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Introduction

This collection contains the following nine papers that I submit for obtaining the habilitation at
the Technische Universität Berlin, Fakultät II – Mathematik und Naturwissenschaften.

(1) Stackelberg Routing in Arbitrary Networks
(2) Stackelberg Strategies and Collusion in Network Games with Splittable Flow
(3) The Worst-Case Efficiency of Cost Sharing Methods in Resource Allocation Games
(4) Optimal Cost Sharing Protocols for Scheduling Games
(5) Characterizing the Existence of Potential Functions in Weighted Congestion Games
(6) On the Existence of Pure Nash Equilibria in Weighted Congestion Games
(7) Strong Nash Equilibria in Games with the Lexicographical Improvement Property
(8) Computing Pure and Strong Nash Equilibria in Bottleneck Congestion Games
(9) Approximation Algorithms for Capacitated Location Routing

The papers form a cross-section through my research in algorithmic game theory and com-
binatorial optimization. They can be grouped into five topics:

◦ Stackelberg Routing (Papers 1 and 2)
◦ Design of Cost Sharing Methods (Papers 3 and 4)
◦ Existence of Pure Nash Equilibria and Potentials (Papers 5 and 6)
◦ Existence and Computability of Strong Equilibria (Papers 7 and 8)
◦ Approximation Algorithms for Location Routing (Paper 9)

In the following, I will outline these topics and the main ideas of the papers.

Note. The only changes I made with respect to the published journal papers concern the unified
layout, e.g., renumbering of theorems and minor reformulations necessary for the modified pre-
sentation and the updating of some references. The published conference papers appear in this
thesis as full versions (including all proofs that are sometimes omitted in the originally published
conference versions).

1. Stackelberg Routing

It is a well known fact that selfish behavior results in outcomes that are inefficient in general.
A prime example is the rush-hour phenomenon observed in urban road traffic. Since every
traffic participant solely aims at minimizing her individual travel time, the overall outcome is
less efficient, e.g., in terms of the total average travel time, as if everybody would have been
routed according to a centrally coordinated routing scheme. With the increasing number of
traffic participants, traffic regulation becomes an increasingly important issue.

In this context, the Papers 1 and 2 study the concept of Stackelberg routing as a means
to reduce the worst-case inefficiency of selfish routing (this measure is also termed the price of
anarchy). The basic model is based on the classical work of Wardrop modeling the interaction
between the selfish network users as a noncooperative game. We are given a directed graph with
latency functions on the arcs and a set of origin-destination pairs, called commodities. Every
commodity has a demand associated with it, which specifies the amount of flow that needs to be
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2 Introduction

sent from the respective origin to the destination. The demands represent a large population of
players, each controlling an infinitesimal small amount of flow of the entire demand (such players
are also called nonatomic). The latency that a player experiences to traverse an arc is given by
a (non-decreasing) function of the total flow on that arc. It is assumed that every player acts
selfishly and routes his flow along a minimum-latency path from its origin to the destination;
under mild assumptions on the latency functions this corresponds to a common solution concept
for noncooperative games, that of a Nash equilibrium or Wardrop flow. In a Wardrop flow no
player can improve his own latency by unilaterally switching to another path.

Because Wardrop flows can be very inefficient in the sense that the price of anarchy is
unbounded, a prominent approach to reduce this inefficiency is that of Stackelberg routing, see
the papers for detailed references. In this setting, it is assumed that a fraction α ∈ [0, 1] of
the entire demand is controlled by a central authority, termed Stackelberg leader, while the
remaining demand is controlled by the selfish nonatomic players, also called the followers. In
a Stackelberg game, the Stackelberg leader first routes the centrally controlled flow according
to a predetermined policy, called the Stackelberg strategy, and then the remaining demand is
routed by the selfish followers. The aim is to devise Stackelberg strategies so as to minimize the
worst-case inefficiency of the resulting combined flow with respect to the optimal solution for the
entire demand.

As the main result of Paper 1, we show that there exists a family of single-commodity
networks parameterized by k ∈ N for which every Stackelberg strategy induces a worst-case
inefficiency of Ω(k), where the parameter k represents the size of the network. By increasing the
size of the network, we can thus show that the worst-case inefficiency is unbounded. This result
holds independently of the fraction α ∈ (0, 1) of the centrally controlled demand. In Paper 2,
I study Stackelberg routing for atomic splittable network games, where players may control a
discrete amount of demand. The main results provide bounds on the worst-case inefficiency of
Stackelberg routing for restricted network topologies (parallel arcs) and for restricted classes of
latency functions (affine latencies).

2. Designing Cost Sharing Methods

In Papers 3 and 4 we study the design of cost sharing methods in resource allocation games as
a means to reduce the price of anarchy and the price of stability. Resource allocation games
are based on congestion games and have applications in several areas, including traffic networks,
telecommunication networks and economics. In a congestion game, there is a set of resources
and a pure strategy of a player consists of a subset of resources. The cost of a resource depends
only on the number of players choosing the resource, and the private cost of a player is the sum
of the costs of the chosen resources. The term resource allocation games as used in Paper 3
refers to a variant of congestion games where players have a variable demand for the resources
and can assign their demand fractionally over the set of subsets of the resources. The basic idea
now is to design cost sharing rules that distribute the cost of a resource among those players
using this resource. The space of feasible cost sharing methods (sometimes called protocols)
is defined via certain axioms which in turn are motivated by requirements arising in practice.
Informally, these axioms require the existence of pure Nash equilibria of the resulting strategic
game, budget balance or cost covering, and separability of the cost sharing method. While the
first two properties are self-explanatory, the separability requirement demands that the cost share
of a player on a resource only depends on the set of players using this resource. Given such a
space of feasible cost sharing methods, the overall goal is to design a cost sharing method that
minimizes the resulting price of anarchy and the price of stability.
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In Papers 3 and 4 we study cost sharing protocols for two variants of congestion games
(resource allocation games in Paper 3 and scheduling games in Paper 4). As the main result
of Paper 4, we obtain tight bounds on the achievable price of anarchy and price of stability for
the protocol space informally defined above. In Paper 3, we obtain tight bounds on the price
of anarchy for two well-known cost sharing methods: average cost sharing and marginal cost
pricing.

3. Existence of Pure Nash Equilibria

While the existence of pure Nash equilibria in classical congestion games follows by the seminal
result of Rosenthal, the existence problem becomes much more delicate if each player is associated
with a nonnegative weight. In a weighted congestion game, every player has a demand di ∈
R>0 that she places on the chosen resources and the cost of a resource is a function of its
total load. In Papers 5 and 6 we consider such weighted congestion games and we ask for
the maximal set of cost functions that guarantee (i) the existence of potential functions (see
Paper 5 for a formal definition) and (ii) the existence of pure Nash equilibria (see Paper 6).
Under mild assumptions on the set of cost functions (continuity), we give in Paper 5 a complete
characterization of the existence of exact and weighted potential functions. In Paper 6 we
derive a complete characterization of the existence of pure Nash equilibria for twice continuously
differentiable cost functions. In that paper, we also study weighted congestion games with
restricted strategy spaces such as weighted network congestion games and weighted singleton
congestion games.

4. Existence and Computability of Pure and Strong Equilibria

In Papers 7 and 8 we study a class of congestion games from a perspective of cooperative game
theory. Specifically, we consider strong equilibria (introduced by Aumann in 1959) as solution
concept. In a strong equilibrium, no coalition (of any size) can deviate and strictly improve the
utility of each of its members. Every strong equilibrium is a pure Nash equilibrium, but the
converse does not always hold. Thus, even though strong equilibrium may rarely exist, they
form a very robust and appealing stability concept.

The main result of Paper 7 establishes the existence of pure Nash and strong equilibria for
so called bottleneck congestion games. While in standard congestion games the private cost of
a player is given by the sum over the costs of the resources in the strategy, in a bottleneck
congestion game the private cost function of a player is equal to the cost of the most expensive
resource that she uses. A prominent application of bottleneck congestion games is routing in
computer networks. The throughput of a stream of packets in a communication network is
usually determined by the available bandwidth or the capacity of the weakest links. A model
that captures this aspect more realistically are in fact bottleneck congestion games in which the
individual cost of a player is the maximum (instead of the sum) of the delays in her strategy.

Given the existence of pure Nash and strong equilibria, we study in Paper 8 the complexity
of computing pure Nash and strong equilibria. We give a detailed study of the computational
complexity of exact and approximate pure Nash and strong equilibria in bottleneck congestion
games. We identify three classes of games where it is possible to compute a strong equilibrium
in polynomial time: single-commodity networks, branchings, and matroids. For general games,
we show that the problem of computing a SE is NP-hard, even in two-commodity networks.
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5. Approximation Algorithms for Capacitated Location Routing

The last paper (Paper 9) of this thesis is devoted to designing approximation algorithms for
hard combinatorial optimization problems arising in logistics. An approximation algorithm for
an optimization problem runs in polynomial time for all instances and is guaranteed to deliver
solutions with bounded optimality gap. We derive approximation algorithms for different variants
of capacitated location routing, an important generalization of vehicle routing where the cost of
opening the depots from which vehicles operate is taken into account. We also derive results to
further generalizations of both problems, including a prize-collecting variant, a group version,
and a variant where cross-docking is allowed. We finally present a computational study of our
approximation algorithm for capacitated location routing on benchmark instances and large-
scale randomly generated instances. Our study is an outcome of a joint research project with
the industry partner 4flow AG, Berlin, Germany.



Paper 1

Stackelberg Routing in Arbitrary

Networks

Vincenzo Bonifaci, Tobias Harks and Guido Schäfer

Stackelberg Routing in Arbitrary Networks
Math. Oper. Res. 35 (2010), no. 2, pp. 330–346

Abstract. We investigate the impact of Stackelberg routing to reduce the price of anarchy in
network routing games. In this setting, an α fraction of the entire demand is first routed centrally
according to a predefined Stackelberg strategy and the remaining demand is then routed selfishly
by (nonatomic) players. Although several advances have been made recently in proving that
Stackelberg routing can in fact significantly reduce the price of anarchy for certain network
topologies, the central question of whether this holds true in general is still open. We answer
this question negatively by constructing a family of single-commodity instances such that every
Stackelberg strategy induces a price of anarchy that grows linearly with the size of the network.
Moreover, we prove upper bounds on the price of anarchy of the Largest-Latency-First (LLF)
strategy that only depend on the size of the network. Besides other implications, this rules out
the possibility to construct constant-size networks to prove an unbounded price of anarchy. In
light of this negative result, we consider bicriteria bounds. We develop an efficiently computable
Stackelberg strategy that induces a flow whose cost is at most the cost of an optimal flow with
respect to demands scaled by a factor of 1 +

√
1− α. Finally, we analyze the effectiveness of an

easy-to-implement Stackelberg strategy, called SCALE. We prove bounds for a general class of
latency functions that includes polynomial latency functions as a special case. Our analysis is
based on an approach which is simple, yet powerful enough to obtain (almost) tight bounds for
SCALE in general networks.

1. Introduction

Over the past years, the impact of the behavior of selfish, uncoordinated users in congested
networks has been investigated intensively in the theoretical computer science and operations
research literature. In this context, network routing games have proved to be an appropriate
means of modeling selfish behavior in networks. The basic idea is to model the interaction
between the selfish network users as a noncooperative game. We are given a directed graph with
latency functions on the arcs and a set of origin-destination pairs, called commodities. Every
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6 Stackelberg Routing in Arbitrary Networks

commodity has a demand associated with it, which specifies the amount of flow that needs to
be sent from the respective origin to the destination. We assume that every demand represents
a large population of players, each controlling an infinitesimal small amount of flow of the entire
demand (such players are also called nonatomic). The latency that a player experiences to
traverse an arc is given by a (non-decreasing) function of the total flow on that arc. We assume
that every player acts selfishly and routes his flow along a minimum-latency path from its origin
to the destination; this corresponds to a common solution concept for noncooperative games,
that of a Nash equilibrium (here Nash or Wardrop flow, see Wardrop [37]). In a Nash flow no
player can improve his own latency by unilaterally switching to another path.

It is well known that Nash equilibria can be inefficient in the sense that they need not
achieve socially desirable objectives [3, 10]. In the context of network routing games, a Nash
flow in general does not minimize the total cost; or said differently, selfish behavior may cause
a performance degradation in the network. Koutsoupias and Papadimitriou [22] initiated the
investigation of the efficiency loss caused by selfish behavior. They introduced a measure to
quantify the inefficiency of Nash equilibria which they termed the price of anarchy. The price
of anarchy is defined as the worst-case ratio of the cost of a Nash equilibrium over the cost of
a system optimum. In recent years, considerable progress has been made in quantifying the
degradation in network performance caused by the selfish behavior of noncooperative network
users. In a seminal work, Roughgarden and Tardos [32] showed that the price of anarchy for
network routing games with nonatomic players and linear latency functions is 4/3; in particular,
this bound holds independently of the underlying network topology. The case of more general
families of latency functions has been studied by Roughgarden [27] and Correa, Schulz, and Stier-
Moses [6]. (For an overview of these results, we refer to the book by Roughgarden [30].) Despite
these bounds for specific classes of latency functions, it is known that the price of anarchy for
general latency functions is unbounded even on simple parallel-arc networks [32].

Due to this large efficiency loss, researchers have proposed different approaches to reduce
the price of anarchy in network routing games. One of the most prominent approaches is the
use of Stackelberg routing [21, 29]. In this setting, it is assumed that a fraction α ∈ [0, 1]
of the entire demand is controlled by a central authority, termed Stackelberg leader, while the
remaining demand is controlled by the selfish nonatomic players, also called the followers. In a
Stackelberg game, the Stackelberg leader first routes the centrally controlled flow according to a
predetermined policy, called the Stackelberg strategy, and then the remaining demand is routed
by the selfish followers. The aim is to devise Stackelberg strategies so as to minimize the price
of anarchy of the resulting combined flow with respect to the optimal solution for the entire
demand.

Although Roughgarden [29] showed that computing the best Stackelberg strategy, i.e., one
that minimizes the price of anarchy of the induced flow, is NP-hard even for parallel-arc networks
and linear latency functions, several advances have been made recently in proving that Stackel-
berg routing can indeed significantly reduce the price of anarchy in network routing games. A
well-studied Stackelberg strategy is the Largest-Latency-First (LLF) strategy. Intuitively, LLF
tries to save the part of an optimal flow that is unattractive for the selfish followers by sending
flow along paths of large latencies. More precisely, LLF computes an optimal flow for the entire
demand and orders the paths that carry a positive amount of flow by non-increasing latencies.
According to this order, it then iteratively sends as much flow as possible along these paths (not
exceeding the optimal flow value) until an α fraction of the demand has been routed.

Roughgarden [29] showed that for parallel-arc networks the Largest-Latency-First strategy
reduces the price of anarchy to 1/α, independently of the latency functions. That is, even if the
Stackelberg leader controls only a small constant fraction of the overall demand, the price of
anarchy reduces to a constant (while it is unbounded in the absence of any centralized control).
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More recently, Swamy [36] obtained a similar result for single-commodity, series-parallel networks
and Fotakis [12] for parallel-arc networks and unsplittable flows. Despite these positive results,
a central question regarding the effectiveness of Stackelberg routing was still open: Does every
routing game admit a Stackelberg strategy inducing a bounded price of anarchy? More precisely,
is there a function g(·) such that, for any Stackelberg routing game, there is a Stackelberg strategy
inducing a flow with cost at most g(α) times the cost of the optimal flow? This question has
been posed explicitly by Roughgarden [26, Open Problem 4].

Besides these efforts, researchers have also tried to characterize the effectiveness of easy-to-
implement Stackelberg strategies for specific classes of latency functions. One of the simplest
Stackelberg strategies is SCALE (see also [29]), which simply computes an optimal flow for the
entire demand and then scales this flow down by α. The currently best known bound for the
price of anarchy induced by SCALE on multi-commodity networks and linear latency functions
is due to Karakostas and Kolliopoulos [18]. More recently, Swamy [36] derived the first general
bounds for polynomial latency functions.

1.1. Our Results

We investigate the impact of Stackelberg routing to reduce the price of anarchy in network
routing games with nonatomic players. Our contributions are the following:

(1) We show that there exists a family of single-commodity networks for which every Stack-
elberg strategy induces a price of anarchy of Ω(k), where k is a parameter that repre-
sents the size of the network. By increasing the size of the network, we can thus show
that the price of anarchy is unbounded. The result holds independently of the fraction
α ∈ (0, 1) of the centrally controlled demand. This settles the open question raised by
Roughgarden [26].

(2) We prove that for every fixed α the price of anarchy for the Largest-Latency-First
strategy is bounded by O(b(n,m, k)), where b(n,m, k) is some function depending on
the number of vertices, arcs and commodities of the network, both for single-commodity
and multi-commodity networks. This complements the negative result above, showing
that no small (i.e., constant-size) networks exist that enable to prove an unbounded
price of anarchy. These are also the first upper bounds for a Stackelberg strategy that
hold for both arbitrary networks and arbitrary latency functions.

(3) In light of our negative result, we investigate the effectiveness of Stackelberg routing
strategies compared to an optimum flow for a larger demand; i.e., we consider bicriteria
bounds. We develop an efficiently computable Stackelberg strategy inducing a flow
whose cost is at most the cost of an optimal flow with respect to demands increased by
a factor of 1 +

√
1− α.

(4) We give upper bounds on the efficiency of SCALE for a general class of latency func-
tions which, among others, contains polynomial latency functions with nonnegative
coefficients. We also derive the first tight lower bounds for SCALE. Our bound is tight
for concave latency functions; for higher degree polynomials our bounds are almost
tight (though there remains a small gap for small values of α). Our results also imply
that for concave latency functions and general networks SCALE achieves an approxi-
mation guarantee of less than 1.12 with respect to the best Stackelberg strategy (which
is NP-hard to compute).

1.2. Significance

Our negative result settles an important open question regarding the applicability of Stackelberg
routing in general networks. While most existing results show that the performance degradation
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due to the absence of central control is independent of the underlying network topology, our
results shows that the network topology matters in the context of Stackelberg routing: On the
one hand, we present a family of instances that show that the price of anarchy of every Stackelberg
strategy is unbounded if we are allowed to increase the size of the network arbitrarily. On the
other hand, we prove that the price of anarchy for LLF is bounded in terms of the size of the
input network. Besides these structural insights, our negative result also has an impact on several
other related settings outlined below.

A basic assumption that is inherent in almost all network routing games that have been
studied in the past is that players are entirely selfish. However, experiments in economics show
that this assumption is too simplistic in many scenarios (see also [4] and the references therein).
In Stackelberg routing games we abandon this assumption (at least partially) since we assume
that only a fraction of the players is selfish while the other players may behave arbitrarily : note
that the behavior of the non-selfish players can be seen as a potential Stackelberg strategy. As
a consequence, our negative result also carries over to these settings.

Most notably in this context is the very recent work by Chen and Kempe [4]. The authors
introduce a new network routing game with nonatomic players that is capable to model the
players’ degree of altruism. Every player i has an altruism level βi and the utility function is
a linear combination of a selfish part (player i’s latency) and an altruistic part (the average
latency of all players). By varying βi from 1 to 0 to −1, player i’s degree of altruism ranges from
altruistic to selfish to spiteful, respectively. The authors show, among other results, that if all
players have a uniform altruism level of β > 0, i.e., there are no entirely selfish players, then the
price of anarchy is bounded by 1/β for arbitrary networks and semi-convex latency functions.
On the other hand, our negative result implies that if the players that are entirely selfish (βi = 0)
only control a non-zero fraction of the overall demand then the price of anarchy is unbounded,
even for single-commodity networks and independently of the altruism levels of the non-selfish
players (βi 6= 0). In fact, based on this negative result, the authors restrict their analysis of the
price of anarchy for non-uniform altruism levels to parallel-arc networks.

Fotakis [12] and Harks [14] studied Stackelberg routing for atomic congestion games and
atomic splittable network games, respectively. Our lower bound construction can be easily
adapted to the unsplittable flow setting as well as to the atomic splittable case. Thus, it follows
that even for symmetric congestion games (with or without fractional assignments) there exist
no Stackelberg strategies inducing a bounded price of anarchy.

There are numerous applications that can be interpreted as a Stackelberg routing game.
Here, we focus on highlighting only one of them: the routing of Internet traffic within the
domain of an Internet service provider, see also Sharma and Williamson [33]. Here, the Internet
service provider centrally controls a fraction of the overall traffic traversing its domain. In this
setting, our second result provides the Internet service provider with an efficient algorithm to
route the centrally controlled traffic. The performance of this routing algorithm is characterized
by a smooth trade-off curve that scales between the absence of centralized control (doubling the
demands is sufficient) and completely centralized control (no scaling is necessary). Additionally,
our result has a nice interpretation for the class of (practical relevant) M/M/1-latency functions
that model arc-capacities: In order to beat the cost of an optimal flow, it is sufficient to scale
all arc capacities by 1 +

√
1− α. Our bound is a natural generalization of the bicriteria bound

by Roughgarden and Tardos [32] for the entirely selfish setting (see Correa et al. [7] for other
related results).

1.3. Techniques

In order to prove that the price of anarchy of every Stackelberg strategy is unbounded, we con-
struct a family of network instances. The crucial insight that we exploit in the multi-commodity
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case is that one can devise a graph topology and corresponding latency functions such that for
every commodity whose demand is not entirely controlled by the Stackelberg leader, the selfish
followers have an incentive to harm some other players by inducing a constant latency on their
path (while the latency along this path would be zero otherwise). Since no Stackelberg leader
can control all the commodities (assuming α 6= 1), we can ensure that the total cost induced by
the followers grows with the number of commodities. We believe that these ideas might turn out
to be useful in order to prove negative results also in other settings that involve selfish behavior.
Our single-commodity instance simulates the multi-commodity instance by introducing a super-
source and super-sink that are connected to the origins and destinations of the commodities,
respectively. In order to control the amount of flow that is routed through every commodity, we
tailor the latency functions so as to mimic capacities on these arcs.

We also show that the Largest-Latency-First strategy induces a price of anarchy that is
bounded by O(α−1 · b(n,m, k)), where b(n,m, k) is a function that depends on the number of
vertices, arcs and commodities of the network. In order to prove this, we bound the price of
anarchy of LLF in terms of the worst-case ratio between the maximum latency that a selfish
follower experiences if the followers are routed according to a Nash flow and the maximum
latency that a follower experiences if they are routed according to an arbitrary flow. To the best
of our knowledge, this relation has not been observed before and might be of independent interest.
Our upper bounds then simply follow from existing results characterizing the ratio of the largest
latency in a Nash flow and that of a flow that minimizes the maximum latency [8, 24, 28].

We introduce a general approach, which we term λ-approach, to prove upper bounds on the
price of anarchy of Stackelberg strategies for specific classes of latency functions. This approach
is simple, yet powerful enough to obtain (almost) tight bounds for SCALE in general networks.
For polynomial latency functions, our approach yields upper bounds that significantly improve
the currently best bounds by Swamy [36]. For linear latency functions, we derive an upper bound
that coincides with a previous bound of Karakostas and Kolliopoulos in [18]. Their analysis is
based on a (rather involved) machinery presented in [25]. However, our analysis is much simpler;
in particular, we do not rely on the machinery in [25]. Moreover, we show that this bound
also holds for concave latency functions. A number of real world problems may be formulated
as network flow problems involving concave latency functions. Cost functions of this type are
useful when dealing with network routing problems in presence of economy of scale, see Gallo
et al. [13]. We present a generalized Braess instance that shows that for the concave case our
bound is tight; a similar instance can be used to show that for higher degree polynomials with
nonnegative coefficients our bounds are almost tight, leaving only a small gap for small values of
α. We are confident that our λ-approach will prove useful to derive upper bounds on the price
of anarchy also in other settings. For instance, the λ-approach can be applied to prove upper
bounds when flows are unsplittable. So far, such upper bounds for general networks are only
known for linear latency functions (see Fotakis [12]).

1.4. Related Work

The idea of using Stackelberg strategies to improve the performance of a system was first proposed
by Korilis, Lazar, and Orda [21]. The authors identified necessary and sufficient conditions for
the existence of Stackelberg strategies that induce a system optimum; their model differs from
the one discussed here. Roughgarden [29] first formulated the problem and model considered
here. He also proposed some natural Stackelberg strategies such as SCALE and Largest-Latency-
First. For parallel-arc networks he showed that the price of anarchy for LLF is bounded by
4/(3 + α) and 1/α for linear and arbitrary latency functions, respectively. Both bounds are
tight. He also showed that for certain types of Stackelberg strategies, which he termed weak
strategies (see Section 2 for a definition), the price of anarchy for multi-commodity networks can
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be unbounded [29]. However, this did not rule out the existence of effective Stackelberg strategies
in general. Moreover, he also proved that it is NP-hard to compute the best Stackelberg strategy.
Kumar and Marathe [23] investigated approximation schemes to compute the best Stackelberg
strategy. The authors gave a a polynomial-time approximation scheme for the case of parallel-arc
networks.

Karakostas and Kolliopoulos [18] proved upper bounds on the price of anarchy for SCALE and
LLF. Their bounds hold for arbitrary multi-commodity networks and linear latency functions.
Their analysis is based on a result obtained by Perakis [25] to bound the price of anarchy for
network routing games with asymmetric and non-separable latency functions. Furthermore,
Karakostas and Kolliopoulos [18] showed that their analysis for SCALE is almost tight. More
recently, Swamy [36] obtained upper bounds on the price of anarchy for SCALE and LLF for
polynomial latency functions. Swamy also proved a bound of 1+1/α for single-commodity, series-
parallel networks with arbitrary latency functions. Fotakis [12] studied LLF and a randomized
version of SCALE for the case of unsplittable flows. He proved upper and lower bounds on the
price of anarchy for linear latency functions. For parallel-arc networks, Fotakis proved that LLF
still achieves an upper bound of 1/α for arbitrary latency functions in this case.

Correa and Stier-Moses [9] proved, besides some other results, that the use of opt-restricted
strategies, i.e., strategies in which the Stackelberg leader sends no more flow on every arc than
the system optimum, does not increase the price of anarchy. Sharma and Williamson [33] con-
sidered the problem of determining the smallest value of α such that the price of anarchy can be
improved. They obtained results for parallel-arc networks and linear latency functions. Kaporis
and Spirakis [16] studied a related question of finding the minimum demand that the Stackelberg
leader needs to control in order to enforce an optimal flow.

Another prominent way to reduce the price of anarchy in nonatomic network routing games
is the use of non-negative tolls on arcs of the network. In the area of transportation networks,
this concept has been called congestion toll pricing, see for example Knight [19], Beckmann et
al. [2], Smith [35], and Hearn and Ramana [15]. This mechanism assigns tolls to certain arcs
of the network which are charged to those users that decide to take routes through them. If
users value latency relative to toll the same, Beckmann et al. [2] showed that charging users the
difference between the marginal cost and the real cost in the socially optimal solution (marginal
cost pricing) leads to an equilibrium flow which is optimal. Cole et al. [5] considered the case of
heterogeneous users, that is, users value latency relative to cost differently. For single-commodity
networks, the authors showed the existence of tolls that induce an optimal flow as Nash flow.
Finally, Fleischer et al. [11], Karakostas and Kolliopoulos [17], and Yang and Huang [38] proved
that there are tolls inducing an optimal flow for heterogenous users even in general networks.

2. Model and Notation

In a network routing game we are given a directed network G = (V,A) and k origin-destination
pairs (s1, t1), . . . , (sk, tk) called commodities. We let n and m refer to the number of vertices
and arcs of G, respectively. For every commodity i = 1, 2, . . . , k, a demand ri > 0 is given that
specifies the amount of flow with origin si and destination ti. The interpretation here is that ri
corresponds to a large population of nonatomic players, each controlling an infinitesimally small
amount of the entire demand that needs to be sent from si to ti. Let Pi be the set of all paths
from si to ti in G and let P = ∪iPi. A flow is a function f : P → R+. The flow f is feasible
(with respect to r) if for all i,

∑

P∈Pi
fP = ri. For a given flow f , we define the flow on an arc

a ∈ A as fa =
∑

P∋a fP .
Moreover, each arc a ∈ A has an associated variable latency ℓa : R+ → R+. For each

a ∈ A the latency function ℓa is assumed to be nondecreasing and differentiable. If not indicated
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Figure 1. The graph Gk, used in the proof of Theorem 3.1. Arcs are labeled with their type.

otherwise, we assume that xℓa
(
x) is a convex function of x. Such functions are called standard

[27]. The latency of a path P with respect to a flow f is defined as the sum of the latencies of
the arcs in the path, denoted by ℓP (f) =

∑

a∈P ℓa(fa). The triple (G, r, ℓ) is called an instance.
We assume that every nonatomic player aims at routing his flow along a path that has

minimum latency. Informally, a Nash flow (or selfish flow) is a feasible flow such that no player
has an incentive to unilaterally deviate from its path. More formally, a feasible flow f is a Nash
flow if for every i = 1, 2, . . . , k and P,P ′ ∈ Pi with fP > 0, ℓP (f) ≤ ℓP ′(f). That is, all si-ti
paths to which f assigns a positive amount of flow are paths of minimum latency; in particular,
these paths have equal latency. The cost of a flow f is C(f) =

∑

P∈P
fP ℓP (f). Equivalently,

C(f) =
∑

a∈A faℓa(fa). It is well-known that if f and f ′ are Nash flows for the same instance,
then C(f) = C(f ′), see e.g. [32]. A feasible flow of minimum cost is called optimal and denoted
by o.

In a Stackelberg network game we are given, in addition to G, r and ℓ, a parameter α ∈ (0, 1).
A (strong) Stackelberg strategy [29] is a flow g feasible with respect to r′ = (α1r1, . . . , αkrk), for

some α1, . . . , αk ∈ [0, 1] such that
∑k

i=1 αiri = α
∑k

i=1 ri. If αi = α for all i, g is called a weak
Stackelberg strategy [30]. Thus, both strong and weak strategies route a fraction α of the overall
traffic, but a strong strategy can choose how much flow of each commodity is centrally controlled.
For single-commodity networks the two definitions coincide. A Stackelberg strategy g is called
opt-restricted if ga ≤ oa for all a ∈ A.

Given a Stackelberg strategy g, let ℓ̃a(x) = ℓa(ga + x) for all a ∈ A and let r̃ = r − r′. Then

a flow h is called a Nash flow induced by g if it is a Nash flow for the instance (G, r̃, ℓ̃). Smith
[34, Eq. 9] has proved that the Nash flow h can be characterized by the following variational
inequality : h is a Nash flow induced by g if and only if for all flows x feasible with respect to r̃,
∑

a∈A haℓ̃a(ha) ≤
∑

a∈A xaℓ̃a(ha), or equivalently

∑

a∈A
haℓa(ga + ha) ≤

∑

a∈A
xaℓa(ga + ha). (1)

We will mainly be concerned with the cost of the combined induced flow g + h, given by
C(g + h) =

∑

a∈A(ga + ha)ℓa(ga + ha). In particular, we are interested in bounding the ratio
C(g + h)/C(o), called the price of anarchy.

In the remainder of the paper, we assume that the reader is familiar with the asymptotic
notations O(·), Ω(·) and Θ(·); their definition can be found in any book on the analysis of
algorithms, for example the one by Knuth [20]. We will also use the shorthand [k] := {1, 2, . . . , k}.

3. Limits of Stackelberg Routing

In this section, we prove that there does not exist a Stackelberg strategy that induces a price of
anarchy bounded by a function of α only. More precisely, we show that for any fixed α ∈ (0, 1),
the ratio between the cost of the flow induced by any Stackelberg strategy and the optimum can
be arbitrarily large, even in single-commodity networks.



12 Stackelberg Routing in Arbitrary Networks

x

ℓǫ(x)

r0 r0 + r1
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1−ǫ

Figure 2. The latency function ℓǫ(x) used in the proof of Theorem 3.1.

3.1. Multi-Commodity Networks

We first show this claim for multi-commodity networks. In this case, such a result was already
known to hold for weak Stackelberg strategies [30]; here we prove that it also holds for strong
Stackelberg strategies.

Theorem 3.1. Let M > 0 and α ∈ (0, 1). There is a multi-commodity instance I = (G, r, ℓ, α)
such that, if g is any strong Stackelberg strategy for I inducing a Nash flow h, and o is an
optimal flow for the instance (G, r, ℓ), then C(g + h) ≥M · C(o).

To prove the theorem we will use an instance based on the graph depicted in Figure 1. For a
positive integer k, the graph Gk has 4k + 2 vertices Vk = {s0, t0, s1, t1, p1, q1, . . . , sk, tk, pk, qk}.
The arc set Ak is the union of the following three sets, {(pi, qi) : i ∈ [k]}, {(si, ti) : i ∈ [k]}, and
{(si, pi), (qi, ti), (qi, pi+1) : i ∈ [k]} ∪ {(s0, p1), (qk, t0)}. We call the arcs in these sets of type A,
B, and C respectively (see Figure 1). There are k+ 1 commodities 0, 1, . . . , k. Commodity i has
origin si and destination ti. The demand is r0 := (1−α)/2 for commodity 0, and r1 := (1+α)/2k
for all other commodities; thus, the total demand is r0 + kr1 = 1.

The latency of an arc is determined by its type. Type B arcs have constant latency 1, and
type C arcs have constant latency 0. Type A arcs have latency ℓǫ(x), where the function ℓǫ(x)
is defined as follows:

ℓǫ(x) =

{

0, if x ≤ r0
1− r0+r1−x

(1−ǫ)r1 , if x ≥ r0 + 2ǫr1

Here ǫ is any positive constant such that ǫ < 1−α
1+α . In the interval (r0, r0 + 2ǫr1) the function

ℓǫ is defined arbitrarily so that overall it is a standard and convex function (see also Figure 2).
In particular, ℓǫ(x) ≥ 1− r0+r1−x

(1−ǫ)r1 for all x.

Let us first bound the cost of the optimal flow.

Lemma 3.2. C(o) ≤ 1.

Proof. Consider the flow f̄ where each commodity is routed along the shortest path (in terms of
number of arcs) from origin to destination. The latency on the s0-t0 path is zero, since the load
on each arc of the path is r0 and ℓǫ(r0) = 0. The latency of each other si-ti path is 1. Then
C(o) ≤ C(f̄) = k · r1 = (1 + α)/2 ≤ 1. �
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Proof. Theorem 3.1 For i = 1, 2, . . . , k, let gi be the amount of flow sent by the Stackelberg
strategy over the arc (si, ti). Since the total value of the flow controlled by any Stackelberg

strategy is α, we have
∑k

i=1 gi ≤ α.
The crucial point is that without loss of generality, all the selfish flow induced by g on an

si-ti path, i 6= 0, will be sent along the path (si, pi, qi, ti). Indeed, if the arc (si, ti) contained
some selfish flow hi > 0, the latency of the path (si, pi, qi, ti) would be ℓǫ(r0 + r1 − gi − hi) <
1 = ℓ(si,ti)(gi + hi). But this contradicts the definition of Nash flows. Thus the combined flow
on each (pi, qi) arc is exactly r0 + r1 − gi. Now let P0 be the unique s0-t0 path. We have

ℓP0(g + h) ≥
k∑

i=1

ℓǫ(r0 + r1 − gi) ≥
k∑

i=1

(

1− gi
(1− ǫ)r1

)

≥ k − α

(1− ǫ)r1
=

1

1− ǫ ·
(

1− α
1 + α

− ǫ
)

· k.

The last inequality follows from
∑

i gi ≤ α, and the last equality from r1 = (1+α)/2k. Since

ǫ < 1−α
1+α , we conclude that ℓP0(g + h) = Ω(k). Together with Lemma 3.2, we obtain

C(g + h) ≥ r0 · ℓP0(g + h) = 1
2 · (1− α) · Ω(k) = Ω(k) · C(o).

Thus the ratio of C(g + h)/C(o) can be made arbitrarily large by picking a sufficiently large
k. �

Remark 3.3. We remark that the above proof also works for undirected networks. In these
networks, flow can be sent across an edge in both directions and the aggregated flow of an edge
is defined as the sum of the flows traversing that edge (in either direction). To see that the
lower bound proof still holds, observe that the selfish flow of commodity i ∈ [k] is still routed
along the (si, pi, qi, ti) path. The selfish flow sent from s0 to t0 now has potentially more paths
available than in the directed case. However, it is easy to see that this flow is sent along the
(s0, p1, q1, . . . , pk, qk, t0) path and thus the proof goes through without change. We do not know,
however, whether the lower bound for single-commodity networks presented in the next section
can be extended to undirected networks.

3.2. Single-Commodity Networks

We use the insights gained in the previous section to prove the following, stronger result:

Theorem 3.4. Let M > 0 and α ∈ (0, 1). There is a single-commodity instance I = (G, r, ℓ, α)
such that, if g is any strong Stackelberg strategy for I inducing a Nash flow h, and o is an
optimal flow for the instance (G, r, ℓ), then C(g + h) ≥M · C(o).

Theorem 3.4 extends Theorem 3.1 to single-commodity networks. The main idea behind
the proof is to simulate the instance used in Theorem 3.1 by creating a supersource s and a
supersink t and connecting them to the sources and sinks of the original network (see also Figure
3). If somehow we were able to enforce the s-t flow to split according to the demand vector of
the multi-commodity instance, the result would easily follow as in the proof of Theorem 3.1. In
order to achieve this, we use latency functions that simulate capacities on the arcs connecting the
supersource to the sources and the sinks to the supersink. Although these “capacities” might be
exceeded, we will make sure that if the excess flow is too large, the price of anarchy will already
be large enough for our purposes.

To prove the theorem we use the instance Gk = (Vk, Ak) depicted in Figure 3. For a positive
integer k, the graph Gk has 4k+4 vertices. There is a single commodity (s, t), with unit demand.
Define r0 := (1 − α)/2 and r1 := (1 + α)/2k. Note that the total demand is equal to r0 + kr1.
Every arc is of one of five different types {A,B,C,D,E} as indicated in Figure 3. The latency
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Figure 3. The graph Gk, used in the proof of Theorem 3.4. Arcs are labeled with their type.

of an arc is determined by its type. Type B arcs have constant latency 1, and type C arcs have
constant latency 0. Arcs of type A have the following latency function:

ℓ0(x) =

{

0, if x ≤ r0
1− r0+r1−x

r1
, if x > r0.

Although ℓ0(x) is not differentiable at r0, it can be approximated with arbitrarily small error by
standard functions.

For fixed L and τ , let uL,τ (x) be any standard function satisfying uL,τ (L) = 0 and uL,τ (L+
τ) = M/τ . Type D arcs have latency ur0, δ/3k3(x), and type E arcs have latency ur1, δ/3k3(x).
We will fix the constant δ later in the proof.

Lemma 3.5. C(o) ≤ 1.

Proof. Let P0 be the path (s, s0, p1, q1, p2, . . . , pk, qk, t0, t), and for i ∈ [k], let Pi be the path
(s, si, ti, t). Consider the feasible flow f such that fP0 = r0 and fPi

= r1 for i ∈ [k]. The latency
induced by f is 0 on arcs of type A, C, D, E and 1 on arcs of type B. So C(o) ≤ C(f) = k · r1 =
(1 + α)/2 ≤ 1. �

The following lemma will allow us to focus on the case where the combined flow on type D
and E arcs does not exceed a certain threshold value.

Lemma 3.6. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) If a is a type D arc and ga + ha ≥ r0 + δ/3k3, then C(g + h) ≥M · C(o).
(ii) If a is a type E arc and ga + ha ≥ r1 + δ/3k3, then C(g + h) ≥M · C(o).

