infinite games
with the LIP need not possess a generalized strong potential.2 Also the existence of

2 This observation resembles Debreu’s (1954) result showing that the lexicographical ordering on an
uncountable subset of R

2 cannot be represented by a real-valued function.
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an SE does not immediately follow. The global minimum of the function φ associated
with the LIP need not exist as the strategy space is not finite. We will show that con-
tinuity of φ is sufficient for the existence of an SE. However, this assumption may be
too strong for many classes of games. For instance, the splittable version of bottleneck
congestion games (formally defined in Sect. 5.1) has the π -LIP but the function π
may be discontinuous in general.

To obtain existence results for SE also for splittable bottleneck congestion games,
we slightly generalize the LIP. Let G = (N , X, π) be an infinite game and let φ :
X → R

q
+ × R

q
+ be a function that associates with each strategy profile a pair φ(x) =

(φ(1)(x), φ(2)(x)). For two indices i, j ∈ {1, . . . , q} and two strategy profiles x, y ∈
X , let φi (x) ≤ φ j (y) if and only if φ(1)i (x) < φ

(1)
j (y) or φ(1)i (x) = φ

(1)
j (y) and

φ
(2)
i (x) ≤ φ

(2)
j (y). Let φi (x) < φ j (y) if and only if φi (x) ≤ φ j (y) and φi (x) �=

φ j (y). Moreover, let � denote the sorted lexicographical order, where φi (x) is sorted
according to ≤. Then, we say that φ is a pairwise strong vector-valued potential if
φ(y) ≺ φ(x) for all (x, y) ∈ I . G has the pairwise LIP if it admits a pairwise strong
vector-valued potential.

Clearly, every game with the LIP has also the pairwise LIP, as we may simply set
the second component of the pairwise strong vector-valued potential equal to the first
component (or, alternatively, equal to zero). We show below that every game with a
continuous pairwise strong vector-valued potential admits an SE.

Theorem 5 Every infinite game with a continuous pairwise strong vector-valued
potential φ possesses an SE.

Proof By assumption, there exists q ∈ N and a function φ : X → R
q
+ × R

q
+ such

that φ(yS, x−S) ≺ φ(x) for all (x, (yS, x−S)) ∈ I .
To get the desired result, we will show by induction over q ∈ N that for each q ∈ N,

each compact X �= ∅ and each continuous function φ : X → R
q
+ × R

q
+ there is a

strategy profile xmin ∈ X with φ(xmin) � φ(x) for all x ∈ X .
For the base case q = 1, let Y = {x ∈ X : φ(1)(x) = minx∈X φ

(1)(x)} be
the subset of those x ∈ X for which the first component φ(1) is minimized. Note
that Y is non-empty and compact as φ is continuous and X is compact. Next, let
Y ′ = {x ∈ Y : φ(2)(x) = minx∈Y φ

(2)(x)}. With the same arguments, Y ′ �= ∅ and by
construction, Y ′ contains all vectors that minimize φ.

For the inductive step, suppose that the statement holds for all continuous functions
φ′ : X ′ → R

q
+ ×R

q
+ with q ≤ k −1 and consider an arbitrary compact X and an arbi-

trary continuous function φ : X → R
k+ × R

k+. In order to construct a lexicographical
minimum of φ, we set K = {1, . . . , k} and solve the minimization problem

min
x∈X

max
i∈K

φ
(1)
i (x) (2)

of minimizing the maximum value within the first component of φ. Let α be the
optimal value of (2). For arbitrary ∅ �= J ⊆ K , we set

Y J = {x ∈ X : φ(1)i (x) ≤ α ∀i ∈ K \ J φ
(1)
j (x) = α ∀ j ∈ J }.
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Then, we define J = {J ⊆ K : J �= ∅, Y J �= ∅}. Note that because φ is continuous
and X is compact, the optimal value of (2) is attained, and thus J is non-empty. For
each J ∈ J , we solve the minimization problem

α J = min
x∈Y J

max
j∈J

φ
(2)
j (x). (3)

For each J ∈ J and j ∈ J , we set

Y J, j = {x ∈ Y J : φ(2)i ≤ α J ∀i ∈ J \ { j}, φ
(2)
j (x) = α J }.

