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Abstract We study online multicommodity routing problems in networks, in which
commodities have to be routed sequentially. The flow of each commodity can be split
on several paths. Arcs are equipped with load dependent price functions defining
routing costs, which have to be minimized. We discuss a greedy online algorithm that
routes each commodity by minimizing a convex cost function that depends on the pre-
viously routed flow. We present a competitive analysis of this algorithm showing that

for affine price functions this algorithm is 4K2

(1+K)2 -competitive, where K is the num-
ber of commodities. For networks with two nodes and parallel arcs, this algorithm
is optimal. Without restrictions on the price functions and network, no algorithm is
competitive.

We then investigate a variant in which the demands have to be routed unsplittably.
In this case, it is NP-hard to compute the offline optimum. The variant of the greedy
algorithm that produces unsplittable flows is (3 + 2

√
2)-competitive, and we prove a

lower bound of 2 for the competitive ratio of any deterministic online algorithm.
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1 Introduction

In online multicommodity routing problems, commodities of a multicommodity flow
have to be routed sequentially in a network. The cost of a flow is determined by
dynamic load dependent price functions on links. The commodities arrive sequen-
tially in time and have to be routed with lowest cost. We make four crucial assump-
tions: (i) demands for commodities are revealed in an online fashion; (ii) demands can
be split along several paths; (iii) once a demand is routed, no rerouting is allowed;
(iv) the routing cost on an arc is given by the integral over the arc flow with respect
to the corresponding price function. Since at the time of routing a commodity, future
demands are not known, this yields an online optimization problem that we call the
Online Multicommodity Routing Problem (ONLINEMCRP).

We study an online greedy algorithm SEQ that routes a newly revealed commodity
by solving a convex optimization problem, which depends only on the previously
routed flows. We investigate cases in which SEQ is competitive, that is, its cost is
at most a constant factor larger than the cost of an offline solution for which all
commodities are known. We see SEQ and the ONLINEMCRP as a first step towards
an analytical methodology for the following practical application.

The problem under investigation arises, for instance, in an inter-domain Quality of
Service (QoS) market, in which multiple service providers offer network resources
(capacity) to enable Internet traffic with specific QoS constraints, see for example
Yahaya and Suda [28] and Yahaya, Harks, and Suda [29]. In such a market, each
service provider advertises prices for resources that he wants to sell. Buying providers
reserve capacity along paths to route demand (coming from their own customers)
from source to destination via domains of other providers. The routing of a demand
along paths is fixed by establishing a binding contract between the source domain
and all domains along the paths. Prices in the market are valid for a predefined bundle
size, that is, routing flow of this bundle size prompts an update of arc prices. In the
limiting case, where the bundle size tends to zero, the routing cost on an arc is given
by the integral over the arc flow with respect to the corresponding price function.

In [28, 29], a shortest path routing is introduced and investigated via simulations
on a real world network and stochastically generated traffic demands. The results
show that the efficiency loss for affine price functions is bounded by approximately
30%. Hence, this provides empirical evidence for the efficiency of the above work-
ing mechanism in such an inter-domain QoS market. In this paper, we provide an-
alytical evidence. We show that for splittable demand and affine price functions the
corresponding market is stable in the following sense: The cost of the greedy online
algorithm SEQ does not deviate too much from the best possible outcome.

Multicommodity routing problems have been studied in the context of traffic engi-
neering in telecommunication networks, see, for intance, Fortz and Thorup [15, 16].
There, the goal is to route given demands subject to capacity constraints in order to
minimize a convex load dependent penalty function. In this setting, a central planer
has full knowledge of all demands, which is not the case in our approach.
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Another related line of research is the investigation of efficient routings in decen-
tralized noncooperative systems. Using game theoretic concepts, Roughgarden and
Tardos [25], Correa, Schulz, and Stier Moses [11] and Altman et al. [1] studied the
efficiency of Nash equilibria for nonatomic players. For atomic routing games, where
players may control a significant part of the entire demand, Roughgarden and Tar-
dos examined the price of anarchy for an unsplittable variant [25]. Awerbuch, Azar,
and Epstein [4] and Christodoulou and Koutsoupias [9] derived bounds on the price
of anarchy for affine latency functions. Atomic splittable routing games have been
studied by Cominetti et al. [10] and Roughgarden [24].

In these works, the efficiency of Nash equilibria is studied. In this context, every
player has full information about the demands and flows of the other players. In our
model, however, a routing decision has to be made without knowing future demands.
Furthermore, once a demand has been routed, this routing remains unchanged.

The closest topic in the online field has been online load balancing in the context
of machine scheduling. Awerbuch et al. [3] considered a greedy online load balancing
algorithm, where the goal is to minimize the L2 norm of the aggregated server loads.
They proved an upper bound on the competitive ratio of 3+2

√
2. In the same context,

Suri, Toth, and Zhou [26] and Caragiannis et al. [8] studied Nash solutions for every
released job and showed that the resulting online algorithm outperforms the greedy
strategy of [3]. Their setting, however, is restricted to m parallel arcs and all released
jobs have to be assigned to exactly one machine (arc). Furthermore, Awerbuch, Azar,
and Plotkin [2] present online routing algorithms that maximize throughput under
the assumption that routings are irrevocable. They present competitive bounds that
depend on the number of nodes in the network.