Proof. We prove statement (i); the proof for (ii) is similar. We have C(g+h) ≥ (ga+ha) ·ℓa(ga+
ha) = (ga + ha) · ur0, δ/3k3(ga + ha) ≥ (r0 + δ/3k3) ·M/(δ/3k3) ≥ M . The proof follows from
Lemma 3.5. �

For the remainder of the proof we assume that there is no arc satisfying the conditions of
Lemma 3.6; otherwise the theorem follows immediately.

Lemma 3.7. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) For any arc a = (qi−1, pi), i ∈ [k], ga + ha ≥ r0 − δ/k.
(ii) For any arc a = (s, si), i ∈ [k], ga + ha ≥ r1 − δ/k.

Proof. Regarding (i), we will prove by induction on i the stronger claim

ga + ha ≥ r0 − (2i+ 1)δ/3k2.

For i = 1, notice that by Lemma 3.6 the flow along each of (s, s1), . . . , (s, sk) is at most

r1 + δ/3k3, so the flow on (s, s0) must be at least 1 −∑k
i=1

(
r1 + δ/3k3

)
= 1 − kr1 − δ/3k2 =
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from qi−1
pi qi to pi+1

si ti

from s to t

gi + hi

Figure 4. The ith block of the graph Gk.

r0 − δ/3k2. But the flow on (s, s0) is the same as that on arc (s0, p1) = (q0, p1). Notice that
a similar argument allows also to conclude that the flow on each (s, si) arc (i ∈ [k]) is at least
r1 − δ/3k2. This implies (ii) for all i ∈ [k].

To prove (i) for i > 1, consider the ith block in the graph (Figure 4) and let f = g + h. By
flow conservation, f(qi,pi+1) = f(qi−1,pi) + f(s,si) − f(ti,t). Using induction and Lemma 3.6,

f(qi,pi+1) = f(qi−1,pi) + f(s,si) − f(ti,t)

≥ (r0 − (2i − 1)δ/3k2) + (r1 − δ/3k2)− (r1 + δ/3k3) = r0 − (2i+ 1)δ/3k2.

�

We are now ready to conclude the proof of Theorem 3.4.

Proof. Theorem 3.4 For any i ∈ [k], consider the ith block in the graph (Figure 4). Let gi, hi be
the Stackelberg and selfish flow on the arc (si, ti), respectively. We have two cases:

(1) hi = 0: in this case, using Lemma 3.7, the flow on arc (pi, qi) is at least r0− δ/k+ r1−
δ/k − gi. The latency on that same arc is thus at least ℓ0(r0 + r1 − 2δ/k − gi).

(2) hi > 0: in this case, the Nash flow on path P ′i = (s, si, ti, t) is strictly positive. Consider
the path P ′′i = (s, si, pi, qi, ti, t). By definition of Nash flow, ℓP ′′i (g + h) ≥ ℓP ′i (g + h).

Notice that the two paths P ′i , P
′′
i share all their nonzero-latency arcs except for (si, ti)

(only present in P ′i ) and (pi, qi) (only present in P ′′i ). Thus ℓP ′′i (g + h) ≥ ℓP ′i (g + h)

implies ℓ(pi,qi)(g + h) ≥ ℓ(si,ti)(g + h) = 1. As a consequence, ℓ(pi,qi)(g + h) ≥ 1 =
ℓ0(r0 + r1) ≥ ℓ0(r0 + r1 − 2δ/k − gi) since gi and δ/k are nonnegative.

In both cases, ℓ(pi,qi)(g + h) ≥ ℓ0(r0 + r1 − 2δ/k − gi) ≥ 1− gi+2δ/k
r1

.

The latency on the path P0 = (s, s0, p1, q1, . . . , pk, qk, t0, t) is at least

ℓP0(g + h) ≥
k∑

i=1

ℓ(pi,qi)(g + h) ≥
k∑

i=1

(

1− gi + 2δ/k

r1

)

≥ k − α

r1
− 2δ

r1
=

(
1− α− 4δ

1 + α

)

k.

The last inequality is a consequence of the fact that the total Stackelberg flow is α, so
∑

i gi ≤ α.
Choosing δ < (1−α)/4, we can conclude that ℓP0(g+ h) = Ω(k). Together with Lemma 3.5

and Lemma 3.7, this gives

C(g + h) ≥ (r0 − δ/k) · ℓP0(g + h) ≥ (1
2 · (1− α)− δ) · Ω(k) = Ω(k) · C(o).

Thus the ratio C(g+h)/C(o) can be made arbitrarily large by picking a sufficiently large k. �

Remark 3.8. Suppose the Stackelberg leader is solely interested in minimizing the cost of the
flow that he controls, i.e., C1(g + h) =

∑

a∈A gaℓa(ga + ha). Our result also implies that even
the ratio C1(g + h)/C(o) can be unbounded, independent of the Stackelberg strategy g.
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4. Upper Bounds for LLF

The results of the previous section reveal that the price of anarchy of every Stackelberg strategy
is unbounded, even in single-commodity networks. Note that in our proofs we crucially exploit
that the size of the network can be made arbitrarily large. More precisely, we constructed a
family of graphs Gk with n = Θ(k) vertices and m = Θ(k) arcs and showed that the price of
anarchy grows as a function of k. A natural question that arises is whether it is necessary to
expand the network in order to prove an unbounded price of anarchy. Or, said differently, is it
possible to raise the price of anarchy beyond any fixed M > 0 even for constant-size networks
(for instance the Braess graph)?

We answer this question negatively by proving (for any fixed α) an upper bound on the price of
anarchy of O(b(n,m, k)), where b(n,m, k) is some function depending on the number of vertices,
arcs and commodities of the network. The upper bound holds for a particular Stackelberg
strategy, also known as Largest-Latency-First (LLF); see Roughgarden [29] and Swamy [36].
Besides complementing the negative results of the previous section, these are also the first upper
bounds for LLF in general networks that hold for arbitrary latency functions.

LLF works as follows for a given instance I = (G, r, ℓ, α): First compute an optimal flow o
for (G, r, ℓ) and then successively saturate the paths used by o in non-increasing order of their
latencies until we have routed an α fraction of the overall demand. More precisely, we initially

set ga := 0 for all arcs a ∈ A and define the residual demand as ∆ := α∆0 := α
∑k

i=1 ri.
While ∆ is positive, we repeatedly find a path P such that ℓP (o) = maxP :(o−g)P>0 ℓP (o), set
ga := ga + min{∆, (o − g)P } for all arcs a ∈ P , and ∆ := max{0,∆ − (o − g)P }. Since o is an
acyclic flow, the flow g can be computed in polynomial time. Clearly, g is opt-restricted since
ga ≤ oa for every arc a ∈ A by construction. Observe that LLF is a strong Stackelberg strategy.

Consider the instance Ĩ = (G, r̃, ℓ̃) (as defined in Section 2). Recall that ℓ̃a(x) := ℓa(ga + x)

for all a ∈ A. The maximum latency of a flow f is defined as L(f) := maxP∈P:fP>0 ℓ̃P (f).
Let h be a Nash flow, and let omax denote a flow that minimizes the maximum latency. Then
ρL := L(h)/L(omax) denotes the worst-case ratio between the maximum latency of a Nash flow
and the maximum latency of an arbitrary flow. To prove the upper bound, we bound the price of
anarchy induced by LLF in terms of ρL. The upper bound will then follow from the previously
known fact that ρL can be bounded in terms of the network size only [28, 24].

Theorem 4.1. Let I = (G, r, ℓ, α) be a multi-commodity instance with m arcs and let g be the
LLF strategy. Then C(g + h) ≤ (m+ 1

α)ρLC(o).

Proof. Consider the quantity Lg := minP∈P: gP>0 ℓP (o). We claim that

L(h) ≤ ρLL(omax) ≤ ρLL(o− g) ≤ ρLLg.

The first inequality follows from the definition of ρL, the second inequality follows since o− g is
feasible for Ĩ, and the third inequality follows since L(o− g) ≤ Lg by the definition of LLF.

We further observe that

α∆0 L
g ≤

∑

P∈P

gP ℓP (o) =
∑

a∈A
gaℓa(oa) ≤ C(o).
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The first inequality follows from the definition of Lg, while the second is trivially valid, since g
is opt-restricted. We are now ready to bound the cost C2 of the followers:

C2(g + h) :=
∑

a∈A
haℓa(ga + ha) =

∑

P∈P

hP ℓ̃P (h)

≤ L(h)
∑

P∈P

hP = (1− α)∆0 L(h)

≤ (1− α)∆0 ρLL
g ≤ 1− α

α
ρLC(o).

For bounding the cost C1 of the Stackelberg leader, we partition the set of arcs into A1 := {a ∈
A : ha > 0} and A2 := {a ∈ A : ha = 0}. Then,

C1(g + h) :=
∑

a∈A
gaℓa(ga + ha) =

∑

a∈A1

gaℓa(ga + ha) +
∑

a∈A2

gaℓa(ga + ha)

≤
∑

a∈A1

gaℓa(ga + ha) + C(o)

≤ |A1|α∆0 L(h) + C(o) ≤ mρLC(o) + C(o) = (mρL + 1)C(o).

Combining the bounds for C1 and C2 yields

C(g + h) ≤
((

m+
1

α
− 1

)

ρL + 1

)

C(o).

As ρL ≥ 1, the theorem is proved. �

Corollary 4.2. Let I = (G, r, ℓ, α) be a single-commodity instance with n vertices and m arcs,
and let g be the LLF strategy. Then C(g + h) ≤ (n− 1)(m+ 1

α )C(o).

Proof. Roughgarden [28] proves that ρL ≤ n− 1 for single-commodity instances with n vertices.
�

Corollary 4.3. Let I = (G, r, ℓ, α) be a multi-commodity instance with n vertices, m arcs and
k commodities, and let g be the LLF strategy. Then C(g + h) ≤ b(n,m, k)(m + 1

α )C(o), where

b(n,m, k) = 2O(min{kn,m logn}).

Proof. Lin et al. [24] prove that ρL = 2O(min{kn,m logn}) for any multi-commodity instance with
n vertices, m arcs and k commodities. �

5. A Bicriteria Bound for General Latency Functions

As we have seen in the previous sections, no Stackelberg strategy controlling a constant fraction
of the traffic can reduce the price of anarchy to a constant, even if we consider single-commodity
networks. In light of this negative result, we therefore compare the cost of a Stackelberg strategy
on an instance I = (G, r, ℓ, α) to the cost of an optimal flow for the instance Iβ = (G,βr, ℓ) in
which the demand vector has been scaled up by a factor β > 1.

We propose the following simple Stackelberg strategy, which we term Augmented SCALE
(ASCALE):

(1) Compute an optimal flow oβ for the instance Iβ.
(2) Define the Stackelberg flow by g := α

β o
β .

We prove that the resulting flow induced by the Stackelberg strategy ASCALE satisfies C(g+h) ≤
C(oβ) if we choose β = 1 +

√
1− α. This result can be seen as a generalization of the result by

Roughgarden and Tardos that the cost of a Nash flow is always less than or equal to the cost of
the optimal flow for an instance in which demands have been doubled [32]. Our bound gives a
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smooth transition from absence of centralized control (where doubling the demands is sufficient)
to completely centralized control (where no augmentation is necessary).

Lemma 5.1. If g is the ASCALE strategy, C(g + h) ≤∑a∈A
1
β o

β
aℓa(ga + ha).

Proof. Consider the flow (1 − α)g/α; it is a flow feasible with respect to (1 − α)r. Using the
variational inequality (1), we get

∑

a∈A
haℓa(ga + ha) ≤

1− α
α

∑

a∈A
gaℓa(ga + ha).

Adding
∑

a gaℓa(ga + ha) to both sides and using g = α
β o

β proves the lemma. �

Theorem 5.2. If g is the ASCALE strategy, C(g + h) ≤ 1
β−1 ·

(
1 − α

β

)
· C(oβ). Furthermore,

this bound is tight.

Proof. We first show that for every arc a ∈ A,

oβaℓa(ga + ha) ≤ (ga + ha) ℓa(ga + ha) +
(

1− α

β

)

oβaℓa(o
β
a). (2)

There are two cases. When ga + ha ≥ oβa , the inequality holds simply because its left hand side

is upper bounded by the first summand of the right hand side. Otherwise, if oβa > ga + ha, we
obtain

oβaℓa(ga + ha) ≤
(
ga + ha + oβa − ga

)
ℓa(ga + ha) = (ga + ha) ℓa(ga + ha) +

(

1− α

β

)

oβaℓa(ga + ha)

≤ (ga + ha) ℓa(ga + ha) +
(

1− α

β

)

oβaℓa(o
β
a).

Summing (2) over all a ∈ A, we obtain

∑

a∈A
oβaℓa(ga + ha) ≤ C(g + h) +

(

1− α

β

)

C(oβ).

Invoking Lemma 5.1 we get

β · C(g + h) ≤
∑

a∈A
oβaℓa(ga + ha) ≤ C(g + h) +

(

1− α

β

)

C(oβ).

Solving for C(g + h) now gives the bound as claimed. The bound is also tight, as can be seen
by considering a slightly modified Pigou instance. �

Corollary 5.3. Let β = 1 +
√

1− α. If g is the ASCALE strategy, then C(g + h) ≤ C(oβ).

For a given instance I = (G, r, ℓ, α), the SCALE strategy is defined as g = αo, where o is an
optimal flow for (G, r, ℓ). The next theorem shows that our result for ASCALE has a consequence
for the SCALE strategy as well.

Theorem 5.4. Let g = αo be the SCALE strategy for instance I = (G, r, ℓ, α). Define a

modified instance Î = (G, r, ℓ̂, α) with latency functions ℓ̂a(x) = ℓa(x/β)/β for every arc a,

where β = 1 +
√

1− α, and let Ĉ(·) denote the cost of a flow with respect ℓ̂. Let ĥ be the Nash

flow induced by ĝ = g in Î. Then, Ĉ(ĝ + ĥ) ≤ C(o).

Proof. Observe that the SCALE strategy for I can be obtained by computing the ASCALE
strategy for I1/β := (G, r/β, ℓ, α) and scaling it up by a factor of β; that is, ĝ = βg, where g is
the ASCALE strategy for I1/β. Let h be the Nash flow induced by g in I1/β. By the variational
inequality (1),

∑

a∈A
haℓa(ga + ha) ≤

∑

a∈A
yaℓa(ga + ha) (3)
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for any flow y feasible for (1− α)r/β. Since ℓa(x/β)/β = ℓ̂a(x), we can rewrite (3) as
∑

a

(βha)ℓ̂a(ĝa + βha) ≤
∑

a

(βya)ℓ̂a(ĝa + βha).

This implies that βh is a Nash flow induced by ĝ in Î. Since the cost of Nash flows is unique,

Ĉ(ĝ+ βh) = Ĉ(ĝ+ ĥ). Finally, since Ĉ(βx) = C(x) for any flow x, we can conclude Ĉ(ĝ + ĥ) =

Ĉ(β(g + h)) = C(g + h) ≤ C(o) where the inequality follows from Corollary 5.3. �

A class of latency functions that are of high practical relevance are so-called M/M/1 latency
functions (see also [32]). These functions are of the form ℓa(x) = 1/(ua−x), where ua intuitively
represents the capacity of arc a. Theorem 5.4 has a particularly nice interpretation in this case:
The modified latency functions are ℓ̂a(x) = ℓa(x/β)/β = 1/(β(ua − x/β)) = 1/(βua − x). In a
purely selfish scenario, Theorem 5.4 therefore implies that to beat optimal routing it is sufficient
to double the capacity of every arc. This has been observed before by Roughgarden and Tardos
[32]. In the Stackelberg scenario, Theorem 5.4 shows that it is sufficient to increase the capacities
by a factor of 1 +

√
1− α if the SCALE strategy is used.

6. Bounds for Specific Classes of Latency Functions

In this section, we first present a general approach, which we call λ-approach, to analyze the
price of anarchy of opt-restricted Stackelberg strategies. We then use the λ-approach to derive
bounds on the price of anarchy of the SCALE strategy for a general class of latency functions,
including polynomial latency functions with nonnegative coefficients.

6.1. λ-Approach

We start by proving an upper bound on the cost of the combined flow induced by an opt-restricted
Stackelberg strategy.

Lemma 6.1. For any opt-restricted strategy g, C(g + h) ≤∑a∈A oaℓa(ga + ha).

Proof. The proof follows immediately by applying the variational inequality (1) with x = o −
g. �

For any latency function ℓa and nonnegative numbers ga, λ, we define the following nonneg-
ative value:

ω(ℓa; ga, λ) := sup
oa,ha≥0

oa
ga + ha

· ℓa(ga + ha)− λℓa(oa)
ℓa(ga + ha)

. (4)

(We assume by convention 0/0 = 0.) In order to bound the price of anarchy, we use the variational
inequality (Lemma 6.1) and bound the cost of the induced flow on every arc by some λ-fraction
of the optimal cost plus some ω-fraction of the cost of the induced flow itself:

C(g + h) =
∑

a∈A
(ga + ha)ℓa(ga + ha) ≤

∑

a∈A
λ · oaℓa(oa) + ω(ℓa; ga, λ) · (ga + ha)ℓa(ga + ha). (5)

Now, the idea is to determine a λ that provides the tightest bound possible. Choosing λ = 1,
the above approach resembles the one that was previously used by Correa, Schulz, and Stier-
Moses [6] to bound the price of anarchy of network routing games; however, optimizing over
the parameter λ provides an additional means to obtain better bounds. The idea of introducing
the scaling parameter λ was first introduced in the context of bounding the price of anarchy in
atomic congestion games (see Harks [14]).

For a given opt-restricted strategy g we further define ω(g, λ) = maxa∈A ω(ℓa; ga, λ). Before
we state the main theorem, we need one additional definition.
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Definition 6.2. Given an opt-restricted strategy g, the feasible λ-region is Λ(g) := {λ ∈R+ |ω(g, λ) < 1}.
Notice that every λ ∈ Λ(g) induces a bound on the price of anarchy.

Theorem 6.3. Let λ ∈ Λ(g). Then C(g + h) ≤ λ
1−ω(g,λ)C(o).

Proof. The proof follows immediately from (5), Lemma 6.1 and the definition of ω(g, λ). �

6.2. Bounds for SCALE

In the following, we will analyze the SCALE strategy defined by g = αo.

Definition 6.4. Let Ld be a class of continuous, nondecreasing, and standard latency functions
satisfying

ℓ(c z) ≥ cdℓ(z) ∀c ∈ [0, 1]. (6)

Ld contains, among others, polynomials with nonnegative coefficients and degree at most d.
This characterization has been used before by Correa et al. [6].

6.2.1. SCALE: Latency Functions in L1

We first consider latency functions that are in L1. In particular, this class contains continuous,
nondecreasing, standard, and concave latencies.

Lemma 6.5. Assume λ ∈ [0, 1] and latency functions in L1. Then,

ω(αo, λ) ≤ max

{
1

α
(1− λ),

1

4λ

}

.

Proof. By the definition of ω = ω(ℓa;αoa, λ):

ω = sup
oa,ha≥0

oa
α oa + ha

· ℓa(α oa + ha)− λℓa(oa)
ℓa(α oa + ha)

.

We consider two cases: (i) α oa + ha ≥ oa. In this case, we define µ := oa

αoa+ha
∈ [0, 1]. Then, we

have

ω = sup
oa,ha≥0,µ∈[0,1]

µ · ℓa(α oa + ha)− λℓa(µ (α oa + ha))

ℓa(α oa + ha)
≤ max

µ∈[0,1]
µ (1− λµ) = 1

4λ ,

where the last inequality follows from the definition of L1. The second case (ii) α oa + ha ≤ oa
leads to

ω ≤ sup
oa,ha≥0

oa
αoa + ha

· ℓa(α oa + ha)− λℓa(α oa + ha)

ℓa(α oa + ha)
≤ sup

oa,ha≥0

oa
α oa + ha

(1− λ) ≤ 1

α
(1− λ),

where the first inequality is valid since latencies are nondecreasing. �

We are now prepared to derive an upper bound on the price of anarchy.

Theorem 6.6. The price of anarchy of the SCALE strategy for latency functions in L1 is at
most

(1 +
√

1− α)2

2(1 +
√

1− α)− 1
.

Proof. Let λ = 1
2(1 +

√
1− α). Then, by Lemma 6.5, ω(αo, λ) ≤ 1

2(1+
√

1−α)
< 1 and thus

λ ∈ Λ(αo). The proof now follows from Theorem 6.3. �
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Figure 5. Lower bound for arbitrary Stackelberg strategies vs. upper bound of SCALE for
linear latency functions (left) and the respective ratio (right).

Note that the same bound has been proven by Karakostas and Kolliopoulos [18] for the
special case of affine latencies. We next present a family of instances that pointwise match the
upper bound of Theorem 6.6 for infinitely many values of α. More precisely, the lower bound is
matched for all values of α such that 1/

√
1− α is an integer. To the best of our knowledge, this

is the first tight bound for values of α 6= 0, 1.

Theorem 6.7. Let n ≥ 2 be an integer and let c = 1− (n− 1)α/n. Then, the price of anarchy
of the SCALE strategy for latency functions in L1 is at least

nc2 + (n− 1)αc

(n − 1)c + 1/n

Moreover, for all α = 1 − 1/k2, with k a positive integer, there exists an n such that the
corresponding bound matches the upper bound of Theorem 6.6.

Proof. We use the instance depicted in Figure 6. (Similar networks have been used in other
constructions as well [1, 31].) There is a single commodity (s, t) with unit demand. In the
optimal flow the demand is split evenly among the paths (s, pi, qi, t), i ∈ [n]. The resulting cost
is C(o) = (n− 1)c+ 1/n.

The SCALE strategy sends a flow of value α/n along each direct path (s, pi, qi, t), i ∈
[n]. Due to the condition c = 1 − (n − 1)α/n, the Nash flow is sent along the zigzag path
(s, p1, q1, p2, . . . , pn, qn, t). Thus, the cost of the combined flow g + h is given by

C(g + h) = n
(

1− n− 1

n
α
)2

+ (n − 1)αc = nc2 + (n− 1)αc

and the bound follows.
To see that the bound is tight when α = 1 − 1/k2, pick n = k + 1 = 1 + 1/

√
1− α. After

substituting the expressions for n and c into the bound and appropriate rewriting we obtain the
same expression as in Theorem 6.6. �

We show that there exist instances such that no Stackelberg strategy can achieve a price of
anarchy better than (4 − 2α + α2)/3 for linear latency functions. That is, the upper bound on
the price of anarchy of SCALE for latency functions in L1 (Theorem 6.6) is almost best possible
(see Figure 5 for a comparison of the lower bound for arbitrary Stackelberg strategies and the
upper bound of SCALE).



22 Stackelberg Routing in Arbitrary Networks

s t

p1

p2

pn−1

pn

q1

q2

qn−1

qn

. . .

0

c

(n − 2)c

(n − 1)c

(n − 1)c

(n − 2)c

c

0

x
0

x

x

0
x

s t

a

b

x

1

1

x

0

Figure 6. (a) Generalized Braess instance used in the proof of Theorem 6.7. (b) Braess in-
stance. Arcs are labeled with their latency function.

Theorem 6.8. There is an instance I = (G, r, ℓ, α) with linear latency functions such that if g
is an arbitrary Stackelberg strategy for I inducing a Nash flow h, and o is an optimal flow for
the instance (G, r, ℓ), then C(g + h) ≥ (4− 2α+ α2)/3 · C(o).

Consider the Braess instance (Figure 6(b)) and suppose we send one unit of flow from s to t.
Let g1, g2 and g3 be the flow that the Stackelberg leader sends on the upper, zig-zag and lower
path, respectively. Note that g3 = α− g1− g2. Analogously, let h1, h2 and h3 be the flow values
on the respective paths of the selfish flow induced by g.

We first prove the following lemma:

Lemma 6.9. Let g be an arbitrary Stackelberg strategy. The selfish flow h induced by g then
satisfies h1 = h3 = 0.

Proof. The latency of the zig-zag path is ℓ2 = g1 + 2g2 + g3 + h1 + 2h2 +h3 = 1 + g2 + h2, where
we exploit that g3 = α − g1 − g2 and h3 = (1 − α) − h1 − h2. The latencies of the upper and
lower paths are ℓ1 = g1 + g2 + h1 + h2 + 1 and ℓ3 = 1 + g2 + g3 + h2 + h3, respectively. Note
that ℓ1 ≥ ℓ2 and ℓ3 ≥ ℓ2, independently of the choice of h2. Since the selfish flow is routed on
minimum latency paths, we must have h1 = h3 = 0 and h2 = (1− α). �

Proof. Theorem 6.8 The cost of an optimal flow o for the Braess instance is C(o) = 3/2. Consider
the cost of the combined flow g + h. Using Lemma 6.9, we obtain

C(g + h) =
(
g1 + g2 + (1− α)

)2
+
(
g2 + g3 + (1− α)

)2
+ g3 + g1

=
(
g1 + g2 + (1− α)

)2
+
(
1− g1

)2
+ α− g2.

This expression is minimized if g1 = α/2 and g2 = 0; i.e., SCALE is the best strategy in this
case. We obtain

C(g + h)

C(o)
≥ 2

((
α/2 + (1− α)

)2
+
(
1− α/2

)2
+ α

)

3
=

4− 2α + α2

3
.

�

Since computing the best Stackelberg strategy is NP-hard [29], one may want to devise
Stackelberg strategies that are efficiently computable and achieve a good approximation ratio.
We say that a Stackelberg strategy g achieves an approximation ratio of c ≥ 1 iff for every
instance the cost of the (combined) flow induced by g is at most c times the cost of the (combined)
flow induced by any other Stackelberg strategy. In this context, the following corollary follows
immediately from Theorem 6.6 and Theorem 6.8.
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Figure 7. Upper vs. lower bounds for SCALE for polynomial latency functions of degree two
(left) and three (right). The plots also show the previously best upper bound by Swamy [36].

Corollary 6.10. The approximation ratio that the SCALE strategy achieves for latency func-
tions in L1 is at most

2− α+ 2
√

1− α
1 + 2

√
1− α · 3

4− 2α+ α2
< 1.12.

6.2.2. SCALE: Latency Functions in Ld
Next, we consider the class Ld of continuous, nondecreasing, and standard latency functions
with d ≥ 1. The proof of the following lemma proceeds along the same lines as the proof of
Lemma 6.5.

Lemma 6.11. Assume λ ∈ [0, 1] and latency functions in Ld. Then,

ω(αo, λ) ≤ max

{
1

α
(1− λ),

d

d+ 1
· 1

((d+ 1)λ)1/d

}

.

Proof. The proof proceeds along the same lines as the proof of Lemma 6.5. The only difference
is the first part: (i) α oa + ha ≥ oa. As before, we define µ := oa

αoa+ha
∈ [0, 1]. We have

ω = sup
oa,ha≥0,µ∈[0,1]

µ · ℓa(α oa + ha)− λℓa(µ (α oa + ha))

ℓa(α oa + ha)

≤ max
µ∈[0,1]

µ (1− λµd) =
d

d+ 1
· 1

((d+ 1)λ)1/d
.

�

Lemma 6.12. There is a unique λ ∈ (0, 1), call it λd, such that

1

α
(1− λ) =

d

d+ 1
· 1

((d+ 1)λ)1/d
.

Then, λd = zdd/(d+1), where zd ≥ 1 is the unique solution to the equation zd+1−(d+1)z+αd = 0.

Proof. Substituting λ = zdd/(d + 1) in the starting equation and rewriting yields zd+1 − (d +
1)z +αd = 0. To verify that this equation has indeed exactly one solution larger than 1, use for
example Descartes’ rule of signs. �

We are now ready to prove an upper bound for functions in Ld.
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Theorem 6.13. The price of anarchy of the SCALE strategy for latency functions in the class
Ld is at most

(d+ 1)zd − αd
(d+ 1)zd − d

,

where zd ≥ 1 is the unique solution of the equation zd+1 − (d+ 1)z + αd = 0.

Proof. We will use Theorem 6.3 with λ = λd. However, in order to apply the theorem, we first
need to upper bound ω(αo, λd). Using Lemma 6.11 and Lemma 6.12, we know that

ω(αo, λd) ≤
d

d+ 1
· ((d+ 1)λd)

−1/d =
d

d+ 1
· z−1
d < 1.

This implies λd ∈ Λ(αo) and we can invoke Theorem 6.3 to obtain a bound on the price of
anarchy given by

λd
1− ω(αo, λd)

≤ zdd/(d + 1)

1− d
d+1z

−1
d

=
zd+1
d

(d+ 1)zd − d
=

(d+ 1)zd − αd
(d+ 1)zd − d

.

�

A lower bound for polynomial latency functions of degree d can be obtained by generalizing
the construction used in Theorem 6.7. We use again the network of Figure 6(a), except that we
replace everywhere the latency function x by xd and the constant c by (1 − (n − 1)α/n)d. The
optimal flow is still split evenly on the direct paths, so that with similar arguments we obtain
the following lower bound.

Theorem 6.14. Let n ≥ 2 be an integer and let c = (1 − (n − 1)α/n)d. Then, the price of
anarchy of the SCALE strategy for latency functions in the class Ld is at least

nc1+1/d + (n− 1)αc

(n− 1)c+ n−d
.

Notice that the theorem does not fix n, so it is possible to optimize n based on α as in
Theorem 6.7. For polynomial latency functions of degree two and three, we compare in Figure 7
the lower bound thus obtained with the upper bound of Theorem 6.13 and also indicate the
improvement with respect to the previously best bounds obtained by Swamy [36].
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Abstract. We study the impact of collusion in network games with splittable flow and focus on
the well established price of anarchy as a measure of this impact. We first investigate symmetric
load balancing games and show that the price of anarchy is at most m, where m denotes the
number of coalitions. For general networks, we present an instance showing that the price of
anarchy is unbounded, even in the case of two coalitions. If latencies are restricted to polynomials
with nonnegative coefficients and bounded degree, we prove upper bounds on the price of anarchy
for general networks, which improve upon the current best ones except for affine latencies.

In light of the negative results even for two coalitions, we analyze the effectiveness of Stack-
elberg strategies as a means to improve the quality of Nash equilibria. In this setting, an α
fraction of the entire demand is first routed centrally by a Stackelberg leader according to a pre-
defined Stackelberg strategy and the remaining demand is then routed selfishly by the coalitions
(followers).

For a single coalitional follower and parallel arcs, we develop an efficiently computable Stack-
elberg strategy that reduces the price of anarchy to one. For general networks and a single
coalitional follower, we show that a simple strategy, called SCALE, reduces the price of anarchy
to 1+α . Finally, we investigate SCALE for multiple coalitional followers, general networks, and
affine latencies. We present the first known upper bound on the price of anarchy in this case.
Our bound smoothly varies between 1.5 for α = 0 and full efficiency for α = 1.

1. Introduction

Over the past years, the impact of the behavior of selfish, uncoordinated users in congested
networks has been investigated intensively in the theoretical computer science and operations
research literature. In this context, network routing games have proved to be a reasonable means
of modeling selfish behavior in networks. The basic idea is to model the interaction of selfish
network users as a noncooperative game. We are given a directed graph with latency functions on
the arcs and a set of origin-destination pairs, called commodities. Every commodity is associated

27
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with a demand, which specifies the rate of flow that needs to be sent from the respective origin to
the destination. In the nonatomic variant, every demand represents a continuum of agents, each
controlling an infinitesimal amount of flow. The latency that an agent experiences to traverse an
arc is given by a (non-decreasing) function of the total flow on that arc. Agents are assumed to act
selfishly and route their flow along a minimum-latency path from their origin to the destination;
a solution in which no agent can switch to a path with smaller travel time corresponds to a
Wardrop equilibrium [37, 15].

Koutsoupias and Papadimitriou [24] initiated the investigation of the efficiency loss caused by
selfish behavior. They introduced a measure to quantify the inefficiency of Nash equilibria which
they termed the price of anarchy. The price of anarchy is defined as the worst-case ratio of the
cost of a Nash equilibrium over the cost of a system optimum. In a seminal work, Roughgarden
and Tardos [34] showed that the price of anarchy for network routing games with nonatomic
players and linear latency functions is 4/3; in particular, this bound holds independently of the
underlying network topology. The case of more general families of latency functions has been
studied by Roughgarden [29] and Correa, Schulz, and Stier-Moses [12]. (For an overview of these
results, we refer to the book by Roughgarden [31].) Despite these bounds for specific classes of
latency functions, it is known that the price of anarchy for general latency functions is unbounded
even on simple parallel-arc networks [34].

In this paper, we study nonatomic network games in which the agents are partitioned into
a (in)finite number of sets, which we interprete (and term) as coalitions of agents. We allow
that agents of different commodities may belong to the same coalition and further assume that
every coalition aims at minimizing the average delay experienced by this coalition. In this
setting, we study the worst case efficiency (price of anarchy) of Nash equilibria: stable points,
where no coalition can unilaterally improve its cost by rerouting its flow. While the model
under consideration (also known as atomic splittable flow games) has been studied by many
researchers, see among others Cominetti et al. [11], Hayrapetyan et al. [20], Korilis et al.[23], and
Roughgarden and Tardos [34], several intriguing open questions still persist.

Cominetti et al. [11] discovered that the price of anarchy in these games may exceed that
of corresponding nonatomic games without coalitions. More precisely, Cominetti et al. [11]
presented an instance showing that for polynomial latency functions of degree d, the price of
anarchy grows as Ω(d). On the positive side, they presented upper bounds of 1.5, 2.56, and 7.83,
for polynomial latency functions of degree d = 1, 2, 3, respectively. For polynomials of larger
degree, the previously best known upper bound is O(2d dd+1), which is due to Hayrapetyan et
al. [20].

1.1. Our Results

We investigate nonatomic network routing games with coalitions. Our contribution in this setting
is the following:

(1) First, we consider symmetric load balancing games, that is, we are given parallel arcs
that connect a common source and a common sink. For this setting, we show that the
price of anarchy is at most m, where m denotes the number of coalitions. This result
holds for arbitrary convex latencies and is related to a previous result of Cominetti et
al. [11], who showed that for single-commodity network games with m coalitions each of
which controlling the same amount of flow is at most m. Our result is a generalization
in the sense that we do not require that the flow is evenly distributed among coalitions.
On the other hand, our result is more restrictive as it only holds for parallel arcs.

(2) We then investigate the efficiency of Nash equilibria for general networks. We show
that the price of anarchy in such games is unbounded, even for two coalitions. For
semi-convex latency functions, we derive a generic upper bound on the price of anarchy
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using a variational inequality approach. We further show that if the class of allowable
latencies is restricted to polynomials with nonnegative coefficients and maximum degree

d, the price of anarchy is at most d
√
d for d ≥ 4. Our bounds improve upon all previous

known bounds, except for affine latencies, i.e., d = 1. For an overview of our bounds,
we refer to Table 1.

Due to the large efficiency loss of Nash equilibria, researchers have proposed different ap-
proaches to reduce the price of anarchy in network routing games. One of the most promising
approaches is the use of Stackelberg routing, see [23, 30]. In this setting, it is assumed that a
fraction α ∈ [0, 1] of the entire demand is controlled by a central authority, termed Stackelberg
leader, while the remaining demand is controlled by the selfish players, also called the followers.
In a Stackelberg game, the Stackelberg leader first routes the centrally controlled flow according
to a predetermined policy, called the Stackelberg strategy, and then the remaining demand is
routed by the selfish followers. The aim is to devise Stackelberg strategies so as to minimize the
price of anarchy of the resulting combined flow.

(3) In light of the negative results that hold even for only two coalitions, we investigate
Stackelberg strategies as a way to improve the quality of Nash equilibria. Recently,
Bonifaci et al. [6] showed that for nonatomic followers and single commodity networks,
no Stackelberg strategy can reduce the price of anarchy to a constant. This result, how-
ever, does not rule out the existence of a Stackelberg strategy inducing a constant price
of anarchy, when the number of coalitional followers is small. For a single coalitional
follower, parallel arcs and semi-convex latencies, we develop an efficiently computable
Stackelberg strategy (called SFS) that reduces the price of anarchy to one. For gen-
eral networks, semi-convex latencies and a single coalitional follower, we prove that the
SCALE strategy (see Roughgarden [30]) reduces the price of anarchy to 1 + α. This
result holds for convex latencies and general networks.

(4) Finally, we consider general networks and multiple coalitional followers. For affine linear
latencies, we prove that the SCALE strategy yields an upper bound on the price of
anarchy, which smoothly varies between the best known bound on the price of anarchy
of 1.5 when α = 0 and full efficiency when α = 1.

1.2. Applications

There are numerous applications that can be interpreted as a network routing game with coali-
tions. Here, we focus on highlighting only a few (as we find) particularly interesting ones.

In recent years, the number of traffic participants that use a navigation device has increased
significantly. Already nowadays, navigation systems feature bidirectional data communication
which, among other services, opens the possibility to transmit the current location of a customer
to a central server of the service provider (see, e.g., [26]). This way, the current traffic situation
can be monitored accurately in real-time (given that a sufficient number of traffic participants
are using this technology). Based on this data, the service provider can provide a better route
guidance, e.g., in the case of traffic congestion, by centrally computing routes for their customers
which are then communicated back to the respective navigation devices. A natural objective
that the service provider might want to achieve in order to provide a good quality of service is to
minimize the average travel time of their customers. This scenario can be modeled as nonatomic
network game with coalitions, where the members of coalition are the customers of a specific
service-provider.

One important application of Stackelberg routing is the routing of Internet traffic within the
domain of an Internet service provider, see also Sharma and Williamson [35]. Here, the Internet
service provider centrally controls a fraction of the overall traffic traversing its domain, while
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the remaining traffic is controlled by other service providers. In this setting, a natural goal for a
service provider is to devise routes to the centrally controlled flow so as to minimize the overall
delay in its domain. Our results for the Stackelberg strategies SCALE and SFS provides the
Internet service provider with efficient algorithms to compute routes for the centrally controlled
traffic.

1.3. Related Work

Awerbuch et al. [3], Christodoulou and Koutsoupias [10], and Aland et al. [1] derived tight bounds
on the price of anarchy for weighted and unweighted congestion games with polynomial latency
functions. These works, however, did not study the impact of coalitions on the price of anarchy.

Closer to our work are the papers by Hayrapetyan et al. [20] and Cominetti et al. [11].
The former presented a general framework for studying congestion games with colluding players.
Their goal is to investigate the price of collusion: the factor by which the quality of Nash equilibria
can deteriorate when coalitions form. Their results imply that for symmetric nonatomic load
balancing games with coalitions the price of anarchy does not exceed that of the game without
coalitions. For weighted congestion games with coalitions and polynomial latencies they proved
upper bounds of O(2d dd+1), where d denotes the degree of the considered polynomials. They
also presented examples showing that in discrete (atomic) network games, the price of collusion
may be strictly larger than 1, i.e., coalitions may strictly increase the social cost.

Cominetti et al. [11] studied the atomic splittable selfish routing model in which the flow of
every commodity forms a coalition (atomic player). Thus, this model can be incorporated as a
special case of nonatomic network congestion games with arbitrary coalitions. They observed that
the price of anarchy of this game may exceed that of the standard nonatomic selfish routing game
without coalitions. Based on the work of Catoni and Pallotino [9], they presented an instance
with affine latency functions in which the price of anarchy is 1.34. Using a variational inequality
approach, they presented bounds on the price of anarchy for linear and polynomial latency
functions of degree two and three of 1.5, 2.56, and 7.83, respectively. As noted by Cominetti et
al., these positive bounds directly carry over to the case of nonatomic network congestion games
with arbitrary coalitions (considered in this paper), since the variational inequalities are still
valid in this more general model. For polynomials of larger degree, their approach does not yield
bounds. For single commodity networks with symmetric demands (every coalition controls the
same amount of flow), Cominetti et al. [11] proved an upper bound of m on the price of anarchy.

