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Chapter 1

Introduction

A standard problem in network optimization is to find a routing of traffic
demands from sources to destinations using a given network infrastructure.
This problem is also known as a multicommodity flow problem or traffic assign-
ment problem. A cost is associated with every arc of the network, which is
usually a function of the arc flow. Most of the optimization models assume
a central planer controlling the whole system and determining the best pos-
sible routing accordingly. This routing is also called the system optimum. For
many real-world applications, this assumption is problematic with respect to
several aspects: It is not always assured that (i) a central planer has access to
the necessary information (information problem), (ii) the best possible solution
is efficiently computable even if the needed information is accessible (complex-
ity problem), (iii) the individual traffic sources agree to a proposed solution
(implementation problem).

A tremendous amount of effort has been invested in designing efficient
routing algorithms to cope with the above problems. As an example for the
information problem, consider a traffic assignment problem, where demands
arrive sequentially in time in an online fashion. An algorithm that routes these
demands without knowledge about future demands is called an online algo-
rithm. The common theoretical concept to evaluate the efficiency of an online
algorithm is based on competitive analysis coming from the online optimiza-
tion field. An online algorithm is called competitive, if its cost is never larger
than a constant factor times the cost of an optimal offline solution. Another
research area that covers the complexity problem is concerned with deriving
efficient algorithms for solving (NP-hard) optimization problems. Of particu-
lar interest is the notion of an approximation ratio for a heuristic to solve such
optimization problems. The approximation ratio is defined as the largest ratio
of the objective value obtained by the solution of the heuristic and that of an
optimal solution. The implementation problem can be analyzed within the
algorithmic game theory field. Here, one tries to quantify the efficiency loss
caused by selfish users compared to the system optimum. The cost of this
lack of coordination has been coined “price of anarchy” by Koutsoupias and
Papadimitriou in [62]. While the approximation ratio and competitive ratio
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measure the worst case loss in solution quality due to insufficient computing
power and information, respectively, the price of anarchy measures the worst
case loss due to insufficient ability to control and coordinate the actions of
selfish individuals.

All three issues are exemplified by several practical applications that have
motivated the topics covered in this thesis. For instance, billions of packets tra-
verse the world wide web along routes that are decided on by Internet routing
protocols. This routing is done in an online fashion without knowledge about
future traffic changes. The size of the Internet and the heterogeneity of In-
ternet applications contribute to the computational complexity of finding the
best possible routing. Furthermore, a centrally coordinated implementation
usually contradicts security requirements of Internet users. Another example
for the implementation problem is the road traffic network, where the majority
of traffic follows routes that are chosen based on selfish interests of the indi-
viduals. It is well known that some users would have to take long detours
in a system optimal routing, which makes such a solution unattractive for the
affected users.

The main topic of this thesis is to study multicommodity flow problems that
exhibit a combination of the afore mentioned three problems. In particular, we
focus on online multicommodity routing problems, selfish routing problems,
and a combination of these two problems. Thus, the theoretical concepts that
we use to analyze the corresponding routing patterns stems from competitive
analysis and bounding the price of anarchy. Indirectly, these concepts also pro-
vide an approximation ratio, since a solution produced by an online algorithm
or a solution produced by selfish individuals constitutes an approximation for
the optimal solution of an optimization problem.

1.1 Online Multicommodity Flow Problems

In the first part of this thesis, we study online multicommodity routing prob-
lems, where demands have to be routed sequentially in a network. The cost of
a flow is determined by dynamic load dependent price functions on links. We
make four crucial assumptions: (i) demands for commodities are revealed in
an online fashion and have to be routed immediately; (ii) demands can be split
along several paths; (iii) once a demand is routed, no rerouting is allowed; (iv)
the routing cost on an arc is given by the integral over the arc flow with respect
to the corresponding price function. Since at the time of routing a commodity,
future demands are not known, this yields an online optimization problem
that we call the Online Multicommodity Routing Problem.

This problem arises in an inter-domain resource market in which multiple
service providers offer network resources (capacity) to enable Internet traffic
with specific Quality of Service (QoS) constraints, see for example Yahaya and
Suda [88] and Yahaya, Harks, and Suda [90]. In such a market, each service
provider advertises prices for resources that he wants to sell. We assume that
prices are determined by load dependent price functions. Buying providers
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reserve capacity along paths to route demand (coming from own customers)
from sources to destinations via domains of other providers. The routing of
a demand along paths is fixed by establishing a contract between the source
domain and all domains along the paths. Prices in the market, however, are
only valid for a predefined bundle size, that is, after the routing of flow with
this bundle size, the arc prices are updated. In the limiting case, where the
bundle size tends to zero, the routing cost on an arc is given by the integral
over the arc flow with respect to the corresponding price function.

Contributions (Chapter 3)

We investigate such multicommodity online routing problems and allow for
arbitrary continuous and nondecreasing load dependent price functions defin-
ing the routing costs. We investigate a greedy online algorithm, called Seq, for
this setting and investigate, in which cases this algorithm is competitive. Our
main finding is that for polynomial price functions with nonnegative coeffi-
cients, the competitive ratio of Seq can be bounded by a constant factor that
only depends on the maximum degree of the polynomials but is independent
of the network topology and demand sequence. For the single-source single-
destination case, we show that this algorithm is optimal. Without restrictions
on the price functions and network, no algorithm is competitive. We also in-
vestigate a variant in which the demands have to be routed unsplittably. In this
case, the offline problem is NP-hard. As in the splittable case, in general there
exists no competitive deterministic online algorithm. For linear price func-
tions, any deterministic online algorithm has a competitive ratio of at least
2. Finally, we present a computational study for unsplittable routings for a
realistic network topology and stochastically generated demands. Our empir-
ical findings state that the efficiency loss is significantly smaller in this case
compared to the provable upper bounds for the splittable online routing Seq.
The online algorithm Seq and the OnlineMCRP can be viewed as a first step
towards a methodology for analyzing the efficiency of general inter-domain
routing strategies. These results are presented in Chapter 3.

1.2 Network Games

Second, we study the impact of selfish behavior on social welfare in network
games. We are interested in the degradation of system performance if play-
ers select routes based on selfish interest. Consider a network of arcs that are
used by individuals to route demand from sources to destinations. A common
approach is to model congestion on arcs by nondecreasing latency functions
mapping the flow on an arc to the time needed to traverse this arc. Since
individuals share the same network, congestion effects on arcs generate inter-
dependencies between the routing decisions. In this regard, non-cooperative
game theory provides the appropriate concepts to analyze such interdepen-
dencies. In a non-cooperative game, players compete for shared resources and
the utility of each individual player depends on the number of players that
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choose the same or some overlapping strategy, see Rosen [78]. In the net-
work routing context, the strategies correspond to the available routes and the
utility of a player is its total travel time. A classical approach to describe the
outcome of a non-cooperative game is to analyze an equilibrium situation. The
most popular notion of such an equilibrium is the Nash equilibrium: a stable
point from which no individual has an incentive to deviate unilaterally. In
nonatomic network games in which a single individual player has only a neg-
ligible impact on the travel time of others, Wardrop [87] characterized such an
equilibrium in his first principle as follows. All path flows between a single
source and a single destination have equal latency. A Wardrop equilibrium can
be interpreted as a Nash equilibrium in this case.

A fundamental question that has already been raised in 1920 by Pigou [75]
and later on in the 1950’s by Wardrop [87] and Beckmann, McGuire and Win-
sten [11] is the following: How efficient is the performance of a Nash equi-
librium compared to the best possible outcome? As already noted, the cost
of this lack of coordination is called price of anarchy. For the Wardrop traffic
model, Roughgarden and Tardos [84] proved in a seminal paper that the total
travel time of a flow at Nash equilibrium does not deviate too much from the
minimum total travel time. In particular, they proved that the price of anarchy
is bounded by 4/3 provided affine linear latency functions are considered. By
introducing the so called anarchy value α(L) for a class L of latency functions,
Roughgarden [81] proved the first tight bounds on the price of anarchy for
general polynomial latency functions. Correa, Schulz, and Stier-Moses [24]
introduced a different parameter β(L) that allows to relax some previous as-
sumptions on allowable latency functions. They proved that their bound im-
plies all bounds of Roughgarden by using the relation α(L) =

(
1− β(L)

)−1.

Even though we have just argued that the outcome of a Nash equilibrium is
not too inefficient, there has been a recent trend towards using route guidance
devices for improving the individual travel time. The current position of each
driver is determined via the Global Positioning System (GPS) at the beginning
of a trip. A central computer calculates then an “optimal” route for this trip
based on digital maps and on available knowledge of traffic congestion on the
streets. In game theoretic language, a route guidance operator is an atomic
player since a significant (non negligible) part of the entire demand is con-
trolled. Roughgarden [83] and Correa, Schulz, and Stier-Moses [25] claimed
that the price of anarchy in an atomic network game does not exceed that of
the corresponding nonatomic one. Interestingly, this turned out to be wrong,
as reported by Cominetti, Correa, and Stier-Moses in [23]. Based on the work
of Catoni and Pallotino [19], they presented an example in which the price
of anarchy in a network game with atomic players is larger than that of the
corresponding nonatomic game. Moreover, they showed that the cost for an
atomic player may even increase compared to the nonatomic game. Such a
counter-intuitive phenomenon can also arise from the perspective of single
individuals: a nonatomic player competing with an atomic player may face
lower cost compared to the situation in which the atomic player is replaced
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by nonatomic ones. Cominetti, Correa, and Stier-Moses showed that the price
of anarchy for the atomic network game can be bounded for special latency
functions. In particular, they proved upper bounds of 1.5, 2.56, and 7.83 on the
price of anarchy for affine linear, squared, and cubic latency functions with
nonnegative coefficients, respectively. For polynomials with nonnegative coef-
ficients and higher degree, their approach fails to generate upper bounds on
the price of anarchy.

Contributions (Chapter 4)

For network games with nonatomic players, we introduce the value ω(L, λ) for
bounding the price of anarchy. This value generalizes the anarchy value α(L)
and the value β(L). Using our value, we reprove the existing tight bounds on
the price of anarchy and present a novel proof for monomial latency functions
showing that the price of anarchy is one in this case.

For network games with atomic players, we improve all previously known
bounds for polynomial latency functions with nonnegative coefficients, except
for affine linear latency functions. These results are presented in Chapter 4.

1.3 Online Network Games

Combining the online aspect with selfish behavior of individuals, we investi-
gate an online routing problem called online network games. In this problem, we
assume a sequence of network games σ = (1, . . . , n) that are released consec-
utively in time in an online fashion. A network game is characterized by a set
of commodities that have to be routed in a given network. Arcs in the network
are equipped with load dependent latency functions defining the routing cost.
By the time of routing commodities of game i, future games i + 1, . . . , n are not
known. We further assume that once commodities of a game are routed, this
routing remains fixed, that is, the routings are irrevocable. We analyze two
online algorithms, called NSeqNash and ASeqNash. These algorithms pro-
duce a flow consisting of a sequence of Nash equilibria for the corresponding
games with nonatomic and atomic players, respectively. As usual, we analyze
the efficiency of an online algorithm in terms of competitive analysis.

The online variant of network games is motivated by the application of self-
ish routing to the source routing concept in telecommunication networks, see
Qiu, Yang, Zhang, and Shenker [76] and Friedman [42] for an engineering per-
spective and Roughgarden [80] and Altman, Basar, Jimenez, and Shimkin [5]
for a theoretical perspective on this topic. In the source routing model, sources
are responsible for selecting paths to route data to the corresponding destina-
tion. The arcs in the network advertise their current status that is based on the
current congestion situation. If the costs on arcs correspond to the expected
delay, minimum cost routing is a natural goal for real-time applications.

As described in the last section, the main focus of the line of research that
studies source routing is to quantify the price of anarchy. Here, one assump-
tion is crucial: if the traffic matrix changes, all sources may possibly change
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their routes and form a new equilibrium. This assumption, however, has some
important implications: Each source would have to continuously maintain the
current state of all available routes, which in turn introduces additional traf-
fic overhead by continuously signaling this needed information. Furthermore,
frequent rerouting attempts during data transmission may not only produce
transient load oscillations but may also interfere with the widely used conges-
tion control protocol tcp that controls the data rate, as reported by La, Wal-
rand, and Anantharam in [63]. For these reasons, frequent rerouting attempts
in reaction to traffic changes in the network are not necessarily beneficial. Time
critical applications, such as Internet telephony or video streaming may suffer
severe performance degradation.

Contributions (Chapter 5)

In this regard, we propose and investigate a new model, called Online Network
Games, in which sources starting at the same time select their routes only dur-
ing connection setup phase. We then study the extreme case in which flows fix
their routing decisions once they are at equilibrium. Thus, continuously gath-
ering information about the state of available routes is not necessary after this
initial routing game. Relying on competitive analysis, we analyze online algo-
rithms that produce a flow that is at Nash equilibrium for every game out of a
sequence of games. The cost function is given by the total travel cost after all
games have been played. Our main result states that for polynomial latency
functions with nonnegative coefficients, the competitive ratio of both NSeq-
Nash, andASeqNash can be bounded by a constant factor, which depends on
the maximum degree. This result holds independently of the network topol-
ogy or game sequence. We also prove lower bounds. In particular, we show
that for a sequence of two network games and affine linear latency functions,
our upper bound for the NSeqNash is tight. Furthermore, we prove for a
given sequence of games and parallel arcs that the competitive ratio of the
online algorithm NSeqNash does not exceed the price of anarchy of a comple-
mentary nonatomic network game in which all commodities of the sequence
of games are considered at the same time.

1.4 Thesis Organization

After describing the motivation and background for this thesis in Chapter 1,
we present in Chapter 2 the basic concept of competitive analysis in online
optimization. In Chapter 3, we present the framework OnlineMCRP in which
we study the online algorithm Seq. In Chapter 4 we focus on network games
with nonatomic and atomic players, respectively. Finally, we combine network
games with online aspects in Chapter 5.

We note that the “Contribution and Chapter Outline” section at the begin-
ning of Chapter 3, 4, and 5 gives an overview and road map about the results
presented in that chapter. We further recommend that Chapter 4 is read prior
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to Chapter 5. Except for introducing the notation for multicommodity flow
problems, Chapter 4 and 5 can be read independently from Chapter 3.





Chapter 2

Preliminaries

In this chapter, we introduce the theoretical concept for analyzing online algo-
rithms that cope with incomplete information. In the first section, we introduce
the concept of online optimization by means of a request answer game as de-
fined by Ben-David et al. in [12]. The second section deals with the concept of
competitive analysis that we are going to use throughout the thesis.

2.1 Online Optimization

Static optimization approaches assume complete knowledge about all problem
data in advance. These problems are also called offline optimization problems.
Online optimization problems are a special class of optimization problems in
which the input instances are not given completely in advance. Instead, an
instance arises step-by-step and decisions have to be made based only on the
information revealed so far. Each decision leads to a cost or profit and the task
is to minimize the total cost or to maximize the gained profit. In this thesis
only minimization problems are considered. Therefore, all definitions in this
section refer to minimization problems. However, the definitions can easily be
adapted for maximization problems.

Most online optimization problems can be formalized as a request-answer
game, which was introduced by Ben-David et al. in [12].

Definition 2.1 (Request-Answer Game)
A request-answer game consists of a request set R, a nonempty and finite an-
swer set A, and cost functions costn : Rn × An → R

+ ∪ {∞} for n ∈ N.
Let C denote the set of functions costn for all n ∈ N. An instance is given
by a request sequence σ = r1, r2, . . . , rn of n ∈ N requests from R. The
task is to find an answer sequence (a1, a2, . . . , an) ∈ An such that the cost
costn(r1, r2, . . . , rn, a1, a2, . . . , an) is minimized. A request-answer game is given
by the triple (R,A, C).

A request-answer game itself does not define an online optimization prob-
lem since no restriction is made on the way the answers have to be given. An
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online algorithm has to serve a request right after it arises according to the
specific rules of a request-answer game. We remark here that it is common
in the literature to assume a finite answer set Ai. In this thesis, however, the
answer sets that we consider are continuous sets containing infinitely many
elements. As stated by Borodin and El Yaniv [15], the finiteness requirement is
not of conceptual importance for the principles of competitive analysis. They
show that an infinite answer set can be approximated by a sufficiently large
finite answer set.

Definition 2.2 (Deterministic Online Algorithm)
Let (R,A, C) be a request-answer game. A deterministic online algorithm Alg is
a sequence of functions f1, f2, . . . , where fi : Ri → A. If σ = r1, r2, . . . , rn is a
sequence of n ∈ N requests from R, then the output of Alg for this sequence
is

Alg[σ] = (a1, a2, . . . , an) ∈ An, where ai = fi(r1, r2, . . . , ri).

The cost incurred by Alg on σ is denoted by Alg(σ) and defined as

Alg(σ) = costn(σ, Alg[σ]).

Note that the answer ai may only depend on the requests r1, r2, . . . , ri for
i = 1, 2, . . . , n. Therefore, the definition of a deterministic online algorithm
meets the requirement that such algorithms have to make decisions based only
on partial information.

Besides the class of deterministic online algorithms, there exists the class
of randomized online algorithms. These algorithms use a probability distribu-
tion over a set of deterministic online algorithms to generate an answer for
a given request. Therefore, the answer sequence as well as the cost are ran-
dom variables. Even though we will not use the concept of randomized online
algorithms in this thesis, we briefly present the main ideas for completeness.

Definition 2.3 (Randomized Online Algorithm)
A randomized online algorithm ralg is a probability distribution over determin-
istic online algorithms Algx (x may be thought of as the coin tosses of the
algorithm ralg).

Note that the definition points out that every deterministic online algorithm
is a randomized online algorithm with probability 1 on a certain outcome.
Hence, the class of deterministic online algorithms is included in the class of
randomized online algorithms.

Online algorithms provide for each sequence of requests an answer se-
quence which comes along with a cost. Usually, the task is to generate an
answer sequence that minimizes this cost.

2.2 Competitive Analysis

The standard technique for analyzing the performance of an online algorithm
is competitive analysis. This method measures the performance of an online
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algorithm against an optimal offline solution. An optimal offline algorithm has
access to the complete input instance in advance and serves it at a minimum
cost, called optimal offline cost.

Definition 2.4 (Optimal Offline Cost)
Let (R,A, C) be a request-answer game and σ = r1, r2, . . . , rn a sequence of
n ∈ N requests from R. Then the optimal offline cost is defined as

Opt(σ) = min{costn(σ, a) | a ∈ An}.

2.2.1 Deterministic Online Algorithm

Using competitive analysis the performance of a deterministic online algo-
rithm is measured as follows.

Definition 2.5 (Competitive Deterministic Online Algorithm)
Let (R,A, C) be a request-answer game and c ≥ 1 a real number. A determin-
istic online algorithm Alg is called c-competitive if there exists a number b ≥ 0
such that

Alg(σ) ≤ c ·Opt(σ) + b

holds for any request sequence σ. If b = 0, Alg is called strictly c-competitive.

In the reminder of this thesis we omit the term "strictly". For all presented
results we have b = 0.

Given a deterministic online algorithm Alg, we are interested in the small-
est constant c ≥ 1 such that Alg is c−competitive.

Definition 2.6 (Competitive Ratio)
The competitive ratio of a deterministic online algorithm Alg is the infimum
over all c such that Alg is c-competitive.

Note that the definition does not make any restriction on the computational
complexity of a deterministic online algorithm. The only scarcity in competi-
tive analysis comes from lack of information. The concept of competitive anal-
ysis is based on a worst case analysis for online algorithms. The performance
guarantee must hold for each request sequence. In this regard, competitive
analysis can be seen as a game between the online algorithm and a malicious
adversary. The malicious adversary tries to generate a request sequence such
that the online algorithm performs as “bad” as possible compared to the op-
timal offline cost. In doing so, the malicious adversary has knowledge about
the algorithm. That is, he knows for any request sequence all answers of a
deterministic online algorithms in advance.

2.2.2 Randomized Online Algorithm

The answer sequence as well as the cost of a randomized online algorithm are
random variables. Therefore, the competitive ratio of a randomized online al-
gorithm depends on the amount of information an adversary has access to. In
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the standard adversary model, the adversary has knowledge about the prob-
ability distribution of a randomized online algorithm but does not know the
exact outcome for each request sequence. Hence, an adversary has to choose
an entire request sequence before an online algorithm starts processing the
chosen sequence. Such an adversary is called oblivious adversary in the litera-
ture.

Definition 2.7 (Oblivious Adversary)
An oblivious adversary has to generate the entire request sequence in advance
based only on the description of the randomized online algorithm but before
any request is served by the randomized online algorithm.

As mentioned before, the definition of the competitive ratio of a random-
ized online algorithm depends on the class of allowable adversaries. For the
purpose of introducing competitive analysis, we restrict ourselves to an obliv-
ious adversary, which is the weakest of those introduced by Ben-David et al.
in [12].

Definition 2.8 (Competitive Randomized Online Algorithm)
Let (R,A, C) be a request-answer game and c ≥ 1 a real number. A ran-
domized online algorithm ralg with a probability distribution X over a set
{Algx} of deterministic online algorithms is said to be c-competitive against
the oblivious adversary if

E[Algx(σ)] ≤ c ·Opt(σ)

holds for each sequence σ. Here the expression E[Algx(σ)] denotes the expec-
tation with respect to the probability distribution X over {Algx} which defines
ralg. The competitive ratio of ralg is the infimum over all c such that ralg is
c-competitive against the oblivious adversary.

The above definition reduces to Definition 2.5 in the case of a determin-
istic online algorithm. Since the oblivious adversary is not as powerful as in
the deterministic case, randomized online algorithms usually provide a better
competitive ratio than deterministic online algorithms.

Of course, lower bounds on the competitive ratio of online algorithms are
also of interest. In order to obtain such a lower bound for an online algorithm,
a request sequence has to be constructed such that this algorithm performs
“bad” compared to the optimal offline cost. Besides a lower bound on the
competitive ratio of a certain online algorithm, it is also of interest to find a
lower bound which holds for any online algorithm of the considered online op-
timization problem. In the deterministic case, it is comparatively easy to find
suitable request sequences. Since the cost of a randomized online algorithm
is a random variable, it can be difficult to bound the competitive ratio from
below. In such cases Yao’s Principle is an approach to find lower bounds on
the competitive ratio of any randomized online algorithms for the considered
online problem, see Borodin and El Yaniv [15], Motwani and Raghaven [70],
and Albers [4].



Chapter 3

Online Routing Problems

Resource intensive real-time applications, such as video or Internet-telephony,
are increasingly dominating traditional Internet traffic, for example e-mail,
file transfer, and web-browsing. This causes significant changes regarding the
interaction of Internet service providers. Currently, loose peering agreements
between neighboring domains regulate the data transmission across domain
boundaries: Each domain agrees to route messages between any of its two
neighboring domains; this routing is done free of charge and on a best effort
basis. One of the main reasons why most service providers agree with this
policy is because traditional Internet traffic does not require any Quality of
Service (QoS). Therefore, the “free through-passing” policy only incurs low
additional cost to each service provider.

Future Internet applications, however, pose diverse QoS requirements on
the Internet traffic, e.g., bounded packet delay and jitter 1 for video or Internet-
telephony, see Gharavi and Partovi [44]. Moreover, users expect that their ac-
cess provider delivers this type of service. Presently, Internet service providers
can offer such services within the domains which they control. Still, provid-
ing traffic with QoS requirements for other domains is considerably more
expensive than the above mentioned traditional Internet applications. As a
consequence, service providers are no longer willing to support this service
at no cost. Hence, the deployment of end-to-end inter-domain traffic with
QoS requires trading and negotiating for resources between different service
providers. This opens a new market with a multitude of strategically acting
and selfishly behaving participants.

In this regard, a novel inter-domain resource exchange architecture (iREX)
for the automated deployment of Internet traffic with QoS requirements has
been proposed by Yahaya and Suda [88, 89] and Yahaya, Harks, and Suda [90].
The iREX architecture is based on the “Posted Price Competition” economic
model in which providers independently choose prices that are publicly com-
municated to resource consumers on a take-it-or-leave-it basis, see Abbink [1]
for an introduction to this economic model. In the iREX context, domains are

1Jitter is defined as the variation of inter packet arrival times.



18 Chapter 3. Online Routing Problems

both resource providers and resource consumers at the same time. Since do-
mains have resources that they can sell, they also need to buy resources to
deploy inter-domain traffic with QoS requirements for their own customers.
Thus, the iREX architecture establishes a market for Internet traffic with QoS
requirements. In this market, each service provider advertises prices for re-
sources that he wants to sell. Buying providers reserve capacity along paths
to route demand (coming from own customers) from source to destination
via domains of other providers. The routing of a demand along paths is
fixed by establishing a contract between the source domain and all domains
along the chosen paths. According to Yahaya and Suda [88, 89], we assume
that providers determine prices according to predefined load dependent price
functions. Such prices, however, are only valid for a predefined demand size
(bundle size), that is, routing flow of bundle size prompts an update of arc
prices. The reason for this is that scarce resources are priced higher (lower)
if the load increases (decreases). In the limiting case, where the bundle size
tends to zero, the routing cost on an arc is given by the integral over the arc
flow with respect to the corresponding price function. As the user behavior
and resulting traffic changes in the Internet are hard to predict, we assume
that future demands are unknown.

In this chapter, we model the interaction of service providers via online
multicommodity routing problems. In online multicommodity routing prob-
lems, commodities of a multicommodity flow have to be routed sequentially in
a network. The cost of a flow is determined by dynamic load dependent price
functions on links. We assume that the price functions are continuous and
nondecreasing. The commodities arrive sequentially in time and have to be
routed with lowest cost, since participating providers are assumed to act ratio-
nal. We make four crucial assumptions for the considered model: (i) demands
for commodities are revealed in an online fashion; (ii) demands can be split
along several paths; (iii) once a demand is routed, no rerouting is allowed; (iv)
the routing cost on an arc is given by the integral over the arc flow with respect
to the corresponding price function. Since at the time of routing a commodity,
future demands are not known, this yields an online optimization problem
that we call the Online Multicommodity Routing Problem (OnlineMCRP).

We study a greedy online algorithm Seq that routes a newly revealed com-
modity by solving a convex optimization problem that only depends on the
previously routed demands. We investigate cases in which Seq is competitive,
that is, its cost is at most a constant factor larger than the cost of an optimal
offline solution for which all commodities are known. We see Seq and the
OnlineMCRP as a first step towards an analytical methodology for analyzing
the efficiency of general inter-domain routing strategies.

Multicommodity routing problems have been studied in the context of traf-
fic engineering, see Fortz and Thorup [38, 39]. There, the goal is to route given
demands subject to capacity constraints in order to minimize a convex load de-
pendent penalty function. In this setting, a central planer has full knowledge
of all demands, which is not the case in our approach.
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Another related line of research is the investigation of efficient routing in
decentralized noncooperative systems. This has been extensively studied using
game theoretic concepts, cf. Roughgarden and Tardos [84], Correa, Schulz, and
Stier Moses [24], Altman, Basar, Jimenez, and Shimkin [5], and the references
therein. In these works the efficiency of Nash equilibria are studied. Hence,
rerouting of demands is allowed in this context. In our model, once a routing
decision has been made, it remains unchanged.

The main topic in online routing has been call admission control problems.
An overview article about these problems is given by Leonardi in [32]. Perhaps
closest is the paper by Awerbuch, Azar, and Plotkin [9], where online routing
algorithms are presented to maximize throughput under the assumption that
routings are irrevocable. They restrict the analysis to single path routing and
present competitive bounds that depend on the number of nodes in the net-
work.

3.1 Contributions and Chapter Outline

We first introduce in Section 3.2 the formal model for the OnlineMCRP which
is followed by the definition of the greedy online algorithm Seq and the opti-
mal offline solution.