In this paper, we first show that no online algorithm for the ONLINEMCRP is
competitive for general networks and price functions. If the price functions and net-
works are restricted, however, one can obtain competitive results. The main result of

this paper is that for affine price functions the greedy online algorithm SEQ is 4K2

(1+K)2 -
competitive, where K is the number of commodities; see Sect. 3.1. Furthermore, we
prove in this case a lower bound of 4

3 on the competitive ratio for any deterministic
online algorithm. For SEQ, we prove a lower bound of 2K−1

K
. If we restrict the struc-

ture of the network to be a two node directed graph with parallel arcs, Sect. 3.2 shows
that SEQ is optimal, i.e., is 1-competitive.

We also study the variant of the ONLINEMCRP in which the demands have to
be routed unsplittably. In Sect. 4, we prove that the corresponding offline problem is
NP-hard and show that, in general, no competitive deterministic online algorithm ex-
ists. For the unsplittable variant of SEQ and affine price functions, we prove an upper
bound of 3 + 2

√
2 on the competitive ratio. This result can be seen as a generaliza-

tion of the result of Awerbuch et al. [3] to multicommodity flow networks. Finally,
we present a lower bound of 2 on the competitive ratio for any deterministic online
algorithm if the price functions are linear.

In a follow up paper, Harks et al. [21] generalize the current setting: commodities
are released in rounds and come with a lifetime; the commodities of a given round can
be routed in an arbitrary order. In this context, upper and lower bounds for polynomial
price functions with nonnegative coefficients are proved.
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As noted by one of the reviewers, Olver [22] and Farzad et al. [13] considered
a similar model to ours under a different viewpoint, independently from our work.
They proved strengthened results for the lower bound in the splittable and unsplittable
case. They showed that the asymptotic upper bound of 4 in the splittable case and
3 + 2

√
2 in the unsplittable case are tight. Furthermore, they proved upper bounds

for polynomial price functions (similar to [21]).

2 Problem Description

Instances of the Online Multicommodity Routing Problem (ONLINEMCRP) consist
of a directed network D = (V ,A) and nondecreasing continuous price functions pa :
R+ → R+ for each link a ∈ A. These functions define the price of reserving capacity
on a link depending on the current load, as described below. There are no capacity
bounds in this setting.

Furthermore, a sequence σ = 1, . . . ,K of commodities must be routed one af-
ter the other. We assume that K ≥ 2 and denote the set of commodities by [K] :=
{1, . . . ,K}. Each commodity k ∈ [K] has a demand dk > 0 that has to be routed from
a source sk ∈ V to a destination tk ∈ V . To shorten notation we use the following
convention throughout the paper: When we speak of a sequence σ = 1, . . . ,K of
commodities, we refer to the full specification (d1, s1, t1), . . . , (dK, sK, tK).

The routing decision for commodity k is online, that is, it only depends on the
routings of commodities 1, . . . , k − 1. Once a commodity has been routed it remains
unchanged.

A routing assignment, or flow, for commodity k ∈ [K] is a nonnegative vector
f k ∈ R

A+. This flow is feasible if for all v ∈ V

∑

a∈δ+(v)

f k
a −

∑

a∈δ−(v)

f k
a = γ (v), (1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; furthermore,
γ (v) = dk if v = sk , γ (v) = −dk if v = tk , and γ (v) = 0 otherwise. Note that splitting
of demands is allowed.

We define Fk with k ∈ [K] to be the set of vectors (f 1, . . . ,f k) such that f i

is a feasible flow for commodity i = 1, . . . , k. If (f 1, . . . ,f k) ∈ Fk , we say that it
is feasible for commodities 1, . . . , k. The entire flow for the sequence 1, . . . ,K of
commodities is denoted by f = (f 1, . . . ,f K); it is also called a multicommodity
flow.

The cost of a flow f k
a on link a ∈ A of commodity k is defined by

Ck
a(f k

a ;f 1
a , . . . , f k−1

a ) :=
∫ f k

a

0
pa

(
k−1∑

i=1

f i
a + z

)
dz. (2)

Note that Ck
a(·) is a convex function, because pa is nondecreasing.
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Remark 2.1 This cost function can be obtained as the limiting case of a single path
routing: Assume that demand dk is split into N equal pieces and the pieces are routed
consecutively along single paths. The cost of each path is obtained by evaluating pa at
the flow on link a arising from the previous routings. Let z�

a be the flow on arc a ∈ A

arising from piece � ∈ [N ], i.e., z�
a = dk

N
if a is on the corresponding path and z�

a = 0
otherwise. Then we have:

lim
N→∞

N∑

n=1

pa

(
k−1∑

i=1

f i
a +

n−1∑

�=1

z�
a

)
zn
a = Ck

a(f k
a ;f 1

a , . . . , f k−1
a ),

where f k
a := ∑N

n=1 zn
a is a feasible flow for commodity k. Hence, the integral repre-

sents the fact that an infinitesimal amount of flow increases the price for each subse-
quent piece.

Given flows f 1, . . . ,f k−1, the cost for flow f k is

Ck(f k;f 1, . . . ,f k−1) :=
∑

a∈A

Ck
a(f k

a ;f 1
a , . . . , f k−1

a ),

and the total cost over all commodities is defined by

C(f ) =
K∑

k=1

Ck(f k;f 1, . . . ,f k−1).

2.1 Greedy Online Algorithm SEQ

In this paper, we study the greedy online algorithm SEQ that, for a given sequence
σ = 1, . . . ,K , sequentially routes the requested demands with minimum cost. Thus,
it solves for each k ∈ [K] the following convex program.

min Ck(f k;f 1, . . . ,f k−1)

s.t.
∑

a∈δ+(v)

f k
a −

∑

a∈δ−(v)

f k
a = γ (v), ∀v ∈ V, (3)

f k
a ≥ 0, ∀a ∈ A,

where the vectors f 1, . . . ,f k−1 are fixed by solving the first k − 1 problems. As
a convex program, Problem (3) can be efficiently solved within arbitrary precision
in polynomial time (see, e.g., Grötschel, Lovász, and Schrijver [18]). Note that SEQ

always produces a feasible flow.