Altman et al. [2] proved for monomial latency functions and single commodity networks that
there is a Nash flow, which is optimal. They also derived conditions under which Nash equilibria
are unique. Uniqueness of Nash equilibria has been further studied by Fleischer et al. [4] and
Orda et al. [27].

Haurie and Marcotte [19] presented a general framework for studying atomic splittable net-
work games with elastic demands. They characterized the relationship between nonatomic and
atomic splittable network games. Haurie and Marcotte, however, do not study the efficiency of
Nash equilibria with respect to an optimal solution.

Fotakis, Kontogiannis, and Spirakis [17] studied algorithmic issues in the setting of atomic
congestion games with coalitions and unsplittable flows. They proved upper bounds on the
price of anarchy, where the cost of a coalition is defined as the maximum latency, see also the
KP-model [24].

The idea of using Stackelberg strategies to improve the performance of a system was first
proposed by Korilis et al. [23]. The authors identified necessary and sufficient conditions for
the existence of Stackelberg strategies that induce a system optimum; their model also considers
atomic splittable followers. In particular, they showed that for a single atomic splittable follower,



2 The Model 31

parallel arcs, and M/M/1 latencies, there exists an optimal Stackelberg strategy that reduces
the price of anarchy to one.

Roughgarden [30] proposed some natural Stackelberg strategies, e.g., SCALE and Largest-
Latency-First (LLF). For parallel-arc networks he showed that the price of anarchy for LLF is
bounded by 4/(3 + α) and 1/α for linear and arbitrary latency functions, respectively. Both
bounds are best possible. Moreover, he also proved that it is NP-hard to compute the best
Stackelberg strategy. Kumar and Marathe [25] gave a PTAS to compute the best Stackelberg
strategy for the case of parallel-arc networks. Karakostas and Kolliopoulos [22] proved upper
bounds on the price of anarchy for SCALE and LLF. Their bounds hold for arbitrary multi-
commodity networks and linear latency functions. Swamy [36] obtained upper bounds on the
price of anarchy for SCALE and LLF for polynomial latency functions. He also proved a bound of
1 + 1/α for single-commodity, series-parallel networks with arbitrary latency functions. Bonifaci
et al. [6] proved that even for single-commodity networks no Stackelberg strategy can induce a
bounded price of anarchy for any α ∈ (0, 1). On the positive side, they proved that LLF induces
an upper bound on the price of anarchy, which only depends on the size of the network (number
of vertices, arcs and commodities). They also derived almost tight bounds for SCALE and poly-
nomial latencies. Correa and Stier-Moses [14] proved, besides some other results, that strategies
in which the Stackelberg leader sends no more flow on every edge than the system optimum, does
not increase the price of anarchy. Sharma and Williamson [35] considered the problem of deter-
mining the smallest value of α such that the price of anarchy can be improved. They obtained
results for parallel-arc networks and linear latency functions. Kaporis and Spirakis [21] studied a
related question of finding the minimum demand that the Stackelberg leader needs to control in
order to enforce an optimal flow. Given that the Stackelberg leader controls a sufficiently large
fraction of the overall demand, they also showed that one can efficiently compute the optimal
Stackelberg strategy. Finally, Fotakis [16] studied Stackelberg routing with unsplittable flows
and proved (among other results) that the 1/α bound for parallel links still holds.

2. The Model

In a network routing game, we are given a directed network G = (V,A) and k origin-destination
pairs (s1, t1), . . . , (sk, tk) called commodities. We will use the shorthand [k] := {1, 2, . . . , k}. For
every commodity i ∈ [k], a demand ri > 0 is given that specifies the amount of flow with origin
si and destination ti. Let Pi be the set of all paths from si to ti in G and let P = ∪iPi. A flow
is a function f : P → R+, and we denote by fP = f(P ) the amount of flow that is send along
path P . The flow f is feasible (with respect to r) if for all i,

∑

P∈Pi
fP = ri.

For a given flow f , we define the flow on an arc a ∈ A as fa =
∑

P∋a fP . Moreover, each arc
a ∈ A has an associated load-dependent latency denoted by ℓa(·). For each a ∈ A, the latency
function ℓa is assumed to be nonnegative, nondecreasing and differentiable. We also assume that
ℓa is defined on [0,∞) and that x ℓa

(
x) is a convex function of x. Such functions are called

semi-convex or standard [29]. The latency of a path P with respect to a flow f is defined as the
sum of the latencies of the arcs in the path, denoted by ℓP (f) =

∑

a∈P ℓa(fa). The total cost of
a flow f is C(f) =

∑

a∈A faℓa(fa). The feasible flow of minimum total cost is called optimal. We
will denote the optimal flow by o.

In a nonatomic network game, infinitely many agents are carrying the flow rate and each
agent controls only an infinitesimal fraction of the demand. The continuum of agents of type j
(traveling from sj to tj) is represented by the interval [0, rj ]. It is well known that for this setting
Nash flows exist and their total cost is unique, see [31]. Furthermore, the price of anarchy, which
measures the worst case ratio of the total cost of any Nash flow and that of an optimal flow is
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well understood, see Correa et al. [12, 13], Perakis [28], Roughgarden [31], and Roughgarden and
Tardos [34].

In this paper, we study nonatomic network games in which the agents are partitioned into
a (in)finite set of coalitions. In our model, we allow that agents of different commodities, i.e.,
agents traveling from different sources to different destinations, may belong to the same coalition.
We assume that the partition of agents into coalitions is fixed and given a priori.

Let [m] = {1, . . . ,m} denote a set of coalitions. To this end, we represent every agent of
commodity i as a real number in [0, ri]. Then, the distribution of agents among the coalitions is
modeled by a collection of Lebesgue-measurable functions ci : [0, ri] → [m], i ∈ [k], which map
an agent of type i ∈ [k] to coalition j ∈ [m]. The continuum of agents of type i belonging to
coalition j is defined as the Lebesgue-measure of {ξ ∈ [0, ri] : ci(ξ) = j} and denoted by ci,j .
Using this notation, we define by f j the flow for coalition j and say that f j is feasible for coalition
j if f j satisfies the demands ci,j , i ∈ [k] in the usual sense. The amount of flow of coalition j on

arc a is defined as f ja =
∑

P∈P :P∋a f
j
P , where f jP denotes the flow of coalition j along path P .

We assume that every coalition aims at minimizing the average delay or total travel time ex-
perienced by this coalition, see also [11]. Thus, the cost for coalition j is defined as Cj(f j; f−j) :=
∑

a∈A ℓa(fa) f
j
a , where f−j denotes the flow of all other coalitions.

The tuple I = (G, r, ℓ, c,m) is called an instance of the nonatomic network game with
coalitions. Our model is similar to the one proposed by Hayrapetyan et al. [20] and it includes the
special case, where we have exactly k coalitions each of which controlling the flow for commodity
k.

Definition 2.1. A feasible flow f is a Nash equilibrium if and only if for all j ∈ [m] it holds
Cj(f j; f−j) ≤ Cj(xj ; f−j) for all feasible flows xj for coalition j ∈ [m].

In a Nash equilibrium, every coalition routes its flow so as to minimize Cj(f j; f−j) with the
understanding that coalition j optimizes over f j while the flow f−j of all other coalitions is fixed.

Definition 2.2. Let L be a class of latency functions. Let Im
(
L
)

be the set of all instances with

at most m coalitions and latency functions in L. For I ∈ Im
(
L
)
, let oI be an optimal profile

and let ΘI be the set of Nash equilibria, respectively. Then, the price of anarchy is defined by

sup
I∈Im(L)

sup
f∈ΘI

C(f)

C(oI)
.

Note that this definition of the price of anarchy is slightly different from the standard
nonatomic selfish routing model ([31]), since there may be qualitatively different equilibria, see [4].

If latencies are restricted to be standard, minimizing Cj(f j; f−j) is a convex optimization
problem. The following necessary and sufficient optimality conditions characterize Nash flows
for a nonatomic network game with coalitions. This characterization can also be found in Haurie
and Marcotte [19] (Theorem 2.3) and in Cominetti et al. [11].

Lemma 2.3. A feasible flow (f1, . . . , fm) is a Nash equilibrium for a nonatomic network game
with m coalitions if and only if for every j ∈ [m] the following inequality is satisfied:

∑

a∈A

(
ℓa
(
fa
)

+ ℓ′a
(
fa
)
f ja
)
(f ja − xja) ≤ 0 for all feasible flows xj . (1)

Proof. A flow f is a Nash equilibrium if and only if every f j, j ∈ [m], is a global minimizer
of Cj(f j; f−j). Since the feasible region of all feasible flows for coalition j forms a convex
and compact set, and the objective Cj(f j; f−j) is nondecreasing, differentiable and convex, the
variational inequality (1) constitutes a first order necessary and sufficient optimality condition
for the global minimum of Cj(·; f−j) at f j, see the book by Boyd and Vandenberghe [7]. This
condition expresses that at the optimum f j, there is no feasible gradient descent direction. �



3 Nonatomic Network Games with Coalitions 33

3. Nonatomic Network Games with Coalitions

In the subsequent sections, we will investigate the price of anarchy for specific network topologies
and classes of latency functions.

3.1. Symmetric Load Balancing Games

A symmetric load balancing game is a network game, where the underlying digraph simply
connects two distinguished nodes with parallel links.

Theorem 3.1. For symmetric load balancing games with m coalitions and nondecreasing, dif-
ferentiable, and standard latency functions, the price of anarchy is at most m.

Proof. As usual, let f denote a Nash flow and o an optimal flow. We bound the cost of each
coalition individually. Assume the flow for coalition j carries αj units of flow. We claim that

there exists a feasible flow gj such that gja + f−ja ≤ oa for all a ∈ A with gja > 0. To see this, we
define the flow ḡ = [o− f−j]+, where the positive projection is applied component wise, that is,
for arc a we have [ḡa]

+ = ḡa, if ḡa ≥ 0, and 0 otherwise. It is straight-forward to verify that ḡ is a
feasible flow for β ≥ αj units of flow. Hence, the flow g =

αj

β ḡ is feasible for coalition j. The cost

of coalition j when applying strategy g can be bounded by Cj(g; f−j) =
∑

a∈A ℓa(ga+f−ja ) ga ≤∑

a∈A ℓa(oa) ga ≤
∑

a∈A ℓa(oa) oa. The first inequality is valid since for arcs a with ga > 0, we

have
αj

β [oa − f−ja ]+ + f−ja ≤ oa, because oa ≥ f−ja and
αj

β ≤ 1. The second inequality follows

since g is by definition opt-restricted, that is, ga ≤ oa for all a ∈ A. Using that coalition j plays
a best response in equilibrium, we have Cj(f j; f−j) ≤ Cj(g; f−j) ≤ C(o). We apply the same
argument for every coalition, thus, C(f) =

∑

j∈[m]C
j(f j; f−j) ≤ mC(o). �

3.2. Multi-commodity Networks

We present the following negative result.

Proposition 3.2. Let M > 0. There is a multi-commodity instance I = (G, r, ℓ, c,m) with
m = 2 such that for a Nash flow f , and an optimal flow o, C(f) ≥ Ω(M) · C(o).

Proof. Consider the construction in Fig. 1. We have two players, where one player has a demand
of size M from s0 to t0. The second player has a demand of size 1 from s1 from t1. All latencies
are constant (1 or 0 as indicated in Fig. 1) except for the latency function ℓ(x), which is defined as
ℓ(x) = max{0, x−M}. In a Nash equilibrium, the second player will route 1/2 of its flow along the
upper path. Indeed, in this case the marginal latency evaluates to ℓ(1/2+M)+ℓ′(1/2+M) 1/2 =
1. The total cost of the combined flow f evaluates to C(f) = 1/2 (M + 1/2) + 1/2 = Ω(M).
A feasible flow can always be constructed by routing the flow of the two commodities along the
direct path. Thus, we obtain C(o) ≤ 1, proving the proposition. �

Note that the function ℓ(x) used in the above proposition is not differentiable in x = M . But
this can be removed by defining a different function ℓ̄(x), which smoothly interpolates between
ℓ(M) = 0 and ℓ(1/2 +M) and satisfies ℓ(1/2 +M) + ℓ′(1/2 +M) 1/2 = 1.

3.3. Bounding the Price of Anarchy via the λ-Approach

The previous example showed that for multi-commodity networks, the price of anarchy is un-
bounded even for two coalitions. In the following, we will therefore restrict the class of allowable
latency functions in order to obtain upper bounds on the price of anarchy.
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s0 t0

s1 t1

0 ℓ(x) 0

1

0 0

Figure 1. The graph G, used in the proof of Proposition 3.2.

For a latency function ℓ and nonnegative parameter λ we define the following nonnegative
value:

ω(ℓ;m,λ) := sup
f,x≥0

(ℓ(f)− λ ℓ(x))x + ℓ′(f)
( ∑

j∈[m]

(f j xj − (f j)2)
)

ℓ(f) f
. (2)

Here, we slightly abuse notation and denote by f (under the supremum) the vector f =
(f1, . . . , fm) and also the sum f =

∑m
j=1 f

j.

We assume 0/0 = 0 by convention. For a given class of latency functions L, we define
ωm(L;λ) := sup

ℓ∈L
ω(ℓ;m,λ) and Λm(L) := {λ ∈ R+|

(
1− ωm(L;λ)

)
> 0}.

Theorem 3.3. Consider a family of instances Im(L), where L is a class of nondecreasing, dif-
ferentiable, and standard latency functions. Then, the price of anarchy is at most

inf
λ∈Λm(L)

[

λ (1− ωm(L;λ))−1
]

.

Proof. Let f be a Nash flow, and x be any feasible flow. Then,

C(f) ≤
∑

a∈A

(
ℓa(fa) fa +

∑

j∈[m]

(
ℓa
(
fa
)

+ ℓ′a
(
fa
)
f ja
)
(xja − f ja)

)
(3)

=
∑

a∈A

(
λ ℓa(xa)xa +

(
ℓa(fa)− λ ℓa(xa)

)
xa +

∑

j∈[m]

ℓ′a
(
fa
)
f ja (xja − f ja)

)

≤ λC(x) + ωm(L;λ)C(f). (4)

Here, (3) follows from the variational inequality stated in Lemma 2.3. The last inequality (4)
follows from the definition of ωm(L;λ). Taking x as the optimal flow the claim is proven. �

Note that whenever Λm(L) = ∅ or Λm(L) = {∞}, the approach does not yield a finite price
of anarchy. Our definition of ωm(L;λ) is closely related to the parameter βm(L) in Cominetti et
al. [11] and αm(L) in Roughgarden [32] for the atomic splittable selfish routing model. For λ = 1,
we have βm(L) = ωm(L; 1) and αm(L) = (1 − ωm(L; 1))−1. As we show in the next section,
the generalized value ωm(L;λ) implies improved bounds for a large class of latency functions,
e.g., polynomial latency functions. The previous approaches with βm(L) (or αm(L)) failed for
instance to generate upper bounds for polynomials of degree d ≥ 4 because this value exceeds 1
(or is infinite). The advantage of Theorem 3.3 is that we can tune the parameter λ and, hence,
ωm(L;λ) so as to minimize the price of anarchy given by λ/(1 − ωm(L;λ)).

We make use of a result of Cominetti et al. [11].

Theorem 3.4 (Cominetti et al. [11]). The value βm(ℓ) = ω(ℓ;m, 1) is at most

sup
x,f≥0

(
ℓ(f)− ℓ(x)

)
x+ ℓ′(f)

[
(x)2/4−

(
f − x/2

)2
/m
]

ℓ(f) f
.
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Since the necessary calculations to prove the above claim only affect the last term in (2),
which is the same for ω(ℓ;m,λ) and βm(ℓ), this bound carries over for arbitrary nonnegative
values of λ.

Corollary 3.5. If λ ≥ 0, the value ω(ℓ;m,λ) is at most

sup
x,f≥0

(
ℓ(f)− λ ℓ(x)

)
x+ ℓ′(f)

[
x2/4−

(
f − x/2

)2
/m
]

ℓ(f) f
.

3.4. Linear and Affine Linear Latency Functions

Cominetti et al. [11] proved an upper bound of 1.5 for affine latencies. In the following, we
present a stronger result for linear latencies. We also show that for affine latencies the best
bound can be achieved by setting λ = 1. In this case, we have βm(L) = ωm(L; 1).

Theorem 3.6. Consider linear latency functions in L∗1 = {a1 z : a1 ≥ 0} and m ≥ 2 coalitions.
Then, the price of anarchy is at most

P (m) =

(
2m+

√
2
√

m (m+ 1)
) (
m+ 1 +

√
2
√

m (m+ 1)
)√

2

8
√

m (m+ 1) (m+ 1)
.

Furthermore, lim
m→∞

P (m) = 3
4 + 1

2

√
2 ≈ 1.46.

Proof. For proving the first claim, we start with the bound on ω(ℓ;m,λ) given in Corollary 3.5.
We define µ := x

f for f > 0 and 0, otherwise, and replace x = µ f . This yields ω(ℓ;m,λ) ≤
maxµ≥0

(
µ2
(
m−1−λ 4m

4m

)
+ µ

(
m+1
m

)
− 1

m

)
. For λ > m−1

4m this is a strictly convex program with a

unique solution given by µ∗ = −2 (m+1)
m−1−λ 4m . Inserting the solution, yields ω(ℓ;m,λ) ≤ m+3−4 λ

4λm+1−m .

The condition λ ∈ Λm(L∗1) is equivalent to λ > max
{
m−1
4m , m−2

2m−2

}

. We define the value λ =

1
2 + 1

4

√

2 (m+ 1)/m, which is contained in Λm(L∗1). Applying Theorem 3.3 with this value proves
the claim. �

The proof for affine latencies is similar and leads to C(f) ≤ minλ≥1
4λ2−λ
4λ−2 C(x) showing that

the best bound can be achieved by setting λ = 1.

3.5. Polynomial Latency Functions

To facilitate the result of Theorem 3.3 for polynomial latency functions, one needs to bound
ωm(Ld;λ) for the class Ld of polynomials with nonnegative coefficients and degree at most
d ∈ N:

Ld = {cd xd + · · ·+ c1 x+ c0 : cs ≥ 0, s = 0, . . . , d}.
Note that polynomials in Ld are nonnegative for nonnegative arguments, continuous, nondecreas-
ing, and convex.

We focus in the following on the general case m ∈ N ∪ {∞}. Therefore, we define

ω(ℓ;∞, λ) := sup
x,f≥0

(
ℓ(f)− λ ℓ(x)

)
x+ ℓ′(f) (x)2/4

ℓ(f) f
. (5)

Then, it follows from Theorem 3.4 that ω(ℓ;m,λ) ≤ ω(ℓ;∞, λ), since the square is nonnegative

and limm→∞
(
f − x/2

)2
/m = 0.

We now observe that the total cost function C(f) is linear in each of the latency functions ℓ(·).
We can therefore reduce the analysis to monomial latency functions. For this we subdivide each
arc a into d arcs a1, . . . , ad with monomial latency functions ℓas(x) = cs x

s for s = 1, . . . , d.
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Lemma 3.7. Consider the class Ms := {cs xs : cs ≥ 0} for s ∈ N. Then, ω∞(Ms;λ) ≤
max
0≤µ

µ
(
1− λµs + s µ/4

)
.

Proof. Let ℓ ∈Ms. Then, by (5) we get

ω(ℓ;∞, λ) ≤ sup
x,f≥0

(
f s − λxs

)
x+ s f s−1 x2/4

f s+1
.

Substituting x = µ f, µ ≥ 0, we obtain

ω(ℓ;∞, λ) ≤ max
0≤µ

µ
(
1− λµs + s µ/4

)
.

�

The next Lemma states that ω∞(Ms;λ) is monotonically increasing in s for λ ≥ 1.

Lemma 3.8. For λ ≥ 1, ω∞(Ms;λ) ≤ ω∞(Md;λ) for all s ≤ d, s ∈ N, d ∈ N.

Proof. Let λ ≥ 1. By Lemma 3.7, we have for ℓ ∈Ms

ω(ℓ;∞, λ) ≤ max
0≤µ

µ
(
1− λµs + s µ/4

)
.

It is enough to prove that the argument maximum satisfies µ∗ ≤ 1. We define Ts(µ) := µ
(
1 −

λµs + s µ/4
)

and show that T ′s(µ) ≤ 0 for all µ ≥ 1. To this end, we obtain

T ′s(µ) = 1− (s + 1)λµs + (s µ)/2

= 1− µ
(
(s+ 1)λµs−1 − s/2

)

≤ 1− µ
(
(s+ 1)λ − s/2

)

≤ 1− µ (s/2 + 1)

≤ 0,

where the first inequality follows from µ ≥ 1, while the second inequality follows from λ ≥ 1. �

The next theorem presents an upper bound on the price of anarchy for latencies in Ld.
Theorem 3.9. Consider latency functions in Ld, d ≥ 2. Then, the price of anarchy is at most
(

1
2

√
d+ 1

2

)d
(
d2+1−

√
d−d

3
2

)

(
√
d−1) (d−1)

.

Proof. We define λ(d) :=
(

1
2

√
d+ 1

2

)d
(
d2+1−

√
d−d

3
2

)

(
√
d−1) (d2−1)

.

The proof proceeds by proving a claim, which yields a bound on ω(Ld;∞, λ(d)).

Claim. max
0≤µ≤1

[
T (µ) := µ

(
1− λ(d)µd + d µ4

)]
= d/(d + 1), for all d ≥ 2.

Proof. To prove the claim it is convenient to write λ(d) as

λ(d) =
d2 + 1−

√
d− d 3

2

µ1(d)d (
√
d− 1) (d2 − 1)

,

where µ1(d) := 2/(
√
d+ 1).

Then, the claim is proven by verifying the following facts:

(1) T ′(µ1(d)) = 0, T ′′(µ1(d)) < 0 and T ′′(µ) has at most one zero in (0, 1)
(2) T (0) = 0, T (1) ≤ d/(d + 1) and T (µ1(d)) = d/(d + 1).
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Before we prove these facts, we show how they imply the claim. The first fact implies that µ1(d)
is the only local maximum of T (µ) in the open interval (0, 1). Then, by comparing T (µ1(d)) to
the boundary values T (0) and T (1) it follows that T (µ1(d)) = d/(d+ 1) is the global maximum.

We start by proving the first fact. The expression T (µ1(d)) evaluates to:

T ′(µ1(d)) = 1− (d+ 1)λ(d)µ1(d)
d + dµ1(d)/2

= 1− (d+ 1)
d2 + 1−

√
d− d 3

2

(
√
d− 1) (d2 − 1)

+ dµ1(d)/2

= 1− d2 + 1−
√
d− d 3

2

(
√
d− 1) (d − 1)

+
d√
d+ 1

= 0.

We now prove T ′′(µ1(d)) < 0. First, we simplify as follows

T ′′(µ1(d)) = −d (d+ 1)λ(d)µ1(d)
d−1 + d/2

= −
d
(

d2 + 1−
√
d− d 3

2

)

2 (
√
d− 1)2

+ d/2.

Then, T ′′(µ1(d)) < 0 if and only if

d
(

d2 + 1−
√
d− d 3

2

)

2 (
√
d− 1)2

> 1/2⇔ d2 +
√
d− d 3

2 − d > 0.

The last inequality is fulfilled for all d ≥ 1.
To verify that T ′′(µ) has at most one zero in (0, 1), use for example Descartes’ rule of signs.

The second fact follows by simple calculations. �

The claim implies ω∞(Ld;λ(d)) ≤ d/(d+1), hence, λ(d) ∈ Λ∞(Ld) so we can use Theorem 3.3
to obtain the claimed bound of (d+ 1)λ(d). �

In the following we analyze the growth of the derived upper bound for large d, (d ≥ 4). The
proof consists of standard calculus and is omitted.

Corollary 3.10.
(

1
2

√
d+ 1

2

)d
(
d2+1−

√
d−d 3

2

)

(
√
d−1) (d−1)

≤
√
d
d

for d ≥ 4.

In Table 1, we present an overview about achievable upper bounds on the price of anarchy
when numerically optimizing over λ ∈ Λm(Ld) so as to calculate the minimum in Theorem 3.3.

Table 1. Overview of upper bounds on the price of anarchy for polynomials with nonnegative
coefficients and maximum degree d. The result in the first column marked with (∗) is with
respect to linear latencies {a1 x : a1 ≥ 0}. The result of the second column (affine latencies) is
due to [11].

d = 1∗ d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10
1.46 1.5 2.55 5.06 11.09 26.32 66.89 180.27 512 1,524 4,734
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4. Stackelberg Strategies with Coalitional Followers

Since the price of anarchy in network games with only two coalitions is already unbounded
(Proposition 3.2), we investigate coordination mechanisms as a means to improve the quality of
Nash equilibria. One of the most prominent coordination mechanisms in the context of network
routing games is the use of Stackelberg routing, see Korilis et al. [23] and Roughgarden [30].

In this setting, it is assumed that a fraction α ∈ [0, 1] of the entire demand is controlled by a
central authority, termed Stackelberg leader, while the remaining demand is controlled by selfish
followers which in our case are the selfish coalitions. In a Stackelberg game, the Stackelberg
leader first routes the centrally controlled flow according to a predetermined policy, called the
Stackelberg strategy, and then the remaining demand is routed by the selfish followers. The aim is
to devise Stackelberg strategies so as to minimize the price of anarchy of the resulting combined
flow with respect to an optimal solution for the entire demand.

An instance of a Stackelberg routing game with coalitional followers is characterized by a
tuple I(α) = (G, r, ℓ, c,m,α), where in addition to G, r, ℓ, c and m, a parameter α ∈ (0, 1) is
given that specifies the fraction of the demand controlled by the Stackelberg leader.

A (strong) Stackelberg strategy is a flow g feasible with respect to the demand vector r′ =

(α1r1, . . . , αkrk), for some α1, . . . , αk ∈ [0, 1] such that
∑k

i=1 αiri = α
∑k

i=1 ri. If αi = α for all
i, g is called a weak Stackelberg strategy. Thus, both strong and weak strategies route a fraction
α of the overall traffic, but a strong strategy can choose how much flow of each commodity is
centrally controlled. For single-commodity networks the two definitions coincide. A Stackelberg
strategy g is called opt-restricted if ga ≤ oa for all a ∈ A.

Given a Stackelberg strategy g, let ℓ̃a(x) = ℓa(ga + x) for all a ∈ A and let r̃ = r − r′. We
assume that the Stackelberg leader may choose arbitrarily which amount of flow (up to α r) of
a commodity and coalition it controls. Thus, the remaining set and demands of the coalitional
followers denoted by m̃ and c̃, respectively, is obtained by reducing every ci,j by the amount of
demand that the Stackelberg leader wishes to control from coalition j and commodity i.

We say that a flow h is induced by g if it is a Nash flow for the instance (G, r̃, ℓ̃, c̃, m̃).
A Nash flow h can be characterized by the following variational inequality (see Lemma 2.3):

h is a Nash flow induced by g if and only if for all flows x feasible with respect to r̃,

∑

j∈[m]

∑

a∈A

(
ℓa(ga + ha) + ℓ′a(ga + ha)h

j
a

)
(xja − hja) ≥ 0. (6)

We will mainly be concerned with the total cost of the combined induced flow g + h, given by
C(g+h) =

∑

a∈A(ga +ha)ℓa(ga + ha). In particular, we are interested in bounding the the price
of anarchy, that is, the worst case ratio of C(g + h)/C(o). It will be convenient to separate the
total cost C(g + h) in C1(g;h) :=

∑

a∈A ℓa(ga + ha) ga and C2(h; g) :=
∑

a∈A ℓa(ga + ha)ha.

4.1. Symmetric Load Balancing Games

We consider symmetric load balancing games in which the underlying digraph simply connects
two distinguished nodes with parallel links. Let g be a flow according to the Largest-Latency-
First (LLF) strategy introduced by Roughgarden [30]. LLF simply calculates an optimal flow o
and saturates the arcs with largest latencies first. On the one hand, Roughgarden showed that
for Stackelberg routing games with nonatomic followers (without coalitions), LLF reduces the
price of anarchy to 1/α. On the other hand, Hayrapetyan et al. [20] showed that for symmetric
load balancing games colluding nonatomic players only decrease the total cost. Combining these
two results (Hayrapetyan et al. [20] (Theorem 2.3) and Roughgarden [30] (Theorem 4.2)), it
follows that the LLF strategy induces a flow of total cost of at most 1/αC(o). Thus, the LLF
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strategy reduces the price of anarchy to 1/α even in Stackelberg routing games with coalitional
followers.

4.2. Symmetric Load Balancing Games with a Single Follower

We now consider the case of a single follower. This setting has been previously studied by Korilis
et al. [23]. The authors showed that for a single coalitional follower, parallel arcs, and M/M/1
latencies, there exists an efficiently computable Stackelberg strategy that reduces the price of
anarchy to one. Our main result in this section is a generalization of their result to arbitrary
semi-convex latencies. We are given an instance I(α) of a Stackelberg game on parallel arcs and
a single coalitional follower.

We define a Stackelberg strategy g that we call single-follower-support (SFS) strategy as in
Algorithm 1.

Algorithm 1 single-follower-support

Input: I(α)
Output: Stackelberg strategy g
1: compute a system optimal flow o
2: A1 := {a ∈ A : oa > 0 and ℓ′a(oa) = 0}, A2 := {a ∈ A : oa > 0 and ℓ′a(oa) > 0}
3:

x∗ := arg max
0≤xa≤oa, a∈A1

∑

a∈A1

xa, s.t. :
∑

a∈A1

xa ≤ α

4: g1 := x∗, g2 = (g2
a)a∈A2 := 0

5: if
∑

a∈A1
g1
a < α then

6:

g2
a :=

α−∑a∈A1
g1
a

ℓ′a(oa)
(
∑

ā∈A2

1
ℓ′ā(oā)

) for all a ∈ A2.

7: end if

8: Return g = g1 + g2

We prove that this algorithm computes an optimal Stackelberg strategy.

Theorem 4.1. Consider an instance I(α) of a Stackelberg game on parallel arcs with a single
coalitional follower. Let g be according to the SFS strategy and let h be an induced Nash flow.
Then, the combined flow g + h is optimal.

Proof. First, we consider the case
∑

a∈A1
g1
a = α, which implies g = g1.

Since g is opt-restricted, it suffices to prove that the flow ha = oa− ga is a feasible Nash flow
for 1− α. More precisely, we have to verify that

ℓa(oa) + ℓ′a(oa) (oa − ga) ≤ ℓâ(oâ) + ℓ′â(oâ) (oâ − gâ),

for all a, â ∈ A with oa − ga > 0. These inequalities are satisfied since ℓ′a(oa) = 0 for all a ∈ A1.
Now we consider the case

∑

a∈A1
g1
a < α. Notice that in this case oa − ga = 0 for all a ∈ A1.

Thus, we have to show that

ℓa(oa) + ℓ′a(oa) (oa − ga) = C for some C ≥ 0 and all a ∈ A2 (7)

C ≤ ℓâ(oâ) + ℓ′â(oâ) (oâ − gâ) for all â ∈ A. (8)



40 Stackelberg Strategies and Collusion in Network Games with Splittable Flow

We now use that the system optimal flow o satisfies

ℓa(oa) + ℓ′a(oa) (oa) = C̄ for some C̄ ≥ 0 and all a ∈ A2

C̄ ≤ ℓâ(oâ) + ℓ′â(oâ) (oâ) for all â ∈ A.
Hence, the conditions (7) and (8) are equivalent to

ℓ′a(oa) ga = D for some D ≥ 0 and all a ∈ A2.

Defining D =
(

α −∑a∈A1
g1
a

)

/
(
∑

ā∈A2

1
ℓ′ā(oā)

)

together with ga = D/ℓ′a(oa) proves the result.

�

4.3. General Networks with a Single Follower

In the following section, we will analyze a simple and easy-to-implement Stackelberg strategy
termed SCALE. According to the SCALE strategy, a flow g is obtained by computing an optimal
flow o and scaling this flow by α, i.e., g = α o.

We show that SCALE achieves a bound of (1 + α) on the price of anarchy that even holds
for general networks and latency functions.

Theorem 4.2. Consider a family of instances I(α) of Stackelberg games with a single coalitional
follower and let g be according to the SCALE strategy. Then, the price of anarchy of the
equilibrium flow g + h is at most 1 + α.

Proof. We bound the cost C1(g;h) and C2(h; g) separately. For the follower, we know that
h̄ = (1−α) oa is a feasible flow. Since the follower plays a best response in equilibrium, we have
C2(h;α o) ≤ C2((1− α) o;α o) =

∑

a∈A ℓa(oa) (1− α) oa ≤ (1− α)C(o). Now we bound the cost
of the leader. Let h denote the best response of the follower. We consider the following cases. (i)
0 ≤ ha ≤ (1−α)oa. In this case it follows that ℓa(α oa+ha)α oa ≤ α ℓa(oa) oa. (ii) ha > (1−α) oa.
This case implies oa <

1
1−α ha and we get ℓa(α oa + ha)α oa ≤ α

1−α ℓa(α oa + ha)ha. Using both

cases, we have C1(α o;h) ≤ αC(o) + α
1−α C2(h;α o) ≤ 2αC(o), where the last inequality follows

because C2(h;α o) ≤ (1−α)C(o). Summing both inequalities for C1 and C2 proves the claim. �

Based on a simple single-commodity Braess instance [8], one can show that no Stackelberg
strategy can induce a price of anarchy of one, even if there is only a single coalitional follower.

4.4. General Networks with Multiple Followers

In this section, we study SCALE for general networks and multiple coalitional followers.

Lemma 4.3. Consider an instance I(α) of a Stackelberg game and let g be according to the
SCALE strategy. Then, the following inequality holds:

∑

k∈[m]

∑

a∈A

(

ℓa(αoa + ha) + ℓ′a(αoa + ha)h
k
a

)

(xka − hka) ≥ 0,

where h is the flow of the followers and x is any feasible flow for the demand (1− α) r.

Proof. The lemma follows directly from (6). Taking xa := (1− α) oa, which is a feasible flow for
the remaining (1− α) r demand, we get

∑

k∈[m]

∑

a∈A

(

ℓa(αoa + ha) + ℓ′a(αoa + ha)h
k
a

)(

(1− α) oka − hka
)

≥ 0.

�
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For a latency function ℓ and a nonnegative number λ1, we define the nonnegative value:

ω1(ℓ;α, λ1) := sup
o,x≥0

ℓ(α o+ h)α o− λ1 ℓ(o) o

ℓ(α o+ h) (α o+ h)
. (9)

We assume by convention 0/0 = 0.
For a given class L, we further define ω1(L;α, λ1) := sup

ℓ∈L
ω1(ℓ;α, λ1). Similarly,

ω2(ℓ;α,m, λ2) := sup
o,h≥0

(
(1− α) ℓ(α o+ h)− λ2 ℓ(o)

)
o+ z(f, h)

ℓ(α o+ h) (α o+ h)
,

with z(f, h) := ℓ′(α o + h)
( ∑

k∈[m]

[(1 − α)hk ok − (hk)2]
)
. Note that the value z(f, h) is at most

ℓ′(α o+ h) (1−α) (o)2

4 . We define ω2(L;α,m, λ2) := sup
ℓ∈L

ω2(ℓ;α,m, λ2).

Proposition 4.4. Consider an instance I(α) of a Stackelberg game and let g be according to
the SCALE strategy. Then,

C1(g;h) ≤ λ1C(o) + ω1(L;α, λ1)C(g + h)

C2(h; g) ≤ λ2C(o) + ω2(L;α,m, λ2)C(g + h).

The proof simply uses Lemma 4.3 and the definitions of ω1 and ω2.
Before we state the main theorem, we define

Λm(L;α) := {(λ1, λ2) ∈ R2
+|
(
1−

(
ω1(L;α, λ1) + ω2(L;α,m, λ2)

))
> 0}.

Note that the set Λ(L;α) may be empty.

Theorem 4.5. Consider a family of instances I(α) of Stackelberg games, where g is defined
according to the SCALE strategy. Then, the price of anarchy is at most

inf
(λ1,λ2)∈Λm(L;α)

[

λ1 + λ2

1−
(
ω1(L;α, λ1) + ω2(L;α,m, λ2)

)

]

.

The proof uses the previous proposition.
Affine Latency Functions. We will use Theorem 4.5 to prove upper bounds on the price of

anarchy for affine latencies. First, we need two technical lemmas.

Lemma 4.6. For λ1 ∈ R+, ω1(L1;α, λ1) ≤ max
{
α−λ1
α , α

2

4 λ1

}

.

Proof. We start with constant latency functions ℓ(z) = c0. By definition of ω1(L;α, λ1) we get

ω1(L;α, λ1) = sup
o,h≥0

α o c0 − λ1 o c0
(α o+ h) c0

≤ max

{
α− λ1

α
, 0

}

.

For linear latency functions ℓ(z) = c1 z, we get

ω1(L;α, λ1) = sup
o,h≥0

c1
(
α o+ h)α o− λ1 c1 o

2

c1 (α o+ h)2

= sup
o,h≥0

(
α o+ h)α o− λ1 o

2

(α o+ h)2
.

We define µ := h
o if o > 0 and zero otherwise. This yields

ω1(L;α, λ1) ≤ max
µ≥0

α2 + αµ− λ1

(α+ µ)2
≤ α2

4λ1
.

Since α2

4λ1
≥ 0, we get the claim. �
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Lemma 4.7. For λ2 ≥ 1+α−2α2

4 , ω2(L1;α,m, λ2) ≤ max
{

1−α−λ2
α , (1−α)2

4λ2+α−1

}

.

Proof. We start with constant latency functions ℓ(z) = c0. By definition of ω2(L;α, λ2) and
since h ≥ 0 we get

ω2(L;α,m, λ2) = sup
o,h≥0

(1− α) o c0 − λ2 o c0
(α o+ h) c0

≤ 1− α− λ2

α
.

For linear latency functions ℓ(z) = c1 z, we get

ω2(L;α,m, λ2) ≤ sup
o,h≥0

c1
(
α o+ h) (1 − α) o− λ2 c1 o

2 + c1
1−α

4 o2

c1 (α o+ h)2

= sup
o,h≥0

(
α o+ h) (1 − α) o− λ2 o

2 + 1−α
4 o2

(α o+ h)2
.

We define µ := h
o if o > 0 and zero otherwise. This yields

ω2(L;α,m, λ2) ≤ max
µ≥0

(1− α) (α + µ)− λ2 + 1−α
4

(α+ µ)2
≤ (α− 1)2

α+ 4λ2 − 1
,

where µ∗ = 2α2+4λ2−1−α
2 (1−α) is the optimal solution to the above convex program. Using λ2 ≥

1+α−2α2

4 we have µ∗ ≥ 0, which proves the claim. �

Theorem 4.8. Consider a family of instances I(α) of Stackelberg games such that latency
functions are affine. Then, the price of anarchy for the SCALE strategy and m coalitional
followers is at most

(1 + 2
√

1− α) (1 +
√

1− α)2

4 + 4
√

1− α− 3α
for α ∈ [0,

1

2

√
3].

and
(−3α− 2α

√
1− α− 1 + 2α2) (1 +

√
1− α)α

2 (−3α − 3α
√

1− α+ 1 +
√

1− α+ α2)
for α ∈ [

1

2

√
3, 1].

Proof. We define for α ∈ [0, 1
2

√
3]

λ1 =
1

2
(1 +

√
1− α)α, λ2 =

1

2
(1 +

√
1− α) (1− α).

This choice satisfies the conditions:

α− λ1

α
=

α2

4λ1
,

1− α− λ2

α
≤ (1− α)2

4λ2
.

Note that for α ∈ [0, 1
2

√
3] we have λ2 ≥ 1+α−2α2

4 as required in Lemma 4.7. From Lemma 4.6
and Lemma 4.7, we thus obtain

ω1(L1;α, λ1) + ω2(L1;α,m, λ2) =
1− λ1

α
+

(1− α)2

4λ2 + α− 1

=
2 + 2

√
1− α− α

2(1 +
√

1− α) (1 + 2
√

1− α)

=
1

(1 + 2
√

1− α)
− α

2(1 +
√

1− α) (1 + 2
√

1− α)

< 1.