We define J ′ = {(J, j) ∈ J × K : j ∈ J, Y J, j �= ∅}. Again, J ′ is non-empty
as φ is continuous and X is compact. For each pair (J, j) ∈ J ′, we consider the
function φ J, j : Y J, j → R

k−1+ that arises from φ by deleting the j-th index, i.e.,

φ
J, j
i (y) = (φ

(1)
i (y), φ(2)i (y)) for all i < j and φ J, j

i (y) = (φ
(1)
i+1(y), φ

(2)
i+1(y)) for

all i ∈ { j, . . . , k − 1}. Clearly, for all (J, j) ∈ J ′, the function φ J, j is continuous
and its domain Y J, j is compact and non-empty. For each (J, j) ∈ J ′, we apply the
induction hypothesis and obtain |J ′| vectors y J, j

min minimizing φ J, j on Y J, j . We claim

that the lexicographically minimal vector among the vectors
(
(α, α J ), φ J, j (y J, j

min)
) ∈

R
k+ × R

k+ for each pair (J, j) ∈ J ′ is also a lexicographical minimum of the original
function φ on X . For a contradiction, suppose that there is a vector z ∈ X with
φ(z) ≺ (

(α, α J ), φ J, j (y J, j
min)

)
for all (J, j) ∈ J ′. First, we observe that there is a set

∅ �= J ∗ ⊆ K such that φ(1)i (z) = α for all i ∈ J ∗ and φ(1)i (z) < α for all i ∈ K \ J ∗
as otherwise we obtain a contradiction to the fact that α is the optimal value of (2).
This implies in particular that J ∗ ∈ J . Because α J∗

is the optimal value of (3), for
at least one index j∗ ∈ J ∗, we have φ(2)j∗ (z) = α J∗

. Using this fact together with the

induction hypothesis that y J∗, j∗
min minimizes φ among the vectors with φ(1)i (z) = α for

all i ∈ J ∗ and φ(2)j∗ = α J∗
leads to a contradiction. ��

5.1 Splittable bottleneck congestion games

In this section, we introduce the splittable counterpart of bottleneck congestion
games. We start with a congestion model M = (N , F, X, (c f ) f ∈F ) with Xi =
{xi,1, . . . , xi,ni }, ni ∈ N, i ∈ N , where as usual every xi, j is a subset of facili-
ties of F . From M we derive a corresponding splittable congestion model Ms =
(N , F, X, d, 
, (c f ) f ∈F ), where d ∈ R

n+, 
 = 
1 × · · · ×
n, and


i =
{

ξi = (ξi,1, . . . , ξi,ni ) : ξi,k ≥ 0 ∀k ∈ {1, . . . , ni },
ni∑

k=1

ξi,k = di

}

.

The strategy profile ξi = (ξi,1, . . . , ξi,ni ) of player i can be interpreted as a distri-
bution of non-negative intensities over the elements in Xi satisfying

∑ni
k=1 ξi,k = di

for di ∈ R+, i ∈ N . Clearly, 
i is a compact subset of R
ni+ for all i ∈ N . For a
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profile ξ = (ξ1, . . . , ξn), we define ξi, f = ∑
k∈{1,...,ni : f ∈xi,k } ξi,k as the total inten-

sity put on facility f by player i ; the set of used facilities of player i is defined as
Fi (ξ) = { f ∈ F : ξi, f > 0}. We assume that for all f ∈ F the cost function
c f : 
 → R+ satisfies the assumptions

Non-negativity: c f (ξ) ≥ 0 for all ξ ∈ 
,
Independence of Irrelevant Choices:

c f (ξ) = c f (ξ
′) for all ξ, ξ ′ ∈ 
 with ξi, f = ξ ′

i, f for all i ∈ N ,
Monotonicity: c f (ξ) ≤ c f (ξ

′) for all ξ, ξ ′ ∈ 
 with ξi, f ≤ ξ ′
i, f for all i ∈ N ,

Continuity: c f (ξ) is continuous in ξ .