Then, in Section 3.3 we show using competitive analysis that no online al-
gorithm for the OnlineMCRP is competitive for general networks and price
functions. If the price functions and the network are restricted, however, one
can obtain competitive results. For affine linear price functions the greedy
online algorithm Seq is 4K2

(1+K)2 -competitive, where K is the number of com-
modities, as shown in Section 3.3.1. Furthermore, we prove a lower bound of
4
3 on the competitive ratio for any deterministic online algorithm in this case.
For Seq, we prove a lower bound of 2 K−1

K . For polynomial price functions with
nonnegative coefficients, we prove upper and lower bounds on the competi-
tive ratio of Seq that both grow exponentially in the degree of the considered
polynomials.

If we restrict the structure of the network to have a single-source and single-
destination only, Section 3.4 shows that Seq returns an optimal solution, i.e.
Seq is 1-competitive.

We also study the variant of the OnlineMCRP in which the demands have
to be routed (unsplittably) along a single path. In Section 3.5, we prove that the
corresponding offline problem is NP-hard. We further show that in general no
competitive deterministic online algorithm exists. Finally, we present a lower
bound of 2 on the competitive ratio for any deterministic online algorithm if
the price functions are linear.

These results are preceded by a formal problem description. This includes
the optimality conditions for the convex problems that have to be solved by Seq

and to determine an optimal offline solution (Section 3.2).
In Section 3.6, we introduce an unsplittable variant of Seq with expiring

demands and study its performance via simulating real world networks and
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traffic demands. This joint work together with Yahaya and Suda [90] provides
empirical evidence for the efficiency of the iREX protocol in an inter-domain
QoS market. It turns out that the real-world instances perform better than
the derived worst case analytical bounds. In other words: Simulations show
that for realistic networks and demands, the efficiency of an online single path
routing compared to the best possible outcome is significantly smaller than the
provable worst case bounds. We close this chapter with further comments and
open questions in Section 3.7.

The results for affine linear price functions, single commodity networks,
and unsplittable routings are joint work with Heinz and Pfetsch [52]. The
computational study is joint work with Yahaya and Suda [90].

3.2 Problem Description

An instance of the Online Multicommodity Routing Problem (OnlineMCRP) con-
sists of a directed network D = (V, A) and nondecreasing and continuous
price functions pa : R+ → R+ for each link a ∈ A. These functions define
the price of reserving capacity on a link depending on the current load, as
described below. For convenience, we will sometimes use the words arc and
link, vertex and node interchangeably. The arcs are ordered pairs of vertices
a = (i, j), where the first vertex i represents the tail of an arc and the second
vertex j represents the head. Thus, an arc is directed from its tail to its head.
We also allow for parallel arcs, which means that we allow for several distinct
arcs with the same tail and head.

Furthermore, a sequence σ = 1, . . . , K of commodities must be routed one
after the other. We assume that K ≥ 2 and denote the set of commodities by
[K] := {1, . . . , K}. Each commodity k ∈ [K] has a demand dk > 0 that has
to be routed from a source sk ∈ V to a destination tk ∈ V. We denote ver-
tices s1, · · · , sK as sources, that is, these nodes are the source of traffic demand
d1, · · · , dK. The vertices t1, · · · tK denote destination nodes, where the traffic
from the sources terminate.

To shorten notation we use the following convention: When we speak of
a sequence σ = 1, . . . , K of commodities, we refer to the full specification
(d1, s1, t1), . . . , (dK, sK, tK).

The routing decision for commodity k is online, that is, it only depends on
the routings of commodities 1, . . . , k− 1. Once a commodity has been routed
it remains unchanged.

A routing assignment, or flow, for commodity k ∈ [K] is a nonnegative
vector f k ∈ RA

+. This flow is feasible if for all v ∈ V holds that

∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v), (3.1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; fur-
thermore, γ(v) = dk if v = sk, γ(v) = −dk if v = tk, and γ(v) = 0 otherwise.
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Note that splitting of demands is allowed. We say that ( f 1, . . . , f K) is a multi-
commodity flow.

An alternative formulation uses a path flow for each commodity k ∈ [K].
Let Pk be the set of all paths from sk to tk in D. A path flow for commodity k
is a nonnegative vector ( f k

P)P∈Pk . The corresponding flow on link a ∈ A for
commodity k ∈ [K] is then given by

f k
a := ∑

P3a
f k
P.

The aggregated flow of all commodities on link a can be written as

fa :=
K

∑
k=1

f k
a .

In the sequel of this thesis, we use the bold notation, i.e. f i, when we refer to
a vector of numbers and normal font, i.e. fa, when referring to a single real
number. We define Fk with k ∈ [K] to be the set of vectors ( f 1, . . . , f k) such
that f i is a feasible flow for commodities i = 1, . . . , k. If ( f 1, . . . , f k) ∈ Fk,
we say that it is feasible for the sequence of commodities 1, . . . , k. The entire
flow for the sequence 1, . . . , K of commodities is denoted by f = ( f 1, . . . , f K).
Furthermore, the cost of a flow f k

a on link a ∈ A of commodity k is defined by

Ck
a( f k

a ; f 1
a , . . . , f k−1

a ) :=
∫ f k

a

0
pa

( k−1

∑
i=1

f i
a + z

)
dz. (3.2)

For convenience, we sometimes write Ck
a( f k

a ) instead of Ck
a( f k

a ; f 1
a , . . . , f k−1

a ).
Note that Ck

a(·) is a convex function, because pa(·) is nondecreasing. Further-
more, the flow values f 1

a , . . . , f k−1
a of previously routed commodities are fixed

parameters for the cost function of commodity k.

Remark 3.1. The cost function in (3.2) can be obtained as the limiting case of
a single path routing: Assume that demand dk is split into N equal pieces and
the pieces are routed consecutively along a single path. The cost of this path
is obtained by evaluating pa(·) at the flow on link a arising from the previous
routings. Let z`

a be the flow on arc a ∈ A arising from piece ` ∈ [N], i.e.,
z`

a = dk
N if a is on the path and z`

a = 0 otherwise. Then we have:

lim
N→∞

N

∑
n=1

pa

( k−1

∑
i=1

f i
a +

n−1

∑
`=1

z`
a

)
zn

a = Ck
a( f k

a ; f 1
a , . . . , f k−1

a ),

where f k
a := ∑N

n=1 zn
a is a feasible flow for commodity k. Hence, the integral

represents the fact that an infinitesimal amount of flow increases the price
for each consecutive piece. Figure 3.1 illustrates the arc costs for demand
divided into three pieces. Note that the above described single path routing
for a discrete bundle size corresponds to the working mechanism of the iREX
protocol as specified by Yahaya and Suda [88, 89].
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Figure 3.1: Illustration of the motivation for the cost function defined in (3.2). The
shaded area corresponds to the arc cost for N = 3. For the case N → ∞
the shaded area converges to the exact integral.

Given flows f 1, . . . , f k−1, the cost for flow f k is

Ck( f k; f 1, . . . , f k−1) := ∑
a∈A

Ck
a( f k

a ; f 1
a , . . . , f k−1

a ).

To shorten the presentation, we write

Ck( f k) = Ck( f k; f 1, . . . , f k−1).

The total cost over all commodities is defined by

C( f ) = ∑
k∈[K]

Ck( f k).

Note that the total cost of all commodities is given by the sum of the individual
cost of the single commodities. In this regard, the cost function is separable
in the commodities. Loosely speaking, the flow of later commodities do not
affect the individual cost of former ones. In the following we derive a nice
simplification of the total cost.

Remark 3.2. The total cost can be represented in terms of the aggregated arc
flow:

C( f ) =
K

∑
k=1

Ck( f k) =
K

∑
k=1

∑
a∈A

Ck
a( f k

a ) = ∑
a∈A

∑
k∈[K]

Ck
a( f k

a ) = ∑
a∈A

fa∫
0

pa(z) dz.

The above cost representation implies that the order of commodities plays
no role when determining an optimal routing.

3.2.1 The Greedy Online Algorithm Seq

In this section, we study the greedy online algorithm Seq that for a given
sequence σ = 1, . . . , K, sequentially routes the requested demands with mini-
mum cost.
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Definition 3.3 (Seq for the OnlineMCRP)
Consider an instance of the OnlineMCRP with a sequence σ = 1, . . . , K. The
deterministic conline algorithm Seq solves for every k ∈ [K] the following
convex program

min Ck( f k)

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v) ∀ v ∈ V (3.3)

f k
a ≥ 0 ∀ a ∈ A,

where the vectors f 1, . . . , f k−1 are fixed by solving the first k− 1 problems.

Note that the above problem may admit several optimal solutions with the
same objective value. Problem (3.3) can be efficiently solved within arbitrary
precision in polynomial time (see Grötschel, Lovász, and Schrijver [48]).

Using the relation
∂Ck

∂ f k
a
( f k) = pa

( k

∑
i=1

f i
a
)
,

we state in the following lemma necessary and sufficient optimality conditions
of the above K problems.

Lemma 3.4. A feasible flow f = ( f 1, . . . , f K) ∈ FK solves (3.3) if and only if for all
k ∈ [K] the following two equivalent conditions are satisfied:

i) ∑
a∈A

pa
( k

∑
i=1

f i
a
)
( f k

a − xk
a) ≤ 0 for all feasible flows xk

for commodity k, (3.4)

ii) ∑
a∈P

pa
( k

∑
i=1

f i
a
)
≤ ∑

a∈Q
pa

( k

∑
i=1

f i
a
) for all P, Q ∈ Pk,

P flow carrying w.r.t. f k.
(3.5)

A formal proof of the equivalence of the above statements can be found
in Dafermos and Sparrow [27]. In fact, the second condition is simply the
Kuhn-Tucker condition of problem (3.3). Then, the only important ingredient
is the convexity of the objective function. Since we are using the variational
inequality 3.4 throughout the thesis, we only prove that condition (3.4) implies
optimality.

Proof. Assume the flow f k satisfies condition (i). Let xk be an arbitrary feasible
flow. By assumption, the cost function Ck(·) is convex. Hence, we can bound
the cost function from below by a linear approximation in f k (see Figure 3.2
for a graphical illustration of the linear approximation):

∑
a∈A

Ck
a(xk

a) ≥ ∑
a∈A

Ck
a( f k

a ) + pa
( k

∑
i=1

f i
a
) (

xk
a − f k

a
)
.

By assumption, the last term is nonnegative, see inequality (3.4). Hence, the
cost of the flow xk is greater than or equal the cost of f k. Since xk was chosen
arbitrarily, the flow f k solves problem (3.3).
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Ck(x)

Lk(x, f )
Ck( f )

x2 x1f

Figure 3.2: Illustration of the linear approximation Lk(· ; f ) in the point f of the convex
function Ck(·) with Lk(x; f ) ≤ Ck(x).

3.2.2 The Optimal O�ine Solution

An optimal offline flow is given by a solution f ? of the following convex opti-
mization problem:

min C( f )

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v) ∀ v ∈ V, k ∈ K (3.6)

f k
a ≥ 0 ∀ a ∈ A, k ∈ K.

We denote by Opt(σ) the optimal value of this convex problem.
As Problem (3.3) the above problem can be efficiently solved within arbi-

trary precision in polynomial time (see Grötschel, Lovász, and Schrijver [48]).
Using the relation

∂C
∂ f k

a
( f ) = pa

( K

∑
i=1

f i
a
)
,

the necessary and sufficient optimality conditions of the above problem are the
following.

Lemma 3.5. A flow f = ( f 1, . . . , f K) is offline optimal if and only if for all k ∈ [K]
the following two equivalent conditions are satisfied:

i) ∑
a∈A

pa
( K

∑
i=1

f i
a
)
( f k

a − xk
a) ≤ 0 for all feasible flows x (3.7)

ii) ∑
a∈P

pa
( K

∑
i=1

f i
a
)
≤ ∑

a∈Q
pa

( K

∑
i=1

f i
a
) for all P, Q ∈ Pk,

P flow carrying w.r.t. f k.
(3.8)

Note that the only difference to the optimality conditions in Lemma 3.4 is
the summation in the price function up to commodity K instead of k. This
reflects the offline aspect since all demands are known.
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3.3 Competitive Analysis

For a given sequence of commodities σ = 1, . . . , K and a solution f produced
by an online algorithm Alg, we denote by Alg(σ) = C( f ) its cost. According
to the notation introduced in Chapter 2, the online algorithm Alg is called
(strictly) c-competitive, if the cost of Alg is never larger than c times the cost of
an optimal offline solution. The competitive ratio of Alg is the infimum over all
c ≥ 1 such that Alg is c-competitive, see for instance Borodin and El-Yaniv [15]
and Fiat and Woeginger [32].

Remark 3.6. If the price functions pa(z) are constant for every arc a ∈ A,
the algorithm Seq is optimal for the offline problem, i.e., its competitive ratio
is 1. This holds because in this case the routing problems are independent
from each other. In fact, each routing decision is just a shortest path problem
with respect to the constant costs. Furthermore, the offline problem is a min-
cost flow problem without capacity constraints. Hence, both problems can be
solved more efficiently than in the general case.

Clearly, also in the case K = 1, the competitive ratio of Seq is 1.

We start with a simple example motivating the impact of routing demands
in an online fashion.

Example 3.7. Consider the network displayed in Figure 3.3. Assume that all
arcs have the linear price function pa(z) = 2z. From Equation (3.2) it follows
that the cost on every arc a is given by (2sa + z)z, where sa is the amount of
flow that is already routed on arc a.

Assume that a demand of one unit from node 1 to node 4 is revealed first.
The online algorithm Seq splits the demand evenly along the two possible
paths incurring a cost of 1. Then the second demand of one unit starting in
node 1 and terminating in node 2 is released. Here, only arc (1, 2) can be used,
leading to a cost of 2. Hence, the total cost of Seq for these demands is 3.

For an optimal offline routing, the entire demand sequence is known. It
is optimal to route 3

4 of the first demand along the upper path (1, 3, 4) and
only 1

4 along the lower path (1, 2, 4), cf. Lemma 3.5. This incurs a cost of 1.25.
Now the second demand leads to a cost of 1.5. Therefore, the total offline cost
is 2.75, which is strictly smaller than the cost for the routing generated by Seq.

The rationale of the optimal offline routing is to sacrifice some cost (com-
pared to Seq) for the first demand in favor of saving cost for the latter. This
example also shows that the algorithm Seq does not have a competitive ratio
less than 1.09.

First, we show that there exists no competitive deterministic online algo-
rithm, if neither the network nor the price functions are restricted. Therefore,
we generalize the above example.

Proposition 3.8. In general, there exists no competitive deterministic online algo-
rithm for the OnlineMCRP.
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1
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3
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Figure 3.3: Graph construction for the proofs of Propositions 3.8, 3.33, and 3.34, and
for the Example 3.7.

Proof. Consider the network depicted in Figure 3.3. For all arcs a in the net-
work, the price function is set to pa(z) = m · zm−1 with m > 2. Let Alg be an
arbitrary deterministic online algorithm. The first commodity of sequence σ
has demand d1 = 1 and has to be routed from node s1 = 1 to node t1 = 4.
There are two possible paths for this commodity: path P1 = (1, 2, 4) and path
P2 = (1, 3, 4). Because of symmetry, we can assume that Alg sends a flow of
1
2 ≤ α ≤ 1 over path P1 and (1− α) along path P2. Now commodity 2 arises
with demand d2 = 1, source s2 = 1, and target t2 = 2. Algorithm Alg has to
route this demand on the only possible path P3 = (1, 2). For this sequence σ,
Alg produces a total cost of

Alg(σ) = 2 · αm + 2 · (1− α)m +
∫ 1

0
m(α + z)m−1 dz

= 2 · αm + 2 · (1− α)m + (α + 1)m − αm.

Routing the first commodity completely over path P2 and the second over
path P3 leads to the total cost 2 · 1m + 1m = 3 ≥ Opt(σ). Letting m tend to
infinity shows that in this case Alg is not competitive.

Despite the negative result of Proposition 3.8, we obtain competitive results
in the following two sections. We first restrict the price functions to be affinely
linear, then, we allow for general polynomial price functions, and finally, we
study networks with a single source and a single destination.

3.3.1 A�nely Linear Price Functions

In this section, we assume that the price functions are affinely linear and show
that Seq is 4K2

(1+K)2 -competitive in this case.
For affinely linear price functions pa(z) = qa · z + ra with qa ≥ 0, ra ≥ 0 for

a ∈ A, we have for a feasible flow ( f 1, . . . , f k)

Ck
a( f k; f 1, . . . , f k−1) = qa

( k−1

∑
i=1

f i
a + 1

2 f k
a
)

f k
a + ra f k

a .

It follows from the optimality conditions (3.4) that if ( f 1, . . . , f k) is gener-
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ated by Seq, then

∑
a∈A

(
qa

k

∑
i=1

f i
a + ra

)
( f k

a − xk
a) ≤ 0, (3.9)

for all feasible flows xk.

Theorem 3.9. If the price functions are affinely linear, Seq is 4K2

(1+K)2 -competitive for
the OnlineMCRP.

Proof. We use the following useful relation at several places in the proof:

K

∑
k=1

K

∑
i=1

f i
a f k

a = 2
K

∑
k=1

( k−1

∑
i=1

f i
a + 1

2 f k
a
)

f k
a . (3.10)

Let (x1, . . . , xK) ∈ FK be any feasible flow and let ( f 1, . . . , f K) ∈ FK be the
solution produced by Seq. We start by considering the following inequality
for arbitrary nonnegative real values α, β satisfying 1 ≤ α ≤ β ≤ 2:

0 ≤
(

α
K

∑
k=1

f k
a − β

K

∑
k=1

xk
a

)2

= α2
K

∑
k=1

K

∑
i=1

f i
a f k

a − 2αβ
K

∑
k=1

K

∑
i=1

f i
a xk

a + β2
K

∑
k=1

K

∑
i=1

xi
a xk

a.

Using (3.10) for the first and last term, multiplying with qa, and adding over
all arcs yields:

0 ≤ ∑
a∈A

qa

(
2α2

K

∑
k=1

( k−1

∑
i=1

f i
a + 1

2 f k
a
)

f k
a − 2αβ

K

∑
k=1

K

∑
i=1

f i
a xk

a+

+ 2β2
K

∑
k=1

( k−1

∑
i=1

xi
a + 1

2 xk
a
)
xk

a

)
. (3.11)

For the next step, consider the inequality

0 ≤ ∑
a∈A

K

∑
k=1

(
(2α2 − 2αβ

K ) ra f k
a + (2β2 − 2αβ) ra xk

a
)

= ∑
a∈A

K

∑
k=1

(
2α2ra f k

a − 2αβ ra xk
a + 2β2ra xk

a
)
− 2αβ

K ∑
a∈A

K

∑
k=1

ra f k
a . (3.12)

This inequality holds, because K ≥ 2 and hence

2α2 − 2αβ
K ≥ 2α2 − αβ ≥ 0,

since 1 ≤ α ≤ β ≤ 2 and therefore 2α− β ≥ 0. Furthermore, it follows that

2β2 − 2αβ ≥ 2β2 − 2β2 = 0.
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Adding Inequality (3.12) to (3.11) leads to:

0 ≤ 2α2 C( f )− 2αβ ∑
a∈A

K

∑
k=1

(
qa

K

∑
i=1

f i
a + ra

)
xk

a + 2β2 C(x)

− 2αβ
K ∑

a∈A

K

∑
k=1

ra f k
a .

We drop part of the second term and apply (3.9):

0 ≤ 2α2 C( f )− 2αβ ∑
a∈A

K

∑
k=1

(
qa

k

∑
i=1

f i
a + ra

)
f k
a + 2β2 C(x)

− 2αβ
K ∑

a∈A

K

∑
k=1

ra f k
a

= (2α2 − 2αβ) C( f )− αβ ∑
a∈A

qa

K

∑
k=1

f k
a f k

a + 2β2 C(x)

− 2αβ
K ∑

a∈A

K

∑
k=1

ra f k
a .

Using the inequality of Cauchy-Schwarz and (3.10) yields:

0 ≤ (2α2 − 2αβ) C( f ) + 2β2 C(x)− αβ
K ∑

a∈A
qa

( K

∑
k=1

f k
a
)2 − 2αβ

K ∑
a∈A

K

∑
k=1

ra f k
a

= (2α2 − 2αβ) C( f ) + 2β2 C(x)− 2αβ
K C( f ).

This is equivalent to:

C( f ) ≤ β2

−α2 + αβ + αβ
K

C(x).

We now take α = (1 + 1
K ) and β = 2 to get C( f ) ≤ 4K2

(1+K)2 C(x), i.e., the desired
bound (if we let x be an optimal offline solution).

Remark 3.10. The parameters α and β in the previous proof are optimal solu-
tions to the following minimization problem:

min
1≤α≤β≤2

β2

−α2 + αβ + αβ
K

.

We do not know whether the result in Theorem 3.9 is tight. The best known
lower bound for any deterministic online algorithm is the following.

Proposition 3.11. In case of linear cost functions, no deterministic online algorithm
for the OnlineMCRP is c-competitive for any c < 4

3 .
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1

2

3

4

5

Figure 3.4: Graph construction for the proof of Proposition 3.11.

Proof. Consider the network displayed in Figure 3.4. Each arc a leaving node 1
has the same price function pa(z) = 4 z. All the other arcs (leading to node 5)
have price function pa(z) = 0. Let Alg be an arbitrary deterministic online
algorithm. The first commodity with demand 1 has to be routed from s1 = 1
to t1 = 5.

First, assume the algorithm behaves like Seq. This means that the de-
mand gets evenly divided into three pieces: one third is routed over path
P1 = (1, 2, 5), another over path P2 = (1, 3, 5), and the final third over path
P3 = (1, 4, 5) (compare Lemma 3.4). Then, we reveal commodity 2 with de-
mand 1 between nodes 1 and 2. The algorithm Alg has to route this demand
on the only possible path P4 = (1, 2). Therefore, the cost of Alg for this se-
quence σ is:

Alg(σ) = Seq(σ) = 3 · 4 ·
(1

2 ·
1
3

)
· 1

3 + 4 ·
(1

3 + 1
2 · 1

)
· 1 = 4,

An optimal offline solution is to route half of commodity 1 over path P2, the
other half over path P3, and commodity 2 along P4 (compare Lemma 3.5).
Therefore,

Opt(σ) = 2 · 4 ·
(1

2 ·
1
2

)
· 1

2 + 4 ·
(1

2 · 1
)
· 1 = 3.

This leads to

Alg(σ)
Opt(σ)

=
4
3

.

If Alg does not behave like Seq for the first commodity, we can assume by
symmetry that Alg routes a flow of α > 1

3 over path P1. Hence, a demand of
1− α is routed over path P2 and P3. The best way to do this is to route (1− α)/2
over each path. Then commodity 2 is released as above, again leaving no
routing choice. The cost of Alg for this sequence σ is

Alg(σ) ≥ 4 ·
(1

2 · α
)
· α + 2 · 4 ·

(1
2 ·

(1−α)
2

)
· (1−α)

2 + 4 ·
(
α + 1

2 · 1
)
· 1 > 4.

since α > 1
3 . Because Opt(σ) = 3, we have

Alg(σ)
Opt(σ)

>
4
3

.

Therefore, Alg cannot have a competitive ratio less than 4
3 .
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s1

t1

s2

t2

. . .

. . .

sn

tn

s

t

Figure 3.5: Graph construction for the proof of Proposition 3.12.

The following proposition provides an improved lower bound for Seq.

Proposition 3.12. In case of affine linear cost functions the online algorithm Seq for
OnlineMCRP has a competitive ratio greater or equal to 2K−1

K .

Proof. Consider the network shown in Figure 3.5 with the following price
functions: p(si,s)(z) = 0, p(t,ti)(z) = 0, p(si,ti)(z) = i, and p(s,t)(z) = z, for
i = 1, . . . , n. For i = 1, . . . , n we consecutively release a demand of size 1 from
si to ti. Using Lemma 3.4, we see that Seq routes every demand over arc (s, t).
The cost for these n demands is:

1
2 · 1 + (1 + 1

2) · 1 + · · ·+ (n− 1 + 1
2) · 1 =

n

∑
i=1

2i−1
2 = 1

2 n2.

The (n + 1)-st demand of size d ≥ 1 is released from s to t and incurs the
following cost:

(n + 1
2 d)d = nd + 1

2 d2.

Thus, the total cost for Seq is given by:

Seq(σ) = 1
2(n2 + 2nd + d2).

In an optimal offline solution the first n demands are routed along the arcs
(si, ti) and the last demand is routed on (s, t). Hence, the total cost is:

Opt(σ) =
n

∑
i=1

i + 1
2 d2 = n(n+1)

2 + 1
2 d2.

Setting d = n + 1 and substituting n = K− 1 yields

Seq(σ)
Opt(σ)

=
n2 + 2nd + d2

n2 + n + d2 =
1 + 2n
1 + n

=
2K− 1

K
,

which proves the theorem.
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Figure 3.6: Upper bound 4K2

(K+1)2 versus lower bound 2K−1
K on the competitive ratio of

Seq for affine linear price functions.

Remark 3.13. The value d = n + 1 solves the following optimization problem
with respect to d:

max
d≥1

n2 + 2nd + d2

n2 + n + d2 =
1 + 2n
1 + n

.

This yields the best lower bound for the network in the proof of Proposi-
tion 3.12.

Figure 3.6 illustrates the lower and upper bounds on the competitive ra-
tio of the online algorithm Seq for affine linear price functions. The bounds
asymptotically converge to 2 and 4, respectively, for K tending to infinity.

A characteristic of Seq is that it splits demand and distributes it onto several
paths. We close this section by showing that only algorithms that split demand
can be competitive.

Proposition 3.14. Every deterministic online algorithm for the OnlineMCRP that
routes all demands unsplittably is not competitive, even for linear cost functions.

Proof. Consider the network shown in Figure 3.7. This network contains n + 2
nodes and n paths from node s to node t. The price functions are pa(z) = 2 z
for all arcs a. Let Alg be an arbitrary deterministic online algorithm that does
not split demands. We consider a single commodity with demand 1 between

s

n

1

t
2

...

Figure 3.7: Graph construction for the proof of Proposition 3.14.
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nodes s and t. Since Alg does not split, the cost of its routing is independent
from the chosen path:

Alg(σ) = 2 · (1
2 · 1) · 1 + 2 · (1

2 · 1) · 1 = 2.

An optimal solution splits the demand into n evenly divided pieces and
sends each piece over a different path. This leads to an optimal cost of

Opt(σ) = n
(
2 · (1

2 ·
1
n ) · 1

n + 2 · (1
2 ·

1
n ) · 1

n
)

= n · 2 · ( 1
n )2 = 2

n .

Therefore, the competitive ratio of Alg is not smaller than n. Since this holds
for all n ∈ N, Alg is not competitive.

3.3.2 General Price Functions

In this section, we extend Theorem 3.9 to allow for general nondecreasing
price functions. Before we start with the technical exposition, we motivate
the approach. For every commodity k, we use the variational inequality (3.4).
Summing this inequality over k ∈ [K] yields an inequality in terms of the entire
flow f and an arbitrary feasible flow x. Then, the challenge is to associate part
of this expression with the total cost of f and the remaining part with the total
cost of x.

Definition 3.15
For a given sequence of commodities σ and a flow f that is produced by Seq,
we define

Vi( f 1, . . . , f i, xi) := ∑
a∈A

pa
( i

∑
k=1

f k
a
)
(xi

a − f i
a)

V( f , x, K) :=
K

∑
i=1

Vi( f 1, . . . , f i, xi),

where x1, . . . , xK ∈ FK is any feasible flow.

Lemma 3.16. A feasible flow f for a sequence σ that is produced by Seq satisfies:

V( f , x, K) ≥ 0, for all feasible flows x for σ.

Furthermore,
V( f , x, K) = ∑

a∈A
Va( f a, xa, K),

where Va( f a, xa, K) is defined as

Va( f a, xa, K) :=
K

∑
i=1

pa
( i

∑
k=1

f k
a
)
(xi

a − f i
a).
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0
0

pa(·)

pa( f 1
a )

pa( f 1
a + f 2

a )

pa( f 1
a + f 2

a + f 3
a )

f 1
a f 1

a + f 2
a + f 3

af 1
a + f 2

a

Figure 3.8: Illustration of the value ϑK
a (pa, f ) in the Definition 3.17 for K = 3. The

shaded area corresponds to the value −ϑK
a (pa, f ).