Thus (λ1, λ2) ∈ Λm(L1;α) and applying Theorem 4.5 proves the first claim.
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For α ∈ [12
√

3, 1] we define

λ2 =
1 + α− 2α2

4
.

It is easy to prove that for α ∈ [12
√

3, 1] we have

1− α− λ2

α
≤ (1− α)2

4λ2
.

Then, it also straightforward to check that (λ1, λ2) ∈ Λm(L1;α). Hence, applying Theorem 4.5
proves the second claim. �

5. Conclusions and Final Remarks

In the first part of this paper, we investigated the price of anarchy in nonatomic network games
with coalitions. On the positive side, we derived an upper bound on the price of anarchy for
restricted topologies (load balancing games). For general topologies and (semi-convex) latency
functions, we developed a generic upper bound on the price of anarchy which depends on the
specific class of allowable latency functions. We note that this bound actually holds for the larger
class of congestion games with fractional demand assignments, because the proof technique does
not use the network structure, but only uses variational inequalities which remain valid in this
more general setting.

After the publication of a preliminary version of this article [18], there has been some work
extending our results. Bhaskar et al. [5] showed that the upper bound of m on the price of
anarchy for load balancing games (see Theorem 3.1) continues to hold for series-parallel networks.
Roughgarden and Schoppmann [33] proved that the generic upper bound of Theorem 3.3 is in
fact tight. They also give an exact closed-form expression for the price of anarchy for polynomial
latency functions with nonnegative coefficients and bounded degree.

In the second part of this paper, we investigated Stackelberg routing as a means to improve
the quality of Nash equilibria. In this setting, we investigated and designed Stackelberg strategies
and derived bounds on the price of anarchy for restricted network topologies, number of followers,
and classes of latency functions, respectively. Perhaps, the most intriguing open question in this
setting is whether there exists a Stackelberg strategy that induces a constant price of anarchy
(depending on α) for a finite number of following coalitions. So far, we only understand the
extreme cases: for one follower, the answer is yes (Theorem 4.2), while for infinitely many
followers, the answer is no, see [6].
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Abstract. Resource allocation problems play a key role in many applications, including traffic
networks, telecommunication networks and economics. In most applications, the allocation of
resources is determined by a finite number of independent players, each optimizing an individual
objective function. An important question in all these applications is the degree of suboptimality
caused by selfish resource allocation.

We consider the worst-case efficiency of cost sharing methods in resource allocation games
in terms of the ratio of the minimum guaranteed surplus of a Nash equilibrium and the maxi-
mal surplus. Resource allocation games are closely related to congestion games and model the
strategic interaction of players competing over a finite set of congestible resources. Our main
technical result is an upper bound on the efficiency loss that depends on the class of allowable
cost functions and the class of allowable cost sharing methods. We demonstrate the power of this
bound by evaluating the worst-case efficiency loss for three well known cost sharing methods:
incremental cost sharing, marginal cost pricing, and average cost sharing.

1. Introduction

Resource allocation problems play a key role in many applications. Whenever a set of resources
needs to be matched to a set of demands, the goal is to find the most profitable or least costly
allocation of the resources to the demands. Examples of such applications come from a wide
range of areas, including traffic networks ( [4, 29, 41, 46, 49]), telecommunication networks (
[23, 28, 47]), and economics ( [30, 31, 32]). In most of the above applications, the allocation of
resources is determined by a finite number of independent players, each optimizing an individual
objective function. A natural framework for analyzing such non-cooperative games are congestion
games as introduced by [39]. Congestion games model the interaction of a finite set of strategic
players that compete over a finite set of resources. A pure strategy of a player consists of a

47
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subset of resources, and the payoff of a player depends only on the number of players choosing
the same or overlapping strategies.

An important variant of congestion games are known as resource allocation games in which
each player assigns a non-negative demand to each of its subsets available. The payoff for a
player is defined as the difference between the utility associated with the sum of the demands
and the costs associated with the resources used. A prominent example of such a game is the
traffic routing game of [17], which builds upon the classical model of [49]: The arcs in a given
network represent the resources, the different origin-destination pairs correspond to the players,
and the subsets of resources are the paths available in the network for each origin-destination
pair. A strategy of a player is a distribution of traffic flow over its avaliable paths. The latency
that a player experiences traversing an arc is given by a (non-decreasing) function of the total
flow on that arc. The cost for a player on an arc is given by the product of the latency and the
player’s flow contribution on the arc.

Resource allocation games also play a key role in telecommunication networks, where users
want to route packets from their source node to some sink node in the network. In this type of
application it is frequently assumed that each user receives a non-negative utility from transmit-
ting at a certain packet rate and that each link (resource) determines a congestion-dependent
price per unit flow that is charged to its users, see [28] and [47]. In [28] it is assumed that
every link has a total cost function (modeling total delay or packet loss) and the price per unit
flow is defined by the marginal cost function.

The above two examples can be cast in the light of cost sharing methods: every resource
incurs a cost that is passed on to its users by charging every user a cost share. In the terminology
of the cost sharing literature, the prevailing cost sharing method in transportation networks is
average cost sharing, because the cost of a resource is the total delay, while every user pays the
product of the current latency and its flow contribution. In telecommunication networks (see
[28]), every user is charged the marginal cost per unit of resource which corresponds to marginal
cost pricing. Note that in both cases the cost sharing method charges a single price per unit
of resource. This property is considered desirable and indispensable for large scale networks,
because every resource only needs to pass a one-dimensional information to its users, see also
the motivation given in [25], [28] and [47].

An important question in all these areas is the degree of suboptimality caused by selfish re-
source allocation. Since this suboptimality crucially depends on the specific cost sharing method
used we first have to define the design space of cost sharing methods. To this end, we define the
following five properties listed below which are defined more formally in Section 3:

(1) Separability : The cost sharing method of a resource is a function only of the consumption
of the considered resource.

(2) Cost-covering : The cost of a resource is covered by the cost shares collected from the
users.

(3) No charge for zero demand : The cost share for every player is zero on resources not
used by her.

(4) Nash-inducing : The cost sharing method is a non-negative, non-decreasing, differen-
tiable and convex function in the resource consumption of every player.

(5) Scalability : The cost sharing method charges a single price per unit of resource.

We briefly discuss the above five requirements. The first assumption requires that the cost share
of a resource only depends on the vector of its consumption by the players. This implies that
the cost shares of a resource are independent of the usage of other resources and, thus, precludes
any coordination between different resources. While this property seems restrictive, it is crucial
for practical applications in which cost sharing methods have only local information about their
own usage (see for instance the TCP/IP protocol design, where routers drop packets based on
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some function of the number of packets in the queue, see [47]). Assumptions (2) and (3) are
standard in the economics literature and the least controversial. The fourth assumption gives a
sufficient condition on the existence of a pure Nash equilibrium of the induced resource allocation
game and is frequently used in the economics literature, see [31]. The last requirement, certainly
the most restrictive one, is motivated by focusing on cost sharing methods that are applicable
in the context of large scale networks, see the discussion above. In the following, we will call a
cost sharing method basic, if it satisfies assumptions (1)-(4). We will call a cost sharing method
scalable, if it satisfies assumptions (1)-(5).

1.1. Our Results

We study the efficiency loss of Nash equilibria in the context of resource allocation games with
basic and scalable cost sharing methods. Given a class of cost functions C and a class of basic cost
sharing methods Dn for n players, we develop a general lower bound on the worst-case efficiency
of Nash equilibria that only depends on C and Dn but not on the player’s private utilities. We
show that among all basic cost sharing mechanisms, there is an optimal mechanism (incremental
cost sharing) that achieves full efficiency. Because the incremental cost sharing method is not
scalable, we analyze the worst-case efficiency of two well known scalable cost sharing methods:
marginal cost pricing and average cost sharing. By applying our generic lower bound to marginal
cost pricing and average cost sharing we obtain the following results that are summarized below.

Results for Marginal Cost Pricing. For differentiable, non-decreasing and convex marginal
cost functions, we prove a lower bound of 4

3+
√

5+4n
on the worst-case efficiency. In particular, this

bound carries over to practically relevant M/M/1 functions that model queuing delays with arc-
capacities. We complement this bound by presenting an asymptotically matching upper bound

of 2(n−√n)√
n(n−1)

leaving only a gap for small n. We completely characterize the worst-case efficiency

for polynomial cost functions with non-negative coefficients (previous results only covered affine
marginal costs). For symmetric games (players have equal utility functions and equal strategy
space), we present a series of results showing that the worst-case efficiency of Nash equilibria
significantly improves. In particular, we prove a lower bound of 2n/(2n + 1) for differentiable,
non-decreasing and convex marginal cost functions. For polynomial cost functions with non-
negative coefficients we prove a tight bound of 3/4.

Results for Average Cost Sharing. For differentiable, non-decreasing and convex cost func-
tions, we prove a lower bound of 1/n on the worst-case efficiency. If we further assume that the
average cost functions are convex (e.g., polynomials with non-negative coefficients) we present a
tight bound of 4/(n + 3). For symmetric games this bound improves to 4n/(n+ 1)2.

1.2. Significance and Techniques Used

Our main technical contribution is a general template to derive an upper bound on the efficiency
loss of basic cost sharing methods in resource allocation games. This generality stems from two
aspects: On the one hand side the restriction to basic cost sharing methods requires only mild
assumptions on the feasible design space, see also the discussion in [31]. On the other hand,
our template works for general resource allocation games including the single resource case as in
[31] as well as multi-commodity network variants considered in [23]. We see this as a non-trivial
generalization of previous works, as, for instance, in [23] the network structure is explicitely
used to prove bounds on the price of anarchy (essentially through max-flow computations).

Our proof technique is quite simple and different from [23] and [31]. In [23], the authors
consider marginal cost pricing and explicitely identify the worst possible game by analytically
solving a sequence of quadratic optimization problems (assuming linear marginal cost functions).
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The resulting optimization problem explicitly involves the coefficients a and b of an affine mar-
ginal cost function c(x) = ax + b. Hence, this approach becomes increasingly technical if this
optimization problem involves, e.g., polynomial cost functions of higher degree. For general con-
vex marginal cost functions it is not clear whether the approach of [23] gives an optimization
problem that is structured enough to be solved.

[31] derives lower bounds on the worst-case efficiency (using a different measure of efficiency)
of three cost sharing methods: average cost sharing, serial cost sharing and incremental cost
sharing. His bounds are valid for resource allocation games with a single resource. Clearly, this
assumption simplifies the subsequent analysis. From a technical point of view, Moulin proves an
upper bound on the efficiency loss for each of the three cost sharing methods separately. Our
approach gives a unified bound on the efficiency loss for an entire class of cost sharing methods
including those considered in [31] and [23].

Key to our approach is the use of variational inequalities, which allow to relate the surplus of
a Nash equilibrium to that of an optimal profile. Because variational inequalities do not rely on
the specific combinatorial structure of the strategy spaces, this approach is applicable to general
resource allocation games, which contain games with network structure as a special case. We
note here that variational inequalities have been used before for bounding the efficiency loss of
Nash equilibria, see [11], [12], [40] and [50].

1.3. Outline

The remainder of this paper is structured as follows. After reviewing the related work in Sec-
tion 2 we introduce in Section 3 the fundamentals of a resource allocation game consisting of a
congestion model and a cost sharing method. For the class of basic cost sharing methods, we
develop in Section 4 a general lower bound on the worst-case efficiency of Nash equilibria that
only depends on the used cost functions and cost sharing methods but not on the player’s private
utilities. We use this general bound to show that the incremental cost sharing method is optimal.
Since the incremental cost sharing method is basic but not scalable, we focus in the rest of the
paper on two scalable cost sharing methods: marginal cost pricing and average cost sharing. In
Section 5, we apply our general lower bound to marginal cost pricing and derive several lower
and upper bounds on the worst-case efficiency of Nash equilibria depending on the used cost
functions. In Section 6, we subsequently apply our generic bound to average cost sharing. We
conclude the paper in Section 7 with a brief summary of our results and a discussion of open
problems. Appendix 8 provides a table of notation. All missing proofs can be found in the
e-companion to this paper.

2. Related Work

Network Resource Allocation Games. [28] and [27] studied network resource allocation
games and proposed a pricing mechanism termed proportionally fair pricing in which every
resource charges a price per unit resource equal to marginal cost. Despite the simplicity and
scalability of this mechanism, Kelly et al. showed that an optimal solution can be achieved as
an equilibrium if players are price takers, that is, if they do not anticipate the consequence of
price change in response to a change of their flow.

[21] and [24] studied network resource allocation games, where players submit a bid to each
resource in the network and resources are allocated to the players according to Kelly’s propor-
tionally fair allocation mechanism. For this mechanism they established a bounded efficiency loss
of the marginal pricing scheme with fixed and elastic resource capacities. However, the proposed
mechanism is not scalable since each player has to submit an individual bid to each resource. If,
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instead, players can only submit a single bid per path, it was proven that the efficiency can be
arbitrary low for the case of hard capacities by [54] and for the case of elastic capacities by [20].

[22] and [23] studied network resource allocation games with marginal cost pricing. On
the negative side, they showed that for non-differentiable marginal cost functions, the price of
anarchy is unbounded even for games with two players. For the special case of linear marginal
cost functions, [23] showed that the efficiency loss is bounded by 2/3. Remarkably, this result
holds for an arbitrary collection of concave utility functions and arbitrary networks. For a game
with one resource and n players having equal utility functions, [22] proved a bound of 2n/(2n+1)
for convex marginal cost functions.

[9] recently presented a class of pricing mechanisms for network resource allocation games
satisfying four axioms that are considered desirable. In particular, their mechanisms are char-
acterized by the axioms rescaling, additivity, positivity, and weak consistency, which have been
proposed by [44]. This family of price mechanisms includes marginal cost pricing, Aumann-
Shapley pricing, and average cost pricing. The main objective of Chen and Zhang is to find
among all mechanisms that satisfy the four axioms an optimal mechanism, i.e., one that mini-
mizes the induced price of anarchy. Their main result states that for affine cost functions, the
optimal mechanism is obtained by an affine transformation of marginal cost prices, and that
marginal cost pricing itself is nearly optimal (achieving a slightly better efficiency guarantee
(0.686) than the bound (2/3)).

Cost Sharing in Cournot Games. Cournot’s oligopoly model clearly is one of the corner-
stones of economic theory, see [30, 34] for an overview of classical work in this area. [22] proved
that Cournot oligopoly games are basically equivalent (in terms of the worst-case efficiency of
Nash equilibria) to resource allocation games with a single resource (which are termed Cournot
oligopsonies in [22]). [31] studied the price of anarchy for resource allocation games on a single
resource with three different pricing mechanisms: average cost sharing, incremental cost sharing,
and serial cost sharing. An important difference between our approach and that of Moulin is the
definition of the efficiency loss of a cost-sharing method. The total surplus of a Nash equilibrium
in [31] is defined as the sum of the player’s payoffs, which inevitably involve the cost shares
collected. In our model (and that of [22, 23]), we assume that the collected cost shares are
internalized, so that we only count the player’s utilities for using the resources minus the actual
cost of using the resources. Only for exactly balanced cost sharing methods (such as average cost
sharing) this difference vanishes as the actual costs and the collected cost shares coincide. In
fact, it turns out that two of our results for average cost sharing (the bound 1/n in Theorem 6.1
and 4/(3 + n) in Theorem 6.2) coincide with Moulins bounds.

[14] studied Cournot oligopoly models and derived bounds on the price of anarchy for mar-
ginal cost pricing. In a Cournot oligopoly game, there is a set of players each producing quantities
so as to satisfy an elastic demand. The production cost for every player is modeled by a convex
cost function and the market price is modeled by a decreasing function in the total supplied
quantity. The goal of every player is to maximize revenue. [14] derived among other results a
lower bound of the worst-case efficiency of 4/(

√
4n + 5+3) for concave marginal price functions.

Using the equivalence result of [22], this bound translates to the case of resource allocations
games with a single resource, marginal cost pricing and convex marginal cost functions. We show
in Theorem 5.3 that the same bound even holds for general resource allocation games.

Nonatomic Network Routing. In nonatomic network routing games, [43] showed that the
price of anarchy for network routing games with nonatomic players and linear latency functions
is 4/3. The case of more general families of latency functions has been studied by [40] and [12].
(For an overview of related results, we refer to the book by [41] and the survey by [3].) Despite
these bounds for specific classes of latency functions, it is known that the price of anarchy in
routing games with general latency functions is unbounded even on simple parallel-arc networks
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( [43]). [8] studied the price of anarchy for nonatomic network games with elastic demands and
general cost functions. They obtain bounds for the more general case of separable cost functions
and elastic demands. The case of asymmetric cost functions has been studied by [37]. [52]
presented a detailed study on the worst-case efficiency loss of different variants of marginal cost
pricing for the case of non-atomic users with fixed and elastic demands, respectively.

Atomic Splittable Network Routing. In atomic splittable network routing games there
is a finite number of players who can split the flow along available paths, see [2], [11], [16], [17],
[18], [50]. Haurie and Marcotte presented a general framework for studying atomic splittable
network games with elastic demands. Haurie and Marcotte, however, do not study the efficiency
of Nash equilibria with respect to an optimal solution. Along similar lines as [17], [15] considers
games with atomic players and nonatomic players at the same time. Harker referred to the
equilibria of those games as mixed behavior equilibria, and gave a characterization of these
equilibria by means of variational inequalities.

[18] studied congestion games with colluding players. Their goal is to investigate the price of
collusion: the factor by which the quality of Nash equilibria can deteriorate when coalitions form.
[2] and [11] studied the atomic splittable selfish routing model. Altman et al. bounded the price
of anarchy for monomial latency functions (plus a constant). They also derived conditions under
which a Nash equilibrium is unique. Uniqueness of Nash equilibria has been further studied by
[5], [33] and [53]. Cominetti et al. observed that the price of anarchy of the atomic splittable
game may exceed that of the standard nonatomic selfish routing game. Based on the work of [7],
they presented an instance with affine latency functions, where the price of anarchy is 1.34. For
affine latencies, they presented an upper bound of 1.5 on the price of anarchy. In [16] a general
upper bound on the price of anarchy is derived that depends on the class of latency functions.
This bound is tight as shown in [42].

An important difference between our model and that of [18] and [11] is that our model
involves elastic demands that are varied by players. As a result, in our model the payoff of
players is a linear combination of utility (derived from sending flow) and associated costs.

Tolls in Network Games. A large body of work in the area of transportation networks is
concerned with congestion toll pricing, see for example [29], [4], [46], and [19]. This mechanism
assigns tolls to certain arcs of the network which are charged to those users that decide to take
routes through them. The toll mechanism has the desirable property that every user is charged
a single price per unit resource.

[4] showed that for the Wardrop model with homogeneous users charging the difference
between the marginal cost and the real cost in the socially optimal solution (marginal cost
pricing) leads to an equilibrium flow which is optimal. [10] considered the case of heterogeneous
users, that is, users value latency relative to monetary cost differently. For single-commodity
networks, the authors showed the existence of tolls that induce an optimal flow as Nash flow.
[13], [26], and [51] proved that there are tolls inducing an optimal flow for heterogenous users
even in general networks. [48] and [53] proved the existence of optimal tolls for the atomic
splittable model with fixed demands. Note that for computing the corresponding tolls, the works
by [10, 13, 26, 48, 51, 53] use a mathematical programming approach which requires central
knowledge about the users including their locations, private utility functions and demands. In
this sense, the toll mechanisms are not scalable, because the underlying cost sharing method is
a function of these private values.

Finally, [1] and [35] study a model of parallel arc networks in which the arcs are owned
by service providers that compete for the available traffic by setting prices. For this model they
prove a tight worst-case bound for the efficiency loss of equilibria.
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3. The Model

In this section, we introduce resource allocation games as natural generalizations of variants of
congestion games. As the two building-blocks of a resource allocation game, we first define a
congestion model and then introduce the notion of a cost sharing method.

3.1. Congestion Model

Definition 3.1 (Congestion Model). A tuple M = (N,R, {Xi}i∈N , {Cr}r∈R) is called a con-
gestion model if N = {1, . . . , n} is a non-empty, finite set of players, R = {1, . . . ,m} is a
non-empty, finite set of resources, and for each player i ∈ N , her collection of accessible sets
Xi = {Ri1, . . . , Rimi

}, mi ∈ N, is a non-empty, finite set of subsets of R. We will use the short-
hand notation Mi = {1, . . . ,mi}. Every resource r ∈ R has a cost function Cr : R+ → R+.

Assumption 1. Cost functions Cr : R+ → R+, r ∈ R, are differentiable, convex, non-decreasing

functions, with lim
x→∞

Cr(x)
x =∞.

Given a congestion modelM = (N,R, {Xi}i∈N , {Cr}r∈R), we derive a corresponding resource
allocation model RM = (N,R, {Xi}i∈N ,Φ, {Cr}r∈R), where Φ = ×i∈NΦi, and Φi = Rmi

+ defines
the strategy space for player i. A strategy profile ϕi = (ϕi1, . . . , ϕi mi

) of player i can be
interpreted as a distribution of non-negative demands over the elements in Xi. The total demand
of player i is defined by di(ϕ) =

∑mi

j=1 ϕij . For i ∈ N , Φ−i = Φ1 × . . . × Φi−1 × Φi+1 × . . .× Φn

denotes the strategy space of all players except for player i. With a slight abuse of notation we
will sometimes write a strategy profile as ϕ = (ϕi, ϕ−i) meaning that ϕi ∈ Φi and ϕ−i ∈ Φ−i.
For a given profile ϕ, the load generated by player i ∈ N on resource r ∈ R is defined by
ϕri =

∑

j∈Mi:r∈Rij
ϕij . We denote by ϕr =

(
ϕri , i ∈ N

)
the load vector of resource r ∈ R. The

total load on resource r ∈ R is defined by ℓr(ϕ) =
∑n

i=1 ϕ
r
i . We will give two examples of a

resource allocation model.

Example 3.2 (Network Resource Allocation). A resource allocation model RM is called a
network resource allocation model if the set of resources correspond to the set of arcs of a directed
or undirected graph G, every player i corresponds to a commodity having two distinguished
vertices (si, ti) (si is the source and ti the terminal vertex in G, respectively), and the collection
of player i’s accessible sets (Xi) is the set of corresponding (si, ti)-paths. Thus, a strategy for
player i corresponds to sending a non-negative demand along the available (si, ti)-paths.

Example 3.3 (Matroid Resource Allocation). A resource allocation model RM is called matroid
resource allocation model if for every i ∈ N , there is a matroid Mi = (R,Ii) (note that Ii refers
to an independence system in R, see [45] for an introduction to matroids) such that Xi equals
the set of bases of Mi. A prominent example of a matroid resource allocation models arises if the
resources form a graph and the set of bases correspond to the set of spanning trees in G. In this
case, a strategy for player i corresponds to sending a non-negative demand along the available
spanning trees of G.

3.2. Cost Sharing Methods

We define a cost sharing method as a collection of functions, one for each resource that takes as
input the vector of the players’ loads on the resource and outputs a vector of cost shares for each
player. We restrict the set of feasible cost sharing methods as defined below.

Definition 3.4. Given a resource allocation model RM = (N,R, {Xi}i∈N ,Φ, {Cr}r∈R), a cost
sharing method for a resource r ∈ R is a mapping ξr : Rn+ → Rn+. We define the following
conditions
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(1) Cost-covering:
∑n

i=1 ξ
r
i

(
ϕr
)
≥ C

(
ℓr(ϕ)) for all ϕ ∈ Φ ;

(2) Nash-inducing: ξri
(
ϕr
)

is non-decreasing, differentiable and convex in ϕri for all i ∈ N ;

(3) No charge for zero demand: ξri
(
ϕr
)

= 0 for all ϕ ∈ Φ with ϕri = 0, for all i ∈ N ;
(4) Scalability: ξri (ϕ

r) · ϕrj = ξrj (ϕ
r) · ϕri for all i, j ∈ N , and all ϕ ∈ Φ .

A cost sharing method is called basic, if it satisfies the assumptions (1)-(3) and it is called scalable,
if it satisfies the assumptions (1)-(4). Note that a basic cost sharing method is automatically
separable in the sense of condition (1) in Section 1, because every ξr has only ϕr as argument.

We next discuss the above assumptions in detail. The first assumption is standard in the
economics literature and the least critical: the cost of using a resource is passed to its users.
The second assumption ensures the existence of a pure Nash equilibrium of the induced resource
allocation game. Moreover, a positive charge for zero resource consumption prevents users from
participation and is thus considered undesirable, see [31]. Assumption (4) stating that the price
per unit resource consumption must be equal for all players is perhaps the most restrictive and
controversial one. In the context of large scale networks (e.g., the TCP/IP protocol suite used
in the Internet) this property is considered desirable and indispensable, because every resource
only needs to pass a one-dimensional information to its users. For a detailed discussion on this
subject, we refer the reader to [25], [28] and [47]. We give in the following three examples of
cost-sharing methods that we will analyze throughout this paper.

Example 3.5 (Average Cost Sharing). In average cost sharing, the cost share for player i on

resource r under profile ϕ is defined as ξri (ϕ
r) = ϕri · Cr(ℓr(ϕ))

ℓr(ϕ) . This cost sharing method is

widely in the transportation literature (cf. [4, 17]) for modeling the experienced travel time,

where the term cr(ℓr(ϕ)) := Cr(ℓr(ϕ))
ℓr(ϕ) models the load-dependent latency function on r. Note

that average cost sharing is a scalable cost sharing method.

Proposition 3.6. The only cost sharing method that is exactly budget balanced and fulfills
Assumption (4) (single price per unit) in Definition 3.4 is average cost sharing.

Example 3.7 (Marginal Cost Pricing). In marginal cost pricing, the cost share for player i on
resource r under profile ϕ is defined as ξri (ϕr) = ϕri ·C ′r (ℓr(ϕ)). Note that marginal cost pricing
is a scalable cost sharing method.

Example 3.8 (Incremental Cost Sharing). In incremental cost sharing, the cost share for player
i on resource r under profile ϕ is defined as ξri (ϕr) = Cr (ℓr(ϕ))−Cr (ℓr(0, ϕ−i)). One can easily
show that incremental cost sharing is not scalable.

Remark 3.9. While the incremental cost sharing method is not scalable, it still satisfies the
symmetry condition: ξri (ϕr) = ξrj (ϕr) for all i, j ∈ N and ϕ ∈ Φ with ϕri = ϕrj . The above
property is considered desirable in the economics literature and refers to the notion of fairness
between resource consumers: if two players have an equal resource consumption, their cost share
must be equal.

3.3. Resource Allocation Games

We are now ready to formally define a resource allocation game. By choosing a strategy ϕi,
player i receives a certain benefit measured by a utility function Ui

(
di(ϕ)). We assume that

utility functions satisfy the following conditions.

Assumption 2. Each utility function Ui : R+ → R+, is differentiable, strictly increasing, and
concave.
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Definition 3.10 (Resource Allocation Game). Given a resource allocation model RM, the
corresponding resource allocation game is the strategic game G(RM) = (N,Φ, π), where the
payoff π = (π1, . . . , πn) is defined as πi(ϕ) := Ui

(
di(ϕ)

)
−∑r∈R ξ

r
i

(
ϕr
)
, where ξri : Rn+ → Rn+ is

the cost sharing method of resource r ∈ R.

For the remainder of this paper, we will write G instead of G(RM).

Remark 3.11. Assumptions 1, 2, and Definition 3.4 imply lim
‖ϕi‖→∞

πi (ϕi; ϕ−i) = −∞, hence,

we can effectively restrict the strategy space for every player to a compact set. As the payoff
functions are concave, a pure Nash equilibrium exists, see the result of [38].

The total surplus of a profile ϕ is defined as U(ϕ) :=
∑n

i=1 Ui
(
di(ϕ)

)
−C(ϕ), where C(ϕ) =

∑

r∈RCr
(
ℓr(ϕ)

)
is the total cost function for the profile ϕ. A profile of maximum total surplus is

called optimal. We define the following functions: ξ̂ri (ϕr) :=
∂ξr

i (ϕr)
∂ϕr

i
and ξ̂ij(ϕ) :=

∑

r∈Rij
ξ̂ri (ϕ

r).

The next lemma establishes necessary and sufficient conditions for a profile to be optimal and a
Nash equilibrium, respectively.

Lemma 3.12. Consider a resource allocation game G with basic cost sharing methods
(
ξr, r ∈

R
)
. The profiles ϑ and ψ are a Nash equilibrium and an optimal profile, respectively, if and only

if for all players i the following conditions hold:

∇πi
(
ϑi; ϑ−i

)
·
(
ϕi − ϑi

)
≤ 0, for all ϕi ∈ Φi , (1)

U ′i
(
di(ϑ)

)
= ξ̂ij(ϑ), for all j ∈Mi with ϑij > 0,

U ′i
(
di(ϑ)) ≤ ξ̂ij(ϑ), for all j ∈Mi with ϑij = 0,

(2)

U ′i
(
di(ψ)

)
=
∑

r∈Rij

C ′r
(
ℓr(ψ)

)
, for all j ∈Miwith ψij > 0,

U ′i
(
di(ψ)

)
≤
∑

r∈Rij

C ′r
(
ℓr(ψ)

)
, for all j ∈Miwith ψij = 0.

(3)

In the following sections, we will analyze the worst-case efficiency of Nash equilibria for
several cost sharing methods. In Section 4, we first develop a general lower bound for basic cost
sharing methods. We proceed by studying marginal cost pricing and average cost sharing in
Section 5 and Section 6, respectively.

4. Worst-Case Efficiency of Basic Cost Sharing Methods

In the following, we will study the worst-case efficiency loss for a class of basic cost sharing
methods. Throughout the analysis we assume that cost functions satisfy Assumption 1 and
utility functions satisfy Assumption 2. Before we give a formal definition of the worst-case
efficiency loss, we prove an auxiliary lemma, showing that basic cost sharing methods always
guarantee a non-negative total surplus for every Nash equilibrium.

Lemma 4.1. Let G be a resource allocation games with n players, cost functions in C, and
basic cost sharing methods ξr ∈ Dn for all r ∈ R. Let ΘG be the set of Nash equilibria. Then,
U(ϑ) ≥ 0 for all ϑ ∈ ΘG.

Next, we provide a formal definition of the worst-case efficiency loss.

Definition 4.2. Let C be a class of cost functions. Let Gn
(
C,Dn

)
be the set of all resource

allocation games with n players, cost functions in C, and basic cost sharing methods ξr ∈ Dn for



56 The Worst-Case Efficiency of Cost Sharing Methods in Resource Allocation Games

all r ∈ R. For G ∈ Gn
(
C,Dn

)
, let ψG be an optimal profile and let ΘG be the set of pure Nash

equilibria, respectively. Then, the worst case efficiency is defined by

ρn
(
C,Dn

)
=

{

infG∈Gn(C,Dn) infϑ∈ΘG

UG(ϑ)
UG(ψG) , if UG(ψG) > 0,

1, otherwise.

Here, UG denotes the total surplus function for game G. Conversely, 1 − ρn
(
C,Dn

)
defines the

worst-case efficiency loss or price of anarchy.

Remark 4.3. Note that by Lemma 4.1 the case UG(ψG) = 0 implies that for basic cost sharing
methods, every Nash equilibrium is optimal. Therefore, we can assume without loss of generality
that every optimal profile recovers a strictly positive total surplus, i.e., UG(ψG) > 0.

We show next that for bounding the worst-case efficiency of basic cost sharing methods it is
sufficient to consider games with only linear utility functions. The next lemma can be proved
using ideas of [23], [31], and [9].

Lemma 4.4. Let Gn
(
C,Dn

)
be the set of all resource allocation games with n players, cost

functions in C, and basic cost sharing methods ξr ∈ Dn for all r ∈ R. Then, for bounding
the worst-case efficiency it is enough to consider resource allocation games in which all utility
functions are linear.

We proceed by calculating the surplus of an optimal solution and that of a Nash equilibrium
in terms of the cost functions and cost sharing methods involved, respectively.

Lemma 4.5. Consider a game G with basic cost sharing methods and linear utility functions,
that is, Ui(x) = ui · x, ui ≥ 0, i ∈ N . Let ψ be an optimal profile and ϑ be a Nash equilibrium.

Then, ψ and ϑ generate a total surplus of U(ψ) =
∑

r∈R

(

ℓr(ψ) · C ′r
(
ℓr(ψ)

)
− Cr

(
ℓr(ψ)

))

and

U(ϑ) =
∑n

i=1

∑mi

j=1 ξ̂ij(ϑ)ϑij − C(ϑ) .

We provide in this section a general proof template that enables us to derive a bound on the
worst-case efficiency for a resource allocation game with basic cost sharing methods. The main
idea for proving such bounds is an application of the variational inequality. Let ψ and ϑ be an
optimal and a Nash profile, respectively. Observe that for any λ, the following inequality holds:
U(ψ) ≤ λU(ϑ)+U(ψ)+

∑n
i=1∇πi

(
ϑi; ϑ−i

)
·
(
ϑi−ψi

)
−λU(ϑ). If we can derive an inequality of

the form
(

U(ψ) +
∑n

i=1∇πi
(
ϑi; ϑ−i

)
·
(
ϑi − ψi

)
− λU(ϑ)

)

/U(ψ) ≤ ω(λ) for some ω(λ) < 1, we

would obtain the inequality U(ψ) ≤ λU(ϑ) +ω(λ)U(ψ), which yields a bound on the worst case

efficiency of 1−ω(λ)
λ . As a consequence, we could then optimize over λ (which of course involves

ω(λ)) so as to derive the best possible bound. This technique (λ-technique) has been previously
applied to bound the price of anarchy in atomic splittable congestion games, see [16].

In the following, we denote by Dn a class of basic cost sharing methods for n players. For a
cost function C, a cost sharing method ξ ∈ Dn, and a parameter λ > 0, we define the following
value

ωn(C, ξ, λ) := sup
x,y∈Rn

+

∑n
i=1 ξ̂i(x) (yi − λxi) + λC

(
ℓ(x)

)
− C

(
ℓ(y)

)

C ′
(
ℓ(y)

)
· ℓ(y)− C

(
ℓ(y)

) , (4)

where ℓ(x) =
∑n

i=1 xi. For a class of cost functions C, and a class of basic cost sharing methods
Dn, we define ωn(C,Dn, λ) := supξ∈Dn

supC∈C ωn(C, ξ, λ). We define the feasible λ-region as
Λ(C,Dn) := {λ > 0 |ωn(C,Dn, λ) < 1}.
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Theorem 4.6. Consider the set Gn
(
C,Dn

)
of resource allocation games with basic cost sharing

methods ξr ∈ Dn, r ∈ R, and cost functions in C. Then, the worst case efficiency is at least

ρ(C,Dn) ≥ sup
λ∈Λ(C,Dn)

[
1− ωn(C,Dn, λ)

λ

]

.

Proof. Let G ∈ Gn
(
C,Dn

)
. Using Lemma 4.4 we may assume that utility functions are linear.

Let ψ and ϑ be an optimal and a Nash profile, respectively. Observe that for any λ, the following
inequalities hold

U(ψ) ≤ λU(ϑ) + U(ψ) +
n∑

i=1

∇πi
(
ϑi; ϑ−i

)
·
(
ϑi − ψi

)
− λU(ϑ) (5)

= λU(ϑ)− C(ψ) +

n∑

i=1

ui · di(ϑ) +
∑

r∈R

n∑

i=1

ξ̂ri
(
ϑr
) (
ψri − ϑri

)
− λU(ϑ)

= λU(ϑ)− C(ψ) +
∑

r∈R

n∑

i=1

ξ̂ri
(
ϑr
)
ψri − λU(ϑ) (6)

= λU(ϑ)− C(ψ) +
∑

r∈R

n∑

i=1

ξ̂ri
(
ϑr
) (
ψri − λϑri

)
+ λC(ϑ) . (7)

Here, (5) and (6) follow from Lemma 3.12, while (7) follows from Lemma 4.5. In order to
complete the proof, we need to show that

∑

r∈R

n∑

i=1

ξ̂ri
(
ϑr
) (
ψri − λϑri

)
+ λC(ϑ)− C(ψ) ≤ ωn

(
C,Dn, λ

)
· U(ψ) . (8)

By definition of ωn
(
C,Dn, λ

)
, we have

∑n
i=1 ξ̂

r
i

(
ϑr
) (
ψri − λϑri

)
+ λCr

(
ℓr(ϑ)

)
− Cr

(
ℓr(ψ)

)

ℓr(ψ) · C ′r
(
ℓr(ψ)

)
− Cr

(
ℓr(ψ)

) ≤ ωn
(
C,Dn, λ

)

for all r ∈ R. Multiplying this inequality by ℓr(ψ) · C ′r
(
ℓr(ψ)

)
− Cr

(
ℓr(ψ)

)
, summing up over

r ∈ R, and using Lemma 4.5, we obtain (8). �

We briefly pause here to discuss implications of the above result. Theorem 4.6 provides
a lower bound on the worst-case efficiency of Nash equilibria that only depends on C and Dn
but neither on the player’s private utilities nor on the strategy space. If the sets C and Dn
have a specific form (e.g., convex cost functions and marginal cost pricing), then, evaluating the
concrete bound in Theorem 4.6 amounts to solving a highly structured optimization problem. In
the remainder of the paper we will actually solve this optimization problem for three specific cost
sharing methods (incremental cost sharing, marginal cost pricing, and average cost sharing) and
different classes of cost functions. We will first apply Theorem 4.6 to prove that the incremental
cost sharing method is actually an optimal mechanism among all basic mechanisms.

Proposition 4.7. For incremental cost sharing, every Nash equilibrium is optimal.

[31] showed that incremental cost sharing is optimal for resource allocation games with a
single resource. Proposition 4.7 generalizes Moulin’s result to hold for general resource allocation
games.
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5. The Worst-Case Efficiency of Marginal Cost Pricing

In the previous section, we showed that among all basic cost sharing mechanisms, there is an
optimal mechanism (incremental cost sharing) that achieves full efficiency. Because the incre-
mental cost sharing method is not scalable, we will focus in this section on marginal cost pricing
which is a well-known scalable cost sharing method. More precisely, we will study the price of
anarchy in games where all resources use marginal cost pricing as cost sharing method. We thus
have ξri

(
φr
)

= φri · C ′r
(
ℓr(φ)

)
for all r ∈ R, i ∈ N , and φ ∈ Φ. We will call C ′r(·) the marginal

cost function of resource r ∈ R. For the rest of this section, we assume that all cost functions
Cr(·) are twice differentiable for all r ∈ R. Instead of Gn

(
C,Dn

)
, we will use the shorthand

Gn
(
C
)

assuming that Dn corresponds to marginal cost pricing. In Lemma 4.5, we represented
the total surplus of a Nash equilibrium and that of an optimal profile in terms of the involved
cost functions for a general cost sharing method. The following lemma is a special case of this
result for marginal cost pricing.

Lemma 5.1. Consider a game G with marginal cost pricing and linear utility functions, that is,
Ui(x) = ui · x, ui ≥ 0, i ∈ N . Let ϑ be a Nash equilibrium. Then, ϑ generates total surplus of

U(ϑ) =
∑

r∈R

(

ℓr(ϑ) · C ′r
(
ℓr(ϑ)

)
+

n∑

i=1

(ϑri )
2 · C ′′r

(
ℓr(ϑ)

)
− Cr

(
ℓr(ϑ)

))

. (9)

The proof follows from Lemma 4.5. We proceed by deriving an upper bound for ωn
(
C, ξ, λ

)

using that ξ corresponds to marginal cost pricing.