Up to continuity, we basically impose the same assumptions as in the case of finite
bottleneck congestion games.

Definition 7 (Splittable bottleneck congestion game) For the splittable congestion
model Ms = (N , F, X, d, 
, (c f ) f ∈F ), we define the corresponding splittable
bottleneck congestion game as the infinite strategic game G(Ms) = (N , 
, π),
where π is defined as π = ×i∈N

πi and πi (ξ) = max f ∈Fi (ξ) c f (ξ).

The following examples fit into this model.

5.1.1 Bottleneck routing games with splittable demands

The facilities correspond to the edges of a directed graph D = (V, E). Each player i
is associated with a source-sink pair (si , ti ) ∈ V × V and a positive demand di that
she wishes to route from si to ti . The private cost of each player equals the maximum
cost over all facilities she uses with positive demand. The fundamental difference to
non-splittable bottleneck congestion games is that each player i is allowed to distribute
her demand among all paths connecting si and ti , thus, bottleneck routing games with
splittable demands serve as a model of multi-path routing protocols in telecommuni-
cation networks, see Banner and Orda (2007). They, however, study only existence of
PNE. In addition to being more general, our result gives also an alternative and con-
structive proof for the existence of PNE in bottleneck routing games with splittable
demands compared to the involved proof by Banner and Orda (2007).

5.1.2 Scheduling of malleable jobs

In the scheduling literature jobs are called malleable if they can be distributed among
multiple machines (Feitelson and Rudolph 1996; Carroll and Grosu 2010). In a sched-
uling game with malleable jobs, each player i controls a job with weight wi that she
distributes over an arbitrary subset of allowable machines. The private cost is deter-
mined by the makespan, which is a non-decreasing function of the total load of the
machine that finishes latest among the chosen machines. To the best of our knowledge,
our work investigates for the first time the existence of equilibria (PNE or SE) in such
games.
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5.2 Existence of SE

As mentioned earlier, using similar arguments as in the proof of Theorem 4 one
can prove that splittable bottleneck congestion games have the π -LIP. However, the
function π may be discontinuous even if cost functions are continuous. To see this,
consider the bottleneck congestion game with one player having access to two facili-
ties X1 = {{ f1}, { f2}} over which she has to assign a demand of size 1. The facility
f1 has a cost function equal to the load, while facility f2 has a constant cost function
equal to 2. Let ξ1,2(ε) = ε > 0 be assigned to facility f2 and the remaining demand
ξ1,1(ε) = 1 − ε be assigned to f1. Then, for any ε > 0 we have π(ξ(ε)) = 2, while
π(ξ(0)) = 1.

To resolve this difficulty, we define the load of facility f under strategy profile ξ
as � f (ξ) = ∑

i∈N ξi, f and show that ν : 
 → R
m+ × R

m+, ξ �→ (c f (ξ), � f (ξ)) f ∈F

is a continuous pairwise strong vector-valued potential.

Theorem 6 Every splittable bottleneck congestion game possesses an SE.

Proof We show that the function ν : 
 → R
m × R

m, ξ �→ (c f (ξ), � f (ξ)) f ∈F is
a pairwise strong vector-valued potential. Because ν is continuous, Theorem 5 gives
then the desired result. Let S ⊆ N be an arbitrary coalition and let (ξ, (ξ ′

S, ξ−S)) ∈
I (S) be an arbitrary improving move of coalition S. Choose a deviating player j ∈
arg maxi∈S πi (ξ)with highest cost before the improving move and one of the facilities
g ∈ arg max f ∈Fj (ξ) c f (ξ) at which π j (ξ) is attained. Decompose F into F+ and F−
defined as F+ = { f ∈ F : c f (ξ) ≥ cg(ξ)} and F− = { f ∈ F : c f (ξ) < cg(ξ)}.