Proof. From Lemma 3.4 we know that Vi( f 1, . . . , f i, xi) is nonnegative for all
i = 1, . . . , K. Summing over i proves the first claim. The second claim follows
by changing the summation order.

Definition 3.17
For a feasible flow f ∈ FK, we define

ϑK
a (pa, f a) :=

fa∫
0

pa(z) dz−
K

∑
i=1

pa(
i

∑
k=1

f k
a ) f i

a.

Remark 3.18. For nondecreasing price functions, the value ϑK
a (pa, f a) is non-

positive for any feasible flow f . The value captures the difference between the
exact integral over fa with respect to pa(·) and the right-hand Riemann sum,
which is greater than or equal to the integral provided nondecreasing price
functions are considered. See Figure 3.8 for a graphical depiction of this value.

In the following, we reduce the entire analysis to considering the cost on a
single arc. Then, by taking the supremum over all arcs, the results carry over to
the general case. We define for every a ∈ A, nonnegative vectors f a, xa ∈ RK,
and nonnegative real number λ ≥ 0 the following values:

ω(pa; K, λ) := sup
f a,xa≥0

[(
pa( fa)− λ pa(xa)

)
xa + ϑK

a (pa, f a)
pa( fa) fa

]
, (3.13)

δ(pa) := sup
fa≥0

[
pa( fa) fa

( ∫ fa

0
pa(z)dz

)−1
]

. (3.14)

We assume 0/0 = 0 by convention. For a given class C of nondecreasing price
functions, we further define

ω(C; K, λ) := sup
pa∈C

ω(pa; K, λ), δ(C) := sup
pa∈C

δ(pa).
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Note that a similar value β(C) without the term ϑK
a (pa, f a) and with λ = 1

was first defined in Correa, Schulz, and Stier-Moses [24] and also, similarly,
by Roughgarden in [84] with the relation α(C) =

(
1 − ω(C; K, λ))−1. For a

detailed discussion about the differences between these similar approaches,
we refer to Section 4.3.5 in Chapter 4 .

We define the following feasible set for the parameter λ.

Definition 3.19 (Feasible Scaling Set)
The feasible scaling set for λ is defined as

Λ :=
{

λ ∈ R+|
(
1− δ(C) ω(C; K, λ)

)
> 0

}
.

Equipped with these rather technical definitions, we present our main re-
sult.

Theorem 3.20. Let f ∈ FK be a flow generated by Seq. Then, the competitive ratio
of the online algorithm Seq is at most

inf
λ∈Λ

(
λ δ(C) (1− δ(C) ω(C; K, λ))−1

)
for the OnlineMCRP.

Proof. Let x ∈ FK be any feasible flow for OnlineMCRP. Then, the following
inequalities hold:

C( f ) = C( f ) + ∑
a∈A

[λ pa(xa) xa − λ pa(xa) xa]

≤ C( f ) + ∑
a∈A

[λ pa(xa) xa − λ pa(xa) xa] + V( f , x, K) (3.15)

≤ ∑
a∈A

[λ pa(xa) xa +
(

pa( fa)− λ pa(xa)
)

xa + ϑK
a (pa, f a)] (3.16)

≤ ∑
a∈A

[λ pa(xa) xa + ω(C; K, λ) pa( fa) fa],

≤ λ δ(C) C(x) + δ(C) ω(C; K, λ) C( f ),

where inequality (3.15) follows from Lemma 3.16. Inequality (3.16) follows
since the considered price functions are nondecreasing. The last two inequali-
ties follow from the definition of ω(C; K, λ) and δ(C), respectively.

Whenever Λ = ∅, the above approach does not provide a bound on the
competitive ratio of Seq.

In the following, we consider the class Cd of polynomials with nonnegative
coefficients and degree at most d ∈ N:

Cd := {ad xd + · · ·+ a1 x + a0 : as ≥ 0, s = 0, . . . , d}.

Note that polynomials in Cd are nonnegative for nonnegative arguments, non-
decreasing, and convex. We first derive a bound on the value δ(Cd), depending
on d.
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Lemma 3.21. If the price functions of the OnlineMCRP are in Cd, the value δ(Cd)
is at most d + 1.

Proof. We start with the definition of the value δ(pa) for polynomials in Cd.

δ(pa) = sup
fa≥0

[( d

∑
i=0

ai( fa)i+1)( d

∑
i=0

ai

i + 1
( fa)i+1)−1]

≤ sup
fa≥0

[( d

∑
i=0

ai( fa)i+1)( d

∑
i=0

ai

d + 1
( fa)i+1)−1]

= 1
( 1

d + 1
)−1 = d + 1,

where the second inequality follows since ai ≥ 0 and fa ≥ 0.

Lemma 3.22. If the price functions of the OnlineMCRP are in Cd and λ ≥ 1, then,
the value ω(Cd; K, λ) is at most max

0≤µ
µ− λ µd+1.

Proof. By Remark 3.18, we have

ω(pa; K, λ) = sup
f a,xa≥0

(
pa( fa)− λ pa(xa)

)
xa + ϑK

a (pa, f a)
pa( fa) fa

≤ sup
fa,xa≥0

(
pa( fa)− λ pa(xa)

)
xa

pa( fa) fa
. (3.17)

Defining

µ :=

{
xa
fa

, for fa > 0

0, else,

we have to solve

max
0≤µ

(
pa( fa)− λ pa(µ fa)

)
µ fa

pa( fa) fa

to bound ω(pa; K, λ) from above. Without loss of generality, we can reduce the
analysis to monomial price functions pa(x) = aj xj of degree j ≤ d. The reason
is that we can subdivide each arc a in d arcs aj, 0 ≤ j ≤ d with monomial price
functions pj(x) = aj xj for every arc, see Figure 3.9 for a graphical illustration.
Consider now the monomial price function pa(x) = aj xj of degree j. To bound
the value ω(pa; K, λ) from above, we have to solve:

max
0≤µ

(
aj f j

a − λ aj µj f j
a)

)
µ fa

aj f j+1
a

= max
0≤µ

µ− λ µj+1. (3.18)

The condition λ ≥ 1 implies that µ ≤ 1 for an optimal solution in (3.18).
Thus, it is easy to see that for lower degrees j < d, the optimal value becomes
smaller.
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s t s v w t

a0 + a1 z + a2 z2 a0 a1 z a2 z2

Figure 3.9: Reduction of polynomials to monomials for the proof in Lemma 3.22. By
introducing the two nodes v and w, the arc (s, t) is partitioned into three
separate arcs with monomial price functions.

For polynomials in Cd and a proper choice of λ, we can prove a bound on
the value ω(Cd; K, λ).

Proposition 3.23. For price functions in Cd and λ := (d + 1)(d−1) ≥ 1, the value
ω(Cd; K, λ) is at most d

(d+1)2 .

Proof. We start with equation (3.18) given in the proof from Proposition 3.22
and using the highest degree d.

ω(Cd; K, λ) ≤ max
0≤µ

µ− λ µd+1 = max
0≤µ

µ− (d + 1)(d−1) µd+1.

The unique solution is given by µ∗ = 1
d+1 . Evaluating the objective leads to:

ω(pa, K; λ) ≤ 1
d + 1

− (d + 1)(d−1) (
1

d + 1
)d+1 =

d
(d + 1)2 .

This proves the claim.

With the above prerequisites we can prove a constant factor bound on the
competitive ratio that depends on the degree d of the considered polynomials.

Theorem 3.24. If the price functions of the OnlineMCRP are in Cd, then, the online
algorithm Seq is (d + 1)d+1 -competitive.

Proof. Let the flow f be produced by the online algorithm Seq and let x be an
arbitrary feasible flow for the OnlineMCRP. We define λ := (d + 1)(d−1) and
apply Proposition 3.23, which yields ω(Cd; K, λ) ≤ d

(d+1)2 . In order to apply
Theorem 3.20, we have to verify that λ ∈ Λ. What remains to be shown is that

1− (d + 1) d
(d + 1)2 > 0

holds, where the value δ(Cd) is replaced by d + 1. This inequality is equivalent
to

1
d + 1

> 0,

which is trivially true. Then, applying Theorem 3.20 yields

C( f ) ≤ (d + 1)d−1 (d + 1)(
1− (d + 1) d

(d+1)2

) C(x) = (d + 1)d+1 C(x).

Taking x as the optimal offline solution proves the claim.
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The above theorem incorporates Theorem 3.9 as a special case. Note that we
also get a bound of 4 for degree 1 polynomials. In Theorem 3.9, however, we
incorporated the value ϑK

a (pa, f a) in the analysis giving slightly better bounds
that depend on the number of commodities.

3.3.3 Lower Bounds for Polynomial Price Functions

In this section, we derive lower bounds for price functions in Cd. Consider the
network presented in Figure 3.5 with the following price functions: p(si,s)(z) =
0, p(t,ti)(z) = 0, p(si,ti)(z) = id, i = 1, . . . , k, and p(s,t)(z) = zd, d ∈ N. We
consecutively release demands of size 1 from si to ti, for i = 1, . . . , k. Due to
the choice of the affine terms id, Seq routes every demand over the arc from s
to t. The cost for these k demands is:

k

∑
i=1

1
d + 1

(
(i− 1) + 1

)d+1 − 1
d + 1

(i− 1)d+1 =
1

d + 1
kd+1.

Then, we release the (k + 1)-th commodity with demand x from s to t, which
generates the following cost:

1
d + 1

(
k + x

)d+1 − 1
d + 1

(k)d+1.

Thus, the total cost for Seq is given by:

Seq(σ) =
k+x∫
0

p(s,t)(z) dz =
1

d + 1
(
k + x

)d+1.

The optimal offline algorithm Opt routes the first k demands along the direct
arcs from si to ti incurring cost of:

k

∑
i=1

id.

The last demand is routed from s to t with cost ( 1
d+1)xd+1. The total cost for

Opt is given by:

Opt(σ) =
k

∑
i=1

id +
1

d + 1
xd+1.

In order to evalute the ratio of the cost of Seq and Opt, respectively, we need
the following lemma.

Lemma 3.25. The sum of the d-th power of numbers from 1 to k is a polynomial in k
given by:

k

∑
i=1

id =
1

d + 1

d+1

∑
j=0

(
d + 1

j

)
Bj kd+1−j,

where Bj are the Bernoulli numbers.
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A proof for this lemma can be found in Graham, Knuth, and Patashnik [47,
Ch. 7].

Theorem 3.26. In case of price functions in Cd, the online algorithm Seq for On-
lineMCRP has a competitive ratio greater than or equal to 2d.

Proof. We have to show that the competitive ratio fulfills:

Seq(σ)
Opt(σ)

≥ 2d.

We follow the construction of the above discussion,

Seq(σ)
Opt(σ)

≥ lim
k→∞

(
k + x

)d+1

(d + 1)
k
∑

i=1
id + xd+1

·

We set x = k which yields:

Seq(σ)
Opt(σ)

≥ lim
k→∞

(
2k

)d+1

(d + 1)
k
∑

i=1
id + kd+1

= lim
k→∞

(
2k

)d+1

2kd+1 +
d+1
∑

j=1
(d+1

j )Bj kd+1−j
= 2d,

where the equality follows from Lemma 3.25 and the fact that the highest
degree coefficient is B0 = 1.

3.4 Single Commodity Networks

Restricting the considered networks to only contain a single source and a single
destination, i.e., s1 = · · · = sk and t1 = · · · = tk, we can show that Seq returns
an optimal solution. To get insight into the techniques required to prove this
result, we start with the simpler case of a network consisting of two nodes
connected by parallel arcs.

3.4.1 Parallel Arcs

We now consider the parallel arc case, i.e., D consists of two nodes and parallel
arcs only. Recall from Lemma 3.4 and 3.5 that a flow x solves the offline
problem (3.6) and f is generated by Seq if and only if for all a, â ∈ A and
k ∈ [K] follows

•
K
∑

k=1
xk

a > 0 ⇒ pa
( K

∑
i=1

xi
a
)
≤ pâ

( K
∑

i=1
xi

â
)
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• f k
a > 0 ⇒ pa

( k
∑

i=1
f i
a
)
≤ pâ

( k
∑

i=1
f i
â
)
.

Lemma 3.27. Given a sequence σ = 1, . . . , K and let f be the flow generated by Seq.
Define

A+
k := {a ∈ A : f k

a > 0}
for k ∈ [K]. Then,

pa
( k+1

∑
i=1

f i
a
)
≤ pâ

( k+1

∑
i=1

f i
â
)
,

for all a ∈ A+
k , â ∈ A, and k = 1, . . . , K− 1.

Proof. Let a ∈ A+
k . First assume that a ∈ A+

k+1. Then by the optimality condi-
tions from above for ( f 1, . . . , f k+1) the claim follows.

Now assume a /∈ A+
k+1. Then we have for all â ∈ A:

pa
( k+1

∑
i=1

f i
a
)

= pa
( k

∑
i=1

f i
a
)

≤ pâ
( k

∑
i=1

f i
â
)

≤ pâ
( k+1

∑
k=1

f i
â
)
.

The first inequality follows from the optimality conditions for the first k flows
( f 1, . . . , f k), and the second comes from the assumption that the price func-
tions are nondecreasing.

Proposition 3.28. Given a sequence of commodities and let f be the flow generated
by Seq for this sequence. Then, C( f ) ≤ C(x) for any feasible x, i.e., f is also an
offline optimum.

Proof. For the last commodity K we have the following optimality condition:

pa
( K

∑
i=1

f i
a
)
≤ pâ

( K

∑
k=1

f i
â
)
, (3.19)

for all a ∈ A+
K and â ∈ A. Using Lemma 3.27 for k = K− 1 we obtain:

pa
( K

∑
i=1

f i
a
)
≤ pâ

( K

∑
k=1

f i
â
)
,

for all a ∈ A+
K−1 and â ∈ A. Inequality (3.19) and applying Lemma 3.27

iteratively K − 1 times yields the optimality conditions (3.5) for the offline
optimum.
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3.4.2 Arbitrary Digraph

We know allow for an arbitrary digraph between a single source node s and
a single destination node t. For this more general setting, we show that Seq

computes an optimal solution.

Theorem 3.29. Consider an instance of the OnlineMCRP, where all commodities
share the same source s and destination t. Then, Seq computes an optimal routing.

Proof. The proof uses induction on the number of commodities K. For the
case K = 1, the claim follows since by definition Seq routes one commodity
with minimum cost. Therefore, assume that the claim holds for any sequence
containing K− 1 commodities.

For the sake of contradiction, further assume that the flow f that is gener-
ated by Seq for a given sequence with K commodities is not offline optimal.
Hence, this flow does not satisfy the conditions of Lemma 3.5. Therefore, there
exist paths P, Q ∈ P , where P is flow carrying, with

∑
a∈P

pa
( K

∑
i=1

f i
a
)

> ∑
a∈Q

pa
( K

∑
i=1

f i
a
)
. (3.20)

By the induction hypothesis the routing computed by Seq for the first K− 1
commodities is optimal. Therefore, Lemma 3.5 holds. Inequality (3.20) is only
valid if f K

P > 0. To see this, assume f K
P = 0. Then, it follows that P is flow

carrying with respect to the first K − 1 commodities. Invoking the optimality
conditions in Lemma 3.5 for the first K− 1 commodities (induction hypothesis)
leads to:

∑
a∈P

pa
( K

∑
i=1

f i
a
)

= ∑
a∈P

pa
( K−1

∑
i=1

f i
a
)
≤ ∑

a∈Q
pa

( K−1

∑
i=1

f i
a
)
≤ ∑

a∈Q
pa

( K

∑
i=1

f i
a
)
,

where the last inequality follows because the price functions pa(·) are non-
decreasing. Since this contradicts (3.20), we have f K

P > 0. In particular,
f K
a > 0 for all a ∈ P. For small enough ε > 0, we define the nonnegative

flow x := ( f 1, . . . , f K−1, xK) with

xK
a :=


f K
a − ε a ∈ P \Q

f K
a + ε a ∈ Q \ P

f K
a otherwise.

By construction this flow is feasible.
We obtain for the difference of costs:

C(x)− C( f ) = ∑
a∈P\Q

[ f K
a −ε∫
0

pa
( K−1

∑
i=1

f i
a + z

)
dz−

f K
a∫

0

pa
( K−1

∑
i=1

f i
a + z

)
dz

]

+ ∑
a∈Q\P

[ f K
a +ε∫
0

pa
( K−1

∑
i=1

f i
a + z

)
dz−

f K
a∫

0

pa
( K−1

∑
i=1

f i
a + z

)
dz

]
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sK

...

s2

s1

uN

...

u1

t

Figure 3.10: Construction for the proof of Proposition 3.30.

=− ∑
a∈P\Q

f K
a∫

f K
a −ε

pa
( K−1

∑
i=1

f i
a + z

)
dz + ∑

a∈Q\P

f K
a +ε∫

f K
a

pa
( K−1

∑
i=1

f i
a + z

)
dz

=
ε∫

0

(
− ∑

a∈P\Q
pa

( K

∑
i=1

f i
a + z− ε

)
+ ∑

a∈Q\P
pa

( K

∑
i=1

f i
a + z

))
dz. (3.21)

We now define

g(z, ε) := − ∑
a∈P\Q

pa
( K

∑
i=1

f i
a + z− ε

)
+ ∑

a∈Q\P
pa

( K

∑
i=1

f i
a + z

)
.

By (3.20) we have g(0, 0) < 0. Since pa(·) is continuous, g is continuous, too.
Hence, g(z, ε) < 0 for all z and δ with 0 ≤ z, ε < δ, if δ is small enough.
Therefore, the right hand side of (3.21) is strictly smaller than 0. It follows that
C(x) < C( f ). This is a contradiction since x and f only differ with respect to
the last commodity K and Seq solves problem (3.3). Hence, Seq computes an
offline optimal solution.

3.5 Unsplittable Routings

In this section we study the variant of the OnlineMCRP with unsplittable
routings, i.e., the demand of each commodity has to be routed on a single
path. Such a restriction often occurs in practice, for instance in single path
routing problems in telecommunication networks. It is possible to formulate
a mixed integer convex program for this setting. In contrast to the splittable
case, however, the offline problem is NP-hard.

Proposition 3.30. The offline problem for the OnlineMCRP with unsplittable rout-
ings is NP-hard, even when the price functions are linear.

Proof. Consider an instance of the minimum sum of squares problem, which is
known to be NP-complete in the strong sense (see Garey and Johnson [43]).
Here, are given nonnegative integers d1, . . . , dK and positive integers N ≤ K
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and J. The question is if there exists a partition of [K] into N sets A1, . . . , AN
such that

N

∑
i=1

(
∑

k∈Ai

dk

)2
≤ J?

For the reduction to the offline problem, we construct a network D with
node set {s1, . . . , sK, u1, . . . , uN, t} and the following arcs: For each k ∈ [K] and
i ∈ [N] we have an arc (sk, ui) with price function 0. For each i ∈ [N] we add
an arc a = (ui, t) with price function pa(z) = 2 z; see Figure 3.10. Furthermore,
for k ∈ [K] there are demands dk between sk and t.

We claim that there exists an unsplittable solution to the offline problem
of value at most J if and only if the answer to the minimum sum of squares
problem is positive. To see this, first assume that A1, . . . , AN is the wanted
partition. Then if k ∈ Ai, we route commodity k along ui to t. Using (3.10), we
obtain the following costs:

2
N

∑
i=1

∑
k∈Ai

(
∑

j∈Ai
j<k

dj +
1
2

dk
)
dk =

N

∑
i=1

∑
k∈Ai

∑
j∈Ai

dk dj =
N

∑
i=1

(
∑

k∈Ai

dk

)2
.

This proves the forward direction of the claim. Conversely, assume that there
exists an unsplittable flow of value J. For i = 1, . . . , N, let Ai be the set of
indices k whose corresponding demands are routed over the arc (ui, t). Again
the cost is given as above, which shows that there exits a solution to the mini-
mum sum of squares problem.

Remark 3.31. The unsplittable variant of (3.3) can be computed in polynomial
time since it amounts to solving a shortest path problem.

To see this, consider the set of arcs within the path system Pk of commod-
ity k. For this set, we evaluate the arc cost Ck

a(dk; f 1
a , . . . , f k−1

a ) with respect to
the demand dk. Defining these values as routing weights, the solution of the
unspittable variant of (3.3) amounts to a shortest path problem with respect to
the routing weights.

Remark 3.32. When the price functions are constant, both the unsplittable
variants of (3.3) and (3.6) can be written as (integer) min-cost flow problems.
Hence, they can be solved in polynomial time, see e.g. Schrijver [85, Ch. 12].

The following two results show that the additional requirement of unsplit-
table routings does not improve competitiveness properties of the Online-
MCRP. The first is the unsplittable version of Proposition 3.8.

Proposition 3.33. In general there exists no competitive deterministic online algo-
rithm for the unsplittable variant of the OnlineMCRP.

Proof. Consider again the network shown in Figure 3.3, where each arc a has
the price function pa(z) = m · zm−1 for some m > 2. Let Alg be an arbitrary
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deterministic online algorithm. We first reveal a commodity with demand
d1 = 1, source s1 = 1, and target t1 = 4. Without loss of generality, we can
assume that Alg uses path P1 = (1, 2, 4) to route this demand. We then release
commodity 2 with demand d2 = 1, source s2 = 1, and target t2 = 2. The
algorithm Alg has to route this commodity on the single path P2 = (1, 2).
Hence, for this sequence σ, Alg yields the cost

Alg(σ) = 2 · 1m +
∫ 1

0
m(1 + z)m−1 dz = 2 + (1 + 1)m − 1m = 1 + 2m.

The optimal cost is Opt(σ) = 3, which is achieved by routing commodity 1
over path P3 = (1, 3, 4) and commodity 2 along path P2. Therefore, for m
going to infinity it follows that Alg is not competitive.

We can also improve the lower bound of Proposition 3.11 from 4
3 to 2.

Proposition 3.34. If we consider only linear price functions in C1, no deterministic
online algorithm has a competitive ratio less than 2 for the unsplittable variant of the
OnlineMCRP.

Proof. Consider the network shown in Figure 3.3, where each link a has the
same price function pa(z) = 2 z. Let Alg be an arbitrary deterministic online
algorithm. We first reveal commodity 1 with demand d1 = 1, source s1 = 1,
and target t1 = 4. Without loss of generality this commodity is routed over
path P1 = (1, 2, 4). Then we release one commodity from node 1 to 2 and one
commodity from node 2 to 4. Both have a demand of 1. Since for each of the
last two commodities there exists only a single path, the assignment by Alg

for this sequence σ leads to a cost of

Alg(σ) = 2 · 2 · (1
2 · 1) · 1 + 2 · (1 + 1

2 · 1) · 1 + 2 · (1 + 1
2 · 1) · 1 = 8.

An optimal routing is achieved by routing commodity 1 along path P2 =
(1, 3, 4) and commodity 2 and 3 over their single paths. Since the optimal
cost for σ is Opt(σ) = 4, the competitive ratio of Alg is at least 2.

3.6 Computational Study

In the previous sections, we introduced the framework OnlineMCRP in or-
der to analyze the efficiency of online multicommodity routing strategies for
networks with nondecreasing price functions. In particular, we studied the
greedy online algorithm Seq that routes a commodity with minimum cost.
The framework is based on the assumption that every demand can be split
into infinitesimal small pieces that can be routed consecutively and each piece
prompts an update of arc prices. In other words, the bundle size can be arbi-
trarily small. The derived analytical results are based on competitive analysis
coming from the classical toolbox in the online optimization field. It is inherent
to the concept of competitive analysis that the competitive ratio of an online
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Figure 3.11: Very High Performance Backbone Network Service (vBNS) network
topology. Every node represents and Internet service provider.

algorithm holds for every instance. Worst-case instances, however, maybe very
rare or even not possible to construct in practice. To assess the efficiency of
the routing strategies in practical environments, we present a computational
study for more realistic settings.

In particular, we present an empirical case study under the following as-
sumptions: (i) we consider the Very High Performance Backbone Network
Service (vBNS) network topology that connects all major cities and univer-
sities in the US, see Figure 3.11; (ii) network arcs are equipped with finite
capacities; (iii) traffic demands are generated stochastically over time; (iv) de-
mands expire over time; (v) each demand has a discrete bundle size and is
routed along a single path. In the reminder of this section, we empirically
quantify the efficiency loss of a greedy online routing algorithm modeling the
iREX protocol.

3.6.1 Online Routing with Expiration

As in the previous sections, we consider a set [K] := {1, . . . , K} of source-
destination pairs that represent the inter-domain reservation requests (de-
mands). For each k ∈ [K], a demand of dk must be routed from the source
sk to the destination tk. Without loss of generality, we assume that all de-
mands have the same normalized bundle size. A demand value that is larger
than this bundle size can be represented by several demands of bundle size.
We introduce a starting time τk that specifies the release time of commodity
k. Furthermore, every demand k has a duration time Ek. Without loss of
generality, we assume the time points are ordered τ1 < .. < τK. We define
[K(τ)] ⊆ [K] to be the subset of commodities that are active just after time τ.
Formally, the set is defined as [K(τ)] := {i ∈ [K] | τ ∈ (τi, τi + Ei]} . We further
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define [K̄(τ)] := {i ∈ [K] | τ ∈ [τi, τi + Ei]} to be the set of commodities that
are active at time τ. The resource arcs a ∈ A of the network are equipped with
finite resource capacities c = (ca, a ∈ A).

We focus in this section on the greedy online algorithm Seq with a discrete
bundle size as discussed in Remark 3.1. This algorithm models the iREX pro-
tocol as specified by Yahaya and Suda in [88, 89]. According to this protocol,
every commodity k ∈ [K] is routed along the cheapest feasible path. This is
equivalent to solving the following linear min cost flow problem:

(Lk) min ∑
a∈A

pa

(
∑

i∈[K(τk)]
f i
a

)
f k
a

s.t. ∑
a∈δ+(v)

bk
a − ∑

a∈δ−(v)
bk

a = γk(v), ∀ v ∈ V (3.22)

f k
a = dk bk

a ∀ a ∈ A

∑
i∈[K̄(τk)]

f i
a ≤ ca, bk

a ∈ {0, 1}, ∀ a ∈ A,

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; fur-
thermore, γk(v) = 1 if v = sk, γk(v) = −1 if v = tk, and γk(v) = 0 otherwise.

The value ∑i∈[K(τk)] f i
a captures the aggregated demand that is active at time

τk. The terms pa

(
∑i∈[K(τk)] f i

a

)
are constant, hence Lk is a linear program. A

solution is simply the cheapest feasible path for commodity k.

3.6.2 The O�ine Optimum

In Section 3.2.2, we defined the optimal offline solution as the flow that min-
imizes total routing cost for a given sequence of commodities. Beside con-
sidering monetary cost, network congestion is also an important metric as
suggested by Yahaya and Suda [88, 89]. They presented simulations with non-
decreasing price functions and showed that the iREX protocol performs with
less network congestion when compared to the current existing methods for
deploying end-to-end inter-domain traffic with QoS requirements. 2

2The current method for deploying end-to-end inter-domain traffic with QoS requirements
is the Service Level Agreement (SLA) method. A detailed description of the SLA method can
be found in the Frame Relay Forum [41] and in Goderis et al [86]. The SLA method is for
resource consumer domains to negotiate with a neighboring resource provider domain and
create a business level document called the Service Level Agreement (SLA)[41][86]. The SLA
document defines the expectations and responsibilities of both the resource consumer and the
resource provider domains. This includes the specifications of the QoS service negotiated for
in the form of a technical document called the Service Level Specification (SLS)[46]. When an
agreement is reached at the business level, the service specifications defined by the SLS are
then installed as policy by the network administrator of the resource provider domain. There
are two major problems with the SLA method. First, consumer domains cannot choose transit
inter-domain resource provider domains beyond the first inter-domain hop. This constitutes
a lack of control and can negatively impact the interest of a resource consumer. Secondly,
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Our goal is to analyze the efficiency of this algorithm compared to some
global optimum. Since the total traffic load varies over time, we evaluate the
efficiency of the iREX protocol at different time points τ. Our measure of ef-
ficiency is again based on competitive analysis coming from online optimiza-
tion. We will present two variants of an offline optimum. In the first variant,
the offline optimum corresponds to a minimum cost flow, if the demands are
nonexpiring and the price functions are used to model congestion on the net-
work arcs. In this regard, all analyical results derived in the previous sections
carry over to the congestion metric under the above described conditions. In
the second variant, we focus on the most congested arc in the network, see
Fortz and Thorup [37] for models and algorithms for minimizing congestion
in telecommunication networks.