Lemma 5.2. Let ξ be a marginal cost pricing method for n players. Then, ωn
(
C, ξ, λ

)
≤

ωmcpn (C, λ), where

ωmcpn (C, λ) := sup
x,y∈R+

µ∈{0}∪[ 1
n
,1]

[(

C ′(x)y + C ′′(x)µxy + λC(x)− C(y) (10)

− λ
(
C ′(x)x+

(
µ2 +

(1− µ)2

n− 1

)
C ′′(x)x2

))

/
(

C ′(y) · y − C(y)
)]

.

An essential element of the definition of ωmcpn (C, λ) is the parameter µ defined as the largest
ratio of the load of a single player and the overall load on a resource. We note that this ratio has
been used before in the context of bounding the price of anarchy in atomic splittable network
games with fixed demands, see [11], [16] and [50].

5.1. Cost Functions with a Convex Derivative

We start by applying Lemma 5.2 to convex marginal cost functions, that is, we consider cost
functions with a convex derivative.

Theorem 5.3. Let CconvD be a class of cost function that have a convex derivative. Consider
the set Gn(CconvD) of games with at most n players. Then, ρn(CconvD) ≥ 4

3+
√

5+4n
.

Proof. We define λ = 3+
√

5+4n
4 and prove the claim by showing that ωmcpn (C;λ) ≤ 0 for all

C ∈ CconvD. We bound the nominator of (10) by a case distinction. First, we assume x ≥ y. We
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0
0

C ′(z)

∆1

∆2

Lβ y(z)

C ′(β y)

yβ y

Figure 1. Illustration of the inequality (11) in the proof of Theorem (5.3). The shaded area
illustrates the term C(y) − C(β y) = ∆1 + ∆2. The linear approximation Lβ y(·) of the convex
function C′(·) bounds C′(z) from below, i.e., Lβ y(z) ≤ C′(z). Then, we have ∆1 = (y −

β y) C′(β y) and ∆2 ≥ (y−β y)2

2
C′′(β y).

get

C ′(x) y + C ′′(x)µx y − λ (C ′(x)x+
(

µ2 +
(1− µ)2

n− 1

)

C ′′(x)x2) + λC(x)− C(y)

≤ C ′′(x)
(

µx y − λ
(
µ2 +

(1− µ)2

n− 1

)
x2
)

≤ C ′′(x)x2
(

µ− λ
(
µ2 +

(1− µ)2

n− 1

))

.

For the first inequality, we used that C ′(x) y − λC ′(x)x + λC(x) − C(y) ≤ 0 , because y ≤ x,
λ ≥ 1, and C ′(·) is convex. The second inequality follows from y ≤ x and C ′′(x) ≥ 0 (since C(·)
convex). Then, λ = 3+

√
5+4n
4 yields ωmcpn (C;λ) ≤ 0, because

max
µ∈{0}∪[ 1

n
,1]
µ−

(3 +
√

5 + 4n

4

)(

µ2 +
(1− µ)2

n− 1

)

≤ 0.

Now, we consider the case x < y. We define β := x
y ∈ [0, 1). Observe that C(y) − λC(β y) =

C(y) − C(β y) − (λ − 1)C(β y) . Then, we use the following inequality, which is illustrated in
Fig. 1.

C(y)− C(β y) ≥ (y − β y)C ′(β y) +
(y − β y)2

2
C ′′(β y) . (11)

Together with (λ− 1)C(β y) ≤ (λ− 1)C ′(β y)β y , we obtain

ωmcpn (C;λ) ≤ sup
β∈[0,1), y∈R+

µ∈{0}∪[ 1
n
,1]

C ′′(β y) y2
(
β µ− λ

(

µ2 + (1−µ)2

n−1

)

β2 − (1−β)2

2

)

C ′(y) y − C(y)
.

We then use maxβ∈[0,1),µ∈[0,1]
(

β µ−λ
(

µ2+ (1−µ)2

n−1

)

β2− (1−β)2

2

)

≤ n−4λ2+6λ−1
4 λ (n+2 λ) , where β∗ = n+1

n+2λ

and µ∗ = n−1+4λ
2λ (n+1) are the unique maximizer. The value of λ solves n− 4λ2 + 6λ− 1 = 0, thus,

we obtain ωmcpn (C;λ) ≤ 0. Applying Lemma 5.2 for both cases proves the claim. �

Remark 5.4. The bound of Theorem 5.3 has been established before by [14] for the case of a
single resource.

The above result gives a bound on the efficiency loss for differentiable and convex marginal
cost functions scaling with the number of players. This result complements a negative result
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of [22] for two-player games with non-differentiable convex marginal cost functions, where the
efficiency loss may be arbitrarily high. For non-differentiable marginal cost functions, a Nash
equilibrium can be characterized by optimality conditions expressed by the left and right direc-
tional derivatives of the marginal cost function. The key ingredient of the instance in [22] is to
increase the difference between two such values (for a point of non-differentiability) giving rise
to a Nash equilibrium with low total surplus. In contrast, if marginal cost functions are differen-
tiable, then by Lemma 5.1 the total surplus of an arbitrary Nash equilibrium can be expressed
in terms of the involved cost functions and their well-defined derivatives ruling out the instance
constructed in [22]. Note that in many applications the considered marginal cost functions are
differentiable, e.g., polynomial delay functions considered in transportation networks ( [6]) and
M/M/1 functions modeling queuing delays in telecommunication networks ( [47]).

Remark 5.5. In the next section (Proposition 5.10), we present an asymptotically matching

upper bound for the efficiency loss of ρn(CconvD) ≤ 2(n−√n)√
n(n−1)

which grows as O(1/
√
n).

5.2. Polynomial Cost Functions

In practice, the most frequently used functions modeling delay are polynomials whose degrees
and coefficients are determined from real-world data through statistical evaluation methods, see

[36] and [6]. Thus, we will explicitly calculate the price of anarchy for the class Cd :=
{

C(z) =
∑d

j=0 aj z
j , aj ≥ 0, j = 2, . . . , d

}

, d ∈ {2, 3, . . .}. Note that we have to demand d ≥ 2 since

otherwise Assumption 1 would be violated and a Nash equilibrium might not exist.
To simplify the analysis, we focus on the general case n ∈ N∗ ∪ {∞}. Let us define

ωmcp∞ (C;λ) := limn→∞ ω
mcp
n (C;λ). It is easy to see that ωmcp∞ (C;λ) ≥ ωmcpn (C;λ) for any

n ∈ N∗, implying ρ∞(C) ≤ ρn(C).

Remark 5.6. We observe that for marginal cost pricing, the payoff functions πi(·) are affine
linear in each of the cost functions Cr(·). We can reduce the analysis to monomial cost func-
tions subdividing each resource r into d + 1 resources r0, . . . , rd with monomial cost functions
Crs
(
ℓr(ϕ)

)
= Crs ·

(
ℓr(ϕ)

)s
for s ∈ {0, 1, . . . , d}. By extending the accessible sets of every player

accordingly, we obtain a transformed game in which the set of Nash equilibria, optimal profiles
and corresponding surplus values coincide.

We present in the next lemma an upper bound for the value ωmcp∞ (Md;λ).

Lemma 5.7. Consider the class Md :=
{

C(z) = ad z
d, ad ≥ 0, d ∈ {2, 3, . . .}

}

. Then, it holds

that

ωmcp∞ (Md;λ) ≤
(

1 + µ(d− 1)

λ(1 + µ2d)

)d−1( d

d− 1
+ µ− 1

)

− 1

d− 1
, where µ(d) =

1√
d− 1 + 1

.

Given the above upper bound on ωmcp∞ (Md;λ) we now give a precise bound for ρ(Cd).
Theorem 5.8. Let Cd be the class of polynomial cost functions with non-negative coefficients

and maximum degree d ∈ {2, 3, . . .}. Then, ρ(Cd) = 1+µ(d)2 d
(
1+µ(d) (d−1)

)1+ 1
d−1

, where µ(d) = 1√
d−1+1

.

Proof. We define λ =

(
1+µ(d) (d−1)

)1+ 1
d−1

1+µ(d)2 d
. Then, Lemma 5.7 implies ω∞(Md′ ;λ) ≤ 0 for all

d′ < d and ω∞(Md;λ) = 0. Thus, using Lemma 5.2 and Theorem 4.6, we have ρ(Cd) ≥
1+µ(d)2 d

(
1+µ(d) (d−1)

)1+ 1
d−1

.
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Now we prove the upper bound. Consider a game with one resource having the cost function
C(x) = 1

d x
d for some d ∈ {2, 3, . . .}. Assume we have n players, where player 1 has the utility

function U1(ϕ1) = ϕ1, while the remaining n − 1 players have utility functions Uk(ϕk) = b ϕk
for some b ∈ [0, 1] specified later. Consider a Nash equilibrium ϑ(n) in this game. W.l.o.g., we

can assume ℓ(ϑ(n)) > 0. Using Lemma 3.12, we obtain ϑ1(n) = 1−ℓ(ϑ(n))d−1

(d−1) ℓ(ϑ(n))d−1 for player 1 and

ϑk(n) = b−ℓ(ϑ(n))d−1

(d−1) ℓ(ϑ(n))d−1 for players k = 2, . . . , n. Summing all demands we get

ℓ(ϑ(n)) =
1− ℓ(ϑ(n))d−1

(d− 1) ℓ(ϑ(n))d−1
+(n−1)

b− ℓ(ϑ(n))d−1

(d− 1) ℓ(ϑ(n))d−1
⇔ ℓ(ϑ(n)) =

(
1 + b(n− 1)

d− 1 + n

) 1
d−1

.

In the limit, we get limn→∞ ℓ(ϑ(n)) = b
1

d−1 , limn→∞ ϑ1(n) = b
1

d−1 (1−b)
b (d−1) , and limn→∞ b (n −

1)ϑk(n) = b
1

d−1 (b d−1)
d−1 . Thus, we get as limit for the total surplus of the Nash equilibrium ϑ(n)

lim
n→∞

U
(
ϑ(n)

)
=
b

1
d−1 (1− b)
b (d − 1)

+
b

1
d−1 (b d− 1)

d− 1
− b

1
d−1 b

d
.

An optimal solution is given by ψ = (1, 0, . . . , 0) with total surplus of U(ψ) = 1 − 1
d . Now

choosing b = 1+(d−1)
3
2

d2−d+2
the ratio U(ϑ)

U(ψ) coincides with the lower bound of the theorem. �

Remark 5.9. The worst case efficiency for cost functions in Cd is asymptotically bounded from

below by Ω
(

1√
d−1

)

.

Note that the example used in the previous proof can also be used to construct an upper
bound for ρn(CconvD) complementing Theorem 5.3.

Proposition 5.10. Let CconvD be a class of cost functions with a convex derivative. Consider

the set Gn(CconvD) of games with at most n ∈ N∗ players. Then, ρn(CconvD) ≤ 2(n−√n)√
n(n−1)

which

grows as O(1/
√
n).

5.3. Symmetric Games

In this section, we consider symmetric games in which all players have the same utility function
Ui = Uj for all i, j ∈ N and the same strategy space, that is, Φi = Φj for all i, j ∈ N . Symmetric
resource allocation games have been considered before in the context of single-commodity network
games with atomic players, unit demands and splittable flows, see [11] and [2]. Another example
of a symmetric resource allocation game arises in scheduling games in which there arem machines
used by n players having the same utility function. The strategy of every player is simply a
distribution of her workload over the machines. We prove that the symmetry assumption implies
improved bounds on the worst-case efficiency loss. Consider a symmetric game with n players.
Then, there exists a symmetric optimal profile ψ in the sense that ψri = 1

nψ
r for all i ∈ N . We

obtain the following bound for ωn(C, ξ, λ).

Lemma 5.11. Consider a symmetric game with ξ being marginal cost pricing. Then, it holds
that ωn

(
C, ξ, λ) ≤ ωmcp, symn (C, λ), where

ωmcp, symn (C;λ) := sup
x,y∈R+

C ′(x) y + C ′′(x) x yn − λ
(
C ′(x)x+ C ′′(x) x

2

n − C(x)
)
− C(y)

C ′(y) · y − C(y)
.

Note that the above Lemma only uses the existence of a symmetric optimal profile but does
not rely on symmetry of every Nash equilibrium. The following result for cost functions with
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a convex derivative has been previously obtained by [22] for the special case of games with a
single resource. We present here a more general result (arbitrary symmetric strategy space) with
a simpler proof.

Proposition 5.12. Let CconvD be the class of cost functions with a convex derivative. Consider
the set Gn(CconvD) of symmetric games with at most n ∈ N∗ players. Then, ρn(CconvD) ≥ 2n

2n+1 .

For polynomials with non-negative coefficients and arbitrary degree d ∈ {2, 3, . . .}, we prove
the following.

Theorem 5.13. Let Cd be the class of polynomial cost function with non-negative coefficients
and arbitrary degree d ∈ {2, 3, . . .}. Consider the set Gn(Cd) of symmetric games with n players
and cost functions in Cd. Then, ρn(Cd) = 3

4 .

Note that the above bound on the worst-case efficiency does neither depend on the maximum
degree d of the polynomial nor on the number of players n.

6. The Worst-Case Efficiency of Average Cost Sharing

In this section, we derive lower bounds on the worst-case efficiency of average cost sharing which
is the prevailing cost sharing method in transportation networks (cf. [4, 17]). In the context of
transportation networks, there is a load-dependent latency function cr(ℓr(ϕ)) on every resource
and the cost of resource r under profile ϕ is defined as Cr

(
ℓr(ϕ)

)
= cr(ℓr(ϕ)) ℓr(ϕ), while the cost

share for user i on resource r is determined as ξri (ϕ) = cr(ℓr(ϕ))ϕir =
Cr

(
ℓr(ϕ)

)

ℓr(ϕ) ϕir. Note that

average cost sharing is a scalable cost sharing method. Given a cost function Cr, we define the

per-unit cost function by cr(ℓr(ϕ)) =
Cr

(
ℓr(ϕ)

)

ℓr(ϕ) . Instead of Gn
(
C,Dn

)
, we will use the shorthand

Gn
(
C
)

assuming that Dn corresponds to average cost sharing.
Similar to the analysis of the marginal cost sharing method, we study the worst-case efficiency

of average cost sharing for three types of cost functions. First, we consider general convex cost
functions and derive lower bound for the worst-case efficiency of 1/n. Second, we consider cost
functions with convex per-unit costs and characterize the price of anarchy for this case. Finally,
we conclude the section by analyzing average cost sharing in symmetric games.

Theorem 6.1. Let Cconv be a class of convex cost functions. Consider the set Gn(Cconv) of games
with at most n ∈ N players. Then, ρn(Cconv) ≥ 1

n .

We proceed by considering average cost functions, where the per-unit cost function is convex,
that is, the functions cr, r ∈ R are convex.

Theorem 6.2. Let CconvU be a class of cost functions with convex unit costs. Then, ρ(CconvU ) =
4

n+3 .

Remark 6.3. The bounds of Theorem 6.1 and Theorem 6.2 have been established before by
[31] for the case of a single resource.

We close this section by analyzing the efficiency loss of average cost sharing in symmetric
games.

Theorem 6.4. Let CconvU be a class of cost functions with convex unit costs. Consider the set
Gn(CconvD) of symmetric games with at most n ∈ N∗ players. Then, ρ(CconvD) = 4n

(n+1)2
.
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7. Conclusions and Future Work

In this work, we studied the worst-case efficiency of Nash equilibria in resource allocation games
for different cost-sharing methods. We derived various new results about the efficiency loss for
marginal cost pricing and average cost sharing depending on the structure of allowable cost
functions. In particular, we were able to prove tight bounds for the worst-case efficiency loss
for average cost sharing and marginal cost pricing involving polynomial costs with non-negative
coefficients. As this class of functions is quite rich and widely used for modeling for instance
queuing delays at resources, we see our results as an important contribution towards the appli-
cability of these cost sharing methods in practice. While we proved that the incremental cost
sharing method is optimal among all basic cost sharing methods, such a strong result is not
known for the class of scalable cost sharing methods. In light of the high practical relevance of
the scalability property of cost sharing methods, we see the design of an optimal cost sharing
method among all scalable mechanisms for differentiable and convex cost functions as the most
important open problem.
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8. Table of Notation

N = {1, . . . , n}, R = {1, . . . ,m} Set of players, set of resources

In the following: i = 1, . . . , n and r = 1, . . . ,m

Rij ⊂ R j-th accessible set of player i
Xi = {Ri1, . . . , Rimi

}, mi ∈ N Set of accessible sets of player i
Mi = {1, . . . ,mi} Set of indices of accessible sets of player i
M =

(
N,R, {Xi}i∈N , {Cr}r∈R

)
Congestion model

Φi = Rmi
+ , Φ−i Strategy space of player i and all players except i

φi = (φi1, . . . , φimi
) ∈ Φi, φ = (φi, i ∈ N) Strategy of player i, strategy profile

Φ = ×i∈NΦi Space of strategy profiles
di(φ) =

∑mi

j=1 φij Total demand of player i

RM =
(
N,R, {Xi}i∈N ,Φ, {Cr}r∈R

)
Resource allocation model

Cr : R+ → R+ Cost function of resource r
C(φ) =

∑

r∈RCr
(
ℓr(φ)

)
, C Total cost for φ, class of cost functions

φri =
∑

j∈Mi:r∈Rij
φij Load of player i on resource r

φr =
(
φri , i ∈ N

)
, ℓr(φ) =

∑n
i=1 φ

r
i Load vector of resource r, total load of r

ξr : Rn+ → Rn+ Cost sharing method for a resource r

ξ̂ri (φ
r) =

∂ξr
i (φr)
∂φr

i
, ξ̂ij(φ) =

∑

r∈Rij
ξ̂ri (φ

r) Short notation

Dn Class of cost sharing methods for n players
Ui : R+ → R+ Utility function of player i
U(φ) =

∑n
i=1 Ui

(
di(φ)

)
− C(φ) Total surplus of a profile φ

πi(φ) = Ui
(
di(φ)

)
−∑r∈R ξ

r
i

(
φr
)

Payoff of player i
π = (π1, . . . , πn) Payoff vector of all players
G(RM) = (N,Φ, π) or G Resource allocation game
ϑ,ΘG, ψG Nash equilibrium, set of Nash equilibria, optimal

profile
Gn(C,Dn), ρn(C,Dn) Set of games with n players, worst-case efficiency
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Proof of Proposition 3.6.

The only cost sharing method that is exactly budget balanced and fulfills Assumption (4) (single
price per unit) in Definition 3.4 is average cost sharing.

Proof. Observe that Cr (ℓr(ϕ))
∗
=
∑n

i=1 ξ
r
i (ϕr) =

∑n
i=1 ϕ

r
i ·

ξr
i (ϕr)
ϕr

i

∗∗
=

ξr
i0

(ϕr)

ϕr
i0

· ℓr(ϕ), ∀i0 ∈ N ,

where we use the definition of a budget balanced cost sharing method in (∗) and Assumption (4)

from Definition 3.4 in (∗∗). We obtain ξri0 (ϕr) = ϕri0 ·
Cr(ℓr(ϕ))
ℓr(ϕ) , ∀i0 ∈ N , proving the claim. �

Proof of Lemma 3.12.

Consider a resource allocation game G with basic cost sharing methods
(
ξr, r ∈ R

)
. The profiles

ϑ and ψ are a Nash equilibrium and an optimal profile, respectively, if and only if for all players
i the following conditions hold:

∇πi
(
ϑi; ϑ−i

)
·
(
ϕi − ϑi

)
≤ 0, for all ϕi ∈ Φi ,

U ′i
(
di(ϑ)

)
= ξ̂ij(ϑ), for all j ∈Mi with ϑij > 0,

U ′i
(
di(ϑ)) ≤ ξ̂ij(ϑ), for all j ∈Mi with ϑij = 0,

U ′i
(
di(ψ)

)
=
∑

r∈Rij

C ′r
(
ℓr(ψ)

)
, for all j ∈Miwith ψij > 0,

U ′i
(
di(ψ)

)
≤
∑

r∈Rij

C ′r
(
ℓr(ψ)

)
, for all j ∈Miwith ψij = 0.

Proof. The function πi is differentiable and concave with respect to ϕi. Furthermore, the set of
profiles Φ is convex. Since ϑ is a Nash equilibrium, the strategy ϑi solves maxϕi∈Φi

πi(ϕi; ϑ−i).
Thus, we can invoke the variational inequality as a necessary and sufficient optimality condi-
tion giving (1). Note that the derivative of πi with respect to ϕij is given by ∂πi

∂ϕij
(ϕi; ϕ−i) =

U ′i (di(ϕ)) − ξ̂ij(ϕ). The conditions (2) and (3) follow directly from the Karush-Kuhn-Tucker
conditions for the two problems maxϕi∈Φi

πi(ϕi; ϑ−i) and maxϕ∈Φ U(ϕ), respectively. �

Proof of Lemma 4.1.

Let G be a resource allocation games with n players, cost functions in C, and basic cost sharing
methods ξr ∈ Dn for all r ∈ R. Let ΘG be the set of Nash equilibria. Then, U(ϑ) ≥ 0 for all
ϑ ∈ ΘG.

Proof. Let ϑ ∈ ΘG be a Nash equilibrium. We deduce the following inequalities.

U(ϑ) ≥
m∑

i=1

mi∑

j=1

ξ̂ij(ϑ) · ϑij − C(ϑ) =
∑

r∈R

n∑

i=1

∂ξri
∂ϑri

(ϑ) · ϑri − C(ϑ) ≥
∑

r∈R

n∑

i=1

ξri (ϑ)− C(ϑ) ≥ 0 .

Here, the first inequality follows from (2) in Lemma 3.12. The second equality follows by rear-
ranging terms. The third inequality follows from convexity of ξri (ϑ) and condition (3) of basic

cost sharing methods implying 0 = ξi(0, ϑ
r
−i) ≥ ξi(ϑri , ϑr−i)+

∂ξr
i

∂ϑr
i
(ϑ) ·(0−ϑri ). The last inequality

follows from the cost covering condition of ξ. �
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Proof of Lemma 4.5.

Consider a game G with basic cost sharing methods and linear utility functions, that is, Ui(x) =
ui · x, ui ≥ 0, i ∈ N . Let ψ be an optimal profile and ϑ be a Nash equilibrium. Then, ψ and ϑ
generate a total surplus of

U(ψ) =
∑

r∈R

(

ℓr(ψ) · C ′r
(
ℓr(ψ)

)
− Cr

(
ℓr(ψ)

))

U(ϑ) =

n∑

i=1

mi∑

j=1

ξ̂ij(ϑ)ϑij − C(ϑ) .

Proof. Using condition (3) from Lemma 3.12, we get ui =
∑

r∈Rij
C ′r
(
ℓr(ψ)

)
for all i ∈ N ,

j ∈Mi, with ψij > 0. By reordering the summation, we obtain

U(ψ) =

n∑

i=1

ui · di(ψ)−
∑

r∈R
Cr
(
ℓr(ψ)

)
=
∑

r∈R

(

ℓr(ψ) · C ′r
(
ℓr(ψ)

)
− Cr

(
ℓr(ψ)

))

,

proving the first claim. Using the optimality condition (2) in Lemma 3.12 we get ui = ξ̂ij(ϑ) for
all i ∈ N , j ∈Mi, with ϑij > 0, proving the second claim. �

Proof of Proposition 4.7.

For incremental cost sharing, every Nash equilibrium is optimal.

Proof. We use Theorem 4.6 as follows. We define λ = 1 and show that ωn
(
C,Dn, λ

)
≤ 0. To see

this, we bound the nominator of (4):

n∑

i=1

ξ̂i(x) (yi − xi) + C
(
ℓ(x)

)
− C

(
ℓ(y)

)
= C ′

(
ℓ(x)

) (
ℓ(y)− ℓ(x)

)
+ C

(
ℓ(x)

)
− C

(
ℓ(y)

)
≤ 0 ,

where the last inequality follows from the convexity of C. �

Proof of Lemma 5.2.

Let ξ be a marginal cost pricing method for n players. Then, ωn
(
C, ξ, λ

)
≤ ωmcpn (C, λ), where

ωmcpn (C, λ) := sup
x,y∈R+

µ∈{0}∪[ 1
n
,1]

C ′(x)y + C ′′(x)µxy − λ
(

C ′(x)x+
(
µ2 + (1−µ)2

n−1

)
C ′′(x)x2

)

+ λC(x)− C(y)

C ′(y) · y − C(y)
.

Proof. Using the definition of ωn
(
C, ξ, λ), all we have to show is that

n∑

i=1

ξ̂i(x) (yi − λxi) ≤ sup
µ∈{0}∪[ 1

n
,1]

{

C ′(ℓ(x)) y + C ′′(ℓ(x))µ ℓ(x) ℓ(y)

− λ (C ′(ℓ(x)) ℓ(x) +
(

µ2 +
(1− µ)2

n− 1

)

C ′′(ℓ(x)) ℓ(x)2)
}

,

where x, y ∈ Rn+, ℓ(x) =
∑n

i=1 xi, ℓ(y) =
∑n

i=1 yi, and ξ is marginal cost pricing with n

players and cost function C. Observe that ξ̂i(x) = C ′′(ℓ(x))xi + C ′(ℓ(x)). By defining µ =
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maxi∈N
{

xi

ℓ(x)

}

∈
[

1
n , n

]
, if ℓ(x) > 0 and µ = 0, otherwise, we obtain

n∑

i=1

ξ̂i(x) (yi − λxi) = C ′(ℓ(x)) ℓ(y) − λC ′(ℓ(x)) ℓ(x) + C ′′(ℓ(x))
n∑

i=1

(

xi yi − λx2
i

)

≤ C ′(ℓ(x)) ℓ(y) + C ′′(ℓ(x))µ ℓ(x) ℓ(y) − λ
(
C ′(ℓ(x)) ℓ(x) +

(

µ2 +
(1− µ)2

n− 1

)

C ′′(ℓ(x)) ℓ(x)2
)
,

where the last inequality follows from
∑

i∈N xi yi ≤ µ ℓ(x) ℓ(y) and
∑

i∈N x
2
i ≥ (µ2+ (1−µ)2

n−1 ) ℓ(x)2.
Thus, the claim is proven. �

Proof of Lemma 5.7.

Consider the class Md :=
{

C(z) = ad z
d, ad ≥ 0, d ∈ {2, 3, . . .}

}

. Then, it holds that

ωmcp∞ (Md;λ) ≤
(

1 + µ(d− 1)

λ(1 + µ2d)

)d−1( d

d− 1
+ µ− 1

)

− 1

d− 1
,

where µ(d) = 1√
d−1+1

.

Proof. Using the definition of ωmcp∞ (C;λ) for C ∈Md we get

ωmcp∞ (C;λ) = sup
µ∈[0,1]

sup
β≥0

dβd−1

(
1

d− 1
+ µ

)

− λβd
(
1 + µ2 d

)
− 1

d− 1
.

The unique global maximizer with respect to β is β∗ = 1+µ(d−1)
λ(1+µ2d)

. Thus, since C ∈ Md was

arbitrary, we get

ωmcp∞ (Md;λ) ≤ sup
µ∈[0,1]

(
1 + µ(d− 1)

λ(1 + µ2d)

)d−1( d

d− 1
+ µ− 1

)

− 1

d− 1
.

The unique maximizer for this supremum is given by µ(d) = 1√
d−1+1

. �

Proof of Proposition 5.10.

Let CconvD be a class of cost functions with a convex derivative. Consider the set Gn(CconvD) of

games with at most n ∈ N∗ players. Then, ρn(CconvD) ≤ 2(n−√n)√
n(n−1)

which grows as O(1/
√
n).

Proof. Consider the example in the proof of Theorem 5.8 with polynomial cost functions of degree
d ∈ N. Let ϑd(n) and ψd(n)be the Nash equilibrium and the optimum profile in the game with
n players, respectively. We obtain

ρn(CconvD) ≤ lim
d→∞

U(ϑd(n))

U(ψd)
=

1 + n b2 − b2
1 + n b− b , ∀b ∈ [0, 1] .

Since 1+n b2−b2
1+n b−b has a global minimum with respect to b with value 2(n−√n)√

n(n−1)
, the proposition is

proved. �



70 The Worst-Case Efficiency of Cost Sharing Methods in Resource Allocation Games

Proof of Lemma 5.11.

Consider a symmetric game with ξ being marginal cost pricing. Then, it holds that ωn
(
C, ξ, λ) ≤

ωmcp, symn (C, λ), where

ωmcp, symn (C;λ) := sup
x,y∈R+

C ′(x) y + C ′′(x) x yn − λ
(
C ′(x)x+ C ′′(x) x

2

n − C(x)
)
− C(y)

C ′(y) · y − C(y)
.

Proof. The proof is analogous to the proof of Lemma 5.2, except that for symmetric games we use

a symmetric optimal profile which implies
∑

i∈N xiyi = ℓ(x)ℓ(y)
n . Moreover, using

∑

i∈N x
2
i ≥

ℓ(x)2

n
the claim follows. �

Proof of Proposition 5.12.

Let CconvD be the class of cost functions with a convex derivative. Consider the set Gn(CconvD)
of symmetric games with at most n ∈ N∗ players. Then, ρn(CconvD) ≥ 2n

2n+1 .

Proof. The proof proceeds along the lines of the proof of Theorem 5.3, except that λ = 1+2n
2n

and the values µ is replaced by 1
n . Then, the only interesting difference occurs for the case x < y

in evaluating the following maximum:

max
β∈[0,1)

(
β

n
− λβ2

n
− (1− β)2

2

)

≤ 1 + 2n− 2nλ

2n (2λ + n)
.

Thus, since λ = 1+2n
2n , the claim is proven. �

Proof of Theorem 5.13.

Let Cd be the class of polynomial cost function with non-negative coefficients and arbitrary degree
d ∈ {2, 3, . . .}. Consider the set Gn(Cd) of symmetric games with n players and cost functions in
Cd. Then, ρn(Cd) = 3

4 .

Proof. Let ϑ be a Nash equilibrium profile and ψ the system optimum. Using Remark 5.6, it is
sufficient to consider monomial cost functions Cd′(z) = ad′ z

d′ , aj ≥ 0, for some d′ ∈ {2, 3, . . .}.
Then, we obtain

ωmcp, symn (Cd′ ;λ) ≤ sup
β≥0

d′
(

1

d′ − 1
+

1

n

)

βd
′−1 − λβd′

(

1 +
d′

n

)

− 1

d′ − 1
.

The unique maximizer is β∗ = n+d′−1
λ (n+d′) . Thus, we get

ωmcp, symn (Cd′ ;λ) ≤
(
n+ d′ − 1

λ (n+ d′)

)d′−1 (n+ d′ − 1

n (d′ − 1)

)

− 1

d′ − 1
.

We define λ = λ(d′, n) =
(
n+d′−1
n+d′

) (
n

n+d′−1

)− 1
d′−1

implying ωmcp, symn

(
Cd′ ;λ(d′, n)

)
= 0. Thus,

applying Lemma 5.11 and Theorem 4.6 yields U(ψ) ≤ λ(d′, n)U(ϑ) for a Nash equilibrium ϑ and
optimal profile ψ. We now observe that λ(d′, n) is a decreasing function in d′ and n. Hence, the
worst case occurs for d′ = 2 and n = 1 leading to the desired bound of 3/4.

To prove that the bound is tight, we consider a resource allocation game with a single resource
and cost function C(z) = 1

2z
2. We consider n players with utility functions U(ϕi) = ϕi. Then,

the following conditions hold for a Nash equilibrium ϑ: 1 −
(
ℓ(ϑ) + ϑi

)
= 0 ⇒ ϑi = 1 − ℓ(ϑ).

Hence, we have: ℓ(ϑ) = nϑi = n
(
1 − ℓ(ϑ)

)
⇒ ℓ(ϑ) = n

n+1 . The total surplus evaluates to
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U(ϑ) = n
n+1 − 1

2
n2

(n+1)2 . The optimal profile ψ has value 1 and its total surplus evaluates to

U(ψ) = 1
2 . Evaluating the ratio U(ϑ)

U(ψ) proves the claim. �

Proof of Theorem 6.1.

In order to prove Theorem 6.1, we first present the following two lemmata. The first one estab-
lishes closed-form expressions of the total surplus of a Nash equilibrium and an optimal profile.

Lemma 8.1. Consider a game G in which utility functions are linear, that is, Ui(x) = ui · x,
ui ≥ 0, i ∈ N . Let ψ be an optimal profile and ϑ be a Nash equilibrium. Then, ψ and ϑ generate

total surplus of U(ψ) =
∑

r∈R
(
ℓr(ψ)

)2 · c′r
(
ℓr(ψ)

)
and U(ϑ) =

∑

r∈R
∑n

i=1

(
ϑri
)2 · c′r

(
ℓr(ϑ)

)
,

where cr(ℓ(ϕ)) = Cr(ℓ(ϕ))
ℓ(ϕ) is the per-unit cost function.

The proof follows from Lemma 4.5. Next, along the lines of Section 5, we derive an upper
bound of the quantity ωn

(
C, ξ, λ

)
, where ξ corresponds to average cost sharing.

Lemma 8.2. For ξ being average cost pricing, it holds ωn
(
C, ξ, λ

)
≤ ωavgn (C, λ), where

ωavgn (C, λ) := sup
x,y∈R+

sup
µ∈{0}∪[ 1

n
,1]

c(x) y + c′(x)x y µ− c(y) y − λ
(

µ2 + (1−µ)2

n−1

)

c′(x)x2

c′(y) y2
. (12)

Proof. The proof proceeds along the lines of the proof of Lemma 5.2. Using the definition of
ωn
(
C, ξ, λ), it remains to show that

n∑

i=1

ξ̂i(x) (yi − λxi) + λ ℓ(x) c(ℓ(x))

≤ sup
µ∈{0}∪[ 1

n
,1]

c(ℓ(x)) y + c′(ℓ(x)) ℓ(x) ℓ(y)µ − λ
(

µ2 +
(1− µ)2

n− 1

)

c′(ℓ(x)) ℓ(x)2 .

where x, y ∈ Rn+, ℓ(x) =
∑n

i=1 xi, ℓ(y) =
∑n

i=1 yi, ξ is average cost pricing with n players and

cost function C, and c(ℓ(x)) = C(ℓ(x))
ℓ(x) . Using the definition of average cost pricing, this reduces

to
∑

i∈N
xi yi − λ

∑

i∈N
x2
i ≤ sup

µ∈{0}∪[ 1
n
,1]

ℓ(x) ℓ(y)µ− λ
(

µ2 +
(1− µ)2

n− 1

)

ℓ(x)2 .

Observe that setting µ = maxi∈N
{

xi

ℓ(x)

}

∈
[

1
n , n

]
, if ℓ(x) > 0 and µ = 0, otherwise, we

obtain
∑

i∈N xi yi ≤ µ ℓ(x) ℓ(y) and
∑

i∈N x
2
i ≥

(

µ2 + (1−µ)2

n−1

)

ℓ(x)2 proving the claim. �

Now we prove the theorem.
Let Cconv be a class of convex cost functions. Consider the set Gn(Cconv) of games with at

most n ∈ N players. Then, ρn(Cconv) ≥ 1
n .

Proof. We first need the following simple observation

ωavgn (C;λ) ≤ sup
x,y∈R+

c(x) y + c′(x)x y − c(y) y − λ
n c
′(x)x2

c′(y) y2
.

Then, we define λ = n and prove the claim by showing ωavgn (C;λ) ≤ 0 for C ∈ Cconv. Let
Tx(y) = c(x)x+ (c(x)x)′

(
y − x) be the supporting tangent of c(y) y in x. Using Tx(y) ≤ c(y) y

for all y ≥ 0 (note that c(x)x is a convex function), we obtain

c(x) y + c′(x)x y − c(y) y − c′(x) (x)2 = Tx(y)− c(y) y ≤ 0.
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�

Proof of Theorem 6.2.

Let CconvU be the class of cost functions with convex unit costs. Then, ρ(CconvU ) = 4
n+3 .

Proof. First, we define λ = n+3
4 and prove ρ(CconvU ) ≥ 4

n+3 by showing ωavgn (C;λ) ≤ 0.

We denote the nominator of (12) by N(x, y, µ;C, λ). Using Tx(y) = c(x)+c′(x) (y−x) ≤ c(y)
(using that c is convex), we obtain

N(x, y, µ;C, λ) ≤ c′(x)
(

x y (1 + µ)− y2 − λ
(

µ2 +
(1− µ)2

n− 1

)

x2

)

.

Then, since for y ∈ R+ it holds

x y (1 + µ)− y2 ≤ (1 + µ)2

4n
x2 ,

we obtain

N(x, y, µ;C, λ) ≤ c′(x)x2

(
(1 + µ)2

4n
− λ

(

µ2 +
(1− µ)2

n− 1

))

.

Finally, the inequality

(1 + µ)2

4n
− λ

(

µ2 +
(1− µ)2

n− 1

)

≤ λ (n− 4λ+ 3)

1 + 4λn− n
for λ = n+3

4 proves the claim.

To prove ρ(CconvU ) ≤ 4
n+3 consider the following example. Assume n users share a single

resource with the cost function C(ℓ(ϕ)) = ℓ(φ). Further, assume user 1 has the utility function
U1(ϕ1) = aϕ1, while users i = 2, . . . , n have utility functions Ui(ϕi) = 1−a

n−1 ϕi, with a = n+3
(n+1)2

.

A system optimum is achieved when all of the resource is allocated to user 1 resulting in a total

utility of U(ψ) = a2

4 . A Nash equilibrium is ϑ1 = a− 1
n+1 , ϑi = 1−a

n−1 − 1
n+1 for i = 2, . . . , n. We

obtain a total utility of U(ϑ) = a2 + (1−a)2
n−1 − n+2

(n+1)2
. Thus, relative efficiency is U(ϑ)

U(ψ) = 4
n+3 . �

Proof of Theorem 6.4.

Let CconvU be the class of cost functions with convex unit costs. Consider the set Gn(CconvD) of
symmetric games with at most n ∈ N∗ players. Then, ρ(CconvD) = 4n

(n+1)2
.

Proof. Using similar arguments as in the proof of Lemma 5.11, we obtain

ωn(C, ξ, λ) ≤ ωavg, symn (C;λ) := sup
x,y∈R2

+

c(x) y + c′(x) x yn − c(y) y − λ
n c
′(x)x2

c′(y) y2
.

We define λ = (n+1)2

4 and prove the theorem by showing ωavg, symn (C;λ) ≤ 0. With Tx(y) =
c(x) + c′(x) (y − x) ≤ c(y) (using that c is convex), we obtain

c(x) y + c′(x)
x y

n
− c(y) y − λ

n
c′(x) (x)2 ≤ c′(x)

(

x y

(

1 +
1

n

)

− y2 − λ

n
x2

)

.

Then, we use that for y ∈ R+ it holds that x y (1 + 1
n)− y2 ≤ (1+1/n)2

4n x2. The choice of λ, thus,
proves the claim. The upper bound follows by a simple construction and is omitted. �
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Abstract. We consider the problem of designing cost sharing protocols to minimize the price of
anarchy and stability for a class of scheduling games. Here, we are given a set of players, each
associated with a job of certain non-negative weight. Any job fits on any machine, and the cost
of a machine is a non-decreasing function of the total load on the machine. We assume that
the private cost of a player is determined by a cost sharing protocol. We consider four natural
design restrictions for feasible protocols: stability, budget balance, separability, and uniformity.
While budget balance is self-explanatory, the stability requirement asks for the existence of pure-
strategy Nash equilibria. Separability requires that the resulting cost shares only depend on the
set of players on a machine. Uniformity additionally requires that the cost shares on a machine
are instance-independent, that is, they remain the same even if new machines are added to or
removed from the instance. We call a cost sharing protocol basic, if it satisfies only stability and
budget balance. Separable and uniform cost sharing protocols additionally satisfy separability
and uniformity, respectively. For n-player games we show that among all basic and separable cost
sharing protocols, there is an optimal protocol with price of anarchy and stability of precisely
Hn =

∑n
i=1 1/i. For uniform protocols we present a strong lower bound showing that the price

of anarchy is unbounded. Moreover, we obtain several results for special cases in which either
the cost functions are restricted, or the job sizes are restricted. As a byproduct of our analysis,
we obtain a complete characterization of outcomes that can be enforced as a pure-strategy Nash
equilibrium by basic and separable cost sharing protocols.