We first claim that c f (ξ
′
S, ξ−S) ≤ c f (ξ) for all f ∈ F+. Assume by contradiction

that there is f ∈ F+ with c f (ξ
′
S, ξ−S) > c f (ξ). The independence of irrelevant

choices and the monotonicity of the cost functions imply that there is a player k ∈ S
with ξ ′

k, f > 0. We obtain πk(ξ
′
S, ξ−S) ≥ c f (ξ

′
S, ξ−S) > c f (ξ) ≥ cg(ξ) = π j (ξ) ≥

πk(ξ), which contradicts that k must improve.
Next we show that � f (ξ

′
S, ξ−S) ≤ � f (ξ) for all f ∈ F+ with c f (ξ

′
S, ξ−S) = c f (ξ).

For a contradiction, assume that there is f ∈ F+ with � f (ξ
′
S, ξ−S) > � f (ξ) and

c f (ξ
′
S, ξ−S) = c f (ξ). Again this implies the existence of a player k ∈ S with ξ ′

k, f > 0.
Using c f (ξ

′
S, ξ−S) = c f (ξ), we obtain the same contradiction to the fact that k

improves as before.
Finally, we claim that c f (ξ

′
S, ξ−S) < cg(ξ) for all f ∈ F−. To see this, assume that

there is f ∈ F− with c f (ξ
′
S, ξ−S) ≥ cg(ξ). This again implies that there is a player

k ∈ S with ξ ′
k, f > 0, thus, πk(ξ

′
S, ξ−S) ≥ c f (ξ

′
S, ξ−S) ≥ cg(ξ) = π j (ξ) ≥ πk(ξ),

and player k did not improve, contradiction!
To complete the proof, we show that (cg(ξ

′
S, ξ−S), �g(ξ

′
S, ξ−S)) < (cg(ξ), �g(ξ)).

We distinguish two cases. If ξ ′
j,g > 0, we obtain cg(ξ

′
S, ξ−S) < cg(ξ) using the fact

that player j improves. For the second case, let ξ ′
j,g = 0 and assume by contradic-

tion that (cg(ξ
′
S, ξ−S), �g(ξ

′
S, ξ−S)) ≥ (cg(ξ), �g(ξ)). If cg(ξ

′
S, ξ−S) > cg(ξ), we

immediately derive the existence of a player k ∈ S with ξ ′
k,g > 0. On the other hand, if

cg(ξ
′
S, ξ−S) = cg(ξ) and �g(ξ

′
S, ξ−S) ≥ �g(ξ), we obtain the existence of k ∈ S with

ξ ′
k,g > 0 using that ξ ′

j,g = 0. In both cases, we calculateπk(ξ
′
S, ξ−S) ≥ cg(ξ

′
S, ξ−S) ≥

cg(ξ) = π j (ξ) ≥ πk(ξ), a contradiction to the fact that k improves. ��
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5.3 Existence of approximate SE

We now relax the continuity assumption on the facility cost functions by assuming
that they are only bounded from above. We will prove that bottleneck congestion
games with bounded cost functions possess an α-approximate SE for every α > 0.
An α-approximate SE is stable only against (coalitional) improving moves that
decrease the private cost of every moving player by at least α > 0. More formally,
we denote by I α(S) ⊂ X × X the set of tuples (x, (yS, x−S)) of α-improving moves
for S ⊆ N and define as I α their union. Then a strategy profile x is an α-approx-
imate SE if no coalition ∅ �= S ⊆ N has an alternative strategy profile yS such
that πi (x) − πi (yS, x−S) > α, for all i ∈ S. We call a function P : X → R an
α-generalized strong potential if (x, y) ∈ I α implies P(x) > P(y).

Theorem 7 Every splittable bottleneck congestion game with bounded cost functions
possesses an α-approximate SE for every α > 0.

We prove the theorem by stating a useful lemma.

Lemma 1 Let the function ψ : 
 → R
mn+ be defined as

ψi, f (ξ) =
{

c f (ξ), if f ∈ Fi (ξ)

0, else
for all i ∈ N , f ∈ F.

Moreover, let α > 0 and define PM (ξ) = ∑
f ∈F, i∈N ψi, f (ξ)

M , where M ≥
(2ψmax/α + 1) log(n m) and ψmax = supξ∈
, f ∈F c f (ξ). Then, PM is an α-

generalized strong potential satisfying PM (ξ)−PM (ξ
′) ≥ (α/2)M for all (ξ, ξ ′) ∈ I α .

Proof We must show that PM (ξ)−PM (ξ
′
S, ξ−S) ≥ (α/2)M for an arbitraryα-improv-

ing move (ξ, (ξ ′
S, ξ−S)) ∈ I α . Let j ∈ arg maxi∈S πi (ξ

′
S, ξ−S). We define + =

{(i, f ) ∈ −S × F : ψi, f (ξ) ≥ π j (ξ
′
S, ξ−S)} and − = {(i, f ) ∈ −S × F :

ψi, f (ξ) < π j (ξ
′
S, ξ−S)}. We claim that

ψi, f (ξ
′
S, ξ−S) ≤ ψi, f (ξ) for all (i, f ) ∈ +, (4)

ψi, f (ξ
′
S, ξ−S) ≤ π j (ξ

′
S, ξ−S) for all (i, f ) ∈ −. (5)

To prove (4), suppose there is (i, g) ∈ + such that ψi,g(ξ) < ψi,g(ξ
′
S, ξ−S).

Because of the independence of irrelevant choices and the monotonicity of cost func-
tions there exists k ∈ S with g ∈ Fk(ξ

′
S, ξS) implying

π j (ξ
′
S, ξ−S) ≤ ψi,g(ξ) < ψi,g(ξ

′
S, ξ−S) ≤ πk(ξ

′
S, ξ−S) ≤ π j (ξ

′
S, ξ−S),

which is a contradiction. For proving (5), suppose there is (i, g) ∈ − such that
ψi,g(ξ

′
S, ξ−S) > π j (ξ

′
S, ξ−S). Again, independence of irrelevant choices and mono-

tonicity of cost functions implies that there is k ∈ S with g ∈ Fk(ξ
′
S, ξ−S) giving

rise to

πk(ξ
′
S, ξ−S) ≥ ψi,g(ξ

′
S, ξ−S) > π j (ξ

′
S, ξ−S) ≥ πk(ξ

′
S, ξ−S),
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which is a contradiction. To complete the proof, we observe that N × F = + ∪
− ∪ (S × F). Then,

PM (ξ)− PM (ξ
′
S, ξ−S) =

∑

(i, f )∈+∪−∪(S×F)

ψi, f (ξ)
M −ψi, f (ξ

′
S, ξ−S)

M

≥
∑

(i, f )∈−∪(S×F)

ψi, f (ξ)
M − ψi, f (ξ

′
S, ξ−S)

M .

The inequality follows from the first claim. We further derive

∑

(i, f )∈−∪(S×F)

ψi, f (ξ)
M − ψi, f (ξ

′
S, ξ−S)

M

≥
∑

f ∈(S×F)

ψi, f (ξ)
M(α) −

∑

(i, f )∈−∪(S×F)

ψi, f (ξ
′
S, ξ−S)

M

≥ (π j (ξ
′
S, ξ−S)+ α)M − n m π j (ξ

′
S, ξ−S)

M ,

where the first inequality follows from the non-negativity ofψ . The second inequality
follows from π j (ξ) ≥ π j (ξ

′
S, ξ−S)+ α and the second claim. Finally

PM (ξ)− PM (ξ
′
S, ξ−S) ≥ (α/2)M + (

π j (ξ
′
S, ξ−S)+ α/2

)M

− n m π j (ξ
′
S, ξ−S)

M ≥ (α/2)M ,

where the last inequality follows from the choice of M . ��
Proof (Proof of Theorem 7) Fix α > 0. Since 
 is compact and PM (as defined in
Lemma 1) is bounded, there is a strategy profile z satisfying PM (z) ≤ infξ∈
 PM (ξ)−ε
with 0 < ε < (α/2)M . We claim that z is an α-approximate SE. Suppose not. Then
by Lemma 1 there exists a profitable deviation (z, (ξ ′

S, z−S)) ∈ I α(S) with PM (z)−
PM (νS, z−S) ≥ (α/2)M > ε, which contradicts the approximation guarantee of z.
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