Congestion Functions

We evaluate the iREX protocol with respect to network congestion. One way to
define a minimum congestion network is to assign a nondecreasing congestion
function `a to each arc a ∈ A. These functions are typically nonlinear, positive,
and strictly increasing with flow, see Patriksson [73]. In practical applications,
the most frequently used functions are polynomials, whose degrees and co-
efficients are determined from real-world data through statistical evaluation
methods, see Patrikkson [73] and Branston [17]. The total congestion cost for
a flow f is defined as

Φ( f ) = ∑
a∈A

`a( fa) fa. (3.23)

The idea is that it will be cheap to send traffic over an underutilized arc, but
as the load on the arc increases the cost for this arc will grow super linearly,
penalizing high congestion. Hence, minimizing convex load dependent cost
functions are well suited to balance the load in a network, see also Fortz and
Thorup [37].

A flow that minimizes congestion in a network at time τ solves the follow-
ing optimization problem:

(P1) min Φ( f )

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v) ∀ v ∈ V, k ∈ [K̄(τ)] (3.24)

fa ≤ ca, f k
a ≥ 0 ∀ a ∈ A, k ∈ [K̄(τ)],

where γ(v) is defined as in (3.1).
The solution of problem P1 is the offline optimum, where all demands

dk, k ∈ [K(τ)] that are active at time τ are taken into account. Since problem
P1 has a convex objective and linear constraints, a global optimum exists and
can be computed with arbitrary precision in polynomial time, see Grötschel,

the manual SLA process is very slow (in the order of days). Thus, it is impossible to take
advantage of some knowledge of the network state, since by the time the choice is deployed,
the network state would have changed.
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Lovasz and Schrijver [48]. If P1 has a strictly convex objective, the global opti-
mum is also unique. Note that P1 allows for splitting demands along different
paths. Incorporating binary variables bk

a ∈ {0, 1} for each resource arc and
demand, the condition f k

a = dk bk
a together with replacing (3.24) with

∑
a∈δ+(v)

bk
a − ∑

a∈δ−(v)
bk

a =


1, if v = sk

−1 if v = tk

0, otherwise,

accounts for single path routing. We call this type of problem SP1.

Remark 3.35. Problem SP1 is NP-hard.

It is known that single path (unsplittable) multicommodity flow problems
with capacities involving a linear objective are NP-hard as shown by Klein-
berg in [59]. So this holds certainly for convex objectives. However, we have
the following rather trivial bounds:

Proposition 3.36. Let f = ( f k, k ∈ [K̄(τ)]) be a feasible flow that is produced by
the solutions of problem Lk at time τ. Let g and h be optimal flows of P1 and SP1,
respectively. Then, the following inequalities are satisfied:

Φ(g) ≤ Φ(h) ≤ Φ( f ). (3.25)

Proof. Each flow f k routes the demand dk on a single path. Hence, f is feasible
for problem SP1, i.e., Φ(h) ≤ Φ( f ). Furthermore, h is a feasible flow for P1.
Therefore, Φ(g) ≤ Φ(h).

To evaluate the performance of the solutions of Lk, we numerically solve
P1 and SP1, which provides us with the lower bounds Φ(g) ≤ Φ(h) ≤ Φ( f ).
Furthermore, we can empirically quantify the gain of the fractional routing
compared to the unsplittable variant.

Minimizing the Most Congested Arc

Another way to define a minimum congestion network is to minimize the load
on the most congested arc. This leads to:

(P2) min Γ( f ) = max
a∈A

`a( fa) fa

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v) ∀ v ∈ V, k ∈ [K̄(τ)]

fa ≤ ca, f k
a ≥ 0 ∀ a ∈ A, k ∈ [K̄(τ)],

where γ(v) is defined as in (3.1). The drawback of this formulation is that
once the bottleneck of the network (i.e. the most congested arc) is identified,
the routing on remaining resource arcs does not affect the objective. This might
lead to inferior routing decisions in terms of the metric used in P1. Using the
same arguments as before, we have the following bound:
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Proposition 3.37. Let f = ( f k, k ∈ [K̄(τ)]) be a flow produced by the solutions of
Lk at time τ. Let g and h be optimal flows of P2 and (SP2), respectively. Then, the
following inequalities are satisfied:

Γ(g) ≤ Γ(h) ≤ Γ( f ). (3.26)

Here problem SP2 is the single path variant of problem P2.

3.6.3 Numerical Results

We simulate the iREX protocol with the iREX simulator under different traffic
loads, see Yahaya and Suda [88, 89] for a description of this simulator. Then,
we evaluate network congestion at different times τ and compare the resulting
flow of these snapshots with four lower bounds for each snapshot. These
lower bounds are derived by solving the four associated offline optimization
problems P1, SP1 and P2, SP2.

For completeness, we also conducted simulations with the current Service
Level Agreement (SLA) method for deploying end-to-end inter-domain traffic
with QoS requirements.

The Simulator

The iREX simulator implements the iREX protocol and a simplified Border
Gateway Protocol (BGP). The BGP protocol is needed to simulate the SLA
method. The simulator performs packet level simulation for control packets
used for iREX and BGP signaling, and flow level simulation for the deployment
of flows with QoS constraints.

We have used iREX simulation subconfigurations based on the type of
price function used by domains to price their resources. The linear configura-
tion prices resources uniformly according to the affine linear function p(z) =
a0 + a1 z. The squared configuration prices resources uniformly according to the
squared polynomial pa(z) = a0 z + a1 z + a2 z2. The random subconfiguration
randomly assigns each domain one of three price functions - linear, squared
or cubed (p(z) = a0 z + a1 z + a2 z2 + a3 z3). All coefficients ai are assumed
to be nonnegative. These coefficients are randomly assigned for the random
subconfiguration. The topology chosen for the simulations is the Very High
Performance Backbone Network Service (vBNS) topology with each point of
presence representing an Internet service provider (ISP) domain. ISP domains
are assumed to be connected with OC48 optical fiber arcs to its neighbors and
the length of each arc is calculated to be the actual beeline distance between
the cities. Figure 3.11 illustrates the chosen topology. Inter-domain reserva-
tion requirements within the simulator are viewed as bundles of traffic sized
0.1% of line speed (about 2.4mb/sec) with a 5 minute average reservation du-
ration (Ek). The traffic load (total projected bandwidth usage) is determined
according to a percentage of each domain’s actual total egress capacity in the
topology from 0% to 100% in 4% steps. To generate demands, we used a sim-
ple Poisson arrival model with parameters derived from a M/M/∞ analysis.
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Mathematical Solutions

To efficiently compute solutions for all problems of type P1, SP1, and P2, SP2 we
used CPLEX 10.0, that is equipped with Linear (LP), Quadratic (QP), Mixed
Integer Problem (MIP), and Quadratic Integer (QIP) solvers. For modeling
purposes, we used the ZIMPL modeling language, see Koch [60]. In total,
more than 2600 problems of type P1, and P2 are solved to optimality. We solved
the problems SP1, SP2 involving integer constraints within 1% of optimality.
Average running time on a Pentium 4 (3GHz) for the problem type P1, P2 was
about 1 second and for problem types SP1, SP2 about 30 seconds.

Metrics

We present efficiency results using two metrics, the efficiency loss compared
to solutions of P1 and SP1, and compared to solutions of P2 and SP2. These re-
sults are from 4 simulation runs for the linear and squared sub configurations,
and 16 runs for the random sub configurations, with individual runs having
approximately 500,000 simulated reservations. To compare the simulation re-
sults with the lower bound of P1, SP1, and P2, SP2, we evaluated congestion
for a simulated flow f by evaluating Φ( f ) and Γ( f ) at time points τ. For all
graphs, we define efficiency loss to be the percentage difference between the
network congestion of the iREX protocol simulation results and the computed
optimal solutions as defined by the problems P1 and SP1 and the problems P2
and SP2. That is, if the iREX protocol produces a flow f , and the optimal flow
for problem P1 is denoted by f ∗, the efficiency loss with respect to P1 is given
as:

Efficiency loss = Φ( f )−Φ( f ∗)
Φ( f ∗) × 100.

We show the numerical results in reference to the multiple and single path
solutions. Each graph in this section has two curves, which show the efficiency
loss with respect to a solution that uses multiple paths depicted by (Multipath),
and the efficiency loss with respect to a solution that only uses a single path
depicted by (Singlepath). The simple average of the difference between the
two curves is also included. While the single path routing describes the iREX
protocol, the multipath solution is an absolute reference bound for all possible
methods (including future multipath iREX protocol improvements).

Simulation Results

Figures 3.12, 3.13, and 3.14 show the efficiency loss of the iREX protocol com-
pared to optimal solutions of problems P1 and SP1 using linear, squared, and
random price functions under varying traffic load. For nominal to high traf-
fic loads of 50% or more, the worst case (random) efficiency loss to the single
path SP1 metric is about 16%, and the “best” worst case among the three sub
configurations is about 12% (squared). Price functions determine the speed of
a domain’s response to increasing load situations. The “faster” squared price
function allows for faster use of alternative paths, thereby making the squared
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Figure 3.12: Efficiency of the iREX protocol for linear price functions with respect to
offline optimum of type P1 and SP1.
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Figure 3.13: Efficiency of the iREX protocol for squared price functions with respect
to offline optimum of type P1 and SP1.

sub configuration perform better. To further expose this behavior, we refer
to the squared (Figure 3.13) sub configuration’s smaller distance to the opti-
mal solution in comparison to the linear (Fig. 3.12) sub configuration’s more
pronounced efficiency loss peaks at traffic loads 36%, 60%, 72% and 88%. The
random (Figure 3.14) sub configuration, which represents the most realistic sce-
nario, performed worse than the domains in the uniform price function sub
configurations. This may be caused by the diversity of price functions. We
note, however, that the worst efficiency loss difference between the random and
the best (squared) sub configuration is only about 5%. We also observe that
the efficiency loss with respect to the single path metric SP1 is consistently
and recognizably lower than the efficiency loss with respect to the multi path
metric P1 with the difference averaging between 4.52% to 4.61%. In all cases,
efficiency loss decreases with increased traffic load. The reason is that as traf-
fic load increases, the search space for “good” paths decreases. Figures 3.15,
3.16, and 3.17 show the efficiency loss to P2 and SP2 for iREX using the linear,
squared, and random price functions respectively under varying traffic load.
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Figure 3.14: Efficiency of the iREX protocol for random price functions with respect
to offline optimum of type P1 and SP1.
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Figure 3.15: Efficiency of the iREX protocol for linear price functions with respect to
offline optimum of type P2 and SP2.

We again observe that the efficiency loss with respect to the single path metric
SP2 is consistently and recognizably lower than the efficiency loss with respect
to the multi path metric P2 with the difference between the single SP2 and
the multi P2 path averaging between 8.38% to 8.42%. And again in all cases,
efficiency loss decreases with increased traffic load. The differences in the sub
configurations are small due to the nature of the metric.

Comparison with Current SLA Method

In contrast to the the iREX protocol, the SLA method exhibits an efficiency loss
of 150% which increased to a maximum of 340% in the same traffic load range
as seen in Fig. 3.18. The constant increase in efficiency loss is due to the static
nature of this method.

The SLA method stays at about 70% efficiency loss across the same traffic
load ranges as seen in Fig. 3.19. This efficiency loss does not increase because
usage on the most congested arc has reached maximum capacity.
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Figure 3.16: Efficiency of the iREX protocol for squared price functions with respect
to offline optimum of type P2 and SP2.
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Figure 3.17: Efficiency of the iREX protocol for random price functions with respect
to offline optimum of type P2 and SP2.

3.7 Discussion and Open Problems

We see the framework introduced in this chapter as a first step towards model-
ing of real world online multicommodity routing problems. In practice, how-
ever, there are many more additional requirements. For instance, routings have
to consider capacities, which we ignored in our theoretical approach. With
capacities, however, one can easily construct examples in which any online
algorithm does not even produce a feasible solution. Further requirements in
practice include path length restrictions and survivability issues. Another im-
portant point is that in practice routings are only valid until a given time, after
which they disappear. This has effects on the cost for future routings. We plan
to study this problem in the future. It is also an open issue, whether the com-
petitiveness bound in Theorem 3.9 and Theorem 3.24 are tight, and whether
there exists a competitive online algorithm for the unsplittable variant of the
OnlineMCRP.

As the last section suggests, for realistic network and traffic instances, the
proposed online algorithms are expected to perform better than the provable
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Fig. 3.18: SLA Efficiency loss to to offline optimum of type P1 and SP1
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Fig. 3.19: SLA Efficiency loss to offline optimum of type P2 and SP2

bounds.





Chapter 4

Network Games

In the last chapter, we presented an online routing problem in which demands
in a network have to be routed consecutively. In this chapter, we investigate
selfish routing problems or network games. In a network game, players route
demand in a network with minimum cost. Congestion on an arc is modeled
by a nondecreasing latency function. Such functions map the total flow on an
arc to the time needed to traverse this arc. In practical applications, the most
frequently used functions are polynomials whose degrees and coefficients are
determined from real-world data through statistical evaluation methods, see
Patrikkson [73] and Branston [17]. The cost on an arc is defined as latency
times flow on that arc. The total cost of routing flow is defined by the sum
over all arc costs.

Rosenthal [79] introduced the atomic unsplittable model, where players have
to route their demands along a single path. He showed that a Nash equilib-
rium in pure strategies exists when all players control the same amount of flow.
Conversely, a Nash equilibrium need not exist when players control different
amounts of flow. Milchtaich [67] studied the nonatomic model, where a large
number of players is assumed, where each player only controls an infinitesi-
mal part of the entire flow. He showed that this variant arises as the limit of a
sequence of atomic unsplittable network games, where the number of players
goes to infinity. The atomic splittable model, where some players may control a
significant part of the entire demand, was first considered in the transportation
literature, see Catoni and Pallatino [19]. Subsequent work in this area can be
found in Orda, Rom, and Shimkin [72] and Roughgarden and Tardos [84]. All
these models can be seen as special cases of general non-cooperative conges-
tion games. In non-cooperative games, players select strategies that are subsets
of resources, and the utility of a player only depends on the number of players
choosing the same or some overlapping strategy, see Rosenthal [79].

In this chapter, we focus on nonatomic and atomic splittable network games,
which we call nonatomic and atomic network game, respectively. Recall that a
system optimum is a multicommodity flow with minimum total cost, while a
Nash equilibrium amounts to a flow, where no player can improve by switch-
ing flow to another path under the prevailing conditions.
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The most prominent application of nonatomic network games is the road
traffic network in which travelers, usually drivers of vehicles, choose routes
from their origins to their destinations. Of particular interest are traffic equi-
librium models to describe and predict the arc flows and travel times result-
ing from an outcome of selfish route selection. The behavioral assumption for
nonatomic travelers, known as the Wardrop principle, postulates that the travel
times along the used routes for a given source-destination pair are equal to or
less than those on unused routes. It can be shown that such “user-optimized”
flows are actually Nash equilibria for the corresponding nonatomic network
game.

In atomic network games, some players may control a significant part of
the entire demand. Aggregating, controlling, and coordinating demand ap-
plies to many real-world examples. For instance, route guidance systems are
becoming increasingly popular for car drivers. They enter their current posi-
tion determined via the Global Positioning System (GPS) at the beginning of a
trip. Then, a central computer calculates an “optimal” route for this trip based
on digital maps, and based on available knowledge of traffic congestion on
the streets. Since a route guidance operator controls the aggregate traffic of its
customers, such an operator is an atomic player in game theoretic terminology.

Logistic and freight companies use trucks, trains or ships to carry goods
from source to destination points. These vehicles have to traverse parts of a
network that is also shared by other competitors and civil traffic. Some com-
panies may control many such vehicles which makes these companies control
a significant part of the overall traffic. Furthermore, the market share of a sin-
gle player may even increase if freight companies subcontract services from a
single logistic company.

We study the competition of atomic players using non-cooperative game
theory. Note that the case of a nonatomic player emerges as a special case in
which infinitely many atomic players are allowed each of them controlling a
negligible amount of flow. In non-cooperative game theory, we rely on the
classical equilibrium concept of Nash [71] to analyze an atomic network game.
At Nash equilibrium, no player can reduce its cost by switching flow to another
path provided all other players keep their routing fixed. In contrast to the
nonatomic case, a Nash equilibrium in the atomic case does not necessarily
coincide with a Wardrop equilibrium [87]. A trivial example for this is to
consider a single atomic player. The Nash equilibrium in this case is equal to
the system optimum which does not always hold for a Wardrop equilibrium.
The Pigou instance (see Fig. 5.6 for a graphical illustration) is a prominent
example for this possibility [75].

4.1 Related Work

In the last years, there has been an exciting development in algorithmic game
theory, aiming at quantifying the efficiency loss of Nash equilibria (user equi-
libria) in non-cooperative games. The fact that there exists an efficiency loss
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of the user equilibrium compared to a system optimum is well known in
the transportation literature, see Braess [16] and Dubey [28]. A first result
for exactly quantifying the price of anarchy was given by Papadimitriou and
Koutsoupias [62] in the context of a load balancing game in communication
networks. Roughgarden and Tardos [84] were able to bound the price of anar-
chy in nonatomic network games. In particular, Roughgarden and Tardos [84]
proved for a set of separable affine cost functions a bound of 4

3 on the price
of anarchy. A series of several other papers analyzed the price of anarchy
for more general cost functions and model features; see for example Correa,
Schulz, and Stier-Moses [24, 25], Czumaj and Vöcking [26], Perakis [74], and
Roughgarden [80].

By introducing the so called anarchy value α(L), Roughgarden [81] proved
the first tight bounds on the price of anarchy for nonatomic network games
and general nondecreasing, continuous and s-convex latency functions.1 Cor-
rea, Schulz, and Stier-Moses [24] introduced the value β(L) and only assumed
that latency functions have to be continuous and nondecreasing. They proved
that if the anarchy value exists, their bound implies all bounds of Roughgarden
by using the relation α(L) =

(
1− β(L)

)−1.
Even though the bounds obtained by Roughgarden are shown to be tight

for classes L that contain constants functions, there exist classes L of homoge-
nous latency functions, i.e. `a(0) = 0, ∀a ∈ A, where the anarchy value α(L)
and the value β(L) do not lead to tight upper bounds. Consider for example
monomial latency functions Md := {ad xd : ad ≥ 0}, of arbitrary degree d ≥ 1.
Using a variational inequality characterizing a Nash flow, it can be shown that
the price of anarchy is exactly one in this case, that is, the Nash equilibrium
is an optimal flow. But neither the anarchy value α(Md), nor the parame-
ter β(Md) gives the correct upper bound as also mentioned by Roughgarden
in [81]. In this regard, Dumrauf and Gairing [29] improved bounds on the
price of anarchy for classes Ms,d := {ad xd + · · ·+ as xs : aj ≥ 0, j = s . . . , d},
where s ≥ 1 is the minimum degree and d ≥ s is the maximum degree. Their
result, however, is tailored to this particular class and does not provide bounds
for more general homogenous latency functions.

Using the parameter β(L), Correa, Schulz, and Stier-Moses[24] also showed
that for capacitated networks, all known bounds on the price of anarchy with-
out capacities are valid, provided a special Nash equilibrium, called the Beck-
man equilibrium [11], is under consideration. As described by the same au-
thors, for selfish routing problems with capacities several Nash equilibria may
exist. Furthermore, they presented instances, where the efficiency loss of a
Nash equilibrium is unbounded. Larsson and Patriksson [64, 73] and Mar-
cotte, Nguyen, and Schoebel [65] proposed to include explicit arc capacities as
an obvious way to improve the quality of traffic assignment models. Indeed,
the widely used link delay formula proposed by the Bureau of Public Roads
includes a capacity parameter [18]. A frequently used way to implicitly in-
corporate capacities is to use the so called volume delay formulas that tend

1A function `(x) is called s-convex, if the function `(x) x is convex.
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to infinity as the arc flow approaches the arc capacity, see Branston [17] for
a discussion. In a related application, the introduction of capacities can be
used to derive tolls for the reduction of flows on overloaded links, see Hearn
and Ramana [54]. Further work on network tolls as a way to improve the
performance of the user equilibrium can be found by Cole, Dodis, and Rough-
garden [21, 22]. In particular, they prove that in case users have different
valuations of delay, there exists a set of optimal tolls for a single commod-
ity network. Fleischer, Jain, and Mahdian [35] extended this result to general
networks. Jahn, Möhring, and Stier-Moses [55] empirically investigate the per-
formance of user equilibria with latency constraints for users. All models
mentioned so far, assume static multicommodity flow networks. Only a few
results are known for time dependent multicommodity flow problems, see for
instance Köhler and Skutella [61] and Hall, Langkau, and Skutella [50].

For atomic network games and unsplittable flow, Roughgarden and Tar-
dos examined the price of anarchy [84]. Awerbuch, Azar, and Epstein [10]
and Christodoulou and Koutsoupias [20] studied the price of anarchy in the
unsplittable variant for linear latency functions. Aland et al. [3] then proved
exact bounds on the price of anarchy for general polynomial latency functions
in this case.

The splittable atomic case was first considered by Orda, Rom, and Shimkin
in [72]. They prove the existence of Nash equilibria by relying on the clas-
sical result about concave games obtained by Rosen in [78]. Further results
about the uniqueness of Nash equilibria are presented by Milchtaich [68, 69]
and Richman and Shimkin in [77]. Hayrapetyan, Tardos, and, Wexler [53] pre-
sented bounds on the price of anarchy for splittable flows in special network
topologies. Fotakis, Kontogiannis, and Spirakis [40] studied algorithmic is-
sues in the same setting. Roughgarden [83] introduced the value αK(L) and
proved that the cost of a flow at Nash equilibrium is upper bounded by this
value for general networks. Correa, Schulz, and Stier-Moses [25] proposed the
value βK(L) and showed that for classes L in which αK(L) exists, the relation
αK(L) = (1 − βK(L))−1 is valid. Both groups claimed that the price of an-
archy in the atomic network game does not exceed that of the corresponding
nonatomic one. This turned out to be wrong as discovered by Cominetti, Cor-
rea, and Stier-Moses in [23]. Based on the work of Catoni and Pallotino [19],
they presented an example, where the price of anarchy in a network game
with atomic players is larger than that of the corresponding nonatomic game.
Moreover, they showed that by aggregating and controlling demand the cost
for this aggregate may even increase compared to the game without aggrega-
tion. Such a counter-intuitive phenomenon can also arise from the perspective
of single individuals: players outside the cartel may face lower cost compared
to the situation, in which this player competes with the individuals instead of
the cartel.

Despite the possible increased efficiency loss of equilibria in atomic net-
work games compared to the nonatomic counterpart, Cominetti, Correa, and
Stier-Moses showed that the price of anarchy can be bounded for special la-
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tency functions in this case. In particular, they proved upper bounds on
the price of anarchy for affine linear, squared, and cubic latency functions
of 1.5, 2.56, and 7.83, respectively. They obtain these results by correctly ana-
lyzing the value βK(L). For general polynomials, however, their approach fails
to generate upper bounds.

4.2 Contributions and Chapter Outline

We study network games with nonatomic and atomic players and spittable
flow. For network games with nonatomic players and for a class of functions
L, we introduce the parameter ω(L, λ) that generalizes the anarchy value α(L)
and the value β(L). Using this value, we reprove the existing tight bounds on
the price of anarchy and present a novel proof for monomial latency functions
showing that the price of anarchy is one in this case.

For network games with atomic players, we introduce the value ω(L; K, λ)
that generalizes the previous parameters αK(L) and βK(L), which were pro-
posed by Roughgarden [83] and Correa, Schulz, and Stier-Moses [25], and
Cominetti , Correa, and Stier-Moses [23], respectively. For classes L for which
αK(L) and βK(L) exists, the relation ω(L; K, 1) = βK(L) is fulfilled. With a
proper choice of λ, however, we are able to improve all existing bounds, ex-
cept for the case of affine linear latency functions. In the case of affine linear
latency functions, we show that indeed λ = 1 is the best choice in our ap-
proach.

We start in Section 4.3 by introducing the basic traffic model for nonatomic
network games. In Section 4.3.4, we present a generalized method for bound-
ing the price of anarchy that extends previous work of Roughgarden [81], and
Correa, Schulz, and Stier-Moses [24].

In Section 4.4 we study network games with atomic players. The response
strategy of an atomic player can be described by an associated optimization
problem, where the objective is to minimize the individual cost. Under mild
assumptions on feasible latency functions this problem is a convex problem.
This type of problem can be solved within arbitrary precision in polynomial
time. In Section 4.4.2, we present a technique to bound the price of anar-
chy for atomic network games. This technique also generalizes concepts from
Roughgarden [83], Correa, Schulz, and Stier-Moses [25], and Cominetti , Cor-
rea, and Stier-Moses [23]. Equipped with this technique, we present bounds
on the price of anarchy for polynomial latency functions with nonnegative
coefficients that improve all previous results, except for affine linear latency
functions. For an overview of these results see Table 4.3.

4.3 Nonatomic Network Games

The traffic model for selfish network games is similar to the multicommodity
flow problem presented in Chapter 3. The main difference is that commodities
are not released online but are considered at the same time in parallel. Further-
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more, the considered cost function is different. In Chapter 3, the routing cost
on an arc a is defined as the integral over the aggregate flow on a with respect
to a nondecreasing price function pa(·). There, the costs represent monetary
costs for routing the commodities. In this chapter, arcs are equipped with la-
tency functions `a(·) and we define the routing cost on an arc as the latency
multiplied with the total flow on that arc.

In the following, we use the same notation as in Chapter 3. An instance of
the nonatomic network game is given by the triple (D, d, `), where D = (V, A)
represents a directed graph. Furthermore, we are given a set of commodities
[K] := {1, . . . , K}, where each commodity k ∈ [K] has a demand dk > 0 that
has to be routed from a source sk ∈ V to a destination tk ∈ V. The latency or
delay on an arc a ∈ A is given by a nondecreasing continuous and separable
latency functions `a : R+ → R+. A latency function `a(·) is called separable if
the latency of a feasible flow f on arc a depends on the total flow fa on a only.

In many cases, it is convenient to assume that the expression `a(z) z is a
convex function, or s-convex, see Bergendorf, Hearn, and Ramana [13]. When-
ever s-convexity is required, we indicate this.

In network games with nonatomic players, it is assumed that the flow f k

of commodity k is carried by a large number of agents each controlling an
infinitesimal fraction of the entire demand dk. Thus, the route choice of a
single agent does not affect the travel time of others. The travel time for the
flow f on the path P is given by

`P( f ) := ∑
a∈P

`a( fa).

We define the total travel time as the sum of travel times on arcs of the network:

Definition 4.1 (Total Cost)
The total cost for a flow f is given by:

C( f ) := ∑
P∈P

`P( f ) fP. (4.1)

The total cost can also be represented by the sum of arc costs:

∑
P∈P

`P( f ) fP = ∑
P∈P

(
∑
a∈P

`a( fa)
)

fP = ∑
a∈A

(
∑

P∈P
a∈P

fP

)
`a( fa) = ∑

a∈A
`a( fa) fa.

The first equation holds since latency functions are assumed to be separable.
The second and third equation follows from changing the summation order.
Hence, we have

C( f ) = ∑
a∈A

`a( fa) fa.

We used that the path decomposition of a flow defines a unique decom-
position into arc flows. Conversely, an arc decomposition of a flow may be
represented by several path decompositions.
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4.3.1 The Nash Equilibrium for Nonatomic Players

The basic assumption in this thesis is that users (players) act selfishly. This
means that players are solely interested in maximizing their own individual
utility rather than caring about social welfare.