1. Introduction

Congestion games play a fundamental role for many applications, including traffic networks,
telecommunication networks and economics. In a congestion game, there is a set of resources
and a pure strategy of a player consists of a subset of resources. The cost of a resource depends
only on the number of players choosing the resource, and the private cost of a player is the sum

73
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of the costs of the chosen resources. Under these assumptions, Rosenthal proved the existence of
a pure Nash equilibrium (PNE for short) [20]. An important question in congestion games is the
degree of suboptimality caused by selfish resource allocation. Koutsoupias and Papadimitriou [17]
introduced a measure to quantify the inefficiency of Nash equilibria which they termed the price of
anarchy. The price of anarchy is defined as the worst-case ratio of the cost of a Nash equilibrium
over the cost of a system optimum. In the past decade, considerable progress has been made in
exactly quantifying the price of anarchy for many interesting classes of games. In the context
of nonatomic network routing games, the price of anarchy for specific classes of cost functions is
well understood, see Roughgarden and Tardos [23], Roughgarden [21] and Correa, Schulz, and
Stier-Moses [11]. (For an overview of these results, we refer to the book by Roughgarden [22].)
Awerbuch et al. [4], Christodoulou and Koutsoupias [9], Aland et al. [2] and Bhawalkar et al. [5]
derived several tight bounds on the price of anarchy for weighted and unweighted congestion
games with specific classes of latency functions. Despite these bounds, it is known that the price
of anarchy for general latency functions is unbounded even on simple parallel-arc networks [5, 23].

Motivated by the fact that pure Nash equilibria may be very inefficient even in parallel-arc
networks, we focus in this paper on the design of cost sharing methods as a means to leverage the
resulting price of anarchy. The concrete scenario that we consider is the problem of scheduling
jobs on parallel machines. We are given a set of players, each associated with a job of certain
non-negative weight. Any job fits on any machine, and the cost of a machine is a non-decreasing
function of the total load on the machine. We assume that the private cost of a player is
determined by a cost sharing method. For instance, a simple cost sharing method that has been
analyzed in the aforementioned literature is average cost sharing, see [5, 11, 23]. In almost all
settings in the theory and practice of mechanism or protocol design, a designer may only choose
protocols out of a set of feasible protocols. Therefore, we have to precisely define the design
space of feasible protocols. To this end, we define the following four properties listed below
which are defined more formally in Section 2. These properties have been introduced first by
Chen et al. [8] in the context of the design of cost sharing protocols for network design games (a
formal definition of these games will be given in Section 1.2).

(1) Stability : There is at least one pure strategy Nash equilibrium in each scheduling game
induced by the cost sharing protocol.

(2) Budget-balance: For every outcome of a scheduling game induced by the cost sharing
protocol, the cost of each resource is exactly covered by the collected cost shares of the
players using the resource.

(3) Separability : In each scheduling game induced by the cost sharing protocol, the cost
shares of each resource are completely determined by the set of players that use it.

(4) Uniformity : Across all scheduling games induced by the cost sharing protocol, the cost
shares of a resource (for each potential set of users) depend only on the resource cost,
and not on the set of available resources.

A cost sharing method is called basic if it satisfies (1)-(2), separable if it satisfies (1)-(3), and
uniform if it satisfies (1)-(4). We briefly discuss the above four properties and refer to [8] for a
more detailed treatment. The condition (2) is the least controversial in the context of cost sharing
protocols. The stability condition (1) requires the existence of at least one Nash equilibrium in
pure strategies. While this requirement restricts the search space for cost sharing protocols, it is
certainly the solution concept of choice when mixed or correlated strategies have no meaningful
physical interpretation in the game played; see also the discussion in Osborne and Rubinstein [19,
§ 3.2] about critics of mixed Nash equilibria. While condition (3) seems restrictive, it is crucial
for practical applications in which cost sharing methods have only local information about their
own resource usage (see for instance the TCP/IP protocol design, where routers drop packets
based on some function of the number of packets in the queue, see [24]). Uniformity (4) is the
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strongest and perhaps the most problematic design restriction. A uniform protocol is not only
separable but also strongly local in the sense that the cost shares of a resource are independent
of the set of resources available to the game designer. This property may be crucial for systems
in which the resources can be added or removed over time and a reconfiguration of the system
(changing the cost sharing protocol) is too costly.

The goal of this paper is twofold. On the one hand side, we want to systematically analyze the
achievable worst-case efficiency of Nash equilibria by basic, separable and uniform cost sharing
protocols in the context of scheduling games. Besides this worst-case perspective, we also ask
a larger question: Which outcomes can actually be enforced as pure Nash equilibria? More
precisely, we call an outcome of a scheduling game weakly-enforceable if there is a basic protocol
that induces the outcome as a pure Nash equilibrium. We call an outcome of a scheduling game
strongly-enforceable if there is a basic protocol that induces the outcome as the most expensive
pure Nash equilibrium.

1.1. Our Results

We study protocol design problems in the context of scheduling games, where the goal is to
minimize the induced price of anarchy and the price of stability. Our results for these problems
can be summarized as follows.

Among all basic and separable protocols, we provide an optimal protocol minimizing the
resulting price of anarchy and price of stability simultaneously. For n-player scheduling games,
the optimal value of the price of anarchy and stability is precisely the n-th harmonic numberHn =
∑n

i=1 1/i. Moreover, we obtain a complete characterization of weakly-enforceable outcomes.
This characterization can be used for designing cost sharing protocols minimizing the price of
stability with respect to an arbitrary objective function. We also derive sufficient conditions for
an outcome to be strongly-enforceable. Our proof of this result is constructive by providing a
cost sharing protocol that strongly enforces an outcome satisfying the sufficient conditions. We
then show that this protocol gives rise to an optimal cost sharing protocol minimizing the price
of anarchy and stability as mentioned above. For scheduling games with cost functions that have
non-decreasing per-unit costs, we derive an optimal cost sharing protocol with price of anarchy
equal to 1. We remark that this assumption is quite weak insofar as non-decreasing and convex
cost functions satisfy non-decreasing per-unit costs.

We also study the achievable price of anarchy of uniform cost sharing protocols. We show
that there is no uniform cost sharing protocol with a bounded price of anarchy. This bound even
holds for a family of instances with only 3 players, at most 3 machines and cost functions with
non-decreasing costs per unit. Only for instances in which the demands are integer multiples of
each other, we present a cost sharing protocol with a bounded price of anarchy of n.

1.2. Related Work

There is a large body of work on scheduling games (or singleton congestion games) with un-
weighted and weighted players [1, 12, 13, 14, 15, 18]. Most of these papers study the existence
and price of anarchy of pure Nash equilibria for the uniform cost sharing protocol in which the
private cost of every player is equal to the cost on the resource. These works, however, do not
consider the design perspective of cost sharing protocols. Christodoulou et al. [10] and follow-up
papers such as [6, 16] study coordination mechanisms and their price of anarchy in scheduling
games in which n players assign a task to one of m machines. Rather than paying a share of the
resulting cost of a machine as in our scenario, the players in these games consider the completion
time of their respective job as private cost. This completion time depends on the sequence in
which the jobs on a machine are processed which in turn is given by the coordination mechanism.
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The notion of private cost in these papers establishes an entirely different set of Nash equilibria
compared to our work and hence their results concerning the price of anarchy are unrelated to
ours.

Our work is motivated by the paper by Chen et al. [8]. In this paper, the authors study
the design of cost sharing protocols for network design games, see also Anshelevich et al. [3]
and Chen and Roughgarden [7] for earlier work on network design games. In a network design
game, each player i has a unit demand that she wishes to send along a path in a (directed or
undirected) network connecting her source node si to her terminal node ti. Every edge has a
constant non-negative cost and the problem is to design a separable or uniform cost sharing
protocol so as to minimize the price of anarchy and stability in this setting. Our approach
follows their lead in terms of the feasible protocol space, but we apply cost sharing protocols
to the structural different class of scheduling models. On the one hand, such scheduling models
are more general in the sense that we allow arbitrary non-decreasing cost functions instead of
constant costs on the resources. Moreover, in contrast to [8], we allow players to have different
non-negative weights. On the other hand, scheduling models are more restricted in the sense
that we consider a relatively simple strategy space for the players, that is, a pure strategy for
a player is simply a single resource. Moreover, in contrast to [8], our games are symmetric,
that is, every player has access to every resource. These structural differences result in different
approaches and also the results of [8] are different to ours. For example, while Chen et al. [8]
proved bounds on the price of anarchy for uniform protocols of order Θ(log(n)),Θ(polylog(n)),
and n for undirected single-sink instances, undirected multi-commodity instances, and directed
single-sink instances, respectively, we show that for scheduling games such results are impossible.
The price of anarchy for uniform protocols inducing scheduling games is unbounded. Finally, it
is worth noting that, while [8] analyzed separable and uniform protocols, we additionally analyze
the larger class of basic protocols.

2. Model and Problem Statement

A scheduling model is represented by a tuple (N,M, d, c). Here, N = {1, . . . , n} is a nonempty set
of players and M = {a1, . . . , am} is a nonempty set of machines. Every player is associated with
a task of weight di and d = (d1, . . . , dn) is the combined weight vector. Every machine a ∈M has
an associated non-negative and non-decreasing cost function ca : R

+ → R
+. We assume ca(0) = 0

for all a ∈ M . The vector of cost functions is denoted by c = (c1, . . . , cm). Given a scheduling
model (N,M, d, c), we associate a strategic game represented by the tuple (N,X, ξ). Here, it is
assumed that every task fits on every machine, thus, the set of pure strategies for player i ∈ N
is Xi = M and the overall strategy space is X = Mn. The outcomes x = (x1, . . . , xn) ∈ Mn

are vectors of machines where the strategy played by player i is machine xi. The private cost of
player i ∈ N in such an outcome x is determined by the cost sharing method ξi : X → R+. A cost
sharing protocol Ξ : (N,M, d, c) 7→ ξ provides every scheduling model with a vector ξ = (ξi)i∈N
of such cost sharing methods. For x ∈ Mn, the set of players using some machine a ∈ M is
denoted by Sa(x) := {i ∈ N : xi = a} and for a ∈ M , the load on machine a is defined as
ℓa(x) :=

∑

i∈Sa(x) di. The cost of an outcome is defined as C(x) :=
∑

a∈M ca(ℓa(x)). Abusing

notation, we will often write ca(x) instead of ca(ℓa(x)). We consider cost minimization games,
thus, when choosing her strategy, each player strives to minimize her resulting private cost ξi(x).
We say that the game (N,X, ξ) on a scheduling model (N,M, d, c) is induced by the protocol Ξ.

An important solution concept in non-cooperative game theory for the analysis of strategic
games are pure Nash equilibria. Using standard notation in game theory, for an outcome x ∈Mn

we denote by

(a, x−i) := (x1, . . . , xi−1, a, xi+1, . . . , xn) ∈Mn
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the outcome that arises if only player i deviates to strategy a.

Definition 2.1 (Pure Nash Equilibrium). Let (N,X, ξ) be a scheduling game. The outcome x is
a pure Nash equilibrium if no player i can strictly reduce her private cost by unilaterally moving
to a different machine, that is, for all i ∈ N

ξi(x) ≤ ξi(a, x−i) for all a ∈M. (1)

Two well established concepts that quantify the efficiency of Nash equilibria are the price
of anarchy and the price of stability. The price of anarchy measures the largest possible ratio
of the cost of a Nash equilibrium and the cost of an optimal outcome. The price of stability
measures the smallest ratio of the cost of a Nash equilibrium and the cost of an optimal outcome.
For a cost sharing protocol Ξ, we define by PoA(Ξ) and PoS(Ξ) the corresponding worst case
price of anarchy and price of stability across games induced by protocol Ξ. The main goal of
this paper is to design cost sharing protocols that minimize the price of anarchy and price of
stability, respectively. Of course, the attainable objective values crucially depend on the design
space that we permit. The following properties have been first proposed by Chen et al. [8] in the
context of designing cost sharing methods for network design games.

Definition 2.2 (Properties of cost sharing protocols). A cost sharing protocol Ξ is

(1) stable if it induces only games that admit at least one pure Nash equilibrium.
(2) basic if it is stable and additionally budget balanced, i.e. if it assigns all scheduling

models (N,M, d, c) with cost sharing methods (ξi)i∈N such that

ca(x) =
∑

i∈Sa(x)

ξi(x) for all a ∈M,x ∈Mn. (2)

This property requires ca(0) = 0 for unused machines, which we will assume in the
paper.

(3) separable if it is basic and if it induces only games (N,Mn, ξ) for which in any two
outcomes x, x′ ∈Mn

Sa(x) = Sa(x
′)⇒ ξi(x) = ξi(x

′) ∀i ∈ Sa(x), a ∈M.

(4) uniform if it is separable and if it assigns any two models (N,M, d, c), (N,M ′, d, c′)
with cost sharing methods (ξi)i∈N and (ξ′i)i∈N such that the following condition holds.
For all a ∈M ∩M ′ with ca = c′a and all outcomes x ∈Mn, x′ ∈M ′n

Sa(x) = Sa(x
′)⇒ ξi(x) = ξ′i(x

′) for all i ∈ Sa(x).
Informally, separability means that in an outcome x the value ξi(x) depends only on the set

Sxi
(x) of players sharing machine xi and disregards all other information contained in x. Still,

separable protocols can assign cost sharing methods that are specifically tailored to the given
scheduling model, for example based on an optimal outcome. Uniform protocols are not allowed
to do this, they even disregard the layout of the model and assign the same cost sharing methods
when machines are added to or removed from the model.

We denote by Bn,Sn and Un the set of basic, separable and uniform cost sharing protocols for
scheduling games with n players, respectively. We obtain the following optimization problems
that we address in this paper.

min
Ξ∈Bn

PoA(Ξ), min
Ξ∈Bn

PoS(Ξ), min
Ξ∈Sn

PoA(Ξ), min
Ξ∈Sn

PoS(Ξ),

min
Ξ∈Un

PoA(Ξ), min
Ξ∈Un

PoS(Ξ) .
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3. Basic and Separable Protocols

We start with studying basic and separable cost sharing protocols. While our goal is to find a cost
sharing protocol minimizing the induced PoA and PoS, we first study the issue of enforceability
of pure Nash equilibria by basic and separable cost sharing protocols. To be more precise, given
a scheduling model (N,M, d, c), we first ask which outcomes x ∈ Mn can be enforced as pure
Nash equilibria by some basic or separable cost sharing protocol. We will differentiate between
weakly enforceable outcomes and strongly enforceable outcomes, see the definition below.

Definition 3.1 (Enforceable outcomes). Consider a scheduling model (N,M, d, c) and an out-
come x ∈Mn.

i) x is weakly-enforceable if there exists a basic cost sharing protocol Ξ such that x is a
Nash equilibrium in the game (N,Mn, ξ) induced by Ξ.

ii) x is separable weakly-enforceable if there exists a separable cost sharing protocol Ξ such
that x is a Nash equilibrium in the game (N,Mn, ξ) induced by Ξ.

iii) x is strongly-enforceable if there exists a separable cost sharing protocol Ξ such that
x is the most expensive Nash equilibrium in the game (N,Mn, ξ) induced by Ξ, i.e.
C(x′) ≤ C(x) for all Nash equilibria x′ ∈Mn.

In the following section, we will give an exact characterization of weakly-enforceable and
separable weakly-enforceable outcomes. This characterization provides a structural property that
can be used to design cost sharing protocols for minimizing the price of stability for arbitrary
objective functions.

Throughout this section, the players are assumed to be ordered by non-decreasing weights:

d1 ≤ d2 ≤ · · · ≤ dn. (3)

3.1. Weakly-Enforceable Outcomes

This section provides an exact characterization of weakly-enforceable outcomes. Our character-
ization relies on the notion of decharged outcomes defined below.

Definition 3.2 (Weakly decharged outcome). Consider a scheduling model (N,M, d, c). A ma-
chine a ∈M is weakly decharged in an outcome x ∈Mn if

ca(x) ≤
∑

i∈Sa(x)

min
b∈M

cb(b, x−i). (4)

The outcome x itself is called weakly decharged if all machines are weakly decharged.

We further introduce the weak x-enforcing protocol.

Definition 3.3 (Weak x-enforcing protocol). The weak x-enforcing protocol takes as input a
weakly decharged outcome x. We use x to define for any outcome z and machine a the sets
S0
a(z) := {i ∈ Sa(z) ∩ Sa(x)} (home players on a) and S1

a(z) := {i ∈ Sa(z)\Sa(x)} (foreign
players on a). Then, the weak x-enforcing protocol assigns for all i ∈ N, z ∈ Mn the following
cost sharing methods

ξi(z) :=







min
b∈M

cb(b, x−i)
∑

j∈Sxi
(x)

min
b∈M

cb(b, x−j)
· cxi

(x), if Szi
(z) = Szi

(x) and cxi
(x) > 0,

czi
(z), if S1

zi
(z) 6= ∅ and i = minS1

zi
(z),

czi
(z), if S1

zi
(z) = ∅, Szi

(z) ⊂ Szi
(x) and i = minSzi

(z),

0, else.
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Informally, if Sa(z) = Sa(x), the players on machine a share the cost proportional to their
opportunity cost (cost of change) in outcome x. Otherwise, the smallest foreign player (deviating
from outcome x) or, if there are none, the smallest home player (not deviating) pays the entire
cost of the machine. Observe that in weakly decharged outcomes x we have

∑

j∈Sa(x)

min
b∈M

cb(b, x−j) > 0 for all a ∈M with ca(x) > 0

and thus the protocol is well defined. We are now ready to state our first main result.

Theorem 3.4. For any scheduling model (N,M, d, c) and outcome x, the following statements
are equivalent.

(i) the outcome x is weakly decharged,
(ii) the outcome x is weakly-enforceable,
(iii) the outcome x is separable weakly-enforceable.

Observe that (iii) ⇒ (ii) holds because by definition separable protocols are a subclass of
basic protocols. We prove (i) ⇒ (iii) and (ii) ⇒ (i) by two lemmas.

Lemma 3.5. For every weakly decharged outcome x, the weak x-enforcing protocol is a separable
cost sharing protocol and weakly enforces x.

Proof. Budget balance and separability of the cost sharing methods are clear from the definition
of the protocol, thus, we prove only that x is a Nash equilibrium. For all machines a ∈M with
ca(x) > 0 we are in the first case of the definition of the protocol, thus, we obtain

ξi(x) =
min
b∈M

cb(b, x−i)
∑

j∈Sa(x)

min
b∈M

cb(b, x−j)
· ca(x)

≤ min
b∈M

cb(b, x−i) ≤ min
b∈M\{a}

ξi(b, x−i) for all i ∈ Sa(x),

where the first inequality holds because outcome x is weakly decharged. For all other machines
a ∈M , we have ξi(x) = ca(x) = 0 for all i ∈ Sa(x) and thus x is a pure Nash equilibrium. �

We prove (ii) ⇒ (i) from Theorem 3.4 by the following lemma.

Lemma 3.6. Consider the scheduling model (N,M, d, c). Then, any weakly-enforceable outcome
x is weakly decharged.

Proof. Say x is a Nash equilibrium under the basic protocol Ξ that assigns cost sharing methods
ξ. Then ξi(x) ≤ minb∈M ξi(b, x−i) for all i ∈ N and hence due to budget balance of Ξ,

ca(x) =
∑

i∈Sa(x)

ξi(x) ≤
∑

i∈Sa(x)

min
b∈M

ξi(b, x−i)

≤
∑

i∈Sa(x)

min
b∈M

cb(b, x−i)

for all machines a ∈M . Thus, x is weakly decharged. �

The above characterization has a direct consequence for the design of cost sharing protocols
so as to minimize the price of stability with respect to an arbitrary objective function over
the strategy space. As formalized below, by Theorem 3.4 this problem reduces to solving a
well-structured finite-dimensional optimization problem.
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Corollary 3.7. Let (N,M, d, c) be a scheduling model and let F : Mn :→ R be a social wel-
fare function. Then, minξ∈Bn

PoS(ξ;F ) and minξ∈Sn
PoS(ξ;F ) can be reduced to solving the

optimization problem

min
x∈Mn

F (x) s.t. ca(x) ≤
∑

i∈Sa(x)

min
b∈M

cb(b, x−i)∀ a ∈M.

3.2. Strongly-Enforceable Outcomes

In this section, we turn to strongly-enforceable outcomes. We present a slightly extended protocol
that we term the the strong x-enforcing protocol. We will show that outcomes that are strongly
decharged (a definition will follow shortly) are strongly-enforceable by this protocol.

Definition 3.8 (Strongly Decharged Outcome). Consider a scheduling model (N,M, d, c). A
machine a ∈M is strongly decharged if it is weakly decharged and additionally

ca(x) <
∑

i∈Sa(x)

min
b∈M

cb(b, x−i), if |Sa(x)| > 1 and ca(x) > 0. (5)

Machines that are not strongly decharged are called charged. The outcome x is called strongly
decharged if all machines are strongly decharged.

We now introduce the strong x-enforcing protocol.

Definition 3.9 (Strong x-enforcing protocol). The strong x-enforcing protocol takes as input a
strongly decharged outcome x. As before, we use x to define for any outcome z and machine a
the sets S0

a(z) and S1
a(z). Additionally, we define the set S2

a(z) := {i ∈ Sa(z)\Sa(x) : cxi
(x) = 0}

that we term strong foreign players on a. Then, the strong x-enforcing protocol assigns for all
i ∈ N, z ∈Mn, the following cost sharing methods:

ξi(z) :=







min
b∈M

cb(b, x−i)
∑

j∈Sxi
(x)

min
b∈M

cb(b, x−j)
· cxi

(x), if Szi
(z) = Szi

(x) and cxi
(x) > 0,

czi
(z), if S2

zi
(z) 6= ∅ and i = minS2

zi
(z),

czi
(z), if S2

zi
(z) = ∅, S1

zi
(z) 6= ∅ and i = minS1

zi
(z),

czi
(z), if S1

zi
(z) = ∅, Szi

(z) ⊂ Szi
(x) and i = minSzi

(z),

0, else.

The protocol works almost the same as the weak x-enforcing protocol, it only accounts
differently for strong foreign players.

Theorem 3.10. Consider a scheduling model (N,M, d, c). If an outcome x is strongly decharged,
then the strong x-enforcing protocol is separable and strongly enforces x.

Proof. Separability follows from the definition of the strong x-enforcing protocol. We only show
that for any Nash equilibrium z 6= x we have C(z) ≤ C(x). To this end, fix such a z and let

i := min {j ∈ N : zj 6= xj} (7)

be the smallest player who deviates from x. First, note that for all j > i,

ξj(z) ≤
{

ξj(zi, z−j) = 0 , if cxj
(x) > 0

ξj(xj , z−j) = 0 , if cxj
(x) = 0,

(8)

because z is a Nash equilibrium. Hence,

ca(z) = 0 for all machines a 6= zi with foreign players S1
a(z) 6= ∅. (9)



3 Basic and Separable Protocols 81

Also, ca(z) ≤ ca(x) for all machines a 6= zi that only have home players S0
a(z) = Sa(z), because

for these machines ℓa(z) ≤ ℓa(x). Thus, we already have

ca(z) ≤ ca(x) for all machines a 6= zi. (10)

If there is a strong foreign player on zi, then even czi
(z) = 0 and we are done. Thus, from now

on we assume that there are no strong foreign players on zi. We can bound czi
(z) from above

using the Nash inequality czi
(z) = ξi(z) ≤ ξi(xi, z−i). The remaining proof focuses on bounding

the value ξi(xi, z−i) from above.
The value of ξi(xi, z−i) assigned by the x-enforcing protocol depends on Sxi

(xi, z−i) and
cxi

(x), for which there are three possibilities, according to the definition of the strong x-enforcing
protocol. These cases are

(1) Sxi
(xi, z−i) = Sxi

(x) and cxi
(x) > 0, where the protocol returns ξi(xi, z−i) = ξi(x).

(2) Sxi
(xi, z−i) ⊂ Sxi

(x) and i = minSxi
(xi, z−i), where the protocol returns ξi(xi, z−i) =

cxi
(xi, z−i).

(3) All cases in which the protocol returns ξi(xi, z−i) = 0.

In each case we will find cxi
(z)+czi

(z) ≤ cxi
(x)+czi

(x) and thus with (10) we have C(z) ≤ C(x),
which proves the Theorem. Note that (10) already implies cxi

(z) ≤ cxi
(x).

We begin with Case 1. The condition cxi
(x) > 0 implies that if there is some strong foreign

player j > i (with zj 6= xj and cxj
(x) = 0), then czi

(z) = ξi(z) ≤ ξi(zj , z−i) = 0 and we are
done. Thus, we will in the following assume that there are no strong foreign players at all. If
ξi(x) = 0, we obtain 0 = ξi(x) = ξi(xi, z−i) ≥ ξi(z) = czi

(z), because we are in Case 1. Thus, we
will also assume

ξi(x) > 0. (11)

We now compare the allocation of load in the outcomes z and x, respectively. First, we consider
machines a 6= zi, which host foreign players j ∈ Sa(z)\Sa(x). For these foreign players we obtain

min
b∈M

cb(b, x−j) ≥ min
b∈M

cb(b, x−i) (12a)

≥ ξi(x) (12b)

> 0. (12c)

Observe that (7) implies j > i and hence (by (3)) dj ≥ di. As the cost functions are non-
decreasing, the first inequality (12a) follows. Inequality (12b) holds since x is decharged. The
last inequality (12c) follows from (11). We conclude for machine a

ca(a, x−j) ≥ ξj(a, x−j)
≥ ξj(x) (13)

=
cxj

(x)
∑

k∈Sxj
(x)

min
b∈M

cb(b, x−k)
·min
b∈M

cb(b, x−j) (14)

> 0, (15)

= ca(z), (16)

where (13) holds because x is a Nash equilibrium and (14) stems from the definition of the
protocol because there are no strong foreign players and hence cxj

(x) > 0. Inequality (15) holds
because of (12) and finally (16) holds because of (9).Hence, there must be a non-empty set of
players Sa(x)\Sa(z). These players cannot be strong foreign players, thus ca(x) > 0. With
ca(z) = 0 and ca(x) > 0 we have ℓa(x) > ℓa(z) for all machines a 6= zi with foreign players.
For all machines a without foreign players we know ℓa(x) ≥ ℓa(z) and for machine xi even
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ℓxi
(x) = ℓxi

(z) + di because we are in Case 1. Since the total load is the same in x and z, we
have for machine zi

ℓzi
(zi, x−i) = ℓzi

(x) + di ≤ ℓzi
(z). (17)

Consequently,

ξi(z) = czi
(z) ≥ czi

(zi, x−i) (18)

≥ cxi
(x)

∑

j∈Sxi
(x)

min
b∈M

cb(b, x−j)
·min
b∈M

cb(b, x−i) (19)

= ξi(x) = ξi(xi, z−i), (20)

where the first inequality (18) holds because of (17) and the second inequality (19) because x
is decharged and czi

(zi, x−i) ≥ minb∈M cb(b, x−i). Equality (20) holds by the definition of the
strong x-enforcing protocol for Case 1 and the last equation holds because we assume Case 1.
If |Sxi

(x)| > 1, then inequality (19) is strict, because x is strongly decharged (i.e., (5) holds)
which implies ξi(z) > ξi(xi, z−i). This contradicts the fact that z is a Nash equilibrium. Thus,
Sxi

(x) = {i} and czi
(z) = ξi(z) ≤ ξi(xi, z−i) = cxi

(xi, z−i) = cxi
(x). Moreover, using cxi

(z) = 0,
because ℓxi

(z) = 0, we obtain cxi
(z) + czi

(z) ≤ cxi
(x) + czi

(x) as desired.
Case 2 is Sxi

(xi, z−i) ⊂ Sxi
(x) and i = minSxi

(xi, z−i). Here, we obtain

czi
(z) = ξi(z) ≤ ξi(xi, z−i) = cxi

(xi, z−i) ≤ cxi
(x),

where the first inequality holds because z is a Nash equilibrium. The second inequality holds
because Case 2 implies ℓxi

(xi, z−j) ≤ ℓxi
(x). We also get

cxi
(z) =

∑

j∈Sxi
(z)

ξj(z) ≤
∑

j∈Sxi
(z)

ξj(zi, z−j) = 0.

This inequality is a result of (8), because in this case all players j ∈ Sxi
(z) have a higher index

j > i. Consequently, we have again cxi
(z) + czi

(z) ≤ cxi
(x) + czi

(x).
Finally, we examine Case 3 where the protocol returns ξi(xi, z−i) = 0 and thus for the Nash

equilibrium z we have czi
(z) = ξi(z) ≤ ξi(xi, z−i) = 0. Again, cxi

(z)+czi
(z) ≤ cxi

(x)+czi
(x). �

Remark 3.11. This upper bound on the price of anarchy does not hold for asymmetric games
as inequality (8) does not hold. On the contrary, the price of anarchy of basic protocols is at
least n for asymmetric games. Consider the model (N,M, d, c) with n players, n + 1 machines
M = {a1, . . . , an+1}, unit weights di = 1, cost functions cai

(ℓ) ≡ 1 for ℓ ≥ 1, i ∈ N and
strategy sets Xi = {ai, an+1}. The optimal outcome is y = (an+1, . . . , an+1) with C(y) = 1 while
x = (a1, . . . , an) with C(x) = n is a Nash equilibrium under every basic protocol.

Remark 3.12. Opposed to the equivalence from Theorem 3.4, a strongly-enforceable outcome is
not necessarily strongly decharged. For example consider the model with two players, d1 = d2 = 1
and two machines with similar cost functions ca1(1) = ca2(1) = 1 and ca1(2) = ca2(2) = 2. Here,
all outcomes have the same cost and x = (a1, a1) is a Nash equilibrium under the x-enforcing
protocol, but x is not strongly decharged.

3.3. An Optimal Protocol

Using the insights gained in the previous sections, we show that among all basic and separable
protocols, the strong x-enforcing protocol gives rise to an optimal protocol simultaneously min-
imizing the price of anarchy and stability. Our main result involves the n-th harmonic number
Hn =

∑n
i=1

1
i .
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Theorem 3.13.

min
Ξ∈Bn

PoA(Ξ) = min
Ξ∈Bn

PoS(Ξ) = min
Ξ∈Sn

PoA(Ξ)

= min
Ξ∈Sn

PoS(Ξ) = Hn.

We will prove the theorem by two subsequent lemmas. In the first lemma, we prove that Hn
is a lower bound on the price of stability for every basic cost sharing protocol. We then continue
by presenting an algorithm that returns for any scheduling model a strongly decharged outcome
of cost at most Hn times the cost of an optimal outcome. Together with the strong x-enforcing
protocol we conclude that the price of anarchy of the thus defined protocol is precisely Hn.
Lemma 3.14. The price of stability is at least Hn for basic cost sharing protocols on scheduling
models with n players and non-decreasing cost functions. This lower bounds holds even for
models with unit demands.

Proof. Consider the scheduling model (N,M, d, c) with n players that have unit demand di = 1
for all i ∈ N and n machines with cost functions as in Table 1.

ℓ ca1(ℓ) ca2(ℓ) . . . cai
(ℓ) . . . can(ℓ)

0 0 0 . . . 0 . . . 0
1 1 + ǫ 1

2 . . . 1
i . . . 1

n
> 1 1 + ǫ n . . . n . . . n

for some small ǫ > 0.

Table 1. Cost functions for machines used in the proof of Lemma 3.14

The only optimal outcome is clearly y = (a1, . . . , a1) with C(y) = 1 + ǫ. An outcome z can
only be a Nash equilibrium if it is weakly decharged (Lemma 3.6). We show that the cheapest
weakly decharged outcomes are those in which each machine is used by exactly one player, which
all have the same cost as x = (a1, . . . , an). It is easy to see that outcome x is decharged and
with C(x) =

∑n
i=1

1
i = Hn this proves the lemma.

If in an outcome z some machine other than a1 is used by multiple players, then C(z) ≥ n,
thus such outcomes are more expensive than x. If in outcome z multiple players use machine a1,
say k players, then there are at least k − 1 unused machines and for the cheapest of these, say
machine â, we have

câ(1) ≤
1

k
.

Thus, z is not weakly decharged as

ca1(z) = 1 + ǫ > 1 =
∑

i∈Sa1(z)

1

k
≥

∑

i∈Sa1 (z)

câ(â, z−i) =
∑

i∈Sa1(z)

min
b∈M

cb(b, z−i).

Altogether, only such outcomes in which all machines are used by exactly one player are cheap
weakly-enforceable outcomes. �

While the previous Lemma showed that there sometimes are no weakly-enforceable outcomes
cheaper thanHn times the cost of an optimal outcome, the following lemma shows that we always
find strongly decharged outcomes of at most Hn times the cost of an optimal outcome.

Lemma 3.15. Any scheduling model (N,M, d, c) with an optimal outcome y has a strongly
decharged outcome x with C(x) ≤ Hn · C(y) =

∑n
k=1

1
k · C(y).
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Algorithm 1 Find strongly decharged outcome x

1: k ← 1 {stepnumber}
2: x1 ← y {starts with optimal outcome y}
3: ti ← 0 for all i ∈ N {stores when a player was last moved}
4: while there are charged machines do

5: ak ← argmax {ca(xk) : a ∈M is charged} {select the most expensive charged machine}

6: if min {cb(b, xk−i) : b ∈M} = 0 for i = minSak(xk) then

7: {player can move to cost-free machine, case called Zero-move}
8: ik ← minSak(xk) {select smallest player}
9: else if max {ti : i ∈ Sak(xk)} > 0 then

10: {some player on ak was moved before, case called Shuffle}
11: ik ← argmax {ti : i ∈ Sak(xk)} {select last moved player}
12: else

13: {no foreign players on ak, case called Kick-off }
14: ik ← minSak(xk) {select smallest player}
15: end if

16: bk ← argmin {cb(b, xk−ik) : b ∈M} {select cheapest machine}

17: xk+1 ← (bk, xk−ik) {move player}

18: tik ← k {store stepnumber}
19: k ← k + 1 {iterate}
20: end while

21: return x← xk

Proof. The desired outcome x is found by Algorithm 1. The algorithm takes as input an optimal
outcome y. In each cycle k of the algorithm’s main loop (lines 4-20), a player ik on the most
expensive charged machine ak is selected (line 5) and moved to the cheapest available machine bk

(lines 16,17). If possible, the algorithm selects a player who can be moved to a cost-free machine,
this is called Zero-move (line 6). Otherwise, it selects a player that has been moved before in a
last-in/first-out scheme which is maintained through the variables ti that store the cycle in which
each player was last moved. Such moves are called Shuffles (line 9). If neither a Zero-move nor
a Shuffle is possible, the smallest player on the machine is selected, which is called Kick-off (line
12). The algorithm terminates when no charged machines are left.

First, we show that the algorithm terminates. To this end, observe that Shuffles are only
performed when Zero-moves are not possible. Hence, if in cycle k a Shuffle is performed, the
following inequalities hold.

min
b∈M

cb(b, x
k
−j) > 0 for all j ∈ Sak(xk). (21)

We now consider two cases. For |Sak(xk)| = 1, we obtain

cak(xk) > min
b∈M

cb(b, x
k
−ik) (22)

= cbk(bk, xk−ik) = cbk(xk+1), (23)

where (22) follows because ak is charged in xk. Equality (23) follows since Algorithm 1 moves
ik to the cheapest available machine.
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If |Sak(xk)| > 1, then we obtain

cak(xk) ≥
∑

j∈Sak
(xk)

min
b∈M

cb(b, x
k
−j) (24)

> min
b∈M

cb(b, x
k
−ik) (25)

= cbk(bk, xk−ik) = cbk(xk+1),

where (24) is valid because ak is charged in xk. The second inequality (25) holds because of (21)
and the equalities follow as above. In both cases, a Shuffle moves the player to a strictly cheaper
machine. To see that the algorithm terminates, we will now follow some player i over the course
of the algorithm. Each Zero-move and each Shuffle take her to a strictly cheaper machine. If
the player is moved in cycle k and is next moved by a Shuffle in cycle l, the cost of her machine
xk+1
i = xli may increase in the meantime as other players arrive on that machine. The algorithm

assures by its last-in/first-out mechanism that these other players have been moved again before
the Shuffle in cycle l and consequently the cost has decreased to the original level

cxk+1
i

(xk+1) ≥ cxl
i
(xl).

Since only machines with positive costs can be charged, this implies that after a Zero-move, the
player will never again be considered for Shuffles. Hence, a player can be moved by at most
one Kick-off, afterwards a sequence of Shuffles and thereafter only Zero-moves. The sequence of
Shuffles is finite because each Shuffle takes the player to a strictly cheaper machine. Once the
player has has been moved by a Zero-move, further Zero-moves are only possible if in between
some other player arrives on the player’s machine via a Kick-off or a Shuffle, but again this is
only finitely often possible. Altogether, each player can only be moved finitely often and thus
the algorithm terminates after a finite number of cycles.

To complete the proof, we show that the final outcome x has cost C(x) ≤ Hn · C(y). The
concept of this final part of the proof is that in outcome x the cost of every used machine is
determined by the player who has last moved there or, if there are no such players, the home
players. For this, some new notation is needed. Let pi, i ∈ N , correspond to the position (by
index) of player i on her optimal machine yi, i.e., on any machine a we have pj = 1 for player
j = maxSa(y), pj′ = 2 for j′ = max (Sa(y)\{j}) and so on. Consequently, when some player i

performs her Kick-off in cycle k, there are pi players sharing her machine ak = yi at that moment
and she is the smallest of them. We obtain for machine bk that she is moved to

cbk(xk+1) = cbk(bk, xk−i) = min
b∈M

cb(b, x
k
−i)

≤ 1

pi
·

∑

j∈S
ak(xk)

min
b∈M

cb(b, x
k
−j) (26)

≤ 1

pi
· cak(xk) (27)

≤ 1

pi
· cyi

(y), (28)

where the first inequality (26) is valid because i is the smallest of the pi players on machine ak in
step k, the second inequality (27) holds because ak is charged in xk and the last inequality (28)
holds because there are no foreign players on ak = yi and hence ℓak(xk) ≤ ℓak(y) = ℓyi

(y).
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Since Shuffles and Zero-moves assign player i to cheaper machines, after her last move in
cycle k′, she is on machine bk

′
at cost

cbk′ (x
k′) ≤ 1

pi
· cyi

(y).