Remark 2.2 If all price functions are strictly increasing, the cost function is strictly
convex, hence the optimal solution of (3) is unique. In general, optimal solutions are
not necessarily unique, e.g., if some price functions are constant. In this case, SEQ

produces an arbitrary optimal solution. In fact, different optimal solutions to (3) can
lead to different total costs as shown in the following example.
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Fig. 1 Graph for Example 2.3
and the proofs of
Propositions 3.1, 4.3, and 4.4

Example 2.3 Consider the network displayed in Fig. 1. All arcs entering node 4 have
a constant price function equal to 0. Arc (1,3) has a constant price function 1 and arc
(1,2) is equipped with the price function

p(z) =
{

1, 0 ≤ z ≤ 1

z, z > 1.

Note that p(z) is continuous and nondecreasing. We are given a sequence of two
commodities of unit size, where the first commodity has to be routed from node 1 to
node 4 and the second from node 1 to node 2. Problem (3) for the first commodity
admits a variety of optimal solutions. More precisely, let α ∈ [0,1] be the fraction of
the first demand routed over path P1 = (1,2,4) and (1 − α) be the demand routed
over P2 = (1,3,4). Since the demand of the first commodity is 1, it follows that the
cost is

∫ 1−α

0
1dz +

∫ α

0
1dz = (1 − α) + α = 1,

which is independent of α. The choice of α, however, influences the cost for the
second commodity:

∫ 1

α

1dz +
∫ 1+α

1
z dz = (1 − α) + 1

2
(1 + α)2 − 1

2
.

Hence, the choice of different optimal solutions computed by SEQ can lead to differ-
ent total costs.

Using the relation

∂Ck

∂f k
a

(f k) = pa

(
k∑

i=1

f i
a

)
,

we state in the following lemma necessary and sufficient optimality conditions of
problems (3) for k ∈ [K].

Lemma 2.4 Given flows f 1, . . . ,f k−1 ∈ Fk−1, a feasible flow f k solves problem (3)
if and only if the following two equivalent conditions are satisfied:

(i)
∑

a∈A

pa

(
k∑

i=1

f i
a

)
(f k

a − xk
a) ≤ 0 for all feasible flows xk ,

for commodity k,
(4)
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(ii)
∑

a∈P

pa

(
k∑

i=1

f i
a

)
≤

∑

a∈Q

pa

(
k∑

i=1

f i
a

)
for all P,Q ∈ Pk ,
P flow carrying w.r.t. f k .

(5)

Here, Pk is the set of all paths from sk to tk in the network.

The proof is based on the first order optimality conditions and the convexity
of Ck(·), see Dafermos and Sparrow [12] or the book by Boyd and Vandenberghe [6].
The relation of the above characterization to Wardrop equilibria is discussed in the
next section.

2.2 Optimal Offline Solutions

An optimal offline flow, for a given sequence σ = 1, . . . ,K , is an optimal solution f �

of the following convex optimization problem:

min C(f )

s.t.
∑

a∈δ+(v)

f k
a −

∑

a∈δ−(v)

f k
a = γ (v), ∀v ∈ V, k ∈ K, (6)

f k
a ≥ 0, ∀a ∈ A, k ∈ K.

We denote by OPT(σ ) the optimal value of this convex problem.
Using the relation

∂C

∂f k
a

(f ) = pa

(
K∑

i=1

f i
a

)
,

the necessary and sufficient optimality conditions of the above problem are given in
the following lemma.

Lemma 2.5 A feasible flow f = (f 1, . . . ,f K) ∈ FK solves (6) if and only if for all
k ∈ [K] the following two equivalent conditions are satisfied:

(i)
∑

a∈A

pa

(
K∑

i=1

f i
a

)
(f k

a − xk
a) ≤ 0 for all feasible flows xk ,

for commodity k,
(7)

(ii)
∑

a∈P

pa

(
K∑

i=1

f i
a

)
≤

∑

a∈Q

pa

(
K∑

i=1

f i
a

)
for all P,Q ∈ Pk ,
P flow carrying w.r.t. f k .

(8)

Note that differently from the optimality conditions in Lemma 2.4, the summation in
the price function is up to commodity K instead of k. This reflects the offline aspect,
since all demands are known. For the proof see again Dafermos and Sparrow [12].

Remark 2.6 An easy calculation shows that the total cost can be written as

C(f ) =
∑

a∈A

∫ ∑K
k=1 f k

a

0
pa(z) dz.
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Therefore, a solution to (6) can be seen as a Wardrop equilibrium [27] in the selfish
routing model, since C(f ) is a potential function, cf. [23]. Similarly, a solution to (3)
for some k is a Wardrop equilibrium with respect to the fixed previously routed flow
and without considering the future flows of commodities k + 1, . . . ,K .

For a given sequence of commodities σ = 1, . . . ,K and a solution f produced
by an online algorithm ALG, we denote by ALG(σ ) = C(f ) its cost. The online
algorithm ALG is called (strictly) c-competitive, if ALG(σ ) is never larger than c

times the cost of an optimal offline solution over all networks, price functions, and
sequences σ . The competitive ratio of ALG is the infimum over all c ≥ 1 such that
ALG is c-competitive; see for instance Borodin and El-Yaniv [5] and Fiat and Woeg-
inger [14].

Remark 2.7 If the price functions pa(z) are constant for every arc a ∈ A, the algo-
rithm SEQ is optimal for the offline problem, i.e., its competitive ratio is 1. This holds
since in this case the routing problems are independent of each other. In fact, each
routing decision is just a shortest path problem with respect to the constant prices.
Hence, a solution can be computed more efficiently than in the general case.

Clearly, the competitive ratio of SEQ is 1, if K = 1.

3 Competitive Analysis

To analyze the ONLINEMCRP, we first show that there exists no competitive deter-
ministic online algorithm, if neither the network nor the price functions are restricted.

Proposition 3.1 In general, there exists no competitive deterministic online algo-
rithm for the ONLINEMCRP.

Proof Consider the network depicted in Fig. 1. For all arcs a in the network, the price
function is set to pa(z) = m · zm−1 with m > 2. Let ALG be an arbitrary deterministic
online algorithm. The first commodity of sequence σ has demand d1 = 1 and has
to be routed from node s1 = 1 to node t1 = 4. There are two possible paths for this
commodity: path P1 = (1,2,4) and path P2 = (1,3,4). Because of symmetry, we can
assume that ALG sends a flow of α ∈ [ 1

2 ,1] over path P1 and (1 − α) along path P2.
Now commodity 2 arrives with demand d2 = 1, source s2 = 1, and target t2 = 2.
Algorithm ALG has to route this demand on the only possible path P3 = (1,2). For
this sequence σ , ALG produces a total cost of

ALG(σ ) = 2 · αm + 2 · (1 − α)m +
∫ 1

0
m(α + z)m−1 dz

= 2 · αm + 2 · (1 − α)m + (α + 1)m − αm

≥ (α + 1)m.

Routing the first commodity completely over path P2 and the second over path P3
leads to the constant total cost 2 · 1m + 1m = 3 ≥ OPT(σ ). Letting m tend to infinity
shows that in this case ALG is not competitive. �
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Despite the negative result of Proposition 3.1, we obtain competitive results in the
following two sections. We first restrict the price functions to be affine and then study
networks with two nodes and parallel arcs.

3.1 Affine Price Functions

In this section we will assume that the price functions are affine and show that SEQ

is 4K2

(1+K)2 -competitive.
For affine price functions pa(z) = qa · z + ra with qa ≥ 0, ra ≥ 0 for a ∈ A, we

have for a feasible flow (f 1, . . . ,f k) that

Ck
a(f k;f 1, . . . ,f k−1) = qa

(
k−1∑

i=1

f i
a + 1

2
f k

a

)
f k

a + ra f k
a .

It follows from the optimality conditions (4) that if (f 1, . . . ,f k) is generated
by SEQ, we have

∑

a∈A

(
qa

k∑

i=1

f i
a + ra

)
(f k

a − xk
a) ≤ 0, (9)

for all feasible flows xk . The main idea to obtain a bound on the competitive ratio
for SEQ is to bound the cost of the flow produced by SEQ in terms of the cost of an
offline optimal flow by applying (9) for every k ∈ [K].

Theorem 3.2 If the price functions are affine, SEQ is 4K2

(1+K)2 -competitive for the
ONLINEMCRP.

Proof We use the following useful relation at several places in the proof:

K∑

k=1

K∑

i=1

f i
a f k

a = 2
K∑

k=1

(
k−1∑

i=1

f i
a + 1

2
f k

a

)
f k

a . (10)

Let (x1, . . . ,xK) ∈ FK be any feasible flow and let (f 1, . . . ,f K) ∈ FK be the solu-
tion produced by SEQ. We start by considering the following inequality for arbitrary
nonnegative real values α, β satisfying 1 ≤ α ≤ β ≤ 2:

0 ≤
(

α

K∑

k=1

f k
a − β

K∑

k=1

xk
a

)2

= α2
K∑

k=1

K∑

i=1

f i
a f k

a − 2αβ

K∑

k=1

K∑

i=1

f i
a xk

a + β2
K∑

k=1

K∑

i=1

xi
a xk

a .
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Using (10) for the first and last term, multiplying with qa , and adding over all arcs
yields:

0 ≤
∑

a∈A

qa

(
2α2

K∑

k=1

(
k−1∑

i=1

f i
a + 1

2
f k

a

)
f k

a − 2αβ

K∑

k=1

K∑

i=1

f i
a xk

a

+ 2β2
K∑

k=1

(
k−1∑

i=1

xi
a + 1

2
xk
a

)
xk
a

)
. (11)

For the next step, consider the inequality

0 ≤
∑

a∈A

K∑

k=1

((
2α2 − 2αβ

K

)
ra f k

a + (2β2 − 2αβ) ra xk
a

)

=
∑

a∈A

K∑

k=1

(
2α2 ra f k

a − 2αβ ra xk
a + 2β2 ra xk

a

) − 2αβ

K

∑

a∈A

K∑

k=1

ra f k
a . (12)

This inequality holds, because K ≥ 2 and hence

2α2 − 2αβ

K
≥ 2α2 − αβ ≥ 0,

since 1 ≤ α ≤ β ≤ 2, implying 2α − β ≥ 0. Furthermore, 2β2 − 2αβ ≥ 2β2 −
2β2 = 0. Adding Inequality (12) to (11) leads to:

0 ≤ 2α2 C(f ) − 2αβ
∑

a∈A

K∑

k=1

(
qa

K∑

i=1

f i
a + ra

)
xk
a + 2β2 C(x)

− 2αβ

K

∑

a∈A

K∑

k=1

ra f k
a .

We drop parts of the second term and apply (9):

0 ≤ 2α2 C(f ) − 2αβ
∑

a∈A

K∑

k=1

(
qa

k∑

i=1

f i
a + ra

)
f k

a + 2β2 C(x)

− 2αβ

K

∑

a∈A

K∑

k=1

ra f k
a

= (2α2 − 2αβ)C(f ) − αβ
∑

a∈A

qa

K∑

k=1

f k
a f k

a + 2β2 C(x)

− 2αβ

K

∑

a∈A

K∑

k=1

ra f k
a .
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Fig. 2 Network for the proof of
Proposition 3.5

We now use the inequality of Cauchy-Schwarz as follows:

〈f a,1〉2 ≤ ‖f a‖2 · ‖1‖2 ⇔ 1

K

(
K∑

k=1

f k
a

)2

≤
K∑

k=1

(f k
a )2,

where 1 is the vector of all ones and f a := (f 1
a , . . . , f K

a ). Together with (10) this
yields:

0 ≤ (2α2 − 2αβ)C(f ) + 2β2 C(x) − αβ

K

∑

a∈A

qa

(
K∑

k=1

f k
a

)2

− 2αβ

K

∑

a∈A

K∑

k=1

ra f k
a

= (2α2 − 2αβ)C(f ) + 2β2 C(x) − 2αβ

K
C(f ).

This is equivalent to:

C(f ) ≤ β2

−α2 + αβ + αβ
K

C(x).

We now take α = (1 + 1
K

) and β = 2 to get C(f ) ≤ 4K2

(1+K)2 C(x), i.e, the desired
bound (if we let x be an optimal offline solution). �

Remark 3.3 The parameters α and β in the previous proof are optimal solutions to
the following minimization problem:

min
1≤α≤β≤2

β2

−α2 + αβ + αβ
K

.

Remark 3.4 For polynomials with nonnegative coefficients one can prove constant
upper bounds on the competitive ratio, which depend on the maximum degree
[19, 21, 22]. These bounds, however, do not depend on the number of commodities.
Currently, we do not know how to generalize the proof of Theorem 3.2 to this case.

In the following, we derive lower bounds on the competitive ratio. We start with a
lower bound for SEQ.
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Proposition 3.5 In case of affine price functions, the online algorithm SEQ for
ONLINEMCRP has a competitive ratio greater or equal to 2K−1

K
.

Proof Consider the network shown in Fig. 2 with the following price functions:
p(si ,s)(z) = 0, p(t,ti )(z) = 0, p(si ,ti )(z) = i, and p(s,t)(z) = z, for i = 1, . . . , n. For
i = 1, . . . , n, we consecutively release a demand of unit size from si to ti . Using
Lemma 2.4, we see that SEQ routes every demand over arc (s, t). The cost for these
n demands is:

1

2
· 1 +

(
1 + 1

2

)
· 1 + · · · +

(
n − 1 + 1

2

)
· 1 =

n∑

i=1

2i − 1

2
= 1

2
n2.

The (n + 1)-st demand of size d ≥ 1 is released from s to t and incurs the following
cost:

(
n + 1

2
d

)
d = nd + 1

2
d2.

Thus, the total cost for SEQ is given by:

SEQ(σ ) = 1

2
(n2 + 2nd + d2).

In an optimal offline solution the first n demands are routed along the arcs (si , ti) and
the last demand is routed over arc (s, t). Hence, the total cost is:

OPT(σ ) =
n∑

i=1

i + 1

2
d2 = n(n + 1)

2
+ 1

2
d2.

Setting d = n + 1 and substituting n = K − 1 yields

SEQ(σ )

OPT(σ )
= n2 + 2nd + d2

n2 + n + d2
= 1 + 2n

1 + n
= 2K − 1

K
,

which proves the proposition. �

Remark 3.6 The value d = n + 1 solves the following optimization problem with
respect to d :

max
d≥1

n2 + 2nd + d2

n2 + n + d2
= 1 + 2n

1 + n
.

This yields the best lower bound for the network in the proof of Proposition 3.5.

Independently of our work, Olver [22] and Farzad et al. [13] proved an asymptotic
lower bound of 4, improving the asymptotic 2 of Proposition 3.5. Therefore, the
result in Theorem 3.2 is asymptotically tight. For fixed K , however, we do not know
whether the bound is tight.

The best known lower bound for any deterministic online algorithm is the follow-
ing.
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Fig. 3 Graph for the proof of
Proposition 3.7

Proposition 3.7 In case of linear cost functions, no deterministic online algorithm
for the ONLINEMCRP is c-competitive for any c < 4

3 .

Proof Consider the network displayed in Fig. 3. Each arc a leaving node 1 has the
same price function pa(z) = 4 z. All the other arcs (leading to node 5) have price
function pa(z) = 0. Let ALG be an arbitrary deterministic online algorithm. The first
commodity with demand 1 has to be routed from s1 = 1 to t1 = 5.

Assume the algorithm behaves like SEQ. This means that the demand gets evenly
divided into three pieces: one third is routed over path P1 = (1,2,5), another over
path P2 = (1,3,5), and the final third over path P3 = (1,4,5) (compare Lemma 2.4).
We then reveal commodity 2 with demand 1 between nodes 1 and 2. The algorithm
ALG has to route this demand on the only possible path P4 = (1,2). Therefore, the
cost of ALG for this sequence σ is:

ALG(σ ) = SEQ(σ ) = 3 · 4 ·
(

1

2
· 1

3

)
· 1

3
+ 4 ·

(
1

3
+ 1

2
· 1

)
· 1 = 4.

An optimal offline solution is to route half of commodity 1 over path P2, the other
half over path P3, and commodity 2 along P4 (compare Lemma 2.5). Therefore,

OPT(σ ) = 2 · 4 ·
(

1

2
· 1

2

)
· 1

2
+ 4 ·

(
1

2
· 1

)
· 1 = 3.

This leads to
ALG(σ )

OPT(σ )
= 4

3
.

If ALG does not behave like SEQ for the first commodity, we can assume by sym-
metry that ALG routes a flow of α > 1

3 over path P1. Hence, a demand of 1 − α is
routed over path P2 and P3. The best way to do this is to route (1 − α)/2 over each
path. Then commodity 2 is released as above, again leaving no routing choice. The
cost of ALG for this sequence σ is

ALG(σ ) ≥ 4 ·
(

1

2
· α

)
· α + 2 · 4 ·

(
1

2
· (1 − α)

2

)
· (1 − α)

2

+ 4 ·
(

α + 1

2
· 1

)
· 1 > 4,

since α > 1
3 . Because OPT(σ ) = 3, we have

ALG(σ )

OPT(σ )
>

4

3
.

Therefore, ALG cannot have a competitive ratio less than 4
3 . �



546 Theory Comput Syst (2009) 45: 533–554

Fig. 4 Network for the proof of
Proposition 3.8

A characteristic of SEQ is that it splits demand and distributes it onto several paths.
We now show that only algorithms that split demand can be competitive. This restricts
the class of efficient algorithms to analyze.

Proposition 3.8 Every deterministic online algorithm for the ONLINEMCRP that
routes all demands unsplittably is not competitive, even for linear cost functions.

Proof Consider the network shown in Fig. 4. This network contains n + 2 nodes
and n paths from node s to node t . The price functions are pa(z) = 2 z for all arcs a.
Let ALG be an arbitrary deterministic online algorithm that does not split demands.
We consider a single commodity with demand 1 between nodes s and t . Since ALG

does not split, the cost of its routing is independent from the chosen path:

ALG(σ ) = 2 ·
(

1

2
· 1

)
· 1 + 2 ·

(
1

2
· 1

)
· 1 = 2.

An optimal solution splits the demand into n evenly divided pieces and sends each
piece over a different path. This leads to an optimal cost of

OPT(σ ) = n

(
2 ·

(
1

2
· 1

n

)
· 1

n
+ 2 ·

(
1

2
· 1

n

)
· 1

n

)
= n · 2 ·

(
1

n

)2

= 2

n
.

Therefore, the competitive ratio of ALG is not smaller than n. Since this holds for all
n ∈ N, ALG is not competitive. �

In Sect. 4, we further investigate the problem variant in which splitting demand is
also not allowed for the offline optimum.

3.2 Parallel Arc Case

We now consider the parallel arc case, that is, D consists of two nodes s and t and
parallel arcs from s to t only. We allow for arbitrary nondecreasing continuous price
functions. We will show that SEQ is 1-competitive, i.e., optimal, in this case.

Recall from Lemma 2.4(ii) that if f is generated by SEQ for the sequence σ =
1, . . . ,K , then the following holds for all a ∈ A, k ∈ [K] with f k

a > 0:

pa

(
k∑

i=1

f i
a

)
≤ pâ

(
k∑

i=1

f i
â

)
for all â ∈ A. (13)
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Fig. 5 Network and price
functions for Example 3.11

By Lemma 2.5(ii), a flow x solves the offline problem (6) if and only if we have for
all k ∈ [K]:

pa

(
K∑

i=1

xi
a

)
≤ pâ

(
K∑

i=1

xi
â

)
for all a, â ∈ A with xk

a > 0. (14)

Theorem 3.9 Algorithm SEQ computes an offline optimum in the parallel arc case.

Proof For some sequence σ = 1, . . . ,K in the parallel arc case, let f be the flow
generated by SEQ for σ . Consider a ∈ A with

∑K
k=1 f k

a > 0. Let k ∈ [K] be the
largest index such that f k

a > 0. Then for all â ∈ A:

pa

(
K∑

i=1

f i
a

)
= pa

(
k∑

i=1

f i
a

)
≤ pâ

(
k∑

i=1

f i
â

)
≤ pâ

(
K∑

k=1

f i
â

)
,

where the first inequality follows from the optimality condition (13) for the flow
(f 1, . . . ,f k) and the second follows from the assumption that the price functions are
nondecreasing. This shows (14) and hence the claim. �

Remark 3.10 Theorem 3.9 also holds for the following slightly more general net-
works: There are two demand nodes s and t , demand is only sent from s to t , and
all directed (s − t)-paths are induced paths, i.e., all nodes except s and t on the path
have degree two. Note that paths from t to s do not make a difference.

A natural extension is the case, in which each commodity has the same source
and same destination, but otherwise the network is arbitrary. The following example
proves that SEQ is not optimal for this generalization, even if price functions are
affine.

Example 3.11 Consider the network depicted in Fig. 5 with the specified price func-
tions, see also Braess [7]. All commodities have node s as source and node t as
destination. The first commodity has a demand of 1. SEQ assigns this commodity
completely to path (s,2,1, t) and yields a cost of

∫ 1

0
z dz + 0 +

∫ 1

0
z dz = 1.

Then a second commodity of unit size is released. SEQ evenly splits this demand into
two pieces. A flow of 1

2 is routed over path (s,1, t) and 1
2 along path (s,2, t). This
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leads to a cost of

∫ 1
2

0
(1 + z) dz + 1

2
+

∫ 1
2

0
(1 + z) dz + 1

2
= 2.25

for the second commodity. Hence, for these two commodities, SEQ produces a so-
lution with total cost of 3.25. However, splitting the first and the second commodity
evenly into two pieces and assigning one piece to the lower path (s,1, t) and the other
to the upper path (s,2, t) gives a solution with cost

∫ 1

0
z dz + 1 +

∫ 1

0
z dz + 1 = 3.

Hence, SEQ does not compute an optimal solution.

4 Unsplittable Routings

In this section, we study the unsplittable ONLINEMCRP: the variant of ONLINE-
MCRP in which the demand of each commodity has to be routed along a single path.
Such a restriction frequently occurs in practice, for instance in single path routing
problems in telecommunication networks. It is possible to formulate a mixed integer
convex program for this setting. In contrast to the splittable case, however, the offline
problem is NP-hard in this case.

Proposition 4.1 The offline problem for the unsplittable ONLINEMCRP is NP-hard,
even when the price functions are linear.

Proof Consider an instance of the minimum sum of squares problem, which is
NP-complete in the strong sense (see Garey and Johnson [17]). Here, one is given
nonnegative integers d1, . . . , dK and positive integers N ≤ K and J . The question is
whether there exists a partition of [K] into N sets A1, . . . ,AN such that

N∑

i=1

(
∑

k∈Ai

dk

)2

≤ J ?

For the reduction to the offline problem, we construct a network D with node
set {s1, . . . , sK,u1, . . . , uN , t} and the following arcs: For each k ∈ [K] and i ∈ [N ]
we have an arc (sk, ui) with price function 0. For each i ∈ [N ] we add an arc a =
(ui, t) with price function pa(z) = 2 z; see Fig. 6. Furthermore, for k ∈ [K] there are
demands dk between sk and t .

We claim that there exists an unsplittable solution to the offline problem of value at
most J if and only if the answer to the minimum sum of squares problem is positive.
To see this, first assume that A1, . . . ,AN is the wanted partition. Then if k ∈ Ai , we
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Fig. 6 Construction for the
proof of Proposition 4.1

route commodity k along ui to t . Using (10), we obtain the following costs:

2
N∑

i=1

∑

k∈Ai

(
∑

j∈Ai
j<k

dj + 1

2
dk

)
dk =

N∑

i=1

∑

k∈Ai

∑

j∈Ai

dk dj =
N∑

i=1

(
∑

k∈Ai

dk

)2

.

This proves the forward direction of the claim. Conversely, assume that there exists
an unsplittable flow of value at most J . For i = 1, . . . ,N , let Ai be the set of indices k

whose corresponding demands are routed over the arc (ui, t). Again the cost is given
as above, which shows that there exits a solution to the minimum sum of squares
problem. �

In the following we study the online algorithm U-SEQ that, given unsplittable
flows f 1, . . . ,f k−1, solves the variant of (3) in which the flow has to be unsplittable.

Remark 4.2 The unsplittable variant of problem (3) amounts to solving a shortest
path problem and hence can be solved in polynomial time.

When the price functions are constant, also the offline optimum of the unsplittable
ONLINEMCRP can be computed by solving a sequence of shortest path problems.
Hence, the unsplittable variant of (6) can be solved in polynomial time, and U-SEQ

produces an optimal solution in this case.

The following result shows that the additional requirement of unsplittable routings
does not allow for a competitive deterministic online algorithm for the ONLINE-
MCRP, in general. This result follows already from the proof of Proposition 3.1,
since the offline optimum for the used instance is unsplittable. Hence, in this case,
lower bounds for the splittable ONLINEMCRP carry over to the unsplittable variant.
We present a proof for the following proposition, since it contains an improvement
of the implicit lower bound for polynomial price functions compared to the proof of
Proposition 3.1.

Proposition 4.3 In general, there exists no competitive deterministic online algo-
rithm for the unsplittable ONLINEMCRP.

Proof Consider again the network shown in Fig. 1, where each arc a has price func-
tion pa(z) = m · zm−1 for some m > 2. Let ALG be an arbitrary deterministic online
algorithm. We first reveal a commodity with demand 1, source node 1, and target
node 4. Because of symmetry, we can assume that ALG uses path P1 = (1,2,4) to
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route this demand. We then release commodity 2 with demand 1, source 1, and tar-
get 2. Algorithm ALG has to route this commodity on the single path P2 = (1,2).
Hence, for this sequence σ , ALG yields the cost

ALG(σ ) = 2 · 1m +
∫ 1

0
m(1 + z)m−1 dz = 2 + (1 + 1)m − 1m = 1 + 2m.

The optimal cost is OPT(σ ) = 3, which is achieved by routing commodity 1 over
path P3 = (1,3,4) and commodity 2 along path P2. Therefore, for m tending to
infinity it follows that ALG is not competitive. �

We can also improve the lower bound of Proposition 3.7 from 4
3 to 2.

Proposition 4.4 For linear price functions, no deterministic online algorithm has a
competitive ratio less than 2 for the unsplittable ONLINEMCRP.

Proof Consider the network shown in Fig. 1, where each link a is equipped with the
same price function pa(z) = 2 z. Let ALG be an arbitrary deterministic online algo-
rithm. We first reveal commodity 1 with demand 1, source 1, and target 4. Without
loss of generality this commodity is routed over path P1 = (1,2,4). Then we release
a commodity from node 1 to 2 and a commodity from node 2 to 4, both with a de-
mand of 1. Since for each of the last two commodities there exists only a single path,
the assignment by ALG for this sequence σ leads to a cost of

ALG(σ ) = 2 · 2 ·
(

1

2
· 1

)
· 1 + 2 ·

(
1 + 1

2
· 1

)
· 1 + 2 ·

(
1 + 1

2
· 1

)
· 1 = 8.

An optimal routing is achieved by routing commodity 1 along path P2 = (1,3,4)

and commodity 2 and 3 over their single paths. This leads to an optimal cost of
OPT(σ ) = 4, and hence the competitive ratio of ALG is at least 2. �

In the following, we will derive an upper bound on the competitive ratio of
U-SEQ for affine price functions.

The next lemma provides a straight-forward formulation of optimality in the un-
splittable variant of (3).

Lemma 4.5 Given unsplittable flows f 1, . . . ,f k−1 ∈ Fk−1, the feasible unsplittable
flow f k solves the unsplittable variant of (3) if and only if the following inequality is
satisfied:

∑

a∈A

∫ f k
a

0
pa

(
k−1∑

i=1

f i
a + z

)
dz ≤

∑

a∈A

∫ xk
a

0
pa

(
k−1∑

i=1

f i
a + z

)
dz,

for all feasible unsplittable flows xk
a for commodity k.

Note that Lemma 4.5 also holds for the splittable case, i.e., for problem (3).
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Theorem 4.6 In the case of affine price functions, U-SEQ is (3 + 2
√

2)-competitive
for the unsplittable ONLINEMCRP.

Proof We start with the cost of the flow f generated by U-SEQ for affine price func-
tions pa(z) = qa · z + ra , with qa ≥ 0 and ra ≥ 0 for a ∈ A:

C(f ) =
∑

a∈A

K∑

k=1

qa

(
k−1∑

i=1

f i
a f k

a + 1

2
f k

a f k
a

)
+ ra f k

a .

Using Lemma 4.5 and qa ≥ 0, we get:

C(f ) ≤
∑

a∈A

K∑

k=1

qa

(
k−1∑

i=1

f i
a xk

a + 1

2
xk
a xk

a

)
+ ra xk

a .

Using
∑

xk
a xk

a ≤ (
∑

xk
a)2, increasing the limits of the inner sum, and applying (10),

we obtain:

≤
∑

a∈A

qa

(
K∑

k=1

K∑

i=1

f i
a xk

a + 1

2

(
K∑

k=1

xk
a

)2)
+ ra xk

a

= C(x) +
∑

a∈A

qa

K∑

k=1

K∑

i=1

f i
a xk

a .

For λ > 1 (to be specified later), we add and subtract λC(x), which yields

C(f ) ≤ (1 + λ)C(x) +
∑

a∈A

qa

(
K∑

k=1

K∑

i=1

f i
a xk

a − λ

2

(
K∑

k=1

xk
a

)2)
− λra

K∑

k=1

xk
a .

Dropping the last term and adding

0 ≤
(

1√
2λ

K∑

k=1

f k
a −

√
λ√
2

K∑

k=1

xk
a

)2

= 1

2λ

(
K∑

k=1

f k
a

)2

−
K∑

k=1

K∑

i=1

f i
a xk

a + λ

2

(
K∑

k=1

xk
a

)2

(multiplied by qa and summed over a), we obtain:

C(f ) ≤ (1 + λ)C(x) + 1

2λ

∑

a∈A

qa

(
K∑

k=1

f k
a

)2

≤ (1 + λ)C(x) + 1

λ
C(f ),
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Fig. 7 Graph for Example 4.10

where for the last inequality we added

∑

a∈A

ra

K∑

k=1

f k
a ≥ 0.

Finally, defining λ = 1 + √
2 and rewriting yields the desired result. �

Remark 4.7 The parameter λ in the previous proof is the optimal solution to the
following minimization problem:

min
λ>1

(1 + λ)λ

λ − 1
.

Note that the above proof also holds for the splittable case, but yields a weaker

bound 3 + 2
√

2 ≈ 5.828 compared to 4K2

(1+K)2 in Theorem 3.2.

With the bound of Theorem 4.6 and Remark 4.2, we obtain a constant approxima-
tion algorithm for the NP-hard unsplittable version of (6).

Corollary 4.8 U-SEQ is a (3 + 2
√

2)-approximation algorithm for the unsplittable
variant of (6).

Remark 4.9 For polynomials with nonnegative coefficients, one can prove con-
stant upper bounds on the competitive ratio, which depend on the maximum degree
[21, 22]. Furthermore, in [22] it is shown that these upper bounds are tight.

In Sect. 3.2, we proved that SEQ is optimal in the special setting of parallel arcs
in the splittable case. In the unsplittable case, however, the following example shows
that U-SEQ does not always return an optimal solution, even if we restrict the network
to parallel arcs.

Example 4.10 Consider the network depicted in Fig. 7 with the following price func-
tions: pa(z) = z and pb(z) = 2 z. Each commodity has node 1 as source and node 2
as destination.

The first commodity is released with a demand of 2. Algorithm U-SEQ routes this
commodity over arc a and produces a cost of 2. A second commodity arises with
demand 3. This request is send by U-SEQ over arc b, which leads to a cost of 9. The
total cost is 11.

Routing the first request over arc b and the second one over arc a yields a cost
of 8.5. Hence, U-SEQ is not optimal for this setting.
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5 Final Comments and Future Research

We see the framework introduced in this paper as a first step towards modeling of
real world online multicommodity routing problems. In practice, however, there are
many more additional requirements. For instance, routings have to consider capac-
ities, which we ignored in our approach. With capacities, however, one can easily
construct examples in which any online algorithm does not even produce a feasible
solution. Further requirements in practice include path length restrictions and surviv-
ability issues.

Another important point is that in practice routings are only valid until a given
time, after which they disappear. First steps in this direction have been taken in [21].

Acknowledgements We thank the referees for their helpful comments, in particular, for finding an error
in an earlier version of this paper and a shorter proof for Theorem 3.9.
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