To analyze the outcome of such individual behavior, one usually tries to
analyze an equilibrium situation: a stable point from which no player deviates
unilaterally. A flow for the nonatomic network game is a Wardrop equilib-
rium, if for every source-destination pair the latency for the used routes are
equal to or less than those on unused routes. This concept was introduced by
Wardrop (1952) in his first principle [87].

Definition 4.2 (Wardrop Equilibrium [87])
A feasible flow f is a Wardrop equilibrium if

lP( f ) ≤ lQ( f ), for all k ∈ [K] and all paths P, Q ∈ Pk, such that fP > 0. (4.2)

A similar concept for general non-cooperative games was proposed at the
same time by Nash [71]. A flow (strategy distribution) is at Nash equilibrium
if no player has an incentive to unilaterally deviate from the current strat-
egy. This triggers the following definition in the context of nonatomic network
games, see also Roughgarden [82].

Definition 4.3 (Nash Equilibrium [71])
A feasible flow f is at Nash equilibrium, if routing of a small bundle of flow
along another path does not strictly decrease the travel time along this path.
Formally, we define for every k ∈ [K], and every two paths P, Q ∈ Pk, such
that fP > 0, and 0 ≤ ε ≤ fP, a flow f ε by

f ε
P =


fR − ε if R = P
fR + ε if R = Q
fR otherwise,

(4.3)

where P ∈ P . Then, a feasible flow f is a Nash equilibrium if lP( f ) ≤ lQ( f ε) for
all ε ∈ [0, fP].

It can be shown that a Nash flow f solves the following convex optimization
problem, see for example Roughgarden and Tardos [84].

min ∑
a∈A

fa∫
0

`a(z) dz

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v) ∀ v ∈ V, k ∈ [K] (4.4)

f k
a ≥ 0 ∀ a ∈ A, k ∈ [K],

where γ(v) is defined as in (3.1).
Note that convexity already follows from the assumption that latency func-

tions are nondecreasing.
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Remark 4.4. The above characterization of a flow at Nash equilibrium implies
that every instance (D, d, `) admits a Nash equilibrium. To see this, consider
the convex program (4.4). This problem has a continuous objective and a
bounded and closed feasible region. Hence, the existence of an optimal solu-
tion is assured. Furthermore, the convexity of the objective implies that the
optimal value is unique. Thus, every flow at Nash equilibrium has the same
cost.

The following conditions are necessary and sufficient to characterize a Nash
equilibrium for a nonatomic network game.

Lemma 4.5. A feasible flow f is at Nash equilibrium if and only if it satisfies:

∑
a∈A

`a
(

fa
)
( fa − xa) ≤ 0 for all feasible flows x. (4.5)

The proof is based on the first order optimality conditions and the convex-
ity of the cost function in (4.4), see Dafermos and Sparrow [27].

4.3.2 The System Optimum

A central network manager would try to find a routing assignment f that
minimizes the total travel time for all commodities. Formally, such a flow
solves the problem:

min ∑
a∈A

`a( fa) fa

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γ(v) ∀ v ∈ V, k ∈ [K] (4.6)

f k
a ≥ 0 ∀ a ∈ A, k ∈ [K],

where γ(v) is defined as in (3.1).
If the latency functions are s-convex, this problem can be efficiently solved

within arbitrary precision in polynomial time using the ellipsoid method, see
Grötschel, Lovász, and Schrijver [48]. For latency functions that are s-convex,
the following conditions are necessary and sufficient to characterize a system
optimal flow.

Lemma 4.6. Let the latency functions be s-convex. A feasible flow f solves (4.6) if
and only if it satisfies:

∑
a∈A

(
`a

(
fa

)
+ `′a

(
fa

)
fa

)
( fa − xa) ≤ 0 for all feasible flows x. (4.7)

The proof is based on the first order optimality conditions and the con-
vexity of the objective function, see Dafermos and Sparrow [27]. Note that
the only difference to the characterization of a flow at Nash equilibrium is the
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Table 4.1: Price of Anarchy for different polynomial latency functions. All coefficients
ai are assumed to be nonnegative.

Allowable cost functions L Example Price of Anarchy α(L)

affine linear functions a1x + a0 1.334
quadratic functions ∑2

i=0 aixi 1.626
cubic functions ∑3

i=0 aixi 1.896
polynomials of degree 4 ∑4

i=0 aixi 2.151

polynomials of degree d ∑d
i=0 aixi (d+1) (d+1)(1/d)

(d+1) (d+1)(1/d)−d

term `′a
(

fa
)

fa arising from the derivative of `a( fa) fa. In this regard, Dafermos
and Sparrow [27] proved that for latency functions satisfying

`a
(

fa
)
+ `′a

(
fa

)
fa = κ `a

(
fa

)
,

for some nonnegative number κ, the cost of a flow at Nash equilibrium is equal
to the system optimal cost.

4.3.3 Price of Anarchy

A natural question that arises in the context of a Nash equilibrium is: How ef-
ficient is a Nash equilibrium compared to the system optimum? For answering
this question for network games, we need to analyze the worst case ratio be-
tween the cost of a flow at Nash equilibrium and that of a system optimal flow,
see Papadimitriou and Koutsoupias [62] and Roughgarden and Tardos [84].

Definition 4.7 (Price of Anarchy)
Let (D, d, `) be an instance of a nonatomic routing game. The price of anarchy
of the instance (D, d, `) is denoted by ρ(D, d, `) and defined as:

ρ(D, d, `) =
C( f )
C( f ∗)

. (4.8)

If I is the set of all instances, then the price of anarchy of I is:

ρ(I) = sup
(D,d,`)∈I

ρ(D, d, `).

The first tight bounds for general polynomial latency functions were pre-
sented by Roughgarden and Tardos [84] and Roughgarden [81]. For a given
class L of latency functions that are continuous, nondecreasing, differentiable,
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and s-convex, Roughgarden defined the so called anarchy value α(L) as

α(`a) := sup
xa, fa≥0

`a( fa) fa

`a(xa) xa + ( fa − xa) `a( fa)
(4.9)

α(L) := sup
`a∈L

α(`a).

Equipped with this definition we restate his result.

Theorem 4.8 (Roughgarden [81]). Let L be a set of latency functions with anarchy
value α(L), and (D, d, `) an instance with latency functions in L. Then, the price of
anarchy for this instance is at most α(L).

In Table 4.1 the exact price of anarchy for polynomial latency functions is
shown. Correa, Schulz, and Stier-Moses [24] defined a similar value β(L).

β(`a) := sup
xa, fa≥0

(
`a( fa)− `a(xa)

)
xa

`a( fa) fa
(4.10)

β(L) := sup
`a∈L

β(`a).

For classes L for which α(L) exists, these two values are related by the equa-
tion α(L) =

(
1− β(L)

)−1. In the next section, we present a detailed discussion
about these values.

4.3.4 Bounding the Price of Anarchy

In the following, we derive upper bounds on the price of anarchy by intro-
ducing the parameter ω(L, λ) that generalizes the anarchy value α(L) and the
value β(L). With this value, we reprove the existing tight bounds on the price
of anarchy and present a novel proof for monomial latency functions showing
that the price of anarchy is one in this case.

For every arc a, latency function `a, and nonnegative number λ, we define
the following nonnegative value:

ω(`a; λ) := sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa

`a( fa) fa
. (4.11)

We assume by convention 0/0 = 1. For a given class L of nondecreasing
latency functions, we further define

ω(L; λ) := sup
`a∈L

ω(`a; λ).

See Figure 4.1 for a graphical illustration of this value. Before we state the
main theorem, we define the following:
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0

`a(·)

0

λ `a(xa)

`a(xa)

`a( fa)

xa fa

Figure 4.1: Illustration of the value ω(`a; λ) in equation (4.11) with 1 < λ < `a( fa)
`a(xa)

. The
gray-shaded area corresponds to the value ω(`a; λ).

Definition 4.9
We define the set of feasible λ ≥ 0 as

Λ(L) := {λ ∈ R+ |
(
1−ω(L; λ)

)
> 0}.

Theorem 4.10. For latency functions in L, the price of anarchy for the nonatomic
network game is at most

inf
λ∈Λ(L)

[
λ (1−ω(L; λ))−1

]
.

Proof. Let f be a flow in Nash equilibrium, and let x be any feasible flow. Then,
we have

C( f ) = ∑
a∈A

`a( fa) fa

≤ ∑
a∈A

`a( fa) xa (4.12)

= ∑
a∈A

`a( fa) xa + λ `a(xa) xa − λ `a(xa) xa

≤ λ C(x) + ω(L; λ) C( f ). (4.13)

Here, (4.12) follows from the variational inequality stated in Lemma 4.5. The
last inequality (4.13) follows from the definition of ω(L; λ). Taking x as the
optimal offline solution and since λ ∈ Λ(L), the claim is proven.

The last step in the proof justifies the rather cryptic definition of Λ(L).
Note that the infimum in Theorem 4.10 can be infinite and the set Λ(L) can be
empty.

4.3.5 Comparison with Previous Results

Let L be a class of latency functions. In the following we relate the value
ω(L; λ) to the anarchy value α(L) introduced by Roughgarden in [81] and
to the parameter β(L) introduced by Correa, Schulz, and Stier-Moses in [24].
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In the original setting of Roughgarden, he assumed for the definition of α(L)
that the class L consists of continuous, nondecreasing, differentiable, and s-
convex functions. For this class he showed that the anarchy value α(L) is
tight by presenting matching lower bounds. Correa, Schulz, and Stier-Moses
relaxed the assumptions of differentiability and s-convexity by only assuming
that latency functions have to be continuous and nondecreasing (in fact only
lower semi continuity is required as shown in Correa, Schulz, and Stier-Moses
in [24]). For classes L in which β(L) exists, they proved that their bound
implies all bounds of Roughgarden by using α(L) =

(
1− β(L)

)−1. Moreover
using β(L), they extended the analysis to capacitated networks.

Our definition of ω(L; λ) is equal to β(L) if we set λ = 1. In this regard, the
parameter ω(L; λ) is as general as β(L) in that we only require continuity and
monotonicity for feasible latency functions. We will show, however, that for a
wide class of latency functions the assumption λ = 1 leads to tight bounds,
if the class of allowable latency functions contains the constant functions. A
prominent example highlighting this issue are the class of monomial latency
functions Md = {`(x) = ad xd : ad ∈ R+} of arbitrary degree d ∈ N. Using
the variational inequality stated in Lemma 4.5 it can be shown that the price of
anarchy is exactly one, see Dafermos and Sparrow [27]. But neither the anarchy
value α(Md), nor the parameter β(Md) gives the correct upper bound as also
mentioned by Roughgarden in [81]. With our approach, we obtain the correct
bounds for monomial latency functions as shown in Section 4.3.7.

In the following, we consider the class Ld of polynomials with nonnegative
coefficients and degree at most d ∈ N:

Ld := {ad xd + · · ·+ a1 x + a0 : as ≥ 0, s = 0, . . . , d}.

Furthermore, we analyze latency functions that are represented by monomials
with nonnegative coefficients:

Md = {`(x) = ad xd : ad ∈ R+}, d ≥ 1.

4.3.6 A�ne Linear and Linear Latency Functions

To demonstrate the potential of Theorem 4.10, we reprove the bound on the
price of anarchy for latency functions in L1. Thereby, we explicitly show that
λ = 1 is an optimal choice for affine linear latency functions. Note that for
λ = 1 we have α(L) =

(
1−ω(L; 1))−1 and β(L) = ω(L; 1).

Theorem 4.11 (Roughgarden and Tardos [84]). Let f be a Nash equilibrium of a
nonatomic network game with latency functions in L1. Then,

C( f ) ≤ 4
3

C(x),

for any feasible flow x.
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Figure 4.2: The price of anarchy for linear latency functions as a function of the pa-
rameter λ.

Proof. We present a proof along the lines of Theorem 4.10. We assume latency
functions of the form `a(z) = qa z + ra, qa ≥ 0, ra ≥ 0. By the definition of
ω(L; λ), we have:

ω(`a; λ) = sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa

`a( fa) fa

= sup
fa,xa≥0

(
qa fa − λ qa xa

)
xa +

(
ra − λ ra

)
xa

qa ( fa)2 + ra fa
.

The term
(
ra−λ ra

)
xa inside the supremum leads to the condition λ ≥ 1, since

otherwise we can set qa = 0 and let xa tend to infinity to make the supremum
unbounded. Hence,

Λ(L) = {λ ∈ R | λ ≥ 1}.

For λ ≥ 1 we can bound the supremum as follows.

ω(`a; λ) ≤
(

fa − λ xa
)

xa

( fa)2 ≤ 1
4 λ

.

Applying Theorem 4.10 yields

C( f ) ≤ inf
λ≥1

λ

1− 1
4 λ

C(x) = inf
λ≥1

4 λ2

4 λ− 1
C(x)

Finally, an easy calculation computes the infimum

min
λ≥1

4 λ2

4 λ− 1
=

4
3

. (4.14)

The optimal value is λ∗ = 1, which proves the claim.
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It is easy to show that the main restriction λ ≥ 1 in the proof also holds for
general latency functions if constant terms are allowed. The proof indicates
that there is potential in improving upper bounds on the price of anarchy
for latency functions without affine terms, i.e., ra = 0. Figure 4.3.6 shows the
function 4 λ2

4 λ−1 inside the infimum in (4.14). To precisely quantify this potential,
we reprove a well known result obtained by Dafermos and Sparrow [27].

Corollary 4.12 (Dafermos and Sparrow [27]). Let f be a Nash equilibrium of a
nonatomic network game with latency functions in M1. Then,

C( f ) ≤ C(x),

for any feasible flow x.

Proof. We start with (4.14) in the preceeding proof. Analyzing the feasible set
Λ(L), we have that

(
1− 1

4 λ

)
> 0, leading to λ > 1

4 . Thus, we have:

inf
λ> 1

4

4 λ2

4 λ− 1
= 1,

where we have used the optimal value λ∗ = 1
2 .

4.3.7 Monomial Latency Functions

Proposition 4.13. Consider latency functions in Md and assume λ > 0. Then, the
value ω(`a; λ) is at most

d

(d + 1)
(
(d + 1) λ

) 1
d

.

Proof. By the definition of ω(`a; λ), we have

ω(`a, λ) = sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa

`a( fa) fa
. (4.15)

Defining µ :=

{
xa
fa

, for fa > 0

0, for fa = 0,
we have to solve

max
0≤µ

(
ad f d

a − λ ad µd f d
a )

)
µ fa

ad f d+1
a

= max
0≤µ

(
µ− λ µd+1

)
. (4.16)

Since this is a strictly convex program, the unique global optimum is given by

µ∗ =
(

1
(d + 1) λ

) 1
d

.

Note that µ∗ > 0 for λ > 0. Inserting the value µ∗ into (4.16) yields the
claim.
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Theorem 4.14 (Dafermos and Sparrow [27]). Let Md be the class of allowable
latency functions. Then, the price of anarchy for the nonatomic congestion game can
be bounded by one.

Proof. By Proposition 4.13 we can bound ω(`a; λ) by

ω(`a; λ) ≤ d

(d + 1)
(
(d + 1) λ

) 1
d

.

By taking λ∗ := 1
d+1 we have ω(`a; λ) ≤ d

d+1 and hence λ∗ ∈ Λ(Md). Then,
applying Theorem 4.10 proves the claim.

Note that most previous proofs for monomial latency functions use the fact
that the variational inequality given in Lemma 4.5 coincides with the condi-
tions of the system optimum.

4.4 Atomic Network Games

In atomic network games, players control and coordinate the entire flow of
their demand. The routing strategy of an atomic player amounts to solving
an optimization problem, where the objective is to minimize the cost of the
demand that the atomic player controls. In this regard, the structure of such a
problem is similar to the system optimum presented in Section 4.3. A strategy
distribution or flow f is at Nash equilibrium, if no player has an incentive
to unilaterally change his strategy. It is straight forward to check that the
best reply strategy for player k is the optimum of the following optimization
problem, see for example Roughgarden and Tardos [84].

min ∑
a∈A

`a( fa) f k
a

s.t. ∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = γk(v) ∀ v ∈ V, k ∈ [K] (4.17)

f k
a ≥ 0 ∀ a ∈ A, k ∈ [K],

where γk(v) is defined as in (3.1). In order to have a precise characterization of
the solution of the above problem we assume that allowable latency functions
are s-convex, that is, `a(z) z is a convex function for all a ∈ A. Then, the follow-
ing conditions are necessary and sufficient to characterize a Nash equilibrium
for an atomic routing game.

Lemma 4.15. A feasible flow f is at Nash equilibrium if and only if for every k ∈ [K]
the following inequality is satisfied:

∑
a∈A

(
`a

(
fa

)
+ `′a

(
fa

)
f k
a
)
( f k

a − xk
a) ≤ 0 for all feasible flows xk. (4.18)
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The proof is based on the first order optimality conditions and the convex-
ity of `a(z) z, see Dafermos and Sparrow [27]. Intuitively, the second term in
the derivative of the cost function `′a

(
fa

)
f k
a accounts for the ability of player k

to coordinate the flow that it controls.

Remark 4.16. The above characterization of a flow at Nash equilibrium implies
that every instance (D, d, `) admits a Nash equilibrium. This follows from a
classical result of Rosen [78] that requires convexity of the objective. By the
same argument the cost of a flow at Nash equilibrium is unique.

4.4.1 Known Upper Bounds on the Price of Anarchy

The price of anarchy in network games with atomic players and splittable flow
has been investigated by Rouhghgarden [83], and Correa, Schulz and Stier-
Moses [25]. We summarize in the following the main known results in this
field. Roughgarden [83] defined for a given class L of latency functions the
following value (0/0 = 0 by assumption):

αK(`a) := sup
f a,xa≥0

`a( fa) fa

`a(x) xa + ∑
k∈[K]

(
f k
a − xk

a
)(

`a( fa) + `′a( fa) f k
a
) , (4.19)

where the constraint f a ≥ 0 is defined as

f k
a ≥ 0, for all k ∈ [K] with ∑

k∈[K]
f k
a = fa. (4.20)

Roughgarden proved that αK(L) := sup
`a∈L

αK(`a) is an upper bound on the price

of anarchy of atomic network games.

Proposition 4.17 (Roughgarden[83]). Consider an atomic network game with K
players and latency functions in L. Let f be a Nash equilibrium and let x∗ be a social
optimum. Then,

C( f ) ≤ αK(L) C(x∗).

Proof. Using the definition of αK(L), it is easy to see that

C(x∗) ≥ C( f )
αK(L)

+ ∑
k∈[K]

(
x∗,k

a − f k
a
)(

`a( fa) + `′a( fa) f k
a
)
,

since the last term is nonnegative due to the variational inequality in (4.18).

Cominetti, Correa, and Stier-Moses [23] define

βK(`a) := sup
f a,xa≥0

(
`a( fa)− `a(xa)

)
xa + `′a( fa)

(
∑

k∈[K]
[ f k

a xk
a − ( f k

a )2]
)

`a( fa) fa
. (4.21)
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Table 4.2: Price of Anarchy for different polynomial latency functions obtained by
Cominetti, Correa, and Stier-Moses [23]. All coefficients ai are assumed to
be nonnegative. The values α∞(L) and β∞(L) define the values αK(L) and
βK(L) for an arbitrary number of players K ∈ N∪ {∞}.

Set L of allowable Price of Anarchy α∞(L)
cost functions Example β∞(L) arbitrary # of players

linear functions a1x + a0
1
3 1.5

quadratic functions ∑2
i=0 aixi 0.61 2.564

cubic functions ∑3
i=0 aixi 0.87 7.826

polynomials of degree 4 ∑4
i=0 aixi 1.13 ∞

polynomials of degree 5 ∑5
i=0 aixi 1.38 ∞

· · ·
· · ·
polynomials of degree d ∑d

i=0 aixi ∞

and βK(L) := sup
`a∈L

βK(`a). This value is nonnegative, i.e., βK(L) ≥ 0 and

fulfills the relation
(
1 − βK(L)

)−1 = αK(L) when βK(L) < 1. For the case

βK(L) ≥ 1, it is assumed that
(
1− βK(L)

)−1 = ∞. This leads to the following
result.

Proposition 4.18 (Roughgarden[83]). Consider an atomic network game with K
players and latency functions in L. Let f be a Nash equilibrium and x∗ be a social
optimum. Then,

C( f ) ≤
(
1− βK(L)

)−1 C(x∗).

Although Roughgarden [83] and Correa, Schulz, and Stier-Moses claimed
indecently that the price of anarchy in the atomic case can not exceed that
of the nonatomic case, it has been shown in Cominetti, Correa, and Stier-
Moses [23] that this is not true. In fact they show an instance with atomic
players and affine linear latency functions, where the price of anarchy is ap-
proximately 1.343. Correct upper bounds according to the results obtained by
Cominetti, Correa, and Stier-Moses [23] are shown in Table 4.2.

4.4.2 Improved Bounds on the Price of Anarchy

Based on ideas of the analysis of nonatomic network games in the previous sec-
tion, we introduce the parameter ω(L, K, λ) for network games with K atomic
players. The main difference between the values ω(L, λ) and ω(L, K, λ) is that
the flow decomposition into commodities plays an important role in the latter
case. The reason for this is the ability of atomic players to coordinate the flow
that they control.
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For every arc a, latency function `a, and nonnegative parameter λ, we de-
fine the following nonnegative value:

ω(`a; K, λ) := sup
f a,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

(
∑

k∈[K]
[ f k

a xk
a − ( f k

a )2]
)

`a( fa) fa
.

(4.22)

We assume 0/0 = 1 by convention. For a given class L of latency functions,
we further define

ω(L; K, λ) := sup
`a∈L

ω(`a; K, λ).

Moreover, we define the following set:

Definition 4.19
The set of feasible λ ≥ 0 is defined as

Λ(L, K) := {λ ∈ R+|
(
1−ω(L; K, λ)

)
> 0}.

Equipped with the feasible scaling space Λ(L, K) of the parameter λ we
state the main theorem.

Theorem 4.20. For latency functions in L, the price of anarchy for the atomic network
game is at most

inf
λ∈Λ(L,K)

[
λ (1−ω(L; K, λ)−1)

]
.

Proof. Let f be a flow at Nash equilibrium, and let x be any feasible flow.

C( f ) ≤ ∑
a∈A

`a( fa) fa + ∑
k∈[K]

(
`a

(
fa

)
+ `′a

(
fa

)
f k
a
)
(xk

a − f k
a ) (4.23)

= ∑
a∈A

`a( fa) xa + ∑
k∈[K]

`′a
(

fa
)

f k
a (xk

a − f k
a )

= ∑
a∈A

λ `a(xa) xa +
(
`a( fa)− λ `a(xa)

)
xa + ∑

k∈[K]
`′a

(
fa

)
f k
a (xk

a − f k
a )

≤ λ C(x) + ω(L; K, λ) C( f ). (4.24)

Here, (4.23) follows from the variational inequality stated in Lemma 4.15. The
last inequality (4.24) follows from the definition of ω(L; K, λ). Taking x as the
optimal offline solution and since λ ∈ Λ(L, K), the claim is proven.

Our definition of ω(L; K, λ) originates in a similar definition of the param-
eter βK(L) in Cominetti, Correa, and Stier-Moses [23] and αK(L) in Roughgar-
den [83]. For a class of latency functions L in which βK(L) exists, we have the
relation βK(L) = ω(L; K, 1) and αK(L) = (1−ω(L; K, 1))−1. However, neither
the anarchy value αK(L), nor the parameter βK(L) provide upper bounds for
polynomial latency functions with nonnegative coefficients. Furthermore, the
existing bounds derived by analyzing the value βK(L) are not known to be
tight. As we show in the next section, using Theorem 4.20 it is possible to
improve all previous known bounds for this class of latency functions, except
for affine linear latencies.
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Figure 4.3: The price of anarchy for affine linear price functions as a function of the
scaling parameter λ.

4.4.3 Linear and A�ne Linear Latency Functions

We start with reproving a result obtained by Cominetti, Correa, and Stier-
Moses [23] for the class L1. We present a proof for completeness showing that
the best bound can be achieved by setting λ = 1. For this value of λ we have
βK(L1) = ω(L1; K, 1).

Theorem 4.21 (Cominetti, Correa, and Stier-Moses [23]). Let f be a flow at
Nash equilibrium of an atomic network game with latency functions in L1. Then,

C( f ) ≤ 3
2

C(x),

for any feasible flow x.

Proof. We assume latency functions of the form `a(z) = qa z + ra, qa ≥ 0, ra ≥
0. We start with the definition of ω(`a; K, λ):

ω(`a; K, λ) = sup
f a,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa) ∑

k∈[K]
( f k

a xk
a − f k

a f k
a )

`a( fa) fa
.

Note that we are using the notation f a ≥ 0 according to (4.20). Using

f k
a xk

a − f k
a f k

a ≤
1
4

(xk
a)

2,

because
(

1
2

xk
a − f k

a )2 ≥ 0,

and
∑

k∈[K]
(xk

a)
2 ≤ (xa)2,
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we get the following bound:

ω(`a; K, λ) ≤ sup
fa,xa≥0

(
qa fa − λ qa xa

)
xa +

(
ra − λ ra

)
xa + qa

(xa)2

4
qa ( fa)2 + ra fa

.

Here, we use fa ≥ 0 indicating that the flow decomposition into commodities
becomes irrelevant. The term

(
ra − λ ra

)
xa inside the supremum leads to the

condition λ ≥ 1, since otherwise we can set qa = 0 and let xa tend to infinity to
make the supremum unbounded. For λ ≥ 1 we can simplify the supremum.

ω(`a; K, λ) ≤ sup
fa,xa≥0

(
fa − λ xa

)
xa + (xa)2

4
( fa)2 = max

µ≥0

(
µ− λ µ2 +

µ2

4
)
,

where µ := xa
fa

if fa > 0 and µ = 0 otherwise. The unique optimal solution is

given by µ∗ = 2
4 λ−1 . Inserting this value into the objective leads to

ω(`a; K, λ) ≤ 1
4 λ− 1

. (4.25)

Applying Theorem 4.20 yields:

C( f ) ≤ min
λ≥1

λ

1− 1
4 λ−1

C(x) = min
λ≥1

λ
4 λ− 1
4 λ− 2

C(x) =
3
2

C(x),

where the optimal value is λ∗ = 1.

For purely linear latency functions, i.e. latencies in M1, we can further
improve the best known bound of 3

2 by varying λ below 1. The function 4 λ−1
4 λ−2

is plotted in Figure 4.3.

Corollary 4.22. Consider latency functions in M1. Then, the price of anarchy is at
most 1

8 (2 +
√

2) (1 +
√

2)
√

2 ≈ 1.46.

Proof. We can start with inequality (4.25). Analyzing the feasible set Λ(M1, K)
we get 1

4 λ−1 < 1, which is equivalent to λ > 1
2 . Applying Theorem 4.20 yields:

C( f ) ≤ min
λ> 1

2

λ
4 λ− 1
4 λ− 2

C(x) =
1
8

(2 +
√

2) (1 +
√

2)
√

2 C(x),

where we set λ = 1
2 + 1

4

√
2.

4.4.4 Lower Bounds

In the following, we present a lower bound on the price of anarchy for purely
linear latency functions. These bounds demonstrate that in contrast to the
nonatomic counterpart the price of anarchy may be larger than 1 for linear
latency functions. The following instance is taken from Cominetti, Correa, and
Stier-Moses [23].
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Figure 4.4: Graph construction for the proof of Proposition 4.23.

Proposition 4.23. In case of linear latency functions, the price of anarchy for the
atomic network routing game is bounded from below by 1 1

25 .

Proof. Consider the network given in Figure 4.4. Note that all latency functions
have `a(0) = 0. We assume that a nonatomic player (N) wants to route one
unit from node s1 to node t1. On the other hand, one atomic player (A) wants
to route one unit from s2 to node t2. For both players, there exist possible
paths: the direct path (s1, t1) and (s2, t2) or the path along the shared arc (s, t).
If x and y denote the amount of flow for player N, and player A, that is routed
along the direct arc (s1, t1), and (s2, t2), respectively. The response strategies
are given by the following two optimization problems. For player N we have:

min
0≤x≤1

1
2

x2 +
1
2

(1− x)2 + (1− x) (1− y). (4.26)

Note that is assumed that player A sends 1− y units flow along the middle arc.
Hence, `(s,t)(z + (1− y)) = z + (1− y). The optimal solution to problem (4.26)
is given by

x∗ = min
{

max
{

2− y
2

, 0
}

, 1
}

.