Altogether, in the final outcome x, the cost of a machine a ∈M to which players have been moved
is determined by the last player who was moved there, that is, ia := argmax {ti : i ∈ Sa(x)}. We
thus obtain ca(x) ≤ 1

pia
· cyia

(y). For machines a ∈ M that are used in x but where no player

has been moved, the player ia := maxSa(y) with pia = 1 is still on machine a. In this case, the
cost is bounded from above by ca(x) ≤ ca(y) = 1

pia
· cyia

(y). Unused machines a ∈M have cost

ca(x) = 0. Altogether, we obtain ca(x) = 1
pia
·cyia

(y) for all a ∈M with ℓa(x) > 0, and ca(x) = 0

for all a ∈ M with ℓa(x) = 0. This yields the desired bound for the cost of outcome x, because
now every used machine a ∈ M has a unique player ia that determines the machine’s cost. We
obtain

C(x) =
∑

a∈M
ca(x) ≤

∑

a∈M
ℓa(x)>0

1

pia
· cyia

(y) ≤
∑

i∈N

1

pi
· cyi

(y)

≤
∑

a∈M
Hpmax · ca(y) = Hpmax · C(y) ≤ Hn · C(y),

where pmax := max {|Sa(y)| : a ∈M}.
Observe that the bound for the price of anarchy obtained here can be much lower than Hn for

scheduling models that have optimal outcomes, where the players are scattered over the machines
and where therefore pmax is smaller than n. �

Remark 3.16. While Lemma 3.15 shows that an optimal outcome can be turned into a strongly
decharged outcome of cost at most Hn times the cost of an optimal outcome, this holds true
more generally: Algorithm 1 turns every outcome into a strongly decharged outcome with a cost
increase of a factor at most Hn. This may be useful if the computation of an optimal outcome
is not possible in polynomial time. Still, Algorithm 1 does not run in polynomial time and this
issue deserves further attention.

3.4. Non-Decreasing Cost per Unit

In this section we require that the cost functions are non-negative, non-decreasing and the per-

unit costs c(x)
ℓ(x) are non-decreasing with respect to the load ℓ(x). Such functions are still quite

rich as they contain non-negative, non-decreasing and convex functions.
We introduce the opt-enforcing protocol for which we prove a price of anarchy of 1. The

intuition behind this protocol is similar to the x-enforcing protocols: make all undesired outcomes
unstable by charging some player a very high price.

Definition 3.17 (opt-enforcing protocol). For a given scheduling model (N,M, d, c) the opt-
enforcing protocol takes as input an optimal outcome y. We again denote for any outcome z and
machine a the set of foreign players on a by S1

a(z) = {i ∈ Sa(z)\Sa(y)}. Then, the opt-enforcing
protocol assigns the cost sharing methods

ξi(z) :=







di ·
czi

(z)

ℓzi
(z)

, if S1
zi

= ∅

czi
(z), if S1

zi
6= ∅ and i = minS1

zi
(z)

0, else.



3 Basic and Separable Protocols 87

Under the opt-enforcing protocol, the players share the cost proportional to their job weights
on all machines without foreign players. On machines with foreign players, the foreign player with
the smallest index pays the entire cost of the machine. The opt-enforcing protocol is obviously
not uniform, as the private cost function of each player is dependent on an optimal outcome y
and thus dependent on the entire set of machines M .

Theorem 3.18. The opt-enforcing protocol is separable and has a price of anarchy of 1 for
games with non-decreasing cost per unit.

Theorem 3.18 applies not only to the scheduling games considered so far, but even to the
wider class of general congestion games with non-decreasing cost per unit. Therefore, we will
first introduce these games and then prove the theorem in this more general context.

In a general congestion game, we again require a scheduling model (N,M, d, c). Additionally,
for each player i we are given an individual strategy set Xi ⊆ 2M that consists of subsets of the
available resources M . Hence, a strategy profile z ∈ X is a vector of sets with z = (z1, . . . , zn),
zi ∈ Xi and zi ⊆ M for all i ∈ N . A cost sharing protocol assigns cost sharing methods
ξi,a : X → R+ for every i ∈ N , a ∈M and the players’ private cost functions are

ξ̄i(z) :=
∑

a∈zi

ξi,a(z), z ∈ X.

As before, an outcome x ∈ X is a Nash equilibrium if ξ̄i(x) ≤ ξ̄i(zi, x−i) for all zi ∈ Xi and
i ∈ N .

Definition 3.19 (generalized opt-enforcing protocol). The generalized opt-enforcing protocol
takes as input an optimal outcome y. We again denote for any outcome z and machine a the
set of foreign players on a by S1

a(z) = {i ∈ Sa(z)\Sa(y)}. Then, the protocol assigns the cost
sharing methods

ξi,a(z) :=







di ·
ca(z)

ℓa(z)
, if a ∈ zi and S1

a = ∅ (29)

ca(z), if a ∈ zi, S1
a 6= ∅ and i = minS1

a(z) (30)

0, else. (31)

Theorem 3.20. The generalized opt-enforcing protocol is separable and has a price of anarchy
of 1 for general congestion games with non-decreasing cost per unit.

Proof. Budget balance and separability are clear from the definition of the cost sharing methods.
For stability it can easily be verified that the optimal outcome y is a Nash equilibrium. We only
proof the bound on the price of anarchy, showing that all Nash equilibria x are optimal outcomes
using the Nash inequalities ξ̄i(x) ≤ ξ̄i(yi, x−i) for all i ∈ N . Two cases are to be considered for
the machines a ∈ yi: either they host foreign players S1

a(x) or S1
a(x) = ∅. If there are foreign

players on a, then one of them will pay for the entire cost and hence (31) gives ξi,a(yi, x−i) = 0.
If there are no foreign players on a, then we have ℓa(yi, x−i) ≤ ℓa(y) and thus

ca(yi, x−i)
ℓa(yi, x−i)

≤ ca(y)

ℓa(y)
,

because the cost per unit is non-decreasing. Plugging this into (29) we have ξi,a(yi, x−i) ≤ ξi,a(y)
for all a ∈ yi without foreign players. We conclude

ξ̄i(x) ≤ ξ̄i(yi, x−i) =
∑

a∈yi

ξi,a(yi, x−i) ≤
∑

a∈yi

ξi,a(y) = ξ̄i(y)

where the first inequality holds because x is a Nash equilibrium. Altogether

C(x) =
∑

i∈N
ξ̄i(x) ≤

∑

i∈N
ξ̄i(y) = C(y)
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which implies that every Nash equilibrium x is also an optimal outcome. �

4. Uniform Protocols

The separable protocols that we introduced so far were always tailored to some desirable outcome,
either an enforceable outcome or even an optimal outcome. Since uniform protocols need to assign
cost sharing methods independent of the set M , they cannot be based on specific outcomes. We
show in this section that uniformity leads in general to an unbounded price of anarchy. Only for
games in which the demands are integer multiples of each other we introduce the semi-ordered
protocol that gives a price of anarchy of n. The question of minξ∈Un

PoS(ξ) remains open.

4.1. Lower Bound

Theorem 4.1. There is no uniform protocol for which the price of anarchy has an upper bound.
This holds even for models with at most 3 players, 3 machines and non-decreasing costs per unit.

Proof. The essence of uniform protocols is that adding machines to or removing them from the
model does not change the cost shares of players using a certain machine, as long as the player
set and the weight vector remain the same. This motivates the definition of cost share functions
ξ̂i that return the private cost ξi of player i as a function of the machine a that she uses and the
set of players S ⊆ N sharing the machine.

ξ̂i(a, S) := ξi(x) ∀ a ∈M,S ⊆ N, i ∈ S, x ∈Mn : Sa(x) = S. (32)

As in Definition 2.1, an outcome x is a Nash equilibrium if none of the players can reduce their
private cost by choosing a different machine. This can be expressed via cost share functions as
follows. For all i ∈ N, a ∈M it holds that

ξ̂i(xi, Sxi
(x)) ≤ ξ̂i(a, Sa(x) ∪ {i}). (33)

For the proof of the theorem, we propose a number of scheduling models and show that for any
uniform cost sharing protocol at least one of these models has a Nash equilibrium of more than
q times the cost of an optimal outcome for arbitrary q ≥ 2. Throughout the entire proof, the
player set will always be N = {1, 2, 3} with weights d = (4, 3, 2). The machines will be a subset
of M = {a1, . . . , a7} with cost functions as outlined in Table 2.

ℓ ca1(ℓ) ca2(ℓ) ca3(ℓ) ca4(ℓ) ca5(ℓ) ca6(ℓ) ca7(ℓ)
0 0 0 0 0 0 0 0
2 0 0 0 0 0 q2 0
3 0 0 0 q3 0 q4 0
4 1 q 1 2q3 q3 2q4 q4

5 2 q3 q5 2q3

6 q3 q5

7 q4

Table 2. Cost functions of machines used in the proof of Theorem 4.1

First, consider the model with machines M1 = {a1, a2} and their respective cost functions.
The optimal outcome y1 = (a2, a1, a1) has cost C(y1) = q+2, while the outcome x1 = (a1, a2, a2)
has cost C(x1) = q3 + 1. Either x1 is a Nash equilibrium and hence the protocol has a price of
anarchy greater than q or or one of the three players can reduce her private cost by choosing a
different machine, which results by (33) in the following three cases.
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a) ξ̂1(a2, {1, 2, 3}) < ξ̂1(a1, {1}) = 1. In this case, consider M2 = {a2, a3}. The optimal
outcome y2 = (a3, a2, a2) with C(y2) = q3 + 1 is not a Nash equilibrium and due to
stability some other outcome x with cost C(x) ≥ q5 has to be a Nash equilibrium.

b) ξ̂2(a1, {1, 2}) < ξ̂2(a2, {2, 3}) ≤ q3. In this case, consider M3 = {a1, a2, a4}. The opti-
mal outcome y3 = (a1, a2, a4) has cost C(y3) = 1, while the outcome x3 = (a2, a1, a4)
has cost C(x3) = q. Either x3 is a Nash equilibrium or, again, one of the players can
reduce her private cost by choosing a different machine, which leads to the following
cases.
b.1) ξ̂1(a1, {1, 2}) < ξ̂1(a2, {1}) = q. This contradicts b), that is ξ̂1(a1, {1, 2}) = c1(d1 +

d2)− ξ̂2(a1, {1, 2}) > q4 − q3 > q.

b.2) ξ̂1(a4, {1, 3}) < ξ̂1(a1, {1}) = q. In this case, consider M4 = {a2, a4, a5}. The
optimal outcome y4 = (a2, a5, a4) with C(y4) = q is not a Nash equilibrium and
due to stability some other outcome x with cost C(x) ≥ q3 has to be a Nash
equilibrium.

b.3) Players 2 and 3 cannot reduce their private cost as ξ2(x3) = ca1(x3) = 0 and
ξ3(x3) = ca4(x3) = 0.

c) ξ̂3(a1, {1, 3}) < ξ̂3(a2, {2, 3}) ≤ q3. In this case, consider M5 = {a1, a2, a6}. The
optimal outcome y5 = (a2, a1, a1) has cost C(y5) = q + 1, while the outcome x5 =
(a1, a2, a6) has cost C(x5) = q2 + 1. Either x5 is a Nash equilibrium or, again, one of
the players can reduce her private cost by choosing a different machine.
c.1) ξ̂1(a2, {1, 2}) < ξ̂1(a1, {1}) = 1. In this case, consider again M3 = {a1, a2, a4}.

The optimal outcome y3 = (a1, a2, a4) with C(y3) = 1 is not a Nash equilibrium
and due to stability some other outcome x with cost C(x) ≥ q has to be a Nash
equilibrium.

c.2) ξ̂1(a6, {1, 3}) < ξ̂1(a1, {1}) = 1. In this case, consider M6 = {a3, a5, a6}. The
optimal outcome y6 = (a3, a5, a6) with C(y6) = q2 + 1 is not a Nash equilibrium
and due to stability some other outcome x with cost C(x) ≥ q3 has to be a Nash
equilibrium.

c.3) Player 2 cannot reduce her private cost because ξ2(x5) = ca2(x5) = 0.

c.4) ξ̂3(a1, {1, 3}) < ξ̂3(a6, {3}) = q2. In this case, consider M7 = {a1, a6, a7}. The
optimal outcome y7 = (a1, a7, a6) with C(y7) = q2 + 1 is not a Nash equilibrium
and due to stability some other outcome x with cost C(x) ≥ q3 has to be a Nash
equilibrium.

c.5) ξ̂3(a2, {2, 3}) < ξ̂3(a6, {3}) = q2. This extends the original assumption from c)

which is ξ̂3(a1, {1, 3}) < ξ̂3(a2, {2, 3}) < q2. Therefore this case implies c.4).

Altogether, every uniform cost sharing protocol allows in at least one of the analyzed cases a
Nash equilibrium of at least q times the cost of an optimal outcome for an arbitrary q ≥ 2.
Consequently, the price of anarchy is not bounded. �

4.2. Models with Restricted Weights

Although uniform protocols in general do not allow a bound on the price of anarchy, the following
class of games permits uniform cost sharing protocols with a bounded price of anarchy. We
assume that the player’s weights are either uniform, i.e. d1 = . . . = dn, or they are multiples of
each other. In the following, we propose a semi-ordered protocol that a has a price of anarchy
of at most n for such games. In this section, we assume that the players are indexed with their
weights in non-increasing order: d1 ≥ d2 ≥ . . . ≥ dn. The semi-ordered protocol lets the players
one after the other choose a machine and lets them pay only for the additional cost they cause
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on that machine, thus making the choice of a player i independent of the choices of all players
j > i.

Definition 4.2 (Semi-ordered Protocol). The semi-ordered protocol assigns for all i ∈ N

ξi(x) := cxi

(
∑

j∈Sxi
(x):j≤i

dj

)

− cxi

(
∑

j∈Sxi
(x):j<i

dj

)

. (34)

Theorem 4.3. The semi-ordered protocol is uniform and its price of anarchy is at most n for
instances, where the players’ weights are multiples of each other, that is

di = qi · di+i for some qi ∈ N and all i = 1, . . . , n− 1.

Proof. Budget balance, separability and uniformity of the cost sharing methods are clear. A Nash
equilibrium can be found by asking the players in the order of their index to choose a machine
that minimizes their private cost considering the choice of all previous players. For proving the
bound on the price of anarchy, consider a model (N,M, d, c) which fulfills the restriction on the
players’ weights. Suppose y is an optimal outcome and x a Nash equilibrium. First, we show
that ξi(x) ≤ maxj≤i ξj(y) holds for all i ∈ N , which is motivated by the idea that a player can
always choose a machine that she or one of the larger players had chosen in the optimal outcome.
To this end, fix player i ∈ N . On some machine a ∈ {y1, . . . , yi−1} there is in outcome x less
load from the first i− 1 players than in the optimal outcome y from the first i players. Due to
the restriction on the players’ weights this difference in load on machine a has to be at least di
yielding

∑

j∈Sa(x):j<i

dj + di ≤
∑

j∈Sa(y):j≤i
dj .

Also, there is a player k ≤ i (hence dk ≥ di), k ∈ Sa(y) who in outcome y uses machine a and
for whom due to the weight restrictions

∑

j∈Sa(y):j<k

dj ≤
∑

j∈Sa(x):j<i

dj <
∑

j∈Sa(x):j<i

dj + di ≤
∑

j∈Sa(y):j≤k
dj .

Combining the above inequalities with (34) yields

ξi(a, x−i)

= ca
( ∑

j∈Sa(x):j<i

dj + di
)
− ca

( ∑

j∈Sa(x):j<i

dj

)

≤ ca
( ∑

j∈Sa(y):j≤k
dj
)
− ca

( ∑

j∈Sa(y):j<k

dj
)

= ξk(y) ≤ max
j≤i

ξj(y)

and because x is a Nash Equilibrium we have

ξi(x) ≤ ξi(a, x−i) ≤ ξk(y) ≤ max
j≤i

ξj(y).

This implies

C(x) =
∑

i∈N
ξi(x) ≤

∑

i∈N
max
j≤i

ξj(y) ≤
∑

i∈N
max
j∈N

ξj(y) = n ·max
j∈N

ξj(y) ≤ n · C(y),

proving the claim. �
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Theory of Computing Systems 49 (2011), no. 1, pp. 46–70

Abstract. Since the pioneering paper of Rosenthal a lot of work has been done in order to
determine classes of games that admit a potential. First, we study the existence of potential
functions for weighted congestion games. Let C be an arbitrary set of locally bounded functions
and let G(C) be the set of weighted congestion games with cost functions in C. We show that
every weighted congestion game G ∈ G(C) admits an exact potential if and only if C contains
only affine functions. We also give a similar characterization for w-potentials with the difference
that here C consists either of affine functions or of certain exponential functions. We finally
extend our characterizations to weighted congestion games with facility-dependent demands and
elastic demands, respectively.

1. Introduction

In many situations, the state of a system is determined by a large number of independent agents,
each pursuing selfish goals optimizing an individual objective function. A natural framework
for analyzing such decentralized systems are noncooperative games. It is well known that an
equilibrium point in pure strategies (if it exists) need not optimize the social welfare as individual
incentives are not always compatible with social objectives. Fundamental goals in algorithmic
game theory are to decide whether a Nash equilibrium in pure strategies (PNE for short) exists,
how efficient it is in the worst case, and how fast an algorithm (or protocol) converges to an
equilibrium.

One of the most successful approaches in accomplishing these goals is the potential function
approach initiated by Rosenthal [28] and generalized by Monderer and Shapley in [25]: one
defines a function P on the set of possible strategies of the game and shows that every strictly
improving move by one defecting player strictly reduces (increases) the value of P . If the set of
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outcomes of such a game is finite, every sequence of improving moves converges to a PNE. In
particular, the global minimum (maximum) of P is a PNE.

A function P with the property above is called a potential function of the game. If one can
associate a weight wi to each player such that wiP decreases about the same value as the private
cost of the defecting player i, then P is called a w-potential. If, in addition, wi = 1 for each
player, then P is called an exact potential.

1.1. Framework

An important class of games studied in the game theory, operations research, computer science
and economics literature is the class of congestion games. This class of games has several concrete
applications such as scheduling games, routing games, facility location games, and network design
games, see [1, 3, 7, 16, 19, 24]. Congestion games, as introduced by Rosenthal [28], model the
interaction of a finite set of strategic agents that compete over a finite set of facilities. A pure
strategy of each player is a set of facilities. We consider cost minimization games. Here, the cost
of facility f is given by a real-valued cost function cf that depends on the number of players
using f and the private cost of every player equals the sum of the costs of the facilities in the
strategy that she chooses.1 Rosenthal [28] proved in a seminal paper that such congestion games
always admit a PNE by showing these games posses an exact potential function.

In a weighted congestion game, every player has a demand di ∈ R>0 that she places on the
chosen facilities. The cost of a facility is a function of the total demand of the facility. In
contrast to unweighted congestion games, weighted congestion games, even with two players, do
not always admit a PNE, see the examples given by Fotakis et al. [14], Goemans et al. [17], and
Libman and Orda [21]. It is worth noting that the instance in [14] only relies on cost functions
that are either linear or maxima of two linear functions. The instance in [17] only uses polynomial
cost functions with nonnegative coefficients and degree of at most two.

On the positive side, Fotakis et al. [14, 15] proved that every weighted congestion game
with affine cost functions possesses an exact potential function and thus, a PNE. Panagopoulou
and Spirakis [27] proved existence of a weighted potential function for the case that all costs
are determined by the exponential function. The results of [14, 15] and [27] are particularly
appealing as they establish existence of a potential function independent of the underlying game
structure, that is, independent of the underlying strategy set, demand vector, and number of
players, respectively. To further stress this independence property, we rephrase the result of
Fotakis et al. as follows: Let C be a set of affine cost functions and let G(C) be the set of all
weighted congestion games with cost functions in C. Then, every game in G(C) possesses an
exact potential.

A natural open question is to decide whether there are further functions guaranteeing the
existence of an exact or weighted potential. We thus investigate the following question: How
large is the class C of (continuous) cost functions such that every game in the set of weighted
congestion games G(C) with cost functions in C does admit a potential function and hence a
PNE?

Before we outline our results we present related work and explain, why it is important to
characterize weighted congestion games admitting a potential function.

1.2. Related Work

Fundamental issues in algorithmic game theory are the computability of Nash equilibria and the
design of distributed dynamics (for instance best-response) that provably converge in reasonable
time to a Nash equilibrium (in pure or mixed strategies).

1Since we allow the cost of a facility to be positive or negative, we also cover the maximization games.
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Monderer and Shapley [25] formalized Rosenthal’s approach of using potential functions to
determine the existence of PNE. Furthermore, they show that one-side better response dynam-
ics, i.e., sequences of unilateral deviations strictly reducing the deviating player’s private costs,
always converge to a PNE provided the game is finite and admits a potential. In addition, they
proved that w-potential games have other desirable properties, e.g., the Fictitious Play Process
introduced by Brown [6] converges to a PNE [26]. For recent progress on convergence towards
approximate Nash equilibria using potential functions, see Awerbuch et al. [4] and Fotakis et
al. [12].

Fabrikant et al. [11] proved that one can efficiently compute a PNE for symmetric network
congestion games with nondecreasing cost functions. Their proof uses a potential function ar-
gument, similar to Rosenthal [28]. Fotakis et al. [14] proved that one can compute a PNE for
weighted network games with affine cost (with nonnegative coefficients) in pseudo-polynomial
time (again using a potential function).

Milchtaich [23] introduced weighted congestion games with player-specific cost functions.
He presented, among other results, a game on 3 parallel links with 3 players, which does not
possess a PNE. On the other hand, he proved that such games with 2 players do possess a
PNE. Ackermann et al. [1] characterized conditions on the strategy space in weighted congestion
games that guarantee the existence of PNE. They also considered the case of player-specific cost
functions.

Gairing et al. [16] derive a potential function for the case of unweighted congestion games
with player-specific linear latency functions (without a constant term). Mavronicolas et al. [22]
prove that every unweighted congestion game with player-specific (additive or multiplicative)
constants on parallel links has an ordinal potential. Even-Dar et al. [10] consider a variety of
load balancing games with makespan objectives and prove among other results that games on
unrelated machines possess a generalized ordinal potential function. For related results, see the
survey by Vöcking [29] and references therein.

Potential functions also play a central role in Shapley cost sharing games with weighted
players, which are special cases of weighted congestion games, see Anshelevich et al. [3] and
Albers et al. [2]. In the variant with weighted players, each player i has a demand di that she
wishes to place on each facility of an allowable subset of facilities (e.g., a path in a network
connecting her source node si to her terminal node ti). When facility f ∈ F is stressed with a
load of ℓf (x) in strategy profile x, there exists a cost of kf (ℓf (x)). Under Shapley cost sharing,
this cost is shared fairly with respect to the demands among the users. Thus the cost of player i
for using facility f is defined as ci,f (x) = kf (ℓf (x)) di/ℓf (x) and clearly, the private cost of player
i in strategy profile x is given as πi(x) =

∑

f∈xi
ci,f (x). For the unweighted case (di = 1, i ∈ N),

Anshelevich et al. [3] proved existence of PNE and derived bounds on the worst-case efficiency
of Nash equilibria using a potential function argument. This argument fails in general for games
with weighted players, see the counterexamples given by Chen and Roughgarden [7]. Determining
subclasses of Shapley cost sharing games with weighted players that admit a potential, however,
is an open problem that we address in this paper.

1.3. Our Results for Weighted Congestion Games

Our first two results provide a characterization of the existence of exact and w-potential functions
for the set of weighted congestion games with locally bounded and continuous cost functions,
respectively. Let C be an arbitrary set of locally bounded functions and let G(C) be the set of
weighted congestion games with cost functions in C. We show that every weighted congestion
game G ∈ G(C) admits an exact potential if and only if C contains only affine functions. Our
proof relies on a seminal result of Monderer and Shapley [25] stating that a finite strategic game
is an exact potential game if and only if the discrete integral over the player’s utility functions
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along every 4-cycle is zero. We apply this 4-cycle condition for a generic weighted congestion
game and obtain a functional equation in terms of the used cost functions and the used demands,
respectively. By varying the demands we obtain a necessary and sufficient condition on the used
cost functions expressed by a differential equation. Finally, we show that only affine functions
fulfill this differential equation. We note that while the if-part of our characterization follows
already from the potential function given by Fotakis et al. [14], our complete characterization
also delivers an alternative non-constructive proof for the if-part.

For an arbitrary set C of continuous functions, we show that every weighted congestion
game G ∈ G(C) possesses a weighted potential if and only if exactly one of the following cases
hold: (i) C contains only affine functions; (ii) C contains only exponential functions such that
c(ℓ) = ac e

φ ℓ+bc for some ac, bc, φ ∈ R, where ac and bc may depend on c, while φ must be equal
for every c ∈ C. To derive this result we use a scaling technique that transforms a w-potential
game into an exact potential game. This allows us to apply the 4-cycle criterion of Monderer
and Shapley on the transformed game which again gives rise to a functional equation. However,
due to the degree of freedom of our scaling technique it is not possible to derive a differential
equation. By discretizing the demands we can express the necessary and sufficient conditions on
the cost functions as a recurrence relation for which we show that it is only satisfied by either
affine or exponential only.

We additionally show that the above characterizations for exact and w-potentials are valid
even if we restrict the set G(C) to two-player games (four-player games for w-potentials), three-
facility games (four-facility games for w-potentials), games with symmetric strategies, games
with singleton strategies, games with integral demands. Moreover, we derive a result for two-
player weighted congestion games, showing that every such game with cost functions in C admits
a weighted potential if C = {(c : R>0 → R) : c(x) = am(x) + b, a, b ∈ R}, where m : R>0 → R

is a strictly monotonic function.
Our results have a series of consequences. First, using a result of Monderer and Shapley [25,

Lemma 2.10], our characterization of w-potentials in weighted congestion games carries over to
the mixed extension of weighted congestion games.

Second, we obtain the following characterizations for Shapley cost sharing games. Let K be
a set of continuous functions. Then, the set S(K) of Shapley cost sharing games with weighted
players and construction cost functions in K are w-potential games if and only if K contains either
quadratic construction cost functions k(ℓ) = ak ℓ

2 +bk ℓ or functions of type k(ℓ) = ak e
φ ℓ ℓ+bk ℓ

for some ak, bk, φ ∈ R, where ak and bk may depend on k, while φ must be equal for every
k ∈ K. Notice that these results hold for arbitrary coefficients ak, bk, φ ∈ R. Thus, we obtain
the existence of PNE for a family of games with nondecreasing and strictly concave construction
costs modeling the effect of economies of scale.

After the initial publication of this paper, Harks and Klimm [18] explored the existence
of PNE in weighted congestion games. For a class C of twice continuously differentiable cost
functions, they showed that the conditions given in Theorem 3.9 are in fact necessary for the
existence of PNE in all weighted congestion games contained in G(C). Their characterization,
however, requires new techniques based on the analysis of generic improvement cycles, see [18]
for details.

1.4. Our Results for Extended Models

In the second part of this paper, we introduce two non-trivial extensions of weighted congestion
games.

First, we study weighted congestion games with facility-dependent demands, that is, the
demand di,f of player i depends on the facility f . These games contain, among others, scheduling
games on identical, restricted, related and unrelated machines. In contrast to classical load



2 Preliminaries 97

balancing games, we do not consider makespan objectives. In our model, the private cost of a
player is a function of the machine load multiplied with the demand of the player.

We show the following: Let C be a set of continuous functions and let Gfd(C) denote the set
of weighted congestion games with facility-dependent demands and cost functions in C. Every
G ∈ Gfd(C) has a w-potential if and only if C contains only affine functions. In this case the
w-potential is an exact potential. To the best of our knowledge, our characterization establishes
for the first time the existence of an exact potential function (and hence the existence of a PNE)
for affine cost functions and arbitrary strategy sets and demands, respectively.

Second, we study weighted congestion games with elastic demands. Here, each player i is
allowed to choose both a subset of the set of facilities and her demand di out of a compact set
Di ⊂ R>0 of demands that are allowable for her. This congestion model can be interpreted as a
generalization of Cournot games [9], where multiple producers strategically determine quantities
they will produce. The cost of a producer is given by her offered quantity multiplied with the
market price, which is usually a decreasing function of the total quantity offered by all producers.
Weighted congestion games with elastic demands generalize Cournot games in the sense that there
are multiple markets (facilities) and each player may offer her quantity on allowable subsets of
these markets.

Weighted congestion games with elastic demands have several additional applications: they
model, e.g., routing problems in the Internet, where each user wants to route data along a
path in the network and adjusts the injected data rate according to the level of congestion in
the network. Most mathematical models for routing and congestion control rely on fractional
routing, see Kelly [20] and Cole et al. [8]. In practice, however, routing protocols use single
path routing, see, e.g., the current TCP/IP protocol. Weighted congestion games with elastic
demands model both congestion control and unsplittable routing. Yet another application is that
of Shapley cost sharing games with players that may vary their requested demand.

Let Ge(C) be the set of weighted congestion games with elastic demands where each player
may chose her demand out of a compact space and where the cost of each facility is determined
by a function in C. Here, our main contribution is to show that all games G ∈ Ge(C) are
w-potential games if and only if C contains only affine functions. For this important class of
games, this result also establishes for the first time the existence of PNE.

2. Preliminaries

A finite strategic game is a tuple G = (N,X, π) where N = {1, . . . , n} is the non-empty finite
set of players, X =

�
i∈N Xi where Xi is the finite and non-empty set of strategies of player i,

and π : X → R
n is the combined private cost function.

We will call an element x ∈ X strategy profile. For S ⊂ N , −S denotes the complementary
set of S, and we define for convenience of notation XS =

�
j∈S Xj . Instead of X−{i} we will write

X−i, and with a slight abuse of notation we will write sometimes a strategy profile as x = (xi, x−i)
meaning that xi ∈ Xi and x−i ∈ X−i. A strategy profile x is a pure Nash equilibrium if for
all i ∈ N the condition πi(x) ≤ πi(yi, x−i) holds for all yi ∈ Xi. A sufficient condition for the
existence of a pure Nash equilibrium is the existence of a potential function, see Monderer and
Shapley [25].

Definition 2.1 (Weighted and exact potential games). A strategic game G = (N,X, π) is called
weighted potential game if there is a vector w = (wi)i∈N ∈ R

n
>0 and a function P : X → R such

that πi(xi, x−i) − πi(yi, x−i) = wi (P (xi, x−i)− P (yi, x−i)) for all i ∈ N , x−i ∈ X−i, and all
xi, yi ∈ Xi. The function P together with the vector w is then called a w-potential of the game
G. The function P is called an exact potential if wi = 1 for all i ∈ N .
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Monderer and Shapley [25, Theorem 2.8] characterized exact potentials by the use of certain
cycles defined below. For this, let a finite strategic game G = (N,X, π) be given. A path in X is
a sequence γ = (x0, x1, . . . xm) with xk ∈ X, k = 0, . . . ,m, such that for all k ∈ {1, . . . ,m} there

exists a unique player ik ∈ N such that xk = (xkik , x
k−1
−ik ) for some xkik 6= xk−1

ik
, xkik ∈ Xi. A path is

called closed if x0 = xm and is called simple closed if in addition xk 6= xl for 0 ≤ k 6= l ≤ m− 1.
The length of a closed path is defined as the number of its distinct elements. For a set of
strategy profiles X let Γ(X) denote the set of all simple closed paths in X that have length 4.
For a finite path γ = (x0, x1, . . . , xm) let the discrete path integral of π along γ be defined as

I(γ, π) =
∑m

k=1

(
πik(xk)− πik(xk−1)

)
where ik is the deviator at step k in γ, that is xkik 6= xk−1

ik
.

Theorem 2.2 (Monderer and Shapley). Let G = (N,X, π) be a finite strategic game. Then, G
is an exact potential game if and only if I(γ, π) = 0 for all γ ∈ Γ(X).

In the following, we will use this characterization in order to study the existence of potentials
in weighted congestion games.

3. Weighted Congestion Games

Definition 3.1 (Congestion model). A tuple M = (N,F,X =
�

i∈N Xi, (cf )f∈F ) is called a
congestion model, where N = {1, . . . , n} is a non-empty, finite set of players, F is a non-empty,
finite set of facilities, for each player i ∈ N , her collection of pure strategies Xi is a non-empty,
finite set of subsets of F and (cf )f∈F is a set of cost functions.

In the following, we will define weighted congestion games similar to Goemans et al. [17].

Definition 3.2 (Weighted congestion game). Let M = (N,F,X, (cf )f∈F ) be a congestion
model and (di)i∈N ∈ R

n
>0 be a vector of demands. The corresponding weighted congestion

game is the strategic game G(M) = (N,X, π), where π is defined as π =
�

i∈N πi, πi(x) =
∑

f∈xi
di cf

(
ℓf (x)

)
and ℓf (x) =

∑

j∈N :f∈xj
dj .

We call ℓf (x) the load on facility f in strategy x. In case there is no confusion on the
underlying congestion model, we will write G instead of G(M).

A slightly different class of games has been considered by (among others) Fotakis et al. [14,
15], Gairing et al. [16] and Mavronicolas et al. [22]. They considered games that almost coincide
with Definition 2.1 except that the private cost of every player is not scaled by her demands. We
call such games normalized if they comply with Definition 2.1 except that the private costs are
defined as π̄i(x) =

∑

f∈xi
cf
(
ℓf (x)

)
for all i ∈ N .

Fotakis et al. [14] show that there are normalized weighted congestion games with cf (ℓ) = ℓ
for all f ∈ F that are not exact potential games. They also show that any normalized weighted
congestion game with linear costs on the facilities admits a w-potential.

We state the following trivial relations between weighted congestion games and normalized
weighted congestion games: Let G = (N,X, π) and Ḡ = (N,X, π̄) be a weighted congestion game
and a normalized weighted congestion game with demands (di)i∈N , respectively. Moreover, let
them share the same congestion model and the same demands. Then G and Ḡ coincide in the
following sense: (i) A strategy profile x ∈ X is a PNE in G if and only if x is a PNE in Ḡ; (ii)
A real-valued function P : X → R is a (wi/di)i∈N -potential for G if and only if P is a (wi)i∈N -
potential for Ḡ; (iii) A real-valued function P : X → R is an ordinal potential for G (see [25]
for a definition) if and only if P is an ordinal potential for Ḡ; (iv) The real-valued function
P : X → R is an exact potential for G if and only if P is a (di)i∈N -potential for Ḡ; (v) The real-
valued function P : X → R is an exact potential for Ḡ if and only if P is a (1/di)i∈N -potential
for G. All proofs rely on the simple observation that πi(x) = di π̄i(x) for all i ∈ N,x ∈ X.



3 Weighted Congestion Games 99

3.1. Characterizing the Existence of an Exact Potential

In the following, we will examine necessary and sufficient conditions for a weighted conges-
tion game G to be a potential game. The criterion in Theorem 2.2 states that the exis-
tence of an exact potential for G = (N,X, π) is equivalent to the fact that I(γ, π) = 0 for
all γ ∈ Γ(X). In such paths, either one or two players deviate. It is easy to verify that
I(γ, π) = 0 for all paths γ with only one deviating player. Considering a path γ with two
deviating players, say i and j, each of them uses two different strategies, say xi, yi ∈ Xi

and xj, yj ∈ Xj . We denote by z−{i,j} ∈ X−{i,j} the strategy profile of all players except
i and j that remains constant in γ. Then, a generic path γ ∈ Γ(X) can be written as
γ =

(
(xi, xj , z−{i,j}), (yi, xj , z−{i,j}), (yi, yj , z−{i,j}), (xi, yj , z−{i,j}), (xi, xj , z−{i,j})

)
. For a facility

f ∈ F , we define rf =
∑

k∈N\{i,j}:f∈(z−{i,j})m

dm as the sum of the demands on f in the partial

strategy profile z−{i,j}. The following lemma provides an explicit formula for the calculation of
I(γ, π) for such a path.

Lemma 3.3. Let M = (N,F,X, (cf )f∈F ) be a congestion model and G(M) a corresponding
weighted congestion game with demands (di)i∈N . Moreover, let

γ =
(
(xi, xj , z−{i,j}), (yi, xj , z−{i,j}), (yi, yj , z−{i,j}), (xi, yj , z−{i,j}), (xi, xj, z−{i,j})

)

be an arbitrary path in Γ(X) with two deviating players. Then,

I(γ, π) =
∑

f∈F1∪F11

(dj − di)cf (di + dj + rf )− djcf (dj + rf ) + dicf (di + rf )

+
∑

f∈F3∪F9

(di − dj)cf (di + dj + rf )− dicf (di + rf ) + djcf (dj + rf ),
(1)

where F1 = (xi \ yi) ∩ (xj \ yj), F3 = (xi \ yi) ∩ (yj \ xj), F9 = (yi \ xi) ∩ (xj \ yj), and
F11 = (yi \ xi) ∩ (yj \ xj).
Proof. We fix i, j ∈ N,xi, yi ∈ Xi, xj , yj ∈ Xj , and z−{i,j} ∈ X−{i,j} arbitrarily and consider

the path γ =
(
(xi, xj , z−{i,j}), (yi, xj , z−{i,j}), (yi, yj , z−{i,j})(xi, yj , z−{i,j}), (xi, xj , z−{i,j})

)
. We

compute straightforwardly that

I(γ, π) = πi(yi, xj , z−{i,j})− πi(xi, xj , z−{i,j}) + πj(yi, yj , z−{i,j})− πj(yi, xj , z−{i,j})
+ πi(xi, yj, z−{i,j})− πi(yi, yj, z−{i,j}) + πj(xi, xj , z−{i,j})− πj(xi, yj , z−{i,j}).

(2)

For fixed xi, yi, xj and yj, every facility f ∈ F can be chosen by player i in both strategy xi and
strategy yi, in one of these strategies or not at all. The same holds for player j and strategies xj
and yj. We can thus decompose F into 16 disjoint sets F1, . . . , F16. The first set, F1, comprises
all facilities that are in (xi \yi)∩ (xj \yj). F2 contains all facilities that are in (xi \yi)∩ (xj ∩yj),
and so on. The comprehensive description of all 16 cases is given in Table 1.

xj \ yj xj ∩ yj yj \ xj F \ (xj ∪ yj)
xi \ yi F1 F2 F3 F4

xi ∩ yi F5 F6 F7 F8

yi \ xi F9 F10 F11 F12

F \ (xi ∪ yi) F13 F14 F15 F16

Table 1. Decomposition of F into 16 disjoint subsets Fk, k = 1, . . . , 16.

In order to compute for instance the first term of equation (2), we notice that in strategy
profile x = (yi, xj , z−{i,j}) the load on each facility f ∈ F5∪F6∪F9∪F10 equals ℓf (x) = di+dj+rf ,
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while the load on each facility g ∈ F7∪F8∪F11∪F12 equals ℓg(x) = di+rg. These considerations
lead to the following equation. We will use the notation

∑

F,G for
∑

f∈F∪G.

I(γ, π) = di




∑

F9,F10

cf (di+dj+rf ) +
∑

F11,F12

cf (di+rf )−
∑

F1,F2

cf (di+dj+rf )−
∑

F3,F4

cf (di+rf )





+ dj




∑

F7,F11

cf (di+dj+rf ) +
∑

F3,F15

cf (dj+rf )−
∑

F5,F9

cf (di+dj+rf )−
∑

F1,F13

cf (dj+rf )





+ di




∑

F2,F3

cf (di+dj+rf ) +
∑

F1,F4

cf (di+rf )−
∑

F10,F11

cf (di+dj+rf )−
∑

F9,F12

cf (di+rf )





+ dj




∑

F1,F5

cf (di+dj+rf ) +
∑

F9,F13

cf (dj+rf )−
∑

F3,F7

cf (di+dj+rf )−
∑

F11,F15

cf (dj+rf )



 .

By reordering the summation many terms cancel out and we obtain

I(γ, π) =
∑

f∈F1∪F11

(dj − di)cf (di + dj + rf )− djcf (dj + rf ) + dicf (di + rf )

+
∑

f∈F3∪F9

(di − dj)cf (di + dj + rf )− dicf (di + rf ) + djcf (dj + rf ),

establishing the result. �

Using Lemma 3.3, we can derive a sufficient condition on the existence of an exact potential
in a weighted congestion game.

Proposition 3.4. LetM = (N,F,X, (cf )f∈F ) be a congestion model andG(M) a corresponding

weighted congestion game with demands (di)i∈N . For each facility f ∈ F , we denote by Nf =

{i ∈ N : (∃xi ∈ Xi : f ∈ xi))} the set of players potentially using f , and by Rf−{i,j} =
{∑

k∈P dk : P ⊆ Nf \ {i, j}
}

the set of possible residual demands by all players except i and j.

If for all f ∈ F and all i, j ∈ Nf

(dj − di)cf (di + dj + rf )− djcf (dj + rf ) + dicf (di + rf ) = 0 ∀rf ∈ Rf−{i,j}, (3)

then G admits an exact potential.

Proof. Using the criterion of Monderer and Shapley, it is enough to prove that I(γ, π) = 0 for
all γ ∈ Γ(X). By Lemma 3.3, I(γ, π) evaluates to

I(γ, π) =
∑

f∈F1∪F11

(dj − di)cf (di + dj + rf )− djcf (dj + rf ) + dicf (di + rf )

+
∑

f∈F3∪F9

(di − dj)cf (di + dj + rf )− dicf (di + rf ) + djcf (dj + rf ),
(4)

for some i, j ∈ Nf and rf ∈ Rf−{i,j}. Using (3) each summand of (4) equals 0, establishing the

result. �

It follows easily that the above condition is satisfied if all demands are equal (this corresponds
to unweighted congestion games, see Rosenthal’s potential [28]).
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c(ℓ) =







0 if ℓ ∈ (0, 1]

5ℓ− 5 if ℓ ∈ (1, 3]

−ℓ+ 13 if ℓ ∈ (3, 5]

2ℓ− 2 if ℓ ∈ (5, 6]

10 if ℓ ∈ (6,∞)
b

b

b

b

b b b
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c(ℓ)

Figure 1. A non-linear cost function cf that gives rise to an exact potential in all weighted
congestion games with demands d1 = 1, d2 = 3 and d3 = 5.

For different demands di 6= dj it is a useful observation that we can write the condition of
Proposition 3.4 as

cf (di + dj + rf )− cf (dj + rf )

di
=
cf (dj + rf )− cf (di + rf )

dj − di
(5)

for all i, j ∈ Nf and rf ∈ Rf−{i,j}. Thus, the difference quotients of cf between the points di+ rf
and dj + rf as well as dj + rf and di + dj + rf must have the same value. For arbitrary demands
(weighted congestion games) and affine cost functions, one can check that the above condition
is also satisfied, see the positive result of Fotakis et al. [14].

For a single weighted congestion game, the linearity condition on cost functions, however,
is only sufficient but not necessary. In Example 3.5, we show that it is possible to construct a
non-affine cost function that satisfies the condition of Proposition 3.4 for all 3 player games with
demand vector (1, 2, 5).

Example 3.5. Let M = (N = {1, 2, 3},X, F, (cf )f∈F ) be an arbitrary congestion model with
three players and let G(M) be a corresponding weighted congestion game with demands d1 =
1, d2 = 2, d3 = 5.

We want to construct a non-linear cost function that gives rise to an exact potential in G.
To this end, we consider an arbitrary 4-cycle γ. We apply Lemma 3.3 and obtain that I(γ, π)
evaluates to

I(γ, π) =
∑

f∈F1∪F11

(dj − di)cf (di + dj + rf )− djcf (dj + rf ) + dicf (di + rf )

+
∑

f∈F3∪F9

(di − dj)cf (di + dj + rf )− dicf (di + rf ) + djcf (dj + rf ),
(6)

Regarding (6), only the following realizations of (di, dj , rf ) are possible:

(1, 2, 0), (1, 5, 0), (2, 5, 0),
(1, 2, 5), (1, 5, 2), (2, 5, 1).

(7)

Note that only realizations with di < dj are considered, the others are symmetric and, thus,
omitted. Proposition 3.4 establishes that it is sufficient for the existence of an exact potential
that in each cost function cf , the values to the arguments shown in (7) lie on a straight line. It
is easy to construct a non-linear cost function c : R>0 → R satisfying this property. An example
of such a function is given in Fig. 1.
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We derive that I(γ, π) = 0 for any 4-cycle γ in any such game regardless of the structure of
the set of strategies.

There is, however, an important question left: Are there non-affine cost functions that give
rise to an exact potential in all weighted congestion games, i.e., in weighted congestion games
with arbitrary strategy spaces and number of players, respectively? Under mild assumptions on
feasible cost functions, we will give in Theorem 3.7 a negative answer to this question. First, we
need the following lemma.

Lemma 3.6. Let C be a set of functions and let G(C) be the set of all weighted congestion games
with cost functions in C. Every G ∈ G(C) has an exact potential if and only if for all c ∈ C

(x− y) c(x + y + z)− x c(x+ z) + y c(y + z) = 0 (8)

for all x, y ∈ R>0 and z ∈ R≥0.

Proof. Suppose G = (N,X, π) ∈ G(C) is a weighted congestion game with cost functions in C
and every c ∈ C satisfies (8). First, we will show that G has an exact potential. To this end, let
γ ∈ Γ(X) be an arbitrary simple closed path in X of length 4. I(γ, π) evaluates to (1), which is
zero using (8).

For the opposite direction suppose that there is a c̃ ∈ C that does not satisfy equation (8).
This implies that there are x, y ∈ R>0 and z ∈ R≥0 such that

(x− y)c̃(x+ y + z)− xc̃(x+ z) + yc̃(y + z) 6= 0.

Now consider the congestion model M = (N,F,X, (cf )f∈F ) where N = {1, 2, 3}, F = {f, g, h},
X1 =

{
{f}, {g}

}
, X2 =

{
{f}, {h}

}
, X3 =

{
f
}
, and cf = cg = ch = c̃. Let G = (N,X, π) be

a corresponding weighted congestion game with demands d1 = y, d2 = x and d3 = z. We will
investigate the value of I(γ, π) for

γ =
(
({g}, {h}, {f}), ({f}, {h}, {f}), ({f}, {f}, {f}), ({g}, {f}, {f}), ({g}, {h}, {f})

)
.

This value equals (x− y)c̃(x+ y + z)− xc̃(x+ z) + yc̃(y + z) 6= 0 implying that this game does
not possess an exact potential function. �

We will now solve the functional equation (8) in order to characterize all cost functions that
guarantee an exact potential in all weighted congestion games. We require the following property:
A function c : R>0 → R is locally bounded, if for every compact set K ⊂ R>0, |c(x)| < MK for
all x ∈ K and a constant MK ∈ R>0 potentially depending on K.

Theorem 3.7. Let C be a set of locally bounded functions and let G(C) be the set of weighted
congestion games with cost functions in C. Then, every G ∈ G(C) admits an exact potential
function if and only if C contains affine functions only, that is, every c ∈ C can be written as
c(ℓ) = ac ℓ+ bc for some ac, bc ∈ R.

Proof. Fotakis et al. [14] derived an exact potential function for weighted congestion games with
affine cost functions. We can provide an alternative non-constructive proof by checking that
affine functions fulfill functional equation (8) and, thus, we may conclude that they give rise to
an exact potential. We will prove the reverse direction in two steps.

In Step 1, we prove the following: Let c fulfill (8). Then, c is differentiable and c′(x + z) =
(
c(x+ z)− c(z)

)
/x holds for all x ∈ R>0 and z ∈ R≥0.

First, we will show continuity of c on R>0. Let x ∈ R>0 and z ∈ R≥0 be arbitrary and let

(yn)n∈N be a sequence in R>0 such that yn
n→∞−→ 0 and both yn + z > 0 and yn + x > 0 for all

n ∈ N. Then, using (8) we get x (c(x+ z + yn)− c(x+ z)) = yn (c(x+ z + yn)− c(z + yn)) . As
c is bounded on any compact set, the right hand side of the previous equation goes to 0 as n goes
to infinity and hence x limn→∞(c(x+ z + yn)− c(x+ z)) = 0. This shows continuity in x+ z.



3 Weighted Congestion Games 103

Moreover, (8) implies that x
(
c(x+ z + yn)− c(x+ z)

)
/yn = c(x+ z + yn)− c(z + yn). As c

is continuous we know that the limits on the right hand side of the previous equation exist and,
thus, c′(x+ z) =

(
c(x+ z)− c(z)

)
/x holds for all x ∈ R>0.

So c satisfies the differential equation c′(x+ z) =
(
c(x+ z)− c(z)

)
/x. We will show in Step

2 that only affine functions solve this differential equation. To see this, we set t = x+ z, which
leads to the differential equation c′(t) =

(
c(t)− c0

)
/
(
t− t0

)
, t ∈ R>0, where c0 = c(z) and t0 = z

are constants. Standard calculus shows that for every initial value c1 for the initial time t1 > t0,
this ordinary linear differential equation admits a unique solution c(t) = (t − t0)C + c0, where
C = (c1 − c0)/(t1 − t0). �

3.2. Characterizing the Existence of a w-Potential

Our next goal is to determine whether weaker notions of potential functions will enrich the class
of cost functions giving rise to a potential game. The idea of a w-potential allows a player
specific scaling of the private cost πi by a strictly positive wi. It is a useful observation that
the existence of a w-potential function is equivalent to the existence of a strictly positive-valued
vector w = (wi)i∈N such that the game Gw with private costs π̄ =

�
i∈N πi/wi has an exact

potential.
Using this equivalent formulation and Theorem 2.2 it follows that the existence of an exact

potential function for the game Gw = (N,X, π̄) is equivalent to I(γ, π̄) = 0 for all γ ∈ Γ(X)
suggesting that Gw has an exact potential if and only if there are wi, wj ∈ R>0 such that

(
di
wi
− dj
wj

)

cf (di + dj + rf ) =
di
wi
cf (di + rf )−

dj
wj
cf (dj + rf )

for all i, j ∈ N and all rf ∈ Rf−{i,j}. In particular it is necessary that either cf (di + dj + rf ) =

cf (dj + rf ) = cf (di + rf ) or the value α(di, dj) defined as

α(di, dj) =
wi
wj

=
di
dj
· cf (di + dj + rf )− cf (di + rf )

cf (di + dj + rf )− cf (dj + rf )
(9)

is strictly positive and independent of both f and rf . This observation leads us to the following
lemma.

Lemma 3.8. Let C be a set of functions. Let G(C) be the set of weighted congestion games with
cost functions in C. Every G ∈ G(C) has a w-potential if and only if for all x, y ∈ R>0, there
exists an α(x, y) ∈ R>0 such that

α(x, y) ·
(
c(x+ y + z)− c(y + z)

)
=
x

y
·
(
c(x+ y + z)− c(x+ z)

)
(10)

for all z ∈ R≥0 and c ∈ C.
Proof. LetM = (N,F,X, (cf )f∈F ) be a congestion model where for all f ∈ F the cost function cf
satisfies equation (10). Let (di)i∈N , di ∈ R>0, be an arbitrary vector of demands and G(M) the
corresponding weighted congestion game. We will show that this game possesses a w-potential.
Lemma 3.8 implies that there for any two distinct players i, j ∈ N there is α(di, dj) ∈ R>0 such
that

α(di, dj) ·
(
cf (di + dj + z)− cf (dj + z)

)
=
di
dj
·
(
cf (di + dj + z)− cf (di + z)

)
(11)

for all z ∈ R≥0 and f ∈ F . If cf (di + dj + z)− cf (dj + z) = 0 for all f ∈ F then α(di, dj) can be
chosen arbitrarily. If, in contrast, there is f ′ ∈ F such that cf ′(di+dj + z)− cf ′(dj + z) 6= 0 then

α(di, dj) = di/dj ·
(
cf ′(di+dj)− cf ′(di)

)
/
(
cf ′(di+dj)− cf ′(dj)

)
. In both cases, we can chose the

values of α(di, dj) such that α(di, dk) = α(di, dj) ·α(dj , dk) for all di, dj , dk ∈ R>0. In particular,
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we can find a vector of weights (wi)i∈N ∈ R>0 such that α(di, dj) = wi/wj for all i, j ∈ N with
i 6= j.

Using Monderer and Shapley’s criterion we will show that the corresponding game Gw =
(N,X, π̄) has an exact potential. For this, we consider an arbitrary path γ ∈ Γ(X). Without
loss of generality only two players, say i and j, change their strategies in γ while the sum of the
demands of all other players is equal to a facility-specific value rf . Analogously to the proof of
Lemma 3.6, we get

I(γ, π̄) =
∑

f∈F1,F11

(
dj
wj
− di
wi

)

cf (di+dj+rf )−
dj
wj
cf (dj+rf ) +

di
wi
cf (di+rf )

+
∑

f∈F3,F9

(
di
wi
− dj
wj

)

cf (di+dj+rf )−
di
wi
cf (di+rf ) +

dj
wj
cf (dj+rf ).

We multiply with wi, use α(di, dj) = wi/wj and obtain

wi I(γ, π̄) =
∑

f∈F1,F11

α(di, dj)dj (cf (di+dj+rf )− cf (dj+rf ))− di (cf (di+dj+rf ) + cf (di+rf ))

+
∑

f∈F3,F9

−α(di, dj)dj (cf (di+dj+rf )− cf (dj+rf )) + di (cf (di+dj+rf )− cf (di+rf )) .

Using equation (11) shows that I(γ, π̄) = 0 proving the first result.
To show the other direction, assume that the condition on C does not hold, that is, there are

x0, y0 ∈ R>0 such that for every α > 0 there is a cost function cα ∈ C and a value zα ∈ R≥0 with

α ·
(
cα(x0 + y0 + zα)− cα(y0 + zα)

)
6= x0

y0
·
(
cα(x0 + y0 + z)− cα(x0 + zα)

)
. (12)

First assume that cα(x0 + y0 + zα) − cα(y0 + zα) = 0. Note that (12) implies that cα(x0 +
y0 + z)− cα(x0 + zα) 6= 0. Let us consider the congestion model M = (N,F,X, (cf )f∈F ) where
N = {1, 2, 3}, F = {f, g, h}, X1 =

{
{f}, {g}

}
, X2 =

{
{f, h}

}
, X3 =

{
{f}

}
, and cf = cg = ch =

cα. Furthermore, let d1 = x0, d2 = y0 and d3 = zα and consider the corresponding weighted
congestion game G = (N,X, π). For the path

γ =
(
({g}, {h}, {f}), ({f}, {h}, {f}), ({f}, {f}, {f}), ({g}, {f}, {f}), ({g}, {h}, {f})

)

in X we get for any strictly positive vector w

I(γ, π/w) =

(
y0

w2
− x0

w1

)

cα(x0 + y0 + zα)− y0

w2
cα(y0 + zα) +

x0

w1
cα(x0 + zα)

=
x0

w1

(
cα(x0 + zα)− cα(x0 + y0 + zα)

)
6= 0.

The second equality follows from the assumption cα(x0 + y0 + zα) = cα(y0 + zα) and the con-
tradiction follows from cα(x0 + y0 + z) − cα(x0 + zα) 6= 0. Using the criterion of Monderer and
Shapley the game does not admit a weighted potential and we thus may assume in the following
that cα(x0 + y0 + zα) 6= cα(y0 + zα) for all cα ∈ C and zα ∈ R≥0.

Let α be arbitrary and consider cα ∈ C and zα ∈ R≥0 such that (12) does not hold. As we
may assume that cα(x0 + y0 + zα) 6= cα(y0 + zα), the value

β =
x0

y0
· cα(x0 + y0 + zα)− cα(x0 + zα)

cα(x0 + y0 + zα)− cα(y0 + zα)
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is well defined. If β < 0, it follows that I(γ, π /w) 6= 0 for any strictly positive vector w. If
β > 0, we find cβ ∈ C and zβ such that

β ·
(
cβ(x0 + y0 + zβ)− cβ(y0 + zβ)

)
6= x0

y0
·
(
cβ(x0 + y0 + z)− cβ(x0 + zβ)

)
.

Finally, let us consider the congestion modelM = (N,F,X, (cf )f∈F ), where N = {1, 2, 3, 4},
F = {f, g, h, ι}, X1 =

{
{f}, {h}, {ι}

}
, X2 =

{
{g}, {h}, {ι}

}
, X3 =

{
{h}
}
, X4 =

{
{ι}
}

and
cf = cg = ch = cα, cι = cβ. Now we regard the game G(M) = (N,X, π) with demands d1 = x0,
d2 = y0, d3 = zα, d4 = zβ . Assuming that G admits a weighted potential we can find a strictly
positive vector w such that Gw admits an exact potential. To this end, we will apply the criterion
of Monderer and Shapley to the paths

γ1 =
(
({f}, {g}, {h}, {ι}), ({h}, {g}, {h}, {ι}), ({h}, {h}, {h}, {ι}),
({f}, {h}, {h}, {ι}), ({f}, {g}, {h}, {ι})

)
,

γ2 =
(
({f}, {g}, {h}, {ι}), ({ι}, {g}, {h}, {ι}), ({ι }, {ι}, {h}, {ι}),
({f}, {ι}, {h}, {ι}), ({f}, {g}, {h}, {ι})

)
,

and compute that

I(γ1, π/w) =

(
y0

w2
− x0

w1

)

cα(x0 + y0 + zα)− y0

w2
cα(y0 + zα) +

x0

w1
cα(x0 + zα) = 0, (13)

I(γ2, π/w) =

(
y0

w2
− x0

w1

)

cβ(x0 + y0 + zβ)−
y0

w2
cβ(y0 + zβ) +

x0

w1
cβ(x0 + zβ) = 0. (14)

We derive from equations (13) and (14) that

β =
x0

y0
· cα(x0 + y0 + zα)− cα(x0 + zα)

cα(x0 + y0 + zα)− c̃1(y0 + zα)
=
w1

w2
=
x0

y0
· cβ(x0 + y0 + zβ)− cβ(x0 + zβ)

cβ(x0 + y0 + zβ)− cβ(y0 + zβ)
6= β,

which is a contradiction. �

Although condition (10) seems to be similar to the functional equation (8) characterizing
the existence of an exact potential, it is not possible to proceed using differential equations.
As α(x, y) need not be bounded it is not possible to prove continuity and differentiability of c.
Instead, we will use the discrete counterpart of differential equations, that is, difference equations.

Theorem 3.9. Let C be a set of continuous functions. Let G(C) be the set of weighted congestion
games with cost functions in C. Then every G ∈ G(C) admits a w-potential if and only if exactly
one of the following cases holds:

(1) C contains only affine functions,
(2) C contains only exponential functions c(ℓ) = ac e

φℓ + bc for some ac, bc, φ ∈ R, where ac
and bc may depend on c, while φ must be equal for every c ∈ C.

Proof. First, we will prove that these functions guarantee the existence of a w-potential in all such
games. We have shown in Section 3.1 that affine cost functions cf give rise to an exact potential.
As every exact potential function is also a w-potential for w = (1, . . . , 1), we may conclude that
affine cost functions give rise to a weighted potential in weighted congestion games.

So let us check the case c(ℓ) = ac e
φ ℓ + bc for φ 6= 0. It is easy to verify that

α(x, y) =
x

y
· ace

φ(x+y+z) + bc − aceφ(x+z) − bc
aceφ(x+y+z) + bc − aceφ(y+z) − bc

=
x

y
· e

φ (x+y) − eφ(x)

eφ (x+y) − eφ (y)
> 0.

Note in particular that α(x, y) does neither depend on ac, bc, nor z. Thus, it is unambiguously
defined and strictly positive. Theorem 3.8 then yields the result.
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To show the opposite direction, we assume that the conditions on C do not hold but that
every G ∈ G(C) admits a w-potential.

First, suppose that there is a function c̃ ∈ C that is neither affine nor exponential. This
implies that there are four points p1 < p2 < p3 < p4 following neither an exponential nor a affine
law, that is, there are neither a, b and φ ∈ R such that

c̃(p1) = aeφp1 + b, . . . , c̃(p4) = aeφp4 + b,

nor are there s and t ∈ R such that

c̃(p1) = sp1 + t, . . . , c̃(p4) = sp4 + t.

As c̃ is continuous, we may assume without loss of generality that the above conditions hold
for rational p1, . . . , p4 and we can write them as p1 = 2m1/(2 k), . . . , p4 = 2m4/(2 k) for some
m1,m2,m3,m4, k ∈ N.

We regard a congestion modelM = (N = {1, 2, 3}, F,X, c) and a series of games Gm(M) =
(N,X, π), 0 ≤ m ≤ 2m4. We set the demands of the players as d1 = 1/(2 k), d2 = 2/(2 k) and
d3 = m/(2 k). By assumption each game Gm admits a w-potential. By Lemma 3.8 this implies
that for each game

α(d1, d2) =
d1

d2
· c̃(d1 + d2 + d3)− c̃(d1 + d3)

c̃(d1 + d2 + d3)− c̃(d2 + d3)
=
d1

d2
· c̃(d1 + d2)− c̃(d1)

c̃(d1 + d2)− c̃(d2)
.

In particular α(d1, d2) is the same for each game Gm. Now, we introduce fn = c̃(n/(2 k)) and
consider the sequence (fn)n∈N . Thus, we can write

α(d1, d2) =
1

2
· fm+3 − fm+1

fm+3 − fm+2
.

If α(d1, d2) = 1/2, we conclude that c̃ is constant, which contradicts our assumption. So we may
assume that α(d1, d2) 6= 1/2 and we obtain

fm+3 −
2α(d1, d2)

2α(d1, d2)− 1
fm+2 +

1

2α(d1, d2)− 1
fm+1 = 0. (15)

Equation (15) defines a recursively defined sequence on {1, . . . , 2m4}.
The main result in [[5], Chapter 4] gives sufficient conditions on the uniqueness of the general

solution of such sequences. First, we define the characteristic equation of a general second-order
recurrence relation am+2 + β2am+1 + β1am = 0 as x2 + β2x+ β1 = 0.

Now let x1 and x2 be the distinct and real roots of the characteristic equation. Then every
general solution am of the recurrence relation is a linear combination with coefficients independ-
ent of m of powers (xi)

m of the solutions xi, i = 1, 2. In addition, if x is the double root of
the characteristic equation, every general solution am of the recurrence relation is a linear com-
bination of xm and mxm. In both cases, if two consecutive initial values ak and ak+1 of the
recurrence relation are known, a solution can be obtained by evaluating the two constants of the
linear combination using the two initial values and the fact that this solution is unique.

The characteristic equation of the recurrence relation (15) equals

x2 − 2α(d1, d2)

2α(d1, d2)− 1
x+

1

2α(d1, d2)− 1
= (x− 1)

(

x− 1

2α(d1, d2)− 1

)

.

So if α(d1, d2) 6= 1, two different roots occur and fm can be computed explicitely and uniquely
for even m as

fm = b · 1m + a ·
(

1

2α(d1, d2)− 1

)m

= b+ a · exp
(

m ln

(
1

2α(d1, d2)− 1

))
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for some constants a and b ∈ R. If α(d1, d2) = 1, we can evaluate fm as

fm = t · 1m +ms · 1m = t+ sm

for some constants s, t ∈ R showing that c̃ follows either an exponential or affine law on p1, . . . , p4.
So it remains to show that neither affine and exponential functions nor exponential function with
different exponents can occur simultaneously.

Let us first assume on the contrary that C contains both affine and exponential functions,
that is, there are c̃1, c̃2 ∈ C such that c̃1(ℓ) = s ℓ+ t for some constants s, t ∈ R and c̃2 = a eφℓ+b
for some constants a, b ∈ R and φ 6= 0. Let us fix x = 1 and y = 2. We calculate that

α1(1, 2) =
1

2
· c̃1(3 + z)− c̃1(1 + z)

c̃1(3 + z)− c̃1(2 + z)
= 1, (16)

while

α2(1, 2) =
1

2
· c̃2(3 + z)− c̃2(1 + z)

c̃2(3 + z)− c̃2(2 + z)
=

1

2
· e

3φ − eφ
e3φ − e2φ =

1

2

(

1 + e−φ
)

6= 1. (17)

Thus, α(1, 2) is not independent of c̃1 and c̃2, respectively, which contradicts Theorem 3.8.
To finish the proof, let us finally assume that C contains two exponential functions with

different exponents c̃2, c̃3 ∈ C where c̃2 = a eφℓ+b c̃3(ℓ) = s eψℓ+t for some constants a, b, s, t ∈ R
and 0 6= ψ 6= φ 6= 0. As in (17), we obtain, α2(1, 2) = (1 + e−φ) / 2 and α3(1, 2) = (1 + e−ψ) / 2.
Using that the exponential function is bijective, we derive α2(1, 2) 6= α3(1, 2) for φ 6= ψ, which
is a contradiction to the conditions of Lemma 3.8. �

Panagopoulou and Spirakis [27] showed that the function P : X → R defined as P (x) =
∑

f∈F cf (x) is a w-potential if the cost functions on all facilities are equal the exponential func-

tion, that is, cf (x) = ex for all f ∈ F . It directly follows that P (x) is also a w-potential if

the cost functions are of type cf (x) = afe
φx for all f ∈ F , where φ is a constant that does not

depend on the facility. The function P (x) is not a w−potential (not even a generalized ordinal
potential) if the costs are of type cf (x) = afe

φx + bf for all f ∈ F . For this more general case,

the function P̃ : X → R defined as P̃ (x) =
∑

f∈F cf (x)+
∑

i∈N
∑

f∈xi

eφdi−1
eφ bf is a w-potential.

The proof uses standard arguments and is omitted.

3.3. Implications of Our Characterizations

It is natural to ask whether these results remain valid if additional restrictions on the set G(C)
are made. A natural restriction is to assume that all players have an integral demand. As we
used infinitesimally small demands in the proof of Lemma 3.6, our results for exact potentials
do not apply directly to integer demands. With a slight variation of the proof of Theorem 3.9,
where only the case α(·, ·) = 1 is considered, however, we still obtain the same result provided C
contains only continuous functions.

Another natural restriction on G(C) are games with symmetric sets of strategies or games with
a bounded number of players or facilities. Since the proofs of Lemma 3.6 and 3.8 and Theorems
3.7 and 3.9 rely on mild assumptions, we can strengthen our characterizations as follows.

Corollary 3.10. Let C be a set of continuous functions. Let G(C) be the set of weighted con-
gestion games with cost functions in C satisfying one or more of the following properties

(1) Each game G = (N,X, π) ∈ G(C) has two (four) players.
(2) Each game G = (N,X, π) ∈ G(C) has three (four) facilities.
(3) For each game G = (N,X, π) ∈ G(C) and each player i ∈ N the set of her strategies Xi

contains a single facility only.
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(4) Each game G = (N,X, π) ∈ G(C) has symmetric strategies, that is Xi = Xj for all
i, j ∈ N .

(5) In each game G = (N,X, π) ∈ G(C), the demands of all players are integral.

Then, every G = (N,X, π) ∈ G(C) has an exact potential (a w-potential) if and only if C contains
only affine functions (only affine functions or only exponential functions as in Theorem 3.8). Note
that for the case of a w-potential, the conditions in parentheses must hold.

We remark that the conditions given in Corollary 3.10 are not necessary for the existence of a
generalized ordinal potential function, see Monderer and Shapley [25] for a definition. In fact, for
singleton congestion games with non-decreasing cost functions, there exists a generalized ordinal
potential function, see Fotakis et al. [13].

Yet, we are able to deduce an interesting result concerning the existence of w-potentials
in weighted congestion games, where each facility can be chosen by at most two players. By
adapting the proof of Lemma 3.8 for two-player games, the following lemma follows.

Lemma 3.11. Let C be a set of functions and let G2(C) be the set of weighted congestion games
where each facility lies in the strategy sets of at most two players and cost functions are in C.
Every G ∈ G2(C) has a w-potential if and only if for all x, y ∈ R>0 there exists an α(x, y) ∈ R>0

such that

α(x, y) ·
(
c(x+ y)− c(y)

)
=
x

y
·
(
c(x+ y)− c(x)

)
(18)

for all c ∈ C.
Using this lemma, we can prove that in games where each facility lies in the strategy sets of at

most two players also non-affine and non-exponential functions give rise to a weighted potential.

Theorem 3.12. Let m : R>0 → R be a strictly monotonic function and let Cm = {am(x) + b :
a, b ∈ R}. Let G2(Cm) be the set of weighted congestion games where each facility lies in
the strategy sets of at most two players and cost functions are in Cm. Then every such game
G ∈ G2(Cm) admits a w-potential.

Proof. Let c ∈ Cm be arbitrary. By definition of Cm, we can write c(x) = acm(x) + bc for some
ac, bc ∈ R. If ac = 0, the function c is constant and thus fulfills the requirements of Lemma 3.11.
If ac 6= 0, it is easy to check that

α =
x

y
· c(x+ y)− c(x)
c(x+ y)− c(y) =

x

y
· acm(x+ y) + bc − (acm(x) + bc)

acm(x+ y) + bc − (acm(y) + bc)

=
x

y
· m(x+ y)−m(x)

m(x+ y)−m(y)
> 0

for all c ∈ Cm and hence the conditions of Lemma 3.11 are fulfilled implying the existence of a
w-potential. �

This result generalizes a result of Anshelevich et al. in [3], who showed that a weighted
congestion game with two players and cf (ℓ) = bf/ℓ for a constant bf ∈ R>0 has a potential.
Moreover, this result shows that the characterization of Corollary 3.10 is tight in the sense that
weighted congestion games with two players admit a w-potential even if cost functions are neither
affine nor exponential.

4. Extensions of the Model

In the last section, we developed a new technique to characterize the set of functions that give rise
to a potential in weighted congestion games. In this section, we will introduce two generalizations
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of weighted congestion games and investigate the set of cost functions that assure the existence
of potential functions.

Definition 4.1 (Facility-dependent demands). Let M = (N,F,X, (cf )f∈F ) be a congestion
model and let (di,f )i∈N,f∈F be a matrix of facility-dependent demands. The corresponding

weighted congestion game with facility-dependent demands is the strategic game denoted by
G(M) = (N,X, π), where π is defined as π =

�
i∈N πi, πi(x) =

∑

f∈xi
di,f cf

(
ℓf (x)

)
and

ℓf (x) =
∑

j∈N :f∈xj
dj,f .

Restricting the strategy sets to singletons, we obtain scheduling games. In a scheduling
game, players are jobs that have machine-dependent demands and can be scheduled on a set of
admissible machines (restricted scheduling on unrelated machines). In contrast to the classical
approach, where each job strives to minimize its makespan, we consider a different private cost
function: Machines charge a price per unit given by a load-dependent cost function cf and each
job minimizes its cost defined as the price of the chosen machine multiplied with its machine-
dependent demand.

Theorem 4.2. Let C be a set of continuous functions and let Gfd(C) be the set of weighted
congestion games with facility-dependent demands and cost functions in C. Then, every G ∈
Gfd(C) admits a w-potential if and only if C contains only affine functions, that is, every c ∈ C
can be written as c(ℓ) = ac ℓ+ bc for some ac, bc ∈ R. For a game G with affine cost functions,

the potential function is given by P (x) =
∑

i∈N
∑

f∈xi
cf

(
∑

j∈{1,...,i}:f∈xj
dj,f

)

di,f .

Proof. For any set of functions C, the set G(C) of weighted congestion games with cost functions
in C is contained in the set of weighted congestion games with facility-dependent demands. Thus,
we can restrict C to the set of affine functions or exponential functions as in Theorem 3.9.

We first show that if C contains an exponential function, then there is a weighted congestion
game with facility-dependent demands that does not admit a weighted potential. To this end,
suppose that there is a cost function c̃ ∈ C that can be written as c̃(ℓ) = ace

φℓ + bc for some
ac, bc, φ ∈ R with ac 6= 0 and φ 6= 0. We consider the congestion model M = (N,F,X, (cf )f∈F ),
where N = {1, 2}, F = {f, g, h, ι}, X1 =

{
{{f}, {h}, {ι}

}
, X2 =

{
{g}, {h}, {ι}

}
, and cf = cg =

ch = cι = c̃. In addition, we specify d1,ι = 2 /φ and di,f = 1 /φ for all (i, f) ∈ N × F \ {(1, ι)}.
Let G = (N,X, π) denote the corresponding weighted congestion game with facility-dependent
demands. Regarding the 4-cycle

γ1 =
(
({f}, {g}, {h}, {ι}), ({h}, {g}, {h}, {ι}), ({h}, {h}, {h}, {ι}),
({f}, {h}, {h}, {ι}), ({f}, {g}, {h}, {ι})

)

we obtain I(γ1, π /w) = 0 if and only if w1 = w2. In contrast, for the 4-cycle

γ2 =
(
({f}, {g}, {h}, {ι}), ({ι}, {g}, {h}, {ι}), ({ι }, {ι}, {h}, {ι}),
({f}, {ι}, {h}, {ι}), ({f}, {g}, {h}, {ι})

)

we derive I(γ2, π /w) = 0 if and only if the equation w1 /w2 = (2e3 − 2e2) / (e3 − e1) is fulfilled.
Thus, I(γ1, π /w) = I(γ2, π /w ) = 0 implies 0 = e2 − 2e+ 1, a contradiction. We conclude that
G does not admit a weighted potential. We proceed by showing that P (x) is an exact potential
for affine costs.

Assume cf (ℓ) = afℓ + bf , with af , bf ∈ R for all f ∈ F . We define the function c≤if (x) =

cf (
∑

j∈{1,...,i}:f∈xj
dj,f ) and rewrite P (x) as P (x) =

∑

i∈N Pi(x), where Pi(x) =
∑

f∈xi
c≤if (x)di,f .

Let G = (N,X, π) be an arbitrary weighted congestion game with facility-dependent demands
and let x, y ∈ X be two strategy profiles such that x = (xk, x−k) and y = (yk, y−k) with
x−k = y−k for some xk, yk ∈ Xk and x−k ∈ X−k. We notice that Pi(x) = Pi(y) for all
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i < k. Now consider a player i > k. When computing Pi(x) − Pi(y), we observe that all costs
corresponding to facilities not contained in xk ∪yk cancel out. For each facility f ∈ (xi∩xk)\yk,
we get c≤if (x) − c≤if (y) = af dk,f . Analogously, for each facility f ∈ (xi ∩ yk) \ xk, it holds that

c≤if (x)− c≤if (y) = −afdk,f . For each facility f ∈ xi ∩ xk ∩ yk, we have c≤if (x) = c≤if (y). Hence,

Pi(x)− Pi(y) =
∑

f∈xi∩xk

af dk,f di,f −
∑

f∈xi∩yk

af dk,f di,f .

Moreover, we can calculate straightforwardly that

Pk(x)− Pk(y) =
∑

f∈xk

cf

( ∑

j∈{1,...,k}:f∈xj

dj,f

)

dk,f −
∑

f∈yk

cf

( ∑

j∈{1,...,k}:f∈yj

dj,f

)

dk,f .

We thus obtain

P (x)− P (y)

=
∑

i∈N
Pi(x)−

∑

i∈N
Pi(y)

=

n∑

i>k

( ∑

f∈xi∩xk

afdk,fdi,f −
∑

f∈yi∩yk

afdk,fdi,f

)

+
∑

f∈xk

af

( ∑

j∈{1,...,k}:f∈xj

dj,f

)

dk,f

−
∑

f∈yk

af

( ∑

j∈{1,...,k}:f∈yj

dj,f

)

dk,f + dk,f
∑

f∈xk

bf − dk,f
∑

f∈yk

bf

=
∑

f∈xk

af

( ∑

j∈{1,...,n}:f∈xj

dj,f

)

dk,f −
∑

f∈yk

af

( ∑

j∈{1,...,n}:f∈yj

dj,f

)

dk,f

+ dk,f
∑

f∈xk

bf − dk,f
∑

f∈yk

bf

= πk(x)− πk(y).
Hence, P is an exact potential function. �

Note that the potential function used is a natural generalization of Rosenthal’s potential
function [28]. We will now introduce an extension to weighted congestion games allowing players
to also choose their demand.

Definition 4.3 (Elastic demands). LetM = (N,F,X, (cf )f∈F ) be a congestion model. Together
with D =

�
i∈N Di, where Di ⊂ R>0 are compact for all i ∈ N , we define the weighted congestion

game with elastic demands as the strategic game G(M) = (N, X̄, π) with X̄ = (X,D), π =
�

i∈N πi, and πi(x̄) =
∑

f∈xi
dicf

(
ℓf (x̄)

)
and ℓf (x̄) =

∑

j∈N :f∈xj
dj . A strategy of player i is a

tuple x̄i = (xi, di) where xi ∈ Xi and di ∈ Di.

In our definition of weighted congestion games with elastic demands, we explicitly allow for
positive and negative, and for increasing and decreasing cost functions. Thus, an increase in the
demand may increase or decrease the player’s private cost. Note that in weighted congestion
games with elastic demands, the strategy sets are topological spaces and are in general infinite.
By restricting the sets Di to singletons Di = {di}, i ∈ N , we obtain weighted congestion games
as a special case of weighted congestion games with elastic demands. The proof of the following
result is omitted as it is similar to the case of facility-dependent demands.

Theorem 4.4. Let C be a set of continuous functions and let Ge(C) be the set of weighted
congestion games with elastic demands and cost functions in C. Then, every G ∈ Ge(C) admits
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a w-potential function if and only if C contains only affine functions. For a game G with affine
cost functions, the potential function is given by the function

P (x̄) =
∑

i∈N

∑

f∈xi

cf




∑

j∈{1,...,i}:f∈xj

dj



 di.

As an immediate consequence, we obtain the existence of a PNE if cost functions are affine.
Note that the existence of a potential is not sufficient for proving existence of a PNE as we are
considering infinite games. However, as X̄ is compact and P is continuous, P has a minimum
x̄∗ ∈ X̄ and x̄∗ is a PNE.

Corollary 4.5. Let C be a set of affine functions and let Ge(C) be the set of weighted congestion
games with elastic demands and cost functions in C. Then, every G ∈ Ge(C) admits a PNE.
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Abstract. We study the existence of pure Nash equilibria in weighted congestion games. Let
C denote a set of cost functions. We say that C is consistent if every weighted congestion game
with cost functions in C possesses a pure Nash equilibrium. Our main contribution is a complete
characterization of consistency of continuous cost functions. We prove that a set C of continuous
functions is consistent for two-player games if and only if C contains only monotonic functions and
for all non-constant functions c1, c2 ∈ C, there are constants a, b ∈ R such that c1(x) = a c2(x)+b
for all x ∈ R≥0. For games with at least three players, we prove that C is consistent if and only
if exactly one of the following cases hold: (a) C contains only affine functions; (b) C contains
only exponential functions such that c(x) = ac e

φx + bc for some ac, bc, φ ∈ R, where ac and bc
may depend on c, while φ must be equal for every c ∈ C. The latter characterization is even
valid for three-player games. Finally, we derive several characterizations of consistency of cost
functions for games with restricted strategy spaces, such as weighted network congestion games
or weighted congestion games with singleton strategies.

1. Introduction

In many situations, the state of a system is determined by a finite number of independent
players, each optimizing an individual objective function. A natural framework for analyzing
such decentralized systems are noncooperative games. While it is well known that for finite
noncooperative games a Nash equilibrium in mixed strategies always exists, this need not be
true for Nash equilibria in pure strategies (PNE for short). One of the fundamental goals in
game theory is to characterize conditions under which a Nash equilibrium in pure strategies
exists. In this paper, we study this question for weighted congestion games.

Congestion games, as introduced by Rosenthal [32], model the interaction of a finite set
of players that compete over a finite set of facilities. A pure strategy of each player is a set
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of facilities. The cost of facility f is given by a real-valued cost function cf that depends on
the number of players using f and the private cost of every player equals the sum of the costs
of the facilities in the strategy that she chooses. Rosenthal [32] proved in a seminal paper
that such congestion games always admit a PNE by showing that these games posses an exact
potential function. In a weighted congestion game, every player has a demand di ∈ R>0 that she
places on the chosen facilities. The cost of a facility is then a function of the total load on the
facility. An important subclass of weighted congestion games are weighted network congestion
games. Here, every player is associated with a positive demand that she wants to route from
her origin to her destination on a path of minimum cost. In contrast to unweighted congestion
games, weighted congestion games do not always admit a PNE. Fotakