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Abstract. In this paper, we introduce a class of games which we term
demand allocation games that combines the characteristics of finite games
such as congestion games and continuous games such as Cournot oligo-
polies. In a strategy profile each player may choose both an action out
of a finite set and a non-negative demand out of a convex and compact
interval. The utility of each player is assumed to depend solely on the
action, the chosen demand, and the aggregated demand on the action
chosen. We show that this general class of games possess a pure Nash
equilibrium whenever the players’ utility functions satisfy the assump-
tions negative externality, decreasing marginal returns and homogeneity.
If one of the assumptions is violated, then a pure Nash equilibrium may
fail to exist. We demonstrate the applicability of our results by giving
several concrete examples of games that fit into our model.

1 Introduction

The problem of allocating scarce resources to satisfy demands is a central topic
in the operations research and optimization literature. While a central planer
may compute and implement an optimal allocation, in many applications this
may be impossible as the allocation of resources is determined by selfish players.
A prominent example for this scenario are congestion games. In a congestion
game, there is a set of resources and a pure strategy of a player consists of a
subset of resources. The profit of a resource depends only on the number of play-
ers choosing the resource, and the utility of a player is the sum of the profits of
the chosen resources. Under these assumptions, Rosenthal proved the existence
of a pure Nash equilibrium (PNE for short) [25]. Another well-known variant
of congestion games arises if players can fractionally demand the resources, see
Beckmann [2] and Haurie and Marcotte [10] for related models. For this con-
tinuous variant, the quite general result of Rosen [24] implies the existence of a
PNE provided the strategy space is convex and compact and utility functions are
concave. In the context of such discrete and continuous classes of games, there
are mainly two types of existence theorems for PNE. The first type applies to
discrete games (such as classical congestion games and many variants thereof)
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where each player has a finite strategy space. For this type, the existence of PNE
is proved by either potential function arguments (as in [1,4,5,6,9,22,25]), or by
using the combinatorial structure of the finite strategy space (as in [13,16,26]).
On the other hand, for continuous games, existence of PNE is usually established
via fixed-point theorems of Kakutani (as in [24] for general concave games) and
Brouwer (as in [19] for mixed extensions of finite games), or by a monotonicity
property of the best reply functions (as in [21,23] for Cournot oligopolies).

While existence of PNE for both extremes is well understood, much less is
known for strategic games that exhibit continuous and discrete elements at the
same time. To motivate this point we give an example. Consider the classical
Cournot oligopoly (cf. [3,30]). In a Cournot oligopoly game, there is a set of firms
each producing quantities so as to satisfy an elastic demand. The production cost
for every player is modeled by a cost function and the interaction of firms comes
from the market price function which is dependent on the total supply on the
market. In this form, a Cournot oligopoly game belongs to the class of continu-
ous games and under mild assumptions on the market aggregation function, the
existence of a pure Cournot equilibrium follows from Rosen [24]. The situation
changes, if there are several (parallel) markets, and each Cournot player can
select exactly one market to offer its quantity. The restriction of choosing only
one market arises if the market is regulated, e.g., if each firm may only purchase
one market license, see for instance Stähler and Upmann [29] for related models.
In this case, the strategy of a player is now discrete in the sense that exactly
one market can be chosen, and it is continuous in the sense that the production
quantity is still continuously variable on the chosen market. Yet, we give another
example related to models of population behavior in biology. Suppose there is a
set of exhaustible food patches distributed on an area shared by different pop-
ulations of animals (e.g., sticklebacks as in the experiment of Milinsky [18] or
herds of zebras and elephants sharing water locations). Analyzing the equilib-
rium behavior of such systems belongs to the field of population games, see the
book by Sandholm [27] and further references therein. Here, every population
is represented by a fixed-sized continuum of infinitesimal small individuals each
choosing a food patch. By definition (cf. [27, Chapter 2, condition (v)]) such
games are continuous in the sense that the individuals are sufficiently small and
may be assigned to different locations even if they belong to the same popula-
tion. If the populations of animals correspond to swarms or herds the continuity
assumption breaks down as swarms or herds move as a whole. Moreover, in re-
ality the size of every population is not fixed but it correlates with the available
amount of food supply. For systems having the above described characteristics,
a new model is needed that integrates continuous and discrete action spaces.

In this paper, we introduce a class of games which we term demand alloca-
tion games that comprises the characteristics of the examples above. Suppose
we are given a finite set A of actions and a finite set N of players. Each player
is associated with a subset Ai ⊆ A of actions allowable to her and a convex
and compact interval of non-negative demands. In a strategy profile, a player
chooses both a feasible action and a feasible demand for her. We additionally
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require the following assumptions on the player’s utility functions. We assume
that the utility of each player is not affected by the strategic choices of players
on other actions. This assumption is often referred to as “Independence of Irrele-
vant Choices”, see for instance Konishi et al. [13] and Voorneveld et al. [31] for a
similar model with fixed demands. Moreover, we require that the game is anony-
mous in the sense that the utility of each player depends solely on the aggregate
demand of all players playing the same action, which is a common assumption,
see e.g. Konishi et al. [13]. It is a useful observation that under these basic as-
sumptions the utility of each player i, when choosing action ai together with
demand di can be represented by an indirect utility function vai

i : R≥0 × R≥0

so that ui(a, d) = vai

i (di, �ai

−i(a, d)), where �ai

−i(a, d) =
∑

j∈N\{i}:aj=a dj denotes
the aggregated demand (or load) of other players on action ai. Clearly, in this
general form nothing can be said about the existence of pure Nash equilibrium.
Therefore, we require more structure about the player’s utility functions. We de-
fine the following three assumptions on the player’s utility functions that capture
the properties of the above examples. The first assumption is called ”Negative
Externality” (EXT for short) and requires that the utility of a player using an
action ai decreases if the aggregate demand of other players playing the same ac-
tion increases. Informally, the second assumption ”Decreasing Marginal Returns”
(DMR for short) requires that for every player the marginal return function ex-
ists and decreases when both that player’s demand and the total demand of the
chosen action increase. The last assumption is called ”Homogeneity” (HOM for
short) and requires that for all i ∈ N , we have vai

i = vbi

i for all ai, bi ∈ Ai.
This last assumption is clearly the most restrictive and controversial one. We
will show, however, that if it is dropped, there are instances without PNE.

Our Results. As our main result, we prove that every demand allocation game
satisfying EXT, DMR and HOM possesses a PNE. This result is tight in the
sense that if one of the assumptions is dropped, there is a demand allocation
game without PNE. For proving this existence result we provide an algorithm
that computes a PNE. Our algorithm relies on iteratively computing a (partial)
equilibrium on every action separately using Rosen’s theorem. Here, a partial
equilibrium is a strategy profile that is resilient against unilateral demand devi-
ations. Given a partial equilibrium, the algorithm selects a player that can play
a better and best response. After such a best response it recomputes the partial
equilibrium and proceeds in the same fashion. We prove that a player-specific
load vector of the partial equilibria lexicographically decreases in every iteration
and thus, the algorithm terminates. A perhaps surprising property of our proof is
that even though we iteratively recompute a partial equilibrium by using Rosen’s
theorem as a black box, there is enough structure of such a partial equilibrium
to prove that the algorithm terminates. We also show that demand allocation
games do not have the finite improvement property even if EXT, DMR and HOM
are satisfied, thus, they are not potential games. For demand allocation games
with only two players, we prove that already EXTand DMR are enough to yield
a PNE. In the final section of the paper, we give a series of concrete examples
that fit into our model: Cournot games on parallel markets, singleton congestion
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games with player-specific payoff functions and variable demands, and games in
biology.

2 The Model

Let A be a finite set of actions and let N be a finite set of players. For each
player i ∈ N we are given a convex and closed interval Di = [αi, ωi] ⊆ R≥0

of allowable demands and a subset Ai ⊆ A of allowable actions. A strategy of
player i is a tuple (ai, di) where ai ∈ Ai is an allowable action and di ∈ Di is
an allowable demand for player i. A strategy profile of the game is a tuple (a, d)
where a = (ai)i∈N is the action vector and d = (di)i∈N is the demand vector.
We assume that the utility of player i under strategy profile (a, d) depends solely
on the action ai and the demand di chosen by player i, and the total demand
of other players with the same action �ai

−i(a, d) =
∑

j∈N\{i}:ai=aj
dj . To measure

this utility, we introduce for each player i and each of her allowable actions
ai ∈ Ai an indirect utility function vai

i : R≥0 × R≥0 → R. The utility of player i
under strategy profile (a, d) is then defined as ui(a, d) = vai

i (di, �ai

−i(a, d)). We are
interested in establishing conditions on the indirect utility functions that ensure
the existence of at least one pure Nash equilibrium. Formally, a strategy profile
(a, d) is a pure Nash equilibrium, PNE for short, if ui(a, d) ≥ ui(a′i, a−i, d

′
i, d−i)

for all players i ∈ N and all strategies (a′i, d
′
i) ∈ Ai×Di. We make the following

three assumptions on the indirect utility functions vai

i of player i and action
ai ∈ Ai. The first assumption is called “Negative Externality” and requires that
the utility of every player increases as the total demand of other players with
the same action decreases.

Assumption 1 (Negative Externality (EXT)). For all i ∈ N , ai ∈ Ai and
di ∈ Di, the indirect utility function vai

i (di, ·) is non-increasing in the second
entry, that is vai

i (di, �−i) ≥ vai

i (di, �′−i) for all �−i, �′−i ∈ R≥0 with �−i ≤ �′−i.

This assumption is natural when players compete over scare resources to sat-
isfy their demand and has been made explicitly or implicitly in various con-
texts ranging from traffic and communication networks (i.e. [2,10,12]) to biology
(i.e. [18]) and economics (i.e. in Cournot oligopolies [3,30] and Cournot oligop-
sonies [11,20]).

The second assumption is called “Decreasing marginal returns” and requires
that for players with a non-trivial interval of allowable demands, the marginal
utility function exists, is continuously differentiable, and decreases if the player’s
demand and the total demand of the chosen action increase.

Assumption 2 (Decreasing Marginal Returns (DMR)). For all i ∈ N
with αi < ωi, di ∈ Di, ai ∈ Ai, and �−i ∈ R≥0, the marginal return func-
tion ∂ vai

i (di, �−i) / ∂ di exists and is continuously differentiable in di. Moreover,
∂ vai

i (di, �−i) / ∂ di > ∂ vai

i (d′i, �
′
−i) / ∂ d

′
i for all di, d′i ∈ [α, ω] and �−i, �′−i ∈ R≥0

with di ≤ d′i and di + �−i ≤ d′i + �′−i, where at least one of these two inequalities
is strict.
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The assumption that the utility of player i is concave in her demand often
appears in the literature on Cournot oligopolies (cf. [21,23]) in order to get the
existence of an equilibrium. Also many works in telecommunications (cf. [12,28])
justify concavity of the utility function in the demand variable by application-
specific characteristics such as the rate-control algorithm used in the TCP pro-
tocol. Note that if for some i ∈ N it holds that αi = ωi, then DMR is trivially
satisfied.

The next assumption “Homogeneity” imposes that players have no a priori
preferences over actions, that is, each player’s utility is solely defined by her own
demand and the total demand of the chosen action and not by the identity of
the action itself.

Assumption 3 (Homogeneity (HOM)). For all i ∈ N , we have vai

i = vbi

i

for all ai, bi ∈ Ai.

In games that satisfy HOM, we may write vi = vai

i = vbi

i for all ai, bi ∈ Ai.
Note that HOM does not require symmetry among players, i.e., we still allow
vi �= vj for i �= j. We only require that every player is indifferent between any
two allowable actions as long as their own demand and the total demand on
these actions is equal. Clearly, HOM is the most restrictive and controversial
assumption. We show, however, that homogeneity is necessary in the sense that
if it is dropped, there are games without PNE.

3 Existence of Pure Nash Equilibria

In this section, we will give an existence result for demand allocation games.
Specifically, we will show that demand allocation games satisfying the assump-
tions Negative Externality (EXT), Decreasing Marginal Return (DMR) and Ho-
mogeneity (HOM) always possess a PNE. Our results are ”tight” in the sense
that if any of the three assumptions is dropped, then there are instances with-
out a PNE. To prove our main result, we first introduce the concept of a partial
equilibrium. Intuitively, a partial equilibrium is a strategy profile that is resilient
against unilateral demand deviations. Formally, a strategy profile (a, d) is a par-
tial equilibrium if ui(a, d) ≥ ui(a, d′i, d−i) for all i ∈ N and d′i ∈ Di. Using the
result of Rosen [24], we will prove that under assumption DMR for every strategy
profile (a, d), there is a partial equilibrium of the form (a, d̃). We say that (a, d̃)
is an associated partial equilibrium to (a, d).

Proposition 1. Let G be a demand allocation game. Under assumption DMR,
for every strategy profile (a, d), there is an associated partial equilibrium (a, d̃).

Proof. Pick an arbitrary strategy profile (a, d) of G. Consider the restricted
demand allocation game G̃ with Ãi = {ai}. In G̃ the strategy space of each
player reduces to the convex and closed interval Di ⊆ R. Using DMR, the utility
function of each player is continuous and concave in di. By Rosen’s existence
theorem [24, Theorem 1], a pure Nash equilibrium of G̃ exists. Hence, each PNE
of G̃ is an associated partial equilibrium to (a, d). �	
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The following lemma will be important throughout this paper. It expresses the
first-order optimality conditions of a partial equilibrium. The proof is straight-
forward and left to the reader.

Lemma 2. Let (a, d) be a partial equilibrium. Then, for all i ∈ N with αi < ωi
the following conditions hold: ∂ ui(a, d) / ∂ di ≤ 0 if di = αi, ∂ ui(a, d) / ∂ di = 0
if di ∈ (αi, ωi), and ∂ ui(a, d) / ∂ di ≥ 0 if di = ωi.

For an action b ∈ A, we define the active set on action b under strategy profile
(a, d) as N b(a, d) = {i ∈ N : ai = b}. We need the following lemma.

Lemma 3 (Uniqueness Lemma). Let (a, d) and (a′, d′) be two partial equi-
libria of a demand allocation game satisfying DMR. Then,

1. �b(a, d) = �b(a′, d′) for all b ∈ A with N b(a, d) = N b(a′, d′),
2. �b(a, d) ≤ �b(a′, d′) for all b ∈ A with N b(a, d) ⊆ N b(a′, d′).

Proof. Obviously, it suffices to prove 2. Assume by contradiction that there is b ∈
A with �b(a, d) > �b(a′, d′) and N b(a, d) ⊆ N b(a′, d′). This implies the existence
of a player i ∈ N b(a, d) with di > d′i. In particular, we have ωi ≥ di > d′i ≥ αi.
The conditions of Lemma 2 for a partial equilibrium give ∂ ui(a, d) / ∂ di ≥ 0
and ∂ ui(a′, d′) / ∂ d′i ≤ 0. We get

0 ≥ ∂ ui(a′, d′)
∂ d′i

=
∂ vbi

(
d′i, �

b
−i(a

′, d′)
)

∂ d′i

DMR
>

∂ vbi
(
di, �

b
−i(a, d)

)

∂ di
=
∂ ui(a, d)
∂ di

≥ 0,

a contradiction. �	
We are now ready to present a procedure for proving the existence of PNE. We
claim that the following iterative contraction-switching procedure converges to
a PNE.

1. Start with arbitrary strategy profile (a, d)
2. Contraction phase: Let (a, d̃) be an associated partial equilibrium
3. Switching phase: If there is a player i who can improve unilaterally, pick

a best reply (a′i, d
′
i) ∈ arg max(a′′i ,d

′′
i )∈Ai×Di

ui(a′′i , a−i, d
′′
i , d̃−i), set (a, d) =

(a′′i , a−i, d
′′
i , d̃−i) and proceed with 2. Else, return (a, d̃).

Note that in Step 2, we actually call an oracle that gives us an associated partial
equilibrium. The oracle takes as input a restricted demand allocation game G̃
and outputs an associated partial equilibrium. By Proposition 1 this is always
possible.

In the following, we will show that this procedure ends after finitely many
steps (involving finitely many calls of the oracle) and outputs a PNE. The fol-
lowing properties are the key to prove that the contraction-switching procedure
terminates.

Lemma 4. Let G be a demand allocation game satisfying DMR, EXT and HOM,
let (a, d) be a partial equilibrium, let (a′i, d

′
i) be a best and better reply of player i

and let (a′i, a−i, d̃) be an associated partial equilibrium. Then, the following prop-
erties hold.
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1. �a
′
i(a′i, a−i, d

′
i, d−i) < �ai(a, d) (Switching Property)

2. �a
′
i(a′i, a−i, d̃) ≤ �a

′
i(a′i, a−i, d

′
i, d−i) (Contraction Property)

3. �ai(a′i, a−i, d̃) ≤ �ai(a, d) (Monotonicity Property)

Proof. We begin proving the switching property. For the sake of a contradiction,
assume �a

′
i(a′i, a−i, d

′
i, d−i) ≥ �ai(a, d). We consider the following three cases:

First case d′i > di: As (a, d) is a partial equilibrium and di < d′i ≤ ωi, by
Lemma 2 we have 0 ≥ ∂ ui(a, d) / ∂ di. We calculate

0 ≥ ∂ ui(a, d)
∂ di

=
∂ vi(di, �ai

−i(a, d))
∂ di

DMR
>

∂ vi(d′i, �
a′i
−i(a

′
i, a−i, d

′
i, d−i))

∂ d′i
=
∂ ui(a′i, a−i, d

′
i, d

′
−i)

∂ d′i
≥ 0,

a contradiction. The equalities use the assumption HOM. The last inequality
stem from the facts that (a′i, d

′
i) is a best reply of player i and that d′i > di ≥ αi.

Second case d′i = di: Using �
a′i
−i(a

′
i, a−i, d

′
i, d

′
−i) ≥ �ai

−i(a, d) and assumptions
EXT and HOM, we obtain

ui(a′i, a−i, d
′
i, d−i) = vi

(
d′i, �

a′i
−i(a

′
i, a−i, d

′
i, d−i)

) ≤ vi
(
di, �

ai

−i(a, d)
)

= ui(a, d).

We derive that player i does not improve, a contradiction to the fact that (a′i, d
′
i)

is a better reply of player i.
Third case d′i < di: Consider the strategy (ai, d′i) of player i. Observe that

�ai

−i(a, d
′
i, d−i) < �ai

−i(a, d) as d′i < di. We obtain

ui(a, d′i, d−i) = vi
(
d′i, �

ai

−i(a, d
′
i, d−i)

)

EXT≥ vi
(
d′i, �

a′i
−i(a

′
i, a−i, d

′
i, d−i)

)
= ui(a′i, a−i, d

′
i, d−i) > ui(a, d),

where the equalities use the assumption HOM and the first inequality uses the
assumption EXT. Thus, (a, d) is not a partial equilibrium, contradiction!

We proceed by proving the contraction property. For a contradiction, suppose
that �a

′
i(a′i, a−i, d̃) > �a

′
i(a′i, a−i, d

′
i, d

′
−i). Then, at least one of the following two

cases holds: Either d̃i > d′i or there is a player j ∈ Na′i(a′i, a−i, d̃) \ {i} with
d̃j > dj . If d̃i > d′i, we have ∂ ui(a′i, a−i, d

′
i, d

′
−i) / ∂ d

′
i ≤ 0 using the fact that

(a′i, d
′
i) was a best reply of player i and that d′i < d̃i ≤ ωi. By the assumptions

of decreasing marginal values, we obtain

0 ≥ ∂ ui(a′i, a−i, d
′
i, d−i)

∂ d′i
=
∂ vi(d′i, �

a′i
−i(a

′
i, a−i, d

′
i, d−i))

∂ d′i

DMR
>

∂ vi
(
d̃i, �

a′i
−i(a

′
i, a−i, d̃)

)

∂ d̃i
=
∂ ui(a′i, a−i, d̃)

∂ d̃i
≥ 0,

a contradiction.
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If there is on the other hand j ∈ Na′i(a′i, a−i, d̃) \ {i} with d̃j > dj , then we
have ∂ uj(a, d) / ∂ dj ≤ 0 as (a, d) was a partial equilibrium and dj < d̃j ≤ ωj .
We then get the same contradiction as for player i.

The monotonicity property follows directly from Lemma 3. �	

We are now ready to state and prove our main result.

Theorem 5. For demand allocation games, assumptions DMR, EXT, HOM yield
the existence of a PNE.

Proof. By using the previous lemmas, we show that the contraction-switching
procedure terminates for any given starting profile (a, d). First notice that there
are only finitely many action vectors a = (ai)i∈N as both the number of players
and the number of actions is finite. We will show that each possible action vector
is visited at most once in the contraction-switching procedure.

To this end, we consider for a strategy profile (a, d), the vector L(a, d) =
(�ai(a, d))i∈N . We shall prove that L(a, d) strictly decreases with respect to
the sorted lexicographical order ≺lex that is defined as follows. For two vec-
tors u, v ∈ R

n
≥0 we say that u is sorted lexicographically smaller than v, writ-

ten u ≺lex v, if there is an index k ∈ {1, . . . , n} such that uπ(i) = vψ(i) for
all i < k and uπ(k) < vψ(k) where π and ψ are permutations that sort the
vectors u and v non-increasingly, that is, uπ(1) ≥ uπ(2) ≥ · · · ≥ uπ(n) and
vψ(1) ≥ vψ(2) ≥ · · · ≥ vψ(n). To see that L(a, d) lexicographically decreases,
let (a, d) be a partial equilibrium and let (a′i, d

′
i) be a best and better reply of

player i. Denote by (a′i, a−i, d̃) the partial equilibrium associated with strategy
profile (a′i, a−i, d

′
i, d−i). Clearly, for every player j ∈ N\(Nai(a, d)∪Na′i(a, d)

)
we

have Lj(a, d) = Lj(a′i, a−i, d
′
i, d−i). The switching property proven in Lemma 4

ensures that the load on the new action a′i stays strictly below that of the
old action ai, that is, �a

′
i(a′i, a−i, d

′
i, d−i) < �ai(a, d). The contraction prop-

erty ensures that, after the new set of players on the new action a′i settles
to an associated partial equilibrium, the total demand will not increase, that
is, �a

′
i(a′i, a−i, d̃) ≤ �a

′
i(a′i, a−i, d

′
i, d−i). It follows that �a

′
i(a′i, r−i, d̃) < �ai(a, d).

Also, by the monotonicity property we have �ai(a′i, a−i, d̃) ≤ �ai(a, d). Thus, we
have shown that the entry Li(·) of player i strictly decreases and that none of
the changed entries becomes larger than Li(a, d), hence, the vector L(·) lexico-
graphically decreases after one iteration of the contraction-switching procedure.
This fact, together with the uniqueness of the load vector proven in Lemma 3,
implies that the algorithm never visits the same action vector twice and, thus,
terminates after finitely many steps. �	

Note that the existence result of Theorem 5 is tight; if one of the assumption three
assumptions DMR, EXT, and HOM is dropped then we can construct a game sat-
isfying the other two assumptions that does not have a PNE. We can also provide
an example of a game satisfying DMR, EXT, and HOM that has an improvement
cycle. Thus, demand allocation games are not potential games, in general. Formal
proofs of the above results appear in the full version of this paper.
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3.1 Two Player Demand Allocation Games

In this section, we turn to the case of two players. We will show that any two-
player demand allocation game that satisfies the assumptions EXT and DMR pos-
sesses a PNE.

Theorem 6. For two-player demand allocation games, assumptions EXT and
DMR yield the existence of a PNE.

Proof. We shall prove that the following procedure computes a PNE. Start
with the empty strategy profile and let player 1 choose a best reply (a1, d1).
Then, let player 2 choose a best reply (a2, d2) to (a1, d1). If a1 �= a2, we have
reached a PNE as EXT implies that player 1 has no interest in switching to
action a2. The only interesting case is a1 = a2. Let x̃ = (a1, a2, d̃1, d̃2) be
an associated partial equilibrium to x = (a1, a2, d1, d2). We first show that
d̃1 ≤ d1. For a contradiction, suppose d̃1 > d1. Because d1 < d̃1 ≤ ω1, we
have ∂va1

1 (d1, 0) / ∂d1 ≤ 0 as (a1, d1) was a best reply. On the other hand, we
have ∂va1

1 (d̃1, d̃2) / ∂d̃1 ≥ 0 as d̃1 > d1 ≥ α1 and x̃ is a partial equilibrium. We
obtain 0 ≤ ∂va1

1 (d̃1, d̃2) / ∂d̃1 < ∂va1
1 (d1, 0) / ∂d1 ≤ 0, by the assumption DMR,

a contraction.
Next, we show u2(x̃) ≥ u2(x). To see this, note that u2(x̃) = va1

2 (d̃2, d̃1) ≥
va1
2 (d2, d̃1) ≥ va1

2 (d2, d1) = u2(x), where the first inequality uses the fact that
x̃ is a partial equilibrium and the second inequality stems from the assumption
EXT and the fact that d̃1 ≤ d1.

Because u2(x̃) ≥ u2(x) and (a2, d2) was a best reply of player 2, there is no
improvement move of player 2 from x̃. If player 1 does not want to deviate as
well, x̃ is a PNE and we are done. If on the other hand (a′1, d

′
1) is a best reply of

player 1, we let player 1 deviate and let player 2 play a best reply (a′2, d′2). Note
that player 2 will only adapt her demand, that is a′2 = a2 = a1. It is shown in
the proof of Lemma 3 that the equilibrium demand of a player does not increase
as the load increases, thus, d′2 ≥ d̃2. Then, player 1 will not want to switch again
to action a1. Also player 2 will not deviate as her payoff may only decrease when
adapting her demand. Hence, we have reached a PNE. �	

Note that the above result is tight in the sense that if either DMR or EXT are
dropped, then there exist two-player games without a PNE.

4 Examples

We now give several examples of games that fall into the class of demand allo-
cation games.

Cournot Competition on Parallel Markets. Cournot games (cf. Cournot [3],
Mas-Colell et al. [15] and Tirole [30]) are among the most fundamental models
of strategic interaction between firms. In a Cournot game, players correspond to
firms that produce a homogeneous product. In each strategy, each firm chooses



Demand Allocation Games: Integrating Discrete 203

its production quantity di out of a compact and convex interval [αi, ωi] of al-
lowable production quantities. The price for which these quantities are sold is
given by a non-increasing market reaction function P : R≥0 → R≥0 that maps
the total supply of the market � =

∑
i∈N di to the market price for selling the

produced quantity. Given a strategy profile d = (di)i∈N , the utility of firm i is
given as ui(d) = P (�) di − Ci(di), where Ci : [αi, ωi] → R is a non-decreasing
production cost function of player i.

Demand allocation games contain a natural generalization of Cournot games
that we term Cournot games on parallel markets. In such games, there is a
set A of markets each endowed with a non-increasing market reaction function
Pa, a ∈ A. The markets are called identical if Pa = Pb for all a, b ∈ A. In each
strategy profile, each player chooses both a market ai out of a player-specific
set Ai ⊆ A of allowable markets and a production quantity di ∈ [αi, ωi]. Given
a strategy profile (a, d), the utility of player i is then defined as ui(a, d) =
Pai

(
�ai(a, d)

)
di−Ci(di). Cournot games on identical parallel markets with con-

tinuously differentiable and strictly concave market reaction function and contin-
uously differentiable and convex production cost functions are demand allocation
games satisfying assumptions EXT, DMR, and HOM and thus possess a PNE.
For games with two players (originally studied by Cournot), a PNE exists even
if HOM is violated.

Singleton Congestion Games. The class of congestion games is a well-studied
class of games introduced by Rosenthal [25]. As congestion games with weighted
players and/or player-specific costs may fail to have a PNE (see the counterex-
amples given in [6,7,14] for weighted congestion games and [16,17] for games
with player-specific costs) many authors focused on singleton strategies. Here,
a PNE is guaranteed to exists, even when players are weighted (see [1,4,5,9,26])
or costs are player-specific (see [13,16]). However, games with weighted players
and player-specific costs need not possess a PNE [16].

In many situations, however, the assumption that the demand of each player
is fixed is unrealistic. In a previous work [8], we studied congestion games with
elastic demands. In that work, we show that affine or certain exponential cost
functions yield the existence of a PNE. We did not study, however, the case
of player-specific costs. Demand allocation games include singleton congestion
games with variable demands and player-specific costs as a special case. In such
games, the incentive of each player i to use higher demands is stimulated by a
reward function Ui : R≥0 → R that defines the reward received from the cho-
sen demand. Given a strategy profile (a, d), the utility of player i is defined as
ui(a, d) = Ui(di) − cai

i (�ai(a, d)), where �ai(a, d) =
∑
j∈N :aj=ai

dj is the load of
resource ai under strategy profile (a, d). Singleton congestion games with variable
demands and player-specific costs are demand allocation games. If reward func-
tions are continuously differentiable and strictly concave functions and for each
player all costs functions are equal, continuously differentiable, non-decreasing
and convex they satisfy assumptions EXT, DMR, and HOM and thus possess
a PNE. For two-player games, we can drop assumption HOM and still get the
existence of a PNE.
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Games in Biology. Consider population behavior in biology as described in
the introduction. The food patches correspond to the actions and the population-
specific costs ciai(�ai(a, d)) capture the rivalry for food supply. The size of pop-
ulation i is given by an inverse demand function, say fi : R≥0 → R≥0 that
is decreasing in the population specific costs. Thus, defining vi(di, �ai(a, d)) =
∫ di

0 fi(z)−ciai(�ai(a, d)−di+z) dz models the tradeoff between food supply and
population size, see also Milchtaich (cf. [16]) for a detailed discussion of conges-
tion games used in biology. His actual model, however, involves fixed demands
only.
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