For player A we have:

min
0≤y≤1

a y2 + ((1− x) + (1− y))(1− y). (4.27)

The solution is given by

y∗ = min
{

max
{

3− x
2 a + 2

, 0
}

, 1
}

.

Plugging both solutions together and assuming 1
2 ≤ a yields:

y∗ =
4

4 a + 3
, and x∗ =

4 a + 1
4 a + 3

.

If we denote the entire flow by f , then the cost in equilibrium is given by
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C( f ) =
32 a2 + 32 a + 2

(4 a + 3)2 .

Now the optimal flow x∗ solves:

min
0≤x≤1
0≤y≤1

x2 +
(
(1− x) + (1− y)

)2 + a y2. (4.28)

Here, the optimal solutions are given by

y∗ =
2

2 a + 1
, and x∗ =

2 a
2 a + 1

.

C(x∗) =
4 a

2 a + 1
.

Setting a := 1
2 yields

C( f ) =
26
25

, and C(x∗) = 1,

proving the claim.

Optimizing over the paramers used in the above example, we are able to
raise the bound to 1.17. This bound has already been established by Cominetti,
Correa and Stier-Moses [23].

4.4.5 General Latency Functions

We start this section with bounding the value ω(`a; K, λ) for s-convex latency
functions. Some of the following results (Lemma 4.24, Lemma 4.25, and
Proposition 4.26) are based on results obtained by Cominetti, Correa and Stier-
Moses [23]. Even though the proofs are almost identical, we need to keep track
of restrictions on the parameter λ. For this reason, we also present complete
proofs.

Lemma 4.24. Assume that λ ≥ 0 and `a(·) is a continuous nondecreasing latency
function. Then, the following inequality is valid:

ω(`a; K, λ) ≤ sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

x2
a

4
`a( fa) fa

. (4.29)

Proof. We start with the definition of ω(`a; K, λ):

ω(`a; K, λ) = sup
xa, f a≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

(
∑

k∈[K]
( f k

a xk
a − f k

a f k
a )

)
`a( fa) fa

.
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First, we bound the last difference in the numerator:

f k
a xk

a − f k
a f k

a ≤
1
4

(xk
a)

2,

since
(

1
2

xk
a − f k

a )2 ≥ 0.

This yields:

ω(`a; K, λ) ≤ sup
xa, fa≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

(
∑

k∈[K]

(xk
a)2

4

)
`a( fa) fa

.

Finally, using ∑
k∈[K]

(xk
a)2 ≤ (xa)2 and `′a( fa) ≥ 0 proves the lemma.

We define ω(`a; ∞, λ) to be the limit of ω(`a; K, λ) for K tending to infinity
under the condition that xa and fa are kept constant (and hence ω(`a; K, λ)
stays finite). Then it follows that ω(`a; K, λ) ≤ ω(`a; ∞, λ). We focus in the
following on the general case K ∈ N∪ {∞}.

Lemma 4.25. If λ ≥ 1 and `a( fa) fa is a convex function, then the value ω(`a; ∞, λ)
is at most:

ω(`a; ∞, λ) ≤ sup
0≤xa≤ fa

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

(xa)2

4
`a( fa) fa

. (4.30)

Proof. Consider the function h(xa) defined as the numerator of the supremum
in (4.29). To prove that the solution satisfies xa ≤ fa, we show that h′(xa) ≤ 0
if xa ≥ fa. Using that h′(xa) = `a( fa)− λ `a(xa)− λ xa `′a(xa) + xa

2 `′a( fa), the
derivative is negative if and only if

`a( fa) +
xa

2
`′a( fa) ≤ λ

(
`a(xa) + xa `′a(xa)

)
.

By assumption `a( fa) fa is convex, hence,

`a( fa) + `′a( fa) fa ≤ `a(xa) + `′a(xa) xa

for xa ≥ fa. Since furthermore λ ≥ 1, the proof is complete.

The following characterization of ω(`a; K, λ) via a continuous and differ-
entiable function s : [0, 1] → [0, 1] is based on ideas of Cominetti, Correa, and
Stier-Moses [23].

Proposition 4.26. Let L be a class of continuous, nondecreasing, and convex latency
functions `a(·). Furthermore, assume that λ ≥ 1 and `a(κ fa) ≥ s(κ) `a( fa) for all
κ ∈ [0, 1], where s : [0, 1] → [0, 1] is a differentiable function with s(1) = 1. Then,

ω(`a; ∞, λ) ≤ max
0≤u≤1

u
(
1− λ s(u) + s′(1)

u
4
)
. (4.31)
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Proof. We start with the characterization of ω(`a; ∞, λ) given in Lemma 4.24:

ω(`a; ∞, λ) ≤ sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

(
x2

a
4

)
`a( fa) fa

.

For z ≥ z′, we can bound `′a(z):

`a(z′) = `a( z′
z z) ≥ s( z′

z ) `a(z) z. (4.32)

Furthermore,

`′a( f ) = lim
ε→0

`a( fa + ε)− `a( fa)
ε

≤ `a( fa) lim
ε→0

1− s
( fa

fa+ε

)
ε

= `a( fa)
s′( fa)

fa
.

Thus, we conclude

ω(`a; ∞, λ) ≤ sup
0≤xa≤ fa

xa `a( fa)
(
1− λ `a(xa)

`a( fa)
+ s′(1) xa

4 fa

)
`a( fa) fa

≤ sup
0≤xa≤ fa

xa
(
1− λ s( xa

fa
) + s′(1) xa

4 fa

)
fa

,

where we used (4.32) for the second inequality. Defining 0 ≤ u := xa
fa
≤ 1

yields
ω(`a; ∞, λ) ≤ max

0≤u≤1
u

(
1− λ s(u) + s′(1)

u
4
)
.

Corollary 4.27. If latency functions are in Ld, d ≥ 1, the price of anarchy is at most

inf
λ∈Λ(Ld,K)∩R≥1

[
λ

(
1− max

0≤u≤1
u

(
1− λ ud + d

u
4
))−1

]
. (4.33)

Proof. All assumptions of Proposition 4.26 are satisfied with s( f ) = f d. There-
fore, s′(1) = d and

ω(`a; ∞, λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u
4
)
. (4.34)

Applying Theorem 5.34 yields the claim.

In Table 4.3, we present results for squared, cubic, and degree four, and five
polynomials. Note that all results improve previously known bounds, except
for the affine linear case. The results itself have been obtained by optimizing
the expression in (4.33) over the parameter λ ∈ Λ(Ld, K) ∩R≥1.

Theorem 4.28. If latency functions are in Ld, d ≥ 1, then, the price of anarchy is at
most

(
1 + d

4

)d+1.
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Table 4.3: Upper and lower bounds on the price of anarchy for network games with
atomic players. Considered are polynomial latency functions. Coefficients
ai are assumed to be nonnegative. The bound 1.5 for affine latency func-
tions and the lower bounds for affine linear and linear latencies are due to
Cominetti, Correa and Stier-Moses [23]. The lower bounds for degree larger
than 1 are the matching lower bounds for nonatomic network games. The
value ω(L; ∞, λ) is defined in (4.22).

Set L of allowable Example UB LB
latency functions ω(L; ∞, λ) λ arbitrary # of players

linear functions a1x 0.41 0.85 1.46 1.17 [23]
affine functions a1x + a0

1
3 1 1.5 [23] 1.34 [23]

quadratic functions ∑2
i=0 aixi 0.58 1.08 2.55 1.63 [81]

cubic functions ∑3
i=0 aixi 2

3 1.69 5.06 1.90 [81]
polynomials d ≤ 4 ∑4

i=0 aixi 2
3 3.8 11.3 2.15 [81]

polynomials d ≤ 5 ∑5
i=0 aixi 2

3 9.69 29.07 2.39 [81]

Proof. We start the proof by bounding the value ω(`a; ∞, λ) from above. Recall
from Equation (4.34) that

ω(`a; ∞, λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u
4
)
.

Setting u = 1 in the last term yields

ω(`a; ∞, λ) ≤ max
0≤u≤1

u
(
1− λ ud +

d
4
)
.

This problem is a standard concave program on a compact interval. Hence,
it admits a solution. For d ≥ 1 the objective is strictly concave implying that
the solution is unique. The necessary and sufficient optimality condition for a
global optimum that satisfies u ∈ (0, 1) is given by

1 +
d
4
− (d + 1) λ ud = 0.

Hence, the optimal solution is given by

u∗ = min

{
max

{(
4 + d

4 λ (d + 1)

) 1
d

, 0

}
, 1

}
.

We assume 1 ≤ λ < ∞ which implies 0 < u∗ = 4+d
4 λ (d+1)

1
d < 1. Inserting this

solution into the objective leads to

ω(`a; ∞, λ) ≤
(

4 + d
4 λ (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
.
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We construct a function 1 ≤ λ(d) < ∞ such that for all d ≥ 1 the following
equation holds (

4 + d
4 λ(d) (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
=

d
d + 1

.

Solving the above equation with respect to λ(d) yields

λ∗(d) =
(4 + d)d+1

(d + 1) 4d+1 .

Thus, by construction we have

ω(`a; ∞, λ∗(d)) ≤ d
d + 1

.

Applying Theorem 5.34 with λ := λ∗(d) and ω(`a; ∞, λ∗(d)) ≤ d
d+1 leads to

C( f ) ≤ λ∗(d)
1− d

d+1

C(x) = (d + 1) λ∗(d) C(x) =
(
1 +

d
4
)d+1 C(x).

Note that a similar technique can be applied to strengthen the bounds on
the price of anarchy. The idea is to construct a function λ(d) such that

max
0≤u≤1

u
(
1− λ(d) ud + d

u
4
)

=
2
3

holds for all d ≥ 1. Then, the price of anarchy can be bounded by 3 λ(d). The
function λ(d) behaves asymptotically like O

(
exp(2

5 log(d))
)
.



Chapter 5

Online Network Games

The network games presented in the previous chapter are special cases of con-
gestion games introduced by Rosenthal [78]. In a congestion game, players
select strategies that are subsets of resources, and the utility of a player only
depends on the number of players choosing the same or some overlapping
strategy.

A direct application of network games is the source routing concept in
telecommunication networks, see Qiu, Yang, Zhang, and Shenker [76] and
Friedman [42] for an engineering perspective and Roughgarden [80] and Alt-
man, Basar, Jimenez, and Shimkin [5] for a theoretical perspective on this topic.
In the source routing model, sources are responsible for selecting paths to
route data to the corresponding sink. The links in the network advertise their
current status (price) that is based on the current congestion situation. If the
link prices correspond to the expected delay on that link, minimum cost rout-
ing is a natural goal for time critical real-time applications. If sources select
routes based on such selfish interests, the flows converge to a Nash equilib-
rium, as observed by Qiu, Yang, Zhang, and Shenker [76]. The main focus of
the research done so far regarding the source routing concept is to quantify the
efficiency loss of a Nash equilibrium compared to the system optimum. Here,
one assumption is crucial: if the traffic matrix changes, all sources may possi-
bly change their routes and converge to a new equilibrium, see Even-Dar and
Mansour [31] for a further discussion about the convergence behavior. This as-
sumption, however, has some important implications: Each source would have
to continuously maintain the current state of all available routes, which in turn
introduces additional traffic overhead by signaling these needed informations.
Furthermore, frequent rerouting attempts during data transmission may not
only produce transient load oscillations but may also interfere with the widely
used congestion control protocol tcp that determines the data rate, as reported
by La, Walrand, and Anantharam in [63]. For these reasons, frequent rerout-
ing attempts in reaction to traffic changes in the network are not necessarily
beneficial and efficient. Time critical applications, such as Internet Telephony
or video streaming may suffer severe performance degradation.

To overcome some of the above stated problems, we investigate in this
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chapter a new model in which sources starting at the same time select their
routes only during a predefined time frame. In this model, we assumes that
sources starting within the same time frame converge to an equilibrium before
new sources appear. Then, we investigate the extreme case in which flows
once they are at equilibrium fix their routing decisions. Thus, continuously
gathering information about the current network state is not necessary after
this initial routing game. We can interpret this model as follows. We introduce
a cost for each player quantifying the cost of rerouting after the time frame. If
this rerouting cost is sufficiently large for each player, then, fixing the initial
equilibrium routing is the best response strategy.

To analyze this model we introduce the concept of online network games. In
this concept, we assume a sequence of network games σ = 1, . . . , n that are re-
leased consecutively in time in an online fashion. By the time of releasing game
i, future games i + 1, . . . , n are not known. We assume that once commodities
of a game are routed, they remain fixed. We analyze two online algorithms,
called NSeqNash and ASeqNash in this setting. These algorithms produce a
flow consisting of a sequence of Nash equilibria for the corresponding games
with nonatomic and atomic players, respectively. As usual, we analyze the
efficiency of an online algorithm in terms of competitive analysis. The optimal
offline solution in our model is derived by minimizing the total routing cost for
all games. The total routing cost is defined as in Chapter 4 by summing over
all arc costs. The cost of an arc is defined as the product of latency and flow
on that arc. Note that for deriving the optimal offline solution, the sequence σ
is known a priori. It turns out that a combination of the online optimization
field with algorithmic game theory provides a fruitful way to analyze the ef-
ficiency of NSeqNash and ASeqNash in this framework. The main result in
this chapter states that the inefficiency of the sequence of Nash equilibria can
be bounded by a constant factor for polynomial latency functions with non-
negative coefficients regardless of the player types. Although the constants in
general are large, these results indicate that the above routing model does not
lead to situations that are arbitrary far from the best possible situation. We
are aware that some of our assumptions are quite restrictive. Nevertheless,
we believe that our model approximates the dynamics of a real system such
as the Internet. In this regard, we interpret our results as a first step towards
understanding the dynamic behavior of network flows beyond the single static
equilibrium concept.

The online model in this chapter is closely related to the model in Chap-
ter 3, see also Harks, Heinz, and Pfetsch [52], where online multicommodity
routing problems are considered. There, however, we studied a greedy online
algorithm for a different convex cost function. Recall that in the OnlineMCRP
the cost for a commodity is independent of the routing of later commodities
even if later commodities use the same arcs than the former commodity. In
online network games, this is not the case. Routing decisions of commodities
in later games may affect the cost of commodities of previous games if the cho-
sen routes have overlapping arcs. Furthermore, for a given sequence of games,
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the online algorithm that produces a flow at Nash equilibrium for every game
is not of greedy type. Consider for instance a sequence σ with a single game,
or equivalently, a single commodity in the OnlineMCRP setting. For the On-
lineMCRP it is easy to show that Seq is optimal. A flow at Nash equilibrium,
however, is known to be inefficient for most instances. Very recent, Engelberg
and Naor [30] drew connections between online optimization and algorithmic
game theory. In their framework, they present different examples in which a
player has to choose an online algorithm in order to minimize its individual
competitive ratio. Work on the convergence behavior of flows for the parallel
link setting can be found in Even-Dar and Mansour [31] and Fischer and Vöck-
ing [33] and Fischer, Räcke, and Vöcking [34]. Further work on convergence to
a Nash equilibrium for a setting in which flows sequentially join the network
can be found in Blum, Even-Dar, and Ligett [14]. None of these works, how-
ever, analyze the efficiency of flows arriving sequentially without adapting to
the common static Nash equilibrium.

5.1 Contributions and Chapter Outline

We introduce the framework Online Network Games (OnlineNG) to analyze
online routing problems. For the online algorithm NSeqNash that is char-
acterized by selfish routing of nonatomic players for a sequence of network
games, we obtain the following results. The online algorithm NSeqNash that
produces a flow that is at Nash equilibrium for every game is 4n

2+n -competitive
for affine linear latency functions, where n is the number of games within a
given sequence. This result contains the bound on the price of anarchy of 4

3
for affine linear latency functions of Roughgarden and Tardos [84] as a spe-
cial case of our model, where n = 1. We prove a lower bound of 3n−2

n of
nonatomic NSeqNash showing that for n = 2, the upper bound is tight. For
linear latency functions, we further improve this bound to 4n2

(1+n)2 . For poly-
nomial latency functions with nonnegative coefficients, we prove lower and
upper bounds on the competitive ratio of NSeqNash that grow both exponen-
tially in the degree of the considered polynomials. We further show that for
parallel arcs, the competitive ratio is significantly lower. In particular, we show
that in this case the competitive ratio of the NSeqNash does not exceed the
price of anarchy of a complementary nonatomic network game in which all
games of a given sequence are considered at the same time.

Furthermore, we consider the online algorithm ASeqNash that models the
selfish behavior of atomic players. Our main results for this variant are summa-
rized in the following. The online algorithm ASeqNash that produces a flow
that is at Nash equilibrium for every game within a given sequence of games
is min{ 2(3K+1)n

nK+3n+3K+1 , 5K+1
K+5 , 4.92}-competitive for affine linear latency functions,

where K denotes the total number of players and n is the number of games
within a given sequence. For general polynomial latency functions, we prove
lower and upper bounds on the competitive ratio of ASeqNash that grow both
exponentially in the degree of the considered polynomials.
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The chapter is organized as follows. In Section 5.2, we introduce the basic
model of online network games. Then, in Section 5.3, we study the efficiency
of NSeqNash for a sequence of network games with nonatomic players. We
extend the analysis in Section 5.4 to online network games with atomic players.

The results of this chapter are joined work with L. A. Végh and appear
in [51].

5.2 Online Network Games

An instance of the Online Network Game (OnlineNG) consists of a directed net-
work D = (V, A) together with nondecreasing continuous latency functions
`a : R+ → R+ for each arc a ∈ A. Furthermore, a sequence σ = 1, . . . , n
of network games are given. A network game i is characterized by a set of
commodities [Ki] := {i1, . . . , i ni}. For each commodity ij ∈ [Ki], a flow of rate
dij > 0 must be routed from the origin sij to the destination tij. The routing de-
cision for game i is online, that is, it only depends on the routings of previous
games 1, . . . , i− 1. Once the commodities of a game have been routed they re-

main unchanged. Let [K] =
n⋃

i=1
[Ki] denote the union of the sets [K1], . . . , [Kn].

The total number of commodities is given by K = ∑n
i=1 ni.

A routing assignment, or flow, for commodity ij ∈ [Ki] is a nonnegative
vector f ij ∈ RA

+. This flow is feasible, if for all v ∈ V

∑
a∈δ+(v)

f ij
a − ∑

a∈δ−(v)
f ij
a = γij(v), (5.1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; fur-
thermore,

γij(v) =


dij, if v = sij,
−dij, if v = tij,

0, otherwise.
(5.2)

Alternatively, one can consider a path flow for a commodity ij ∈ [Ki]. Let Pij
be the set of all paths from sij to tij in D. A path flow is a nonnegative vector

( f ij
P )P∈Pij . The corresponding flow on link a ∈ A for commodity ij ∈ [Ki] is

then
f ij
a := ∑

P3a
f ij
P .

We denote by
f i
a = ∑

ij∈[Ki]
f ij
a

the aggregated flow of game i on link a. The total aggregate flow on link a is
given by

fa =
n

∑
i=1

f i
a.
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We define Fi with i ∈ [n] to be the set of vectors ( f 1, . . . , f i) such that f j is a
feasible flow for games j = 1, . . . , i. If ( f 1, . . . , f i) ∈ Fi, we say that it is feasible
for the sequence of network games 1, . . . , i. The entire flow for the sequence
1, . . . , n of games is denoted by f = ( f 1, . . . , f n).

The current cost of a feasible flow for game i on link a ∈ A is defined by

Ci
a( f i

a; f 1
a, . . . , f i−1

a ) := `a
( i

∑
j=1

f j
a
)

f i
a.

This expression can be obtained as the routing cost on arc a for a feasible flow
for game i, given the flows ( f 1, . . . , f i−1) of previous games 1, . . . , i − 1 and
without knowing about future games j = i + 1, . . . , n. The individual current
cost for commodity ij ∈ [Ki] on arc a is given by

Cij
a ( f i

a; f 1
a, . . . , f i−1

a ) = `a
( i

∑
j=1

f j
a
)

f ij
a .

Note that this individual current cost on arc a may increase if later commodi-
ties are routed on a. The current cost for game i is given by the sum of arc
costs

Ci( f i; f 1, . . . , f i−1) = ∑
a∈A

Ci
a( f i

a; f 1
a, . . . , f i−1

a ).

The total cost on arc a is defined as

Ca( fa) = `a( fa) fa.

The total cost of all sequentially played games is given by:

C( f ) = ∑
a∈A

Ca( fa) = ∑
a∈A

`a( fa) fa = ∑
a∈A

`a

( n

∑
i=1

f i
a

)( n

∑
i=1

f i
a

)
. (5.3)

This cost function reflects the routing cost provided all commodities of the
entire sequence of games have been routed. Thus, the cost of routing com-
modities of a sequence of games is not separable with respect to the games.
That is, if an online algorithm routes flow for the games i + 1, . . . , n along arcs
that are used by commodities of games 1, . . . , i, the latter commodities may
face higher individual cost on these arcs compared to their current routing
costs.

5.2.1 Player Types

Motivated by the source routing model in communication networks, we focus
in this chapter on selfish behavior of players routing the demands dij, ij ∈ [K].
In the following, we use the word commodity ij interchangeably with player ij
to indicate that this player decides on the routing assignment f ij for the de-
mand dij. In the nonatomic routing variant, we assume infinitely many agents
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t1

[K1] f 1

t1 + τ1 t2 t2 + τ2

[K2] f 2

tn + τn

f n

time

Figure 5.1: Illustration of the applicability of the considered online model to the
source routing concept in the Internet. The times t1 and t2 are the re-
lease times of the sets of commodities [K1] and [K2] and the values τ1, τ2
are the times to converge to the corresponding Nash equilibrium.

carrying the flow of a player, where each agent controls only an infinitesimal
fraction of the flow. This is in contrast to the atomic routing variant, where it
is assumed that each player ij controls and coordinates the entire flow for his
demand dij. For a sequence of games, we investigate in this chapter the on-
line algorithm NSeqNash and ASeqNash (a formal definition follows), which
produce a sequence of feasible flows f 1, . . . , f n ∈ Fn, where each f i is at Nash
equilibrium for the corresponding network game i. We focus on the efficiency
of NSeqNash and ASeqNash compared to the offline optimum Opt using
competitive analysis coming from the online optimization field. Throughout
the chapter we assume that splitting of flow is allowed for every commodity.
Figure 5.1 describes the needed assumptions for modeling the outcome of dis-
tributed selfishly behaving users by such online algorithms. We assume that
users arrive in groups [Ki] and converge to a Nash equilibrium within time
τi before new groups arrive. If no player is willing to reroute its flow even if
the traffic on used arcs changes, this yields an online algorithm that we call
NSeqNash and ASeqNash for nonatomic and atomic players, respectively.

5.2.2 Nash Equilibria for Nonatomic Players

A flow for game i is at Nash equilibrium, if no player has an incentive to
unilaterally change his strategy. We assume that players of game i decide
on their strategies without taking future games j = i + 1, . . . , n into account.
It is straight-forward to check that a Nash flow f i for nonatomic players is
the optimum of the following convex optimization problem, see for example
Roughgarden and Tardos [84].

min ∑
a∈A

f i
a∫

0

`a(
i−1

∑
k=1

f k
a + z) dz (5.4)

s.t. ∑
a∈δ+(v)

f ij
a − ∑

a∈δ−(v)
f ij
a = γij(v) ∀ v ∈ V, ij ∈ [Ki]

f ij
a ≥ 0 ∀ a ∈ A, ij ∈ [Ki],

where γij(v) is defined as in (5.1). The following conditions are necessary and
sufficient to characterize a Nash equilibrium for game i.
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Lemma 5.1. A feasible flow f i for the nonatomic game i is at Nash equilibrium if and
only if it satisfies:

∑
a∈A

`a
( i

∑
k=1

f k
a
)
( f i

a − xi
a) ≤ 0 for all feasible flows xi for game i. (5.5)

The proof is based on the first order optimality conditions and the convex-
ity of the objective in (5.4), see Dafermos and Sparrow [27].

Definition 5.2 (NSeqNash for the OnlineNG)
Consider an instance of the OnlineNG with a given sequence σ of n network
games. The deterministic online algorithm NSeqNash produces a feasible
flow denoted by f = ( f 1, . . . , f n) ∈ Fn, such that each flow f k solves prob-
lem (5.4), that is, each f k is at Nash equilibrium for the corresponding games
k ∈ [n].

Note that problem (5.4) is well defined and admits an optimal solution
with a unique objective value. Hence, NSeqNash is also well defined by this
property. Since, problem (5.4) may have several different solutions (with the
same objective value), the flow that NSeqNash produces is not necessarily
unique. As this might contradict the notion of a deterministic online algorithm,
we can advise a selection rule to make the flow unique. We omit this issue in
the following, since our results hold for every sequence of Nash flows for the
games 1, . . . , n.

5.2.3 Nash Equilibria for Atomic Players

In network games with atomic players, some players may control a significant
part of the entire demand. In the following, we characterize the strategy of an
atomic player. A flow for game i is at Nash equilibrium when no player ij has
an incentive to unilaterally change his strategy. It is straightforward to see that
a best reply strategy for player ij of game i is to solve the following convex
optimization problem.

min ∑
a∈A

`a(
i

∑
j=1

f j
a) f ij

a

s.t. ∑
a∈δ+(v)

f ij
a − ∑

a∈δ−(v)
f ij
a = γij ∀ v ∈ V, ij ∈ [Ki] (5.6)

f ij
a ≥ 0 ∀ a ∈ A, ij ∈ [Ki],

where γij is defined as in (5.2). The following conditions are necessary and
sufficient to characterize a Nash equilibrium for game i.
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Lemma 5.3. A feasible flow f i for the game i is at Nash equilibrium if and only if for
every player ij ∈ [Ki] the following inequality is satisfied:

∑
a∈A

(
`a

( i

∑
k=1

f k
a
)
+ `′a

( i

∑
k=1

f k
a
)

f ij
a

)
( f ij

a − xij
a ) ≤ 0, (5.7)

for all feasible flows xij for game i.

The proof relies on the convexity of `a(z) z. See also the proof of Lemma 3.4
in Chapter 3.

Definition 5.4 (ASeqNash for the OnlineNG)
Consider an instance of the OnlineNG with a given sequence σ of n network
games. The deterministic online algorithm ASeqNash produces a feasible flow
denoted by f = ( f 1, . . . , f n) ∈ Fn, such that each flow f ij, ij ∈ [Ki], i ∈ [n]
solves problem (5.6), that is, each f i is at Nash equilibrium for the correspond-
ing games i ∈ [n].

Since we assume s-convex latency functions, problem (5.6) is well defined
and admits an optimal solution with a unique objective value. Then, the exis-
tence of a flow at Nash equilibrium is guaranteed by the result of Rosen [78].
Hence, the ASeqNash is also well defined by this property.

5.2.4 Total O�ine Optimum

Finally, the total offline optimum is characterized by:

min C( f )

s.t. ∑
a∈δ+(v)

f ij
a − ∑

a∈δ−(v)
f ij
a = γij(v) ∀ v ∈ V, ij ∈ [Ki], i ∈ [n] (5.8)

f ij
a ≥ 0 ∀ a ∈ A, ij ∈ [Ki], i ∈ [n],

where γij(v) is defined as in (5.1).
For a given sequence σ, we denote by Opt(σ) the optimal value of this

convex problem.

5.3 Competitive Analysis � The Nonatomic Case

For a solution f produced by an online algorithm Alg for a given sequence of
games σ, we denote by Alg(σ) = C( f ) its cost.

In order to derive competitive results for NSeqNash, we use a similar tech-
nique as in Chapter 3. We apply the variational inequality 5.5 several times.
For this reason, we define the following function.
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Definition 5.5
For a given sequence of games σ with n games and a flow f that is produced
by NSeqNash, we define

Vi( f 1, . . . , f i, xi) := ∑
a∈A

`a
( i

∑
k=1

f k
a
)
(xi

a − f i
a)

V( f , x, n) :=
n

∑
i=1

Vi( f 1, . . . , f i, xi),

where x1, . . . , xn is any feasible flow.

Lemma 5.6. A feasible flow f for a sequence of games σ that is produced by NSeq-
Nash satisfies:

V( f , x, n) ≥ 0, for all feasible flows x for σ.

Furthermore,
V( f , x, n) = ∑

a∈A
Va( f a, xa, n),

where Va( f a, xa, n) is defined as

Va( f a, xa, n) :=
n

∑
i=1

`a
( i

∑
k=1

f k
a
)
(xi

a − f i
a).

Proof. From Lemma 5.1 we know that Vi( f 1, . . . , f i, xi) is nonnegative for all
i = 1, . . . , n. Summing over i proves the first claim. The second claim follows
by changing the summation order.

We use a simple technique to derive upper bounds on the competitive ratio
for NSeqNash. The idea is to add the nonnegative function V( f , x, n) given
in Lemma 5.6 to the cost of the flow f produced by NSeqNash. We define
for every a ∈ A and nonnegative vectors f a, xa ∈ RK+ the following values (we
assume by convention 0/0 = 0):

ω(`a; n, λ) := sup
f a,xa≥0

Ca( fa)− λ Ca(xa) + Va( f a, xa, n)
Ca( fa)

. (5.9)

For a given class L of latency functions and a nonnegative real number
λ ≥ 0, we further define

ω(L; n, λ) := sup
`a∈L

ω(`a; n, λ).

We define the following feasible set for the parameter λ.

Definition 5.7 (Feasible Scaling Set)
The feasible scaling set for λ is defined as

Λ(L, n) :=
{

λ ∈ R+|
(
1−ω(L; n, λ)

)
> 0

}
.
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Theorem 5.8. Consider a sequence σ of n games and latency functions in L. Then,
the competitive ratio of NSeqNash for the OnlineNGis at most

inf
λ∈Λ(L,n)

[
λ (1−ω(L; n, λ)−1)

]
.

Proof. Let f be the flow generated by NSeqNash and let x be any feasible flow
for a given sequence of games σ = 1, . . . , n. Then, we obtain:

C( f ) ≤ C( f ) + λ C(x)− λ C(x) + V( f , x, n) (5.10)

= ∑
a∈A

[
Ca( fa) + λ Ca(xa)− λ Ca(xa) + Va( f a, xa, n)

]
≤ λ C(x) + ω(L; n, λ) C( f ). (5.11)

Here, (5.10) follows from the variational inequality stated in Lemma 5.6.
The last inequality (5.11) follows from the definition of ω(L; n, λ) and since
λ ∈ Λ(L, n). Taking x as the optimal offline solution yields the claim.

Using the notation:

ϑn
a (`a, f a) := `a( fa) fa −

n

∑
i=1

`a

( i

∑
k=1

f k
a

)
f i
a.

we can simplify the value ω(L; n, λ).

Lemma 5.9. The value ω(`a; n, λ) is at most

sup
xa, f a≥0

(
`a( fa)− λ `a(xa)

)
xa + ϑn

a (`a, f a)
`a( fa) fa

. (5.12)

Proof. First note that

Ca( fa) + Va( f a, xa, n) = ϑn
a (`a, f a) +

n

∑
i=1

`a
( i

∑
k=1

f k
a
)
xi

a

≤ ϑn
a (`a, f a) + `a( fa) xa,

where the last inequality is valid since latency functions are nondecreasing.
Then, using

`a( fa) xa − λ Ca(xa) =
(
`a( fa)− λ `a(xa)

)
xa,

yields the claim.

Figure 5.2 illustrates the value ϑn
a (`a, f a) for n = 3.
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0
0

`a(·)

`a( f 1
a )

`a( f 1
a + f 2

a )

`a( f 1
a + f 2

a + f 3
a )

f 1
a f 1

a + f 2
a + f 3

af 1
a + f 2

a

Figure 5.2: Illustration of the value ϑn
a (`a, f ) for n = 3. The shaded area corresponds

to the value ϑn
a (`a, f ).

5.3.1 A�ne Linear Latency Functions

In the following, we bound the value ω(L; n, λ) for the class Ld of polynomials
with nonnegative coefficients and degree at most d ∈ N:

Ld := {ad xd + · · ·+ a1 x + a0 : as ≥ 0, s = 0, . . . , d}.

We start with the class L1 but first present some useful prerequisites.

Lemma 5.10. For parameters κ1, κ2 > 0 and any numbers x, y ≥ 0 the following
inequality is valid:

xy ≤ κ1

2 κ2
x2 +

κ2

2 κ1
y2. (5.13)

Proof. We use the inequality

0 ≤
(
κ1 x− κ2 y

)2 = κ2
1 x2 − 2 κ1 κ2 x y + κ2

2 y2.

Dividing by 2 κ1 κ2 yields the claim.

Lemma 5.11. For latency functions in L1 the value ω(L1; n, 1) is at most 3n−2
4n .

Proof. First, by using equation (3.10), we have that

ϑn
a (`a, f a) = qa

1
2 f 2

a − qa
1
2

n

∑
k=1

( f k
a )2.

Then, we obtain

ω(`a; n, 1) = sup
xa, f a≥0

qa ( fa − xa) xa + qa
1
2 f 2

a − qa
1
2

n
∑

k=1
( f k

a )2

qa f 2
a + ra fa

≤ sup
xa, f a≥0

( fa − xa) xa + 1
2 f 2

a − 1
2

n
∑

k=1
( f k

a )2

f 2
a

(5.14)

≤ sup
xa, fa≥0

( fa − xa) xa + n−1
2n f 2

a

f 2
a

(5.15)

≤ 3n−2
4n , (5.16)
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where (5.14) is valid since ra ≥ 0. Inequality (5.15) follows from Cauchy-
Schwarz inequality and (5.16) follows from Lemma 5.10, where we set x =
fa, y = xa, κ1 = 1, and κ2 = 2.

Equipped with the above lemma, we can prove an upper bound on the
competitive ratio of NSeqNash for affine linear latency functions.

Corollary 5.12. If the latency functions of the OnlineNG are in L1, the online
algorithm NSeqNash is 4n

n+2 -competitive, where n is the number of games.

Proof. We bound ω(L1; n, 1) by 3n−2
4n using Lemma 5.11. Therefore, choosing

λ = 1 ∈ Λ(L1, n) and applying Theorem 5.8 yields the desired result.

For n = 1, we obtain the bound of 4
3 for nonatomic network games involv-

ing affine linear latency functions presented in Theorem 4.11.
Now, we analyze the case of purely linear latency functions, i.e. the class

M1.

Lemma 5.13. For latency functions in M1, we have

ω(M1; n, λ) ≤ n + 2 λ n− 2 λ

4 λ n
.

Proof. The proof proceeds along the line of the proof of the preceeding lemma.

ω(`a; n, λ) ≤ sup
xa, f a≥0

( fa − λ xa) xa + 1
2 f 2

a − 1
2

n
∑

k=1
( f k

a )2

f 2
a

≤ sup
xa, fa≥0

( fa − λ xa) xa + n−1
2n f 2

a

f 2
a

≤ 1
4 λ

+
n− 1

2n
.

The last inequality follows from Lemma 5.10, where we set x = xa, y = fa, κ1 =
λ, and κ2 = 1

2 . Rewriting yields the result.

Corollary 5.14. For latency functions in M1, the online algorithm NSeqNash is
4n2

(n+1)2 -competitive, where n is the number of games.

Proof. We bound ω(M1; n, λ) from above by n+2 λ n−2 λ
4 λ n . In order to find an

optimal λ in Theorem 5.8, we need to ensure that λ ∈ Λ(M1, n). Hence, we
need

n + 2 λ n− 2 λ

4 λ n
< 1.

This condition leads to λ > n
2 (n+1) . Setting λ := n

n+1 and applying Theorem 5.8
yields

C( f ) ≤ 4 λ2 n
2 λ n− n + 2 λ

C(x) =
4 n2

(n + 1)2 C(x).
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1
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4

5

Figure 5.3: Graph construction for the proofs of Proposition 5.16
.

Remark 5.15. The value λ = n
n+1 solves the following minimization problem

with respect to λ:

min
λ≥ n

2 (n+1)

4 λ2 n
2 λ n− n + 2 λ

.

Interestingly, we get the same upper bound as for the online algorithm Seq

within the framework OnlineMCRP for affine linear price functions.

5.3.2 Lower Bounds

We start with a result that holds for any deterministic online algorithm.

Proposition 5.16. In case of latency functions in M1 no deterministic online algo-
rithm for OnlineNG is c-competitive for any c < 4

3 .

Proof. Consider the network displayed in Figure 5.3. Each arc a leaving from
node 1 has the same latency function `a(z) = 3 z. All the other (those leading
into node 5) have the latency function `a(z) = 0. Let Alg be an arbitrary deter-
ministic online algorithm. We first present Alg commodity 1 with demand 1
that has to be routed from s1 = 1 to t1 = 5. First, assume the algorithm be-
haves like the NSeqNash. This means that the demand gets evenly divided
into three pieces: one third is routed over path P1 = (1, 2, 5), another over path
P2 = (1, 3, 5), and the later over path P3 = (1, 4, 5). In this case, we reveal com-
modity 2 with demand 1 between 1 and 2. For this commodity there exists a
unique path. Therefore, Alg yields for this sequence σ the cost:

Alg(σ) = NSeqNash(σ) = 2 · 3 · 1
3 ·

1
3 + 3 ·

(1
3 + 1

)2 = 6.

An optimal offline solution is to route half of commodity 1 over path P2 and
the other half over path P3 and commodity 2 along its unique path. Therefore,

Opt(σ) = 2 · 3 · 1
2 ·

1
2 + 3 · 1 · 1 = 9

2 .

This leads to

Alg(σ)
Opt(σ)

=
4
3

.
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Figure 5.4: Graph construction for the proof of Theorem 5.17.

If Alg does not behave like NSeqNash for the first commodity, Alg has to
route more than one third of the demand over path P1, path P2, or path P3. If
it is path P1, then we present commodity 2 as above. If its path P2, then we
reveal a commodity 2 with demand 1 between 1 and 3. Otherwise, we present
a commodity 2 with demand 1 between 1 and 4. Let α be the demand greater
than one third. In all three cases the cost of Alg for the sequence σ is

Alg(σ) ≥ 2 · 3 ·
( (1−α)

2

)2 + 3 ·
(
α + 1

)2
> 6.

since α > 1
3 . The optimal cost stays the same as above. Hence,

Alg(σ)
Opt(σ)

>
4
3

.

For NSeqNash we can further lift the lower bound.

Theorem 5.17. In case of latency functions in L1, the online algorithm NSeqNash

for the OnlineNG has a competitive ratio greater than or equal to 3n−2
n , where n is

the number of games.

Proof. We consider the network presented in Figure 5.4 with the latency func-
tions: `(si,s)(z) = 0, `(t,ti)(z) = 0, `(si,ti)(z) = i, i = 1, . . . , k, and `(s,t)(z) = z.
We consecutively release a sequence of games (1, . . . , k), where in each game
j, there is a single player type j1. The demand of player type j1 is 1 that has
to be routed from si to ti, for i = 1, . . . , k. Due to the choice of the affine terms
i, NSeqNash routes for every game the corresponding demand over the arc
from s to t. Then we release the (k + 1)-th game with demand d from s to t.
Thus, the total cost for the sequence σ = (1, . . . , k + 1) for NSeqNash with the
new cost function is given by:

NSeqNash(σ) = (k + d)2.
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Figure 5.5: Upper bound 4 n
(n+2) versus lower bound 3n−2

n on the competitive ratio of
NSeqNash for affine linear latency functions.

The optimal offline algorithm Opt routes the demands of the first k games
along the direct arcs from si to ti incurring cost of:

k

∑
i=1

i =
k(k + 1)

2
.

The last demand in game k + 1 is routed from s to t with cost d2. The total cost
for the sequence σ = (1, . . . , k + 1) for Opt is given by:

Opt(σ) =
k(k + 1)

2
+ d2.

Replacing k = n− 1 and setting d = n
2 yields

NSeqNash(σ)
Opt(σ)

=
2(k + d)2

k(k + 1) + 2d2 =
3n− 2

n
, (5.17)

which proves the theorem.

Remark 5.18. For n = 2, the upper bound given in Corollary 5.12 is tight.

In the following, we present a lower bound for latency functions in M1.

Corollary 5.19. For latency functions in M1, the online algorithm NSeqNash for
OnlineNG has a competitive ratio greater than or equal to 33+5

√
33

33+
√

33
.

Proof. We consider the network presented in Figure 5.4 with modified latency
functions: `(si,s)(z) = 0, `(t,ti)(z) = 0, `(si,ti)(z) = i z, i = 1, . . . , k, and `(s,t)(z) =
z. We consecutively release a sequence of games (1, . . . , k), where in each game
j, there is a single player type j1. The demand of player type j1 is 2 that has
to be routed from si to ti, for i = 1, . . . , k. Due to the choice of the linear
terms i z, NSeqNash routes for every game the one unit of the demand over
the arc from s to t and the other unit along the direct arc from si to ti. To see
this, consider the j-th game. Let the flow of player j1 along the middle arc be
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denoted by x. Then, using the characterization of a Nash flow given in (5.4),
the nonatomic player j1 sends flow x∗ along the middle arc according to the
solution of the following problem

min
0≤x≤2

1
2

j x2 + (j− 1) x +
1
2

j (2− x)2.

The solution to this concave program is given by x∗ = 1, independently of j.
Then, we release the (k + 1)-th game with demand d from s to t. Thus, the

total cost for the sequence σ = (1, . . . , k + 1) for NSeqNash is given by:

NSeqNash(σ) =
k

∑
i=1

i + (k + d)2 =
k (k + 1)

2
+ (k + d)2.

The optimal offline algorithm Opt routes the demands of the first k games
along the direct arcs from si to ti incurring cost of:

k

∑
i=1

(i · 2) · 2 = 2 k (k + 1).

The last demand in game k + 1 is routed from s to t with cost d2. The total cost
for the sequence σ = (1, . . . , k + 1) for Opt is given by:

Opt(σ) = 2 k (k + 1) + d2.

Replacing k = n− 1 and setting d = 1
4 n + 1

2 + 1
4

√
33 n2 − 28 n + 4 yields

NSeqNash(σ)
Opt(σ)

≥ lim
n→∞

Z(n) =
33 + 5

√
33

33 +
√

33
≈ 1.59,

where we define

Z(n) :=
33 n2 − 28 n + 5 n

√
33 n2 − 28 n + 4 + 4− 2

√
33 n2 − 28 n + 4

33 n2 − 28 n + n
√

33 n2 − 28 n + 4 + 4 + 2
√

33 n2 − 28 n + 4
.

This proves the claim.

Remark 5.20. The parameter d in the previous proof is the optimal solution to
the following maximization problem with optimal value Z(k + 1):

max
d≥1

k (k + 1) + 2 (k + d)2

4 k (k + 1) + 2 d2 = Z(k + 1).

The table below summarizes the main results for (affine) linear latency
functions.
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Table 5.1: Competitive Ratio for the online algorithm NSeqNash for affine linear la-
tency functions `(x) = a1 x + a0, a0 ≥ 0, a1 ≥ 0. The first row shows known
results for nonatomic network games. The 4

3 result is due to Roughgarden
and Tardos [84]. UB and LB abbreviates upper bound and lower bound,
respectively.

# games `a(0) = 0 `a(0) arbitrary, λ = 1
λ UB LB UB LB

1 1 1 1 4
3

4
3

2 2
3 1 7

9
5+2

√
5

5+
√

5
2 2

3 3
4 2 1

4
217+13

√
217

217+5
√

217
2 2

5 2 1
3

. . . .

. . .
n n

n+1
4 n2

(n+1)2 Z(n) 4 n
n+2

3n
n−2

∞ 1 4 33+5
√

33
33+

√
33

4 3

5.3.3 Polynomial Latency Functions

In this section, we investigate the case, where we allow for polynomial latency
functions in Ld.

We start with a useful observation.

Lemma 5.21. For latency functions in Ld, we can bound sup
f a≥0

ϑn
a (`a, f a) as follows:

sup
f a≥0

ϑn
a (`a, f a) ≤ sup

f a≥0
ϑn

a (`a, f a) ≤
d

d + 1
`a( fa) fa,

where ϑn
a (`a, f a) := lim

n→∞
ϑn

a (`a, f a).

Proof. Recall the definition of ϑn
a (`a, f a):

ϑn
a (`a, f a) := `a( fa) fa −

n

∑
i=1

`a(
i

∑
k=1

f k
a ) f i

a.

Since polynomials with nonnegative coefficients are nondecreasing functions,
the following inequalities hold

inf
f a≥0

[ n

∑
i=1

`a(
i

∑
k=1

f k
a ) f i

a
]
≥ inf

f a≥0

[ ∞

∑
i=1

`a(
i

∑
k=1

f k
a ) f i

a
]
≥

fa∫
0

l(z) dz.
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Hence, we have

sup
f a≥0

ϑn
a (`a, f a) ≤ sup

f a≥0
ϑn

a (`a, f a) ≤ `a( fa) fa −
fa∫

0

l(z) dz. (5.18)

Let `a(z) =
d
∑

i=0
ai zi be a polynomial of degree d ≥ 1. Then, it follows that

`a( fa) fa −
fa∫

0

l(z) dz =
d

∑
i=0

ai ( fa)i+1 −
d

∑
i=0

( 1
i + 1

)
ai ( fa)i+1

=
d

∑
i=0

( i
i + 1

)
ai ( fa)i+1

≤ d
d + 1

d

∑
i=0

ai ( fa)i+1

=
d

d + 1
`a( fa) fa.

Using inequality (5.18), the claim is proven.

Lemma 5.22. If the latency functions of the OnlineNG are in Ld, d ≥ 1 and λ ≥ 1,
then, the value ω(`a, n; λ) is at most

max
0≤µ

[
µ− λ µd+1] +

d
d + 1

.

Proof. By Lemma 5.12, we have

ω(`a, n; λ) ≤ sup
f a,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + ϑn

a (`a, f a)
`a( fa) fa

.

Then, using Lemma 5.21 we have that

ω(`a, n; λ) ≤ sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + d

d+1 `a( fa) fa

`a( fa) fa

= sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa

`a( fa) fa
+

d
d + 1

.

Defining µ := xa
fa

for fa > 0 and zero otherwise, we have to solve

max
0≤µ

(
`a( fa)− λ `a(µ fa)

)
µ fa

`a( fa) fa

to bound ω(`a, n; λ) from above. The rest of the proof follows from the proof
of Lemma 3.22 in Chapter 3.
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Proposition 5.23. For latency functions in Ld and λ := (d + 1)(d−1) ≥ 1, the value
ω(L; n, λ) is at most d2+2 d

(d+1)2 .

Proof. We start with Lemma 5.22.

ω(Ld; n, λ) ≤ max
0≤µ≤1

µ− λ µd+1 +
d

d + 1
= max

0≤µ≤1
µ− (d + 1)(d−1) µd+1 +

d
d + 1

.

The unique solution is given by µ∗ = 1
d+1 . Evaluating the objective proves

the claim:

ω(`a, n; λ) ≤ 1
d + 1

− (d + 1)(d−1) (
1

d + 1
)d+1 +

d
d + 1

=
d2 + 2 d
(d + 1)2 .

With this lemma we can prove a constant factor bound on the competitive
ratio that depends on the degree d of the considered polynomials.

Theorem 5.24. Consider the OnlineNG with latency functions in Ld. Then, the
competitive ratio of the online algorithm NSeqNash is at most (d + 1)d+1.

Proof. Let the flow f be produced by the online algorithm NSeqNash and let
x be an arbitrary feasible flow for the OnlineNG. We define λ := (d + 1)(d−1)

and apply Proposition 5.23, which yields ω(Ld; n, λ) ≤ d2+2 d
(d+1)2 . In order to

apply Theorem 5.8, we have to verify that λ ∈ Λ(Ld, n). What remains to be
shown is that

1− d2 + 2 d
(d + 1)2 > 0

holds. This inequality is equivalent to

1
d + 1

> 0,

which is trivially true. Then, applying Theorem 5.8 yields

C( f ) ≤ (d + 1)d−1(
1− d2+2 d

(d+1)2

) C(x) = (d + 1)d+1 C(x).

Taking x as the optimal offline solution proves the claim.

By optimizing over λ ∈ Λ(Ld, n), we get the following bounds for polyno-
mial latency functions as shown in Table 5.2.
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Table 5.2: Competitive ratio of NSeqNash for different polynomial latency functions.
Coefficients ai are assumed to be nonnegative.

Set L of latency
functions Example ω(L; ∞, λ) λ UB LB

linear functions a1x + a0
3
4 1 4 3

quadratic ∑2
i=0 aixi 0.93 2.18 19.6 7.5

cubic ∑3
i=0 aixi 15

16 64 256 17.32
. . . . . .

degree d
d
∑

i=0
ai xi d2+2 d

(d+1)2 (d + 1)(d−1) (d + 1)d+1 d+1
d+2 2d+1

5.3.4 Lower Bounds for Polynomial Latency Functions

Consider the network presented in Figure 5.4 with the following latency func-
tions: `(si,s)(z) = 0, `(t,ti)(z) = 0, `(si,ti)(z) = id, i = 1, . . . , k, and `(s,t)(z) =
zd, d ∈ N. We consecutively release games with a single player type i1, where
a demand of size 1 has to be routed from si to ti, for i = 1, . . . , k. Due to
the choice of the affine terms id, NSeqNash routes every demand over the arc
from s to t. Then we release the (k + 1)-th game with demand x from s to t.
The total cost for the flow generated by NSeqNash is given by:

NSeqNash(σ) =
(
k + x

)d+1.

The optimal offline algorithm Opt routes the demands of the first k games
along the direct arcs from si to ti. The last demand is routed from s to t. The
total cost for Opt is then given by:

Opt(σ) =
k

∑
i=1

id + xd+1.

From Lemma 3.25, we know that the d-th power of the sum of numbers from
1 to k is a polynomial in k given by:

k

∑
i=1

id =
1

d + 1

d+1

∑
j=0

(
d + 1

j

)
Bj kd+1−j,

where Bj are the Bernoulli numbers.

Theorem 5.25. In case of latency functions in Ld, the online algorithm NSeqNash

for OnlineNG has a competitive ratio greater than or equal to d+1
d+2 2d+1.

Proof. We have to show that the competitive ratio fulfills:

NSeqNashd(σ)
Optd(σ)

≥ d + 1
d + 2

2d+1.
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We follow the construction of the above discussion,

NSeqNashd(σ)
Optd(σ)

≥ lim
k→∞

(
k + x

)d+1

k
∑

i=1
id + xd+1

·

We set x = k which yields:

NSeqNashd(σ)
Optd(σ)

≥ lim
k→∞

(
2k

)d+1

k
∑

i=1
id + kd+1

= lim
k→∞

(
2k

)d+1

1
d+1 kd+1 + kd+1 +

d+1
∑

j=1
(d+1

j ) Bj kd+1−j
=

d + 1
d + 2

2d+1,

where the equality follows from Lemma 3.25 and the fact that B0 = 1.

Note that the derived lower bounds are larger than the lower bounds ob-
tained for the greedy online algorithm Seq for the OnlineMCRP in Chapter 3.

5.3.5 Parallel Networks

For graphs that consist of two nodes and parallel arcs, we can show that NSe-
qNash performs not worse than a Nash flow for the entire game sequence
that is played in parallel. In other words, for a given sequence of games, we
compare the cost of NSeqNash to the cost of a Nash flow of a complemen-
tary game, where all players of the entire game sequence route their demands
simultaneously.

Definition 5.26
For a given instance of the OnlineNG involving a sequence of games σ, we
define the complementary game σ̄ as a single game that contains all players of
the sequence σ simultaneously.

Recall from the Wardrop condition (4.2) that a flow f is at Nash equilibrium
if and only if the following condition is satisfied:

Lemma 5.27. A feasible flow f for the game σ̄ is a Nash equilibrium if and only if:

`a( fa) ≤ `â( fa), for all arcs a, â ∈ A such that fa > 0. (5.19)

Note that for nonatomic network games, Nash equilibria and Wardrop
equilibria are the same. A similar condition holds for the flow that is pro-
duced by NSeqNash.
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s t

`(x)

`(d)

Figure 5.6: Graph construction for a matching lower bound for Theorem 5.29.

Lemma 5.28. A feasible flow f for the sequence of games σ is produced by NSeq-
Nash if and only if for all k ∈ [n]:

`a(
k

∑
i=1

f i
a) ≤ `â(

k

∑
i=1

f i
a), for all edges a, â ∈ A, such that f k

a > 0. (5.20)

Theorem 5.29. Let D = (V, A) with V = {s, t} and A a set of edges from s to t. We
are given a sequence of games σ = 1, . . . , n. Let f be a flow produced by NSeqNash

for the OnlineNG with a single nonatomic player routing di from s to t in every
game i ∈ [n]. Let f ∗ be a flow at Nash equilibrium for the corresponding game σ̄ with
a single player routing ∑n

i=1 di from s to t. Then, C( f ) = C( f ∗).

Proof. We prove that the flow f satisfies all conditions of Lemma 5.27 for the
game σ̄. By the uniqueness of the cost of a Nash equilibrium the claim is
proven.

The latency of the flow f on edge a is equal `a( fa). By contradiction assume
that there exist edges a, â ∈ A with

`a( fa) > `â( f â), with fa > 0.

Let k ∈ [n] be the largest index with f k
a > 0. The existence of such an index k is

granted since fa =
n
∑

i=1
f i
a > 0 is assumed. As in games k + 1, . . . , n, the edge a is

not used any more, we have that `a( fa) = `a
(

∑k
i=1 f i

a
)
. Using the assumption

that latency functions are nondecreasing it follows that `â( f â) ≥ `â
(

∑k
i=1 f i

â
)
.

By Lemma 5.28 for game k, we have `â
(

∑k
i=1 f i

â
)
≥ `a

(
∑k

i=1 f i
a
)
, thus

`â( fa) ≥ `â
( k

∑
i=1

f i
â
)
≥ `a

( k

∑
i=1

f i
a
)

= `a( fa),

a contradiction.

A trivial example showing that the above upper bound is tight is to con-
sider a sequence σ that only contains a single game. In this case, it is well
known that for classes L, which contain constant terms, the anarchy value
α(L) is tight. Matching lower bounds can be derived via Pigou instances, as
shown in Figure 5.6. Based on an example given in Correa, Schulz, and Stier-
Moses [24], we now show that the upper bound on the competitive ratio of
NSeqNash in Theorem 5.29 is tight for an arbitrary number of games.
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Figure 5.7: Braess Graph.

Consider the Pigou instance in Figure 5.6, see Pigou [75]. Assume that the
sequence σ contains n games, where in each game we are given a demand
di, i = 1, . . . , n. We denote by d = ∑n

i=1 di the aggregated demand. We are
given a variable latency functions `(x) and a constant latency function `(d).
The online algorithm NSeqNash routes all demands along the cheaper upper
arc. Hence, after routing the last demand dn, the latency of the resulting flow
f is equal on both arcs. Thus, the cost of the flow is given by C( f ) = d `(d).
The system optimum can be evaluated as follows:

C(x∗) = min
0≤x≤d

{x `(x) + `(d)(d− x)} = d `(d)− max
0≤x≤d

{x (`(d)− `(x)) x}.

Evaluating the ratio between the cost of a flow at Nash equilibrium and the
optimal cost yields

C( f )
C(x∗)

=
(

1− max0≤x≤d{x (`(d)− `(x)) x}
d `(d)

)−1

= (1−ω(L, 1))−1 = (1− β(L))−1 = α(L).

Since Theorem 5.29 ensures that the cost of the flow f is upper bounded by the
price of anarchy α(L) for the corresponding game σ̄, these upper bounds are
tight by definition. The intuition of the above proof fails, however, for general
networks with a single source and a single destination. To see this, we present
an instance, where the cost of a flow f produced by NSeqNash is larger than
that of the corresponding Nash flow f ∗ for the game σ̄.

Example 5.30. Consider the graph of Braess’s paradox in Figure 5.7 and two
games that are released consecutively. Each game has a single nonatomic
player routing one unit d1 = 1, d2 = 1 from s to t. The path system P1 for the
first player contains P1 = (s, a, t), P2 = (s, a, b, t), P3 = (s, b, t). A flow that is
at Nash equilibrium for the first game routes 1 unit of flow on P2, having path
latency `1( f 1) = 2. In the second game, we route 1

2 unit on P1 and 1
2 on P3,

both having path latency `2( f ) = 2.5. Now `2
P2

( f ) = 3. Thus, the total cost
is C( f ) = 1× 2.5 + 1× 3 = 5.5. However, for the game σ̄ we route 2 units of
flow from s to t. Then, a flow f ∗ at Nash equilibrium routes one unit along
paths P1 and P3. The path latencies are `P1( f ) = `P2( f ) = 2, thus the total cost
is C( f ∗) = 2× 2 = 4.
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This example shows that we can derive a lower bound on the competitive
ratio of NSeqNash in this setting evaluating to 5.5/4 > 1. We do not know if
it is possible to improve the upper bound of NSeqNash for the s-t setting.

5.4 Competitive Analysis � The Atomic Case

In this section, we study the online algorithm ASeqNash, which is the atomic
counterpart of NSeqNash. The only difference is, that commodities of game i
are controlled and coordinated by the corresponding players. Our used tech-
niques follow along similar lines of the previous sections. Before we state the
main result, we need some useful prerequisites.

Definition 5.31
For a given sequence of games σ and a flow f that is produced by ASeqNash,
we define

Vij( f 1, . . . , f i, xi) := ∑
a∈A

(
`a

( i

∑
k=1

f k
a
)
+ `′a

( i

∑
k=1

f k
a
)

f ij
a

)
(xij

a − f ij
a ),

Vi( f 1, . . . , f i, xi,Ki) := ∑
ij∈[Ki]

Vij( f 1, . . . , f i, xi),

V( f , x,K, n) :=
n

∑
i=1

Vi( f 1, . . . , f i, xi,Ki), (5.21)

where x1, . . . , xn ∈ Fn is any feasible flow.

Lemma 5.32. A feasible flow f for a sequence of games σ that is produced by ASeq-
Nash satisfies:

V( f , x,K, n) ≥ 0, for all feasible flows x for σ. (5.22)

Furthermore,
V( f , x,K, n) = ∑

a∈A
Va( f a, xa,K, n),

where Va( f a, xa,K, n) is defined as

Va( f a, xa,K, n) :=
n

∑
i=1

∑
ij∈[Ki]

(
`a

( i

∑
k=1

f k
a
)
+ `′a

( i

∑
k=1

f k
a
)

f ij
a

)
(xij

a − f ij
a ).

Proof. From Lemma 5.3 we know that Vij( f 1, . . . , f i, xi) is nonnegative for all
ij ∈ [Ki] and i = 1, . . . , n.. Summing over ij ∈ [Ki] and i = 1, . . . , n proves the
first claim. The second claim follows by changing the summation order.

We define for every a ∈ A, for any nonnegative vectors f a, xa ∈ RK+ the
following values (we assume by convention 0/0 = 0):

ω(`a, n,K; λ) := sup
f a,xa≥0

Ca( fa)− λ Ca(xa) + Va( f a, xa)
Ca( fa)

, (5.23)
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where the notation f a, xa ≥ 0 is defined in (4.20).
For a given class L of latency functions and a nonnegative real number

λ ≥ 0, we further define

ω(L; n,K, λ) := sup
`a∈L

ω(`a, n,K; λ).

We define the following feasible set for the parameter λ.

Definition 5.33 (Feasible Scaling Set)
The feasible scaling set for λ is defined as

Λ(L, n,K) :=
{

λ ∈ R+|
(
1−ω(L; n,K, λ)

)
> 0

}
.

Theorem 5.34. Consider an instance of the OnlineNG involving a sequence of n
games with K players and latency functions in L. Then, the competitive ratio of
ASeqNash is at most

inf
λ∈Λ(L,n,K)

[
λ

(
1−ω(L; n,K, λ)

)−1
]

.

Proof. Let f be the flow generated by ASeqNash, and x be any feasible flow
for a given sequence of games σ = (1, . . . , n).

C( f ) ≤ ∑
a∈A

[
Ca( fa) + Va( f a, xa,K, n)

]
(5.24)

= ∑
a∈A

[
Ca( fa) + λ Ca(xa)− λ Ca(xa) + Va( f a, xa,K, n)

]
≤ λ C(x) + ω(L; n,K, λ) C( f ). (5.25)

Here, (5.24) follows from the variational inequality stated in Lemma 5.32. The
last inequality (5.25) follows from the definition of ω(L; n,K, λ).

With this result, we can investigate the above infimum expression for dif-
ferent classes of latency functions. The most important and natural functions
are polynomials in Ld. We will, however, pay increased attention to linear and
affine liner latency functions in the following.

Using the notation:

θi
a := ∑

ij∈[Ki]
( f ij

a xij
a − f ij

a f ij
a ),

we can simplify the value ω(L; n,K, λ).

Lemma 5.35. The value ω(`a, n,K; λ) is at most

sup
xa, f a≥0

(
`a( fa)− λ `a(xa)

)
xa + ϑn

a (`a, f a) +
n
∑

i=1
`′a(

i
∑

k=1
f k
a ) θi

a

`a( fa) fa
. (5.26)
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Proof. First note that

Ca( fa) + Va( f a, xa) = ϑn
a (`a, f a) +

n

∑
i=1

[
`′a(

i

∑
k=1

f k
a ) θi

a + `a
( i

∑
k=1

f k
a
)
xi

a
]

≤ ϑn
a (`a, f a) +

n

∑
i=1

`′a(
i

∑
k=1

f k
a ) θi

a + `a( fa) xa,

where the last inequality is valid since latency functions are nondecreasing.
Then, using

`a( fa) xa − λ Ca(xa) =
(
`a( fa)− λ `a(xa)

)
xa,

yields the claim.

Note that for λ = 1 and n = 1 the value ω(`a, 1,K; 1) is equal to the value
βK(`a) defined by Cominetti, Correa, and Stier-Moses in [23]. For n > 1, that
is, the sequence σ of games contains more than one game, the main difference
between βK(`a) and ω(`a, n,K; λ) are the values λ ≥ 0 and ϑn

a (`a, f a). The
value ϑn

a (`a, f a) penalizes the efficiency of ASeqNash for multiple games. The
value λ admits a further degree of freedom to strengthen the analysis.

5.4.1 A�ne Linear Latency Functions

We analyze in the following the value ω(L1; n,K, 1) for affine linear latency
functions in L1.

Lemma 5.36. For latency functions in L1 and λ ≥ 1 the value ω(L1; n,K, λ) is less
than or equal to 4(K−1)

5K+1 .

Proof. We start with equation (5.26) for latency functions in L1. The value
ω(`a, n,K; λ) is at most:

sup
xa, f a≥0

qa
(

fa − λ xa
)
xa + qa ( fa)2 − qa

n
∑

i=1
(

i
∑

k=1
f k
a ) f i

a + qa
n
∑

i=1
θi

a

qa( fa)2 + ra fa

≤ sup
xa, f a≥0

(
fa − λ xa

)
xa + 1

2 ( fa)2 − 1
2

n
∑

i=1
( f i

a)2 +
n
∑

i=1
θi

a

( fa)2 (5.27)

≤ sup
xa, f a≥0

(
fa − λ xa

)
xa + 1

2 ( fa)2 − 1
2 ∑

ij∈K
( f ij

a )2 +
n
∑

i=1
θi

a

( fa)2 (5.28)

= sup
xa, f a≥0

(
fa − λ xa

)
xa + 1

2 ( fa)2 + ∑
ij∈K

(
f ij
a xij

a − 3
2 ( f ij

a )2)
( fa)2 ,
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where (5.27) follows from (3.10) and ra ≥ 0. Note that to obtain the first
inequality we have used that ra − λ ra ≤ 0 since λ ≥ 1. Inequality (5.28) is
valid since the sum of powers is less than the power of the sum. Without loss of
generality, we can assume that f 1

a := max
ij∈[K]

f ij
a . Since the individual components

xij
a appear linearly in the expression f ij

a xij
a , we can set xa := (x1

a, 0, . . . , 0) to
bound the above expression from above. Thus, we have:

ω(`a, n,K; λ) ≤ sup
0≤ f 1

a≤ fa,x1
a≥0

fa x1
a − λ (x1

a)2 + 1
2 ( fa)2 + f 1

a x1
a − ∑

ij∈K
3
2 ( f ij

a )2

( fa)2 .

Because of symmetry in the last sum of the numerator, we can set f ij
a = fa

K−1 .

ω(`a, n,K) ≤ sup
fa
K≤ f 1

a≤ fa

x1
a≥0

fax1
a − λ (x1

a)2 + 1
2 ( fa)2 + f 1

a x1
a − 3

2( f 1
a )2 − 3( fa− f 1

a )2

2(K−1)

( fa)2 .

For any choice of fa, f 1
a , the optimal value for x1

a is exactly x1
a = fa+ f 1

a
2 λ . Inserting

the value yields:

ω(`a, n,K; λ) ≤ sup
fa
K≤ f 1

a≤ fa

(1
2 + 1

4 λ )( fa)2 + ( 1
4 λ −

3
2) ( f 1

a )2 + 1
2 f 1

a fa − 3( fa− f 1
a )2

2(K−1)

( fa)2 .

We replace f 1
a = µ fa with µ ∈ [ 1

K , 1] and solve:

ω(`a, n,K; λ) ≤ max
µ∈[ 1

K ,1]
(1

2 + 1
4 λ ) + ( 1

4 λ −
3
2) µ2 + 1

2 µ− 3(1−µ)2

2(K−1) . (5.29)

Now we set λ := 1. Then, the optimal choice is µ = (K+5)
5K+1 . This leads to:

ω(L1; n,K, 1) ≤ 4(K−1)
5K+1 .

Applying Theorem 5.34 with the above value leads to the following result.

Corollary 5.37. If the latency functions of the OnlineNG are in L1, the online
algorithm ASeqNash is 5K+1

K+5 -competitive, where K is the total number of players.

Proof. Applying Theorem 5.34 with λ = 1 yields:

C( f ) ≤ 1

1− 4(K−1)
5K+1

C(x) = 5K+1
K+5 C(x).

This proves the corollary.
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Corollary 5.37 gives abound that only depends on the total number of play-
ers in the sequence σ of games. This bound states that ASeqNash is asymp-
totically 5-competitive for online atomic network games.

If we optimize over the parameter λ ∈ Λ(L1, n,K), we can derive even
better bounds. For ease of presentation we focus on the asymptotic bound,
that is, we consider the case K → ∞.

Corollary 5.38. If the latency functions of the OnlineNG are in L1, the online
algorithm ASeqNash is 4.92-competitive.

Proof. We start with bounding ω(L1; ∞, ∞, λ) using (5.29):

ω(`a, ∞, ∞; λ) ≤ max
µ∈[0,1]

(1
2 + 1

4 λ ) + ( 1
4 λ −

3
2) µ2 + 1

2 µ.

Then, it follows that

µ∗ =
1

6 λ− 1
,

and

ω(L; ∞, ∞, 1) ≤ 4 λ + 13 λ2 − 1
4 λ(6 λ− 1)

.

Note, that we still have ω(L; ∞, ∞, 1) ≤ 1
5 for λ = 1. Applying Theorem 5.34

with λ = 1.13 yields the claim.

In the following, we derive a bound that depends on the number of games.

Corollary 5.39. If the latency functions of the OnlineNG are in L1, the online
algorithm ASeqNash is 2(3K+1)n

nK+3n+3K+1 -competitive, where n is the number of games
and K is the total number of players.

Proof. We start with equation (5.27) in Lemma 5.36 to derive another bound on
the value ω(L1; n,K, λ).

ω(`a, n,K; λ) ≤ sup
f a,xa≥0

(
fa − λ xa

)
xa + 1

2 ( fa)2 − 1
2

n
∑

i=1
( f i

a)2 +
n
∑

i=1
θi

a

( fa)2

≤ n−1
2n + sup

f a,xa≥0

(
fa − λ xa

)
xa +

n
∑

i=1
θi

a

( fa)2 , (5.30)

where (5.30) follows from Cauchy-Schwarz inequality. Then, the proof pro-
ceeds along the lines of the proof of Lemma 5.36 except that we replace the
factor 3

2 by 1.

ω(`a, n,K; λ) ≤ n−1
2n + max

µ∈[ 1
K ,1]

( 1
4 λ ) + ( 1

4 λ − 1) µ2 + 1
2 µ− (1−µ)2

(K−1) . (5.31)
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Setting again λ := 1 yields

ω(`a, n,K; 1) ≤ n−1
2n + max

µ∈[ 1
K ,1]

1
4 −

3
4 µ2 + 1

2 λ µ− (1−µ)2

(K−1) .

It is easy to see that µ = K+3
3K+1 is optimal. Evaluating 1

1−ω(L1,n,K,1) yields the
desired bound.

This bound is asymptotically 6-competitive. It provides, however, an ex-
plicit dependency on the number of games and players involved. For n = 1,
we obtain a bound of 3K+1

2K+2 for atomic network games with affine linear latency
functions; this bound has previously been established by Cominetti, Correa
and Stier-Moses [23]. For K → ∞ we trivially establish a bound that only
depends on the number of games. If the latency functions of the OnlineNG
are affine and if we allow for infinitely many atomic players, the online al-
gorithm ASeqNash is 6 n

n+3 -competitive. To see this, we calculate the limiting

value in Corollary 5.39: limK→∞
2(3K+1)n

nK+3n+3K+1 = 6 n
n+3 . If we only have a single

atomic player in each game, we can set K := n and evaluate 2(3K+1)n
nK+3n+3K+1 .

Corollary 5.40. If the latency functions of the OnlineNG are in L1 and we have
one atomic player per game, the online algorithm ASeqNash is 6 n2+2 n

n2+6 n+1 -competitive,
where n is the total number of games.

Now, we derive improved upper bounds that depend solely on n. We
prove these bounds by designing and appropriate function λ(n) with values
in Λ(L1, n,K).

Corollary 5.41. If the latency functions of the OnlineNG are in L1, the competitive
ratio of the online algorithm ASeqNash is at most

max
{

T(n),
3
2

}
,

where T(n) is defined as

T(n) :=

(
2 n +

√
2

√
n
(
3 n + 1

))
n

(
1 + 3 n +

√
2
√

n (3 n + 1)
)√

2

4
√

n (3 n + 1) (n + 1)2 .

Proof. For K → ∞ we have limK→∞
(1−µ)2

(K−1) = 0. Hence, (5.31) reduces to

ω(`a, n, ∞; λ) ≤ n−1
2n + max

µ∈[ 1
K ,1]

1
4 λ − ( 1

4 λ − 1) µ2 + 1
2 λ µ.

The maximization problem can be solved, leading to

max
µ∈[ 1

K ,1]

1
4 λ − ( 1

4 λ − 1) µ2 + 1
2 λ µ ≤ 1

4 λ− 1
.
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Figure 5.8: Upper bound 4 n
(n+2) versus upper bound T(n) on the competitive ratio of

NSeqNash and ASeqNash for nonatomic and atomic players, respectively.

Defining

λ∗ := max

{
1 + 3 n +

√
2 n + 6 n2

4 (n + 1)
, 1

}
,

It is easy to see that λ∗ ∈ Λ(L1, n,K). Applying Theorem 5.34 yields

C( f ) ≤ 2 λ∗ n (−1 + 4 λ∗)
4 n λ∗ − 3 n + 4 λ∗ − 1

C(x) = max
{

T(n),
3
2

}
C(x).

Taking x as the optimal offline solution proves the claim.

Remark 5.42. The choice of λ∗ solves the following minimization problem

min
λ∈Λ(L1,n,K)

2 λ n (−1 + 4 λ)
4 n λ− 3 n + 4 λ− 1

.

Note that without the restriction λ ≥ 1, we have the relation λ∗ = 1
2 + 1

4

√
2

for n = 1 as in Corollary 4.22. For the case n → ∞ we have limn→∞ T(n) =√
2
√

3 + 5
2 .

5.4.2 Lower Bounds

In this section, we provide lower bounds on the competitive ratio for any de-
terministic online algorithm and ASeqNash. Note that all lower bounds of
NSeqNash for OnlineNG carry over to the atomic player case, if we allow for
infinitely many players in each game i.

We use the network in Fig. 5.4 to derive a lower bound when we have a
single atomic player in each game i.

Proposition 5.43. In case of latency functions in L1, the online algorithm ASeq-
Nash for the OnlineNG, where in each game there is a single atomic player has a
competitive ratio greater than or equal to 2n−1

n , where n is the number of games.
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Table 5.3: Competitive Ratio for the online algorithm ASeqNash for affine linear la-
tency functions a1 x + a0, a1, a0 ≥ 0. The first row shows known results for
atomic network games that are due to Cominetti, Correa, and Stier-Moses
[23]. UB and LB denote Upper and Lower Bound, respectively.

arbitrary # of Players 1 player per game
# games UB LB UB LB

1 3
2 1.343 1 1

2 22
5 2 1.64 3

2
3 3 21

3 2.14 1 2
3

. . . . .

. . . . .
n min{T(n), 4.92} 3n

n−2 min{ 6 n2+2 n
n2+6 n+1 , 4.92} 2 n−1

n
∞ 4.92 3 4.92 2

Proof. The proof proceeds along the lines of Theorem 5.17 except that we re-
place the constant costs `(si,ti)(z) = 2 i, i = 1, . . . , k. This forces the first k
atomic players to route their demand along the middle arc (s, t). The reminder
of the proof consists of technical calculations along the lines of the proof of
Theorem 5.25.

Table 5.4.2 summarizes the main results for (affine) linear latency functions
in this section.

5.4.3 General Latency Functions

In this section, we investigate the case, where we allow for general convex la-
tency functions. Note that the only difference in the definition of ω(`a; n,K; λ)
compared to the value ω(`a; K, λ) introduced in (4.22) is the value ϑn

a (`a, f a).
By separating this value from the rest, we can rely on all characterizations of
ω(L; K, λ) obtained in Section 4.4.5.

Proposition 5.44. If λ ≥ 0 and `a(·) is a nondecreasing latency function, then, the
following inequality is valid:

ω(`a; n,K, λ) ≤ sup
fa,xa≥0

(
`a( fa)− λ `a(xa)

)
xa + `′a( fa)

x2
a

4
`a( fa) fa

(5.32)

+ sup
f a≥0

ϑn
a (`a, f a)
`a( fa) fa

.
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Proof. Using the triangle inequality, we can separate ϑn
a (`a, f a) from the rest

since the supremum over the sum of two functions is less than or equal to the
sum of the suprema. The reminder of the proof follows Lemma 4.24.

We define ω(`a; ∞, ∞, λ) to be the limit of ω(`a; n,K, λ) for n and K tending
to infinity under the condition that xa and fa are kept constant (and hence
ω(`a; n,K, λ) stays finite). Then it follows that ω(`a; n,K, λ) ≤ ω(`a; ∞, ∞, λ).
We focus in the following on the general case n, K ∈ N∪ {∞}.

Corollary 5.45. For latency functions in Ld, d ≥ 1, the competitive ratio of ASeq-
Nash is at most

inf
λ∈Λ(Ld,n,K)∩R≥1

[
λ

(
1− max

0≤u≤1
u

(
1− λ ud + d

u
4
)
+

d
d + 1

)−1
]

. (5.33)

Proof. Recall from Lemma 5.21 that

sup
f a≥0

ϑn
a (`a, f a)
`a( fa) fa

≤ d
d + 1

.

Hence, we only have to bound the first term in (5.33). Since all assumptions of
Proposition 4.26 are satisfied with s( f ) = f d. Therefore, s′(1) = d and

ω(`a; ∞, ∞, λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u
4
)
+

d
d + 1

. (5.34)

Applying Theorem 5.34 yields the claim.

Using Corollary 5.45, we can determine bounds on the competitive ratio
for ASeqNash for general polynomials. We use the same technique as in
Theorem 4.28 to prove such bounds.

Theorem 5.46. For latency functions in Ld, d ≥ 1, the competitive ratio of the online
algorithm ASeqNash is at most

(
1 +

5
4

d +
1
4

d2)d+1.

Proof. Let the flow f be produced by the online algorithm ASeqNash and let
x be an arbitrary feasible flow for the OnlineNG.

From Equation (5.34) in Proposition 5.45 we have the relation

ω(`a; ∞, ∞, λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u
4
)
+

d
d + 1

.

Now, we bound the first term:

max
0≤u≤1

u
(
1− λ ud + d

u
4
)
≤

(
4 + d

4 λ (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
.
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We construct a function λ(d) such that(
4 + d

4 λ(d) (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
=

d
(d + 1)2

holds for all d ≥ 1. Solving the above equation with respect to λ(d) yields

λ∗(d) =
(4 + d)d+1 (d + 1)d−1

4d+1 .

Hence, by construction, we have

ω(`a; ∞, ∞, λ∗(d)) ≤ d
(d + 1)2 +

d
d + 1

=
d2 + 2 d
(d + 1)2 .

Applying Theorem 5.34 with λ := λ∗(d) and ω(`a; ∞, ∞, λ∗(d)) ≤ d2+2 d
(d+1)2

leads to

C( f ) ≤ λ∗(d)
1− d2+2 d

(d+1)2

C(x) = (d + 1)2 λ∗(d) C(x)

=
(
1 +

d
4
)d+1 (d + 1)d+1 C(x) =

(
1 +

5
4

d +
1
4

d2)d+1 C(x).

Taking x as the optimal offline solution proves the claim.

This result shows that the derived upper bounds are significantly larger
than the bounds for the nonatomic counterpart. It is not clear, however, how
to raise the lower bounds for the atomic case. This issue remains open.





Chapter 6

Conclusion and Open Issues

One of the main goals of this thesis was to understand the consequences of
selfish behavior and limited knowledge about future information on the per-
formance of routing strategies. We identified three practical applications for
the considered models arising in road traffic networks and in the Internet.

First, we studied online routing strategies within the framework Online-
MCRP that modeled the interactions of service providers in an inter-domain
resource market. In such a market, network capacity is traded in order to de-
ploy Internet traffic with Quality of Service requirements. We showed that
a greedy online algorithm, which corresponds to a natural cost minimiza-
tion strategy of a service provider, leads to a routing pattern that is not too
inefficient. In particular, we showed that for polynomial price functions in
Cd, the competitive ratio of this greedy online algorithm can be bounded by
a constant factor (depending on d) for arbitrary networks and commodity se-
quences. Even though the provable bounds are quite large, these bounds show
that the proposed inter-domain market may not lead to arbitrary inefficient
resource allocations. In practice, however, there are many more additional re-
quirements to consider. For instance, routings have to respect capacities, which
we only incorporated implicitly using steep load dependent price functions.
With capacities, however, one can easily construct examples in which any on-
line algorithm does not even produce a feasible solution. Further requirements
in practice include path length restrictions and survivability issues. Another
important point is that in practice, routings are only valid until a given time,
after which they disappear. This has effects on the cost for future routings. It
is also an open issue whether the competitiveness bound in Theorem 3.9 and
Theorem 3.24 are tight, and whether there exists a competitive online algo-
rithm for the unsplittable variant of the OnlineMCRP. Finally, we simplified
the competition within the market by assuming fixed continuous and non-
decreasing price functions defining the price for a unit resource. In practice,
resource providers determine prices depending on the current market situa-
tion and their position with respect to the network topology. If the provider
domain’s link is a bottleneck, the demand would become somewhat inelastic
leading to a monopolistic situation. For a fully connected network (i.e. perfect
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competition in the network), the demand is at a minimum when the offered
price is above the current market price and at maximum when below. The
infrastructure of the Internet today is more related to an oligopolistic market
where the network is not fully connected (i.e. domains are at most connected
to 3 to 5 neighboring domains). We are only aware of few works on this
complex topic. Acemoglu and Ozdaglar [2] study the competition of service
providers for very simple network topologies such as parallel arcs or serial
arcs. In this regard, the outcome of competition between service providers for
general network topologies, where demand is elastic remains tantalizing open.
We note that the above issues are closely related to the theory of mechanism de-
sign. Mechanism design is a subfield of economics and computer science that
aims at designing the rules of games involving multiple competing players to
achieve a pre-specified outcome. For an introduction into this topic, we refer to
the survey of Mas-Colell, Whinston, and Green [66]. In the context of network
design problems we refer to Gupta, Srinivasan, and Tardos [49], Anshelevich
et al. [6, 7], Archer et al. [8], and Fleischer et al. [36].

The second application that motivated the second main contribution of this
thesis concerns the road traffic network in which drivers select routes based on
selfish interests. A long standing open question asked to which extent the per-
formance of a Nash equilibrium is degraded compared to the system optimum.
This question has been settled for the nonatomic traffic model by Roughgar-
den and Tardos [84] and Roughgarden in [81]. For network games with atomic
players we contributed to answering the same question by improving previ-
ous known bounds on the price of anarchy for polynomial latency functions
in Ld, except for the case L1. These results are of particular interest as a
recent trend towards using route guidance devices can be observed. Such in-
telligent transport systems control an atomic part of the entire traffic demand.
Therefore, the framework of atomic network games applies in this case. Even
though Cominetti, Correa, and Stier-Moses in [23] present instances, where the
performance of a Nash equilibrium deteriorates compared to the Nash equi-
librium of the corresponding nonatomic network game, our results show that
the efficiency loss is still bounded by a constant factor depending on d for
polynomial latency functions in Ld. We note that still all known lower bounds
do not match the upper ones. We see this mismatch as an important open
issue to be resolved. Besides network games in which players seek to route
given demands resource allocation games in networks with elastic demands
have recently gained much attention. For a simple resource allocation mech-
anism, Kelly, Maulloo, and Tan [58] and Gibbens and Kelly [45] showed that
for price taking players the outcome of a Nash equilibrium is optimal. Johari
and Tsitsiklis [56, 57] showed that for price anticipating players the inefficiency
of the Nash equilibrium is bounded by 33% compared to the system optimal
resource allocation.

Finally, we studied the source routing model for the Internet. We identified
a major drawback of the underlying equilibrium concept: In order to converge
to an equilibrium, traffic sources have to be aware of traffic changes within
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the network to react accordingly. This implies that sources have to maintain
the state of all available routes during the entire connection duration. There-
fore, in addition to the regular payload the total traffic volume is blown up by
continuously signaling this needed information. We investigated a different
model in which sources select routes only during a predefined time frame.
We simplified the analysis by assuming that groups of sources have different
release times and every group of sources converges to a Nash equilibrium be-
fore the next release time. In this regard, we considered a sequence of games
(groups) in which sources once they are at Nash equilibrium fix their routings.
By combining methods from online optimization with methods from algorith-
mic game theory we showed that the competitive ratio of the online algorithm
NSeqNash and ASeqNash, which produce a flow that is at Nash equilib-
rium for every game can be bounded by a constant factor (depending on d)
for polynomial latency functions in Ld. By definition of the algorithms, these
results hold for nonatomic as well as atomic player types. Even though these
results indicate that the proposed working mechanism is quite efficient, our
simplifying assumptions are still to far away from reality. In practice, sources
and groups of sources start at arbitrary release times. Moreover, if we assume
that every source changes the routing only during a given time frame it is not
granted that the entire system is at equilibrium at any point in time, see Even-
Dar and Mansour [31] for work on the convergence speed. Nevertheless, we
believe that we can achieve an accurate approximation of the dynamics of a
real system by considering a sequence of Nash equilibria over time. It is open,
however, if it is possible to prove exact approximation guarantees in this case.
As for the OnlineMCRP, open issues also include arc capacities and different
expiring times for the demands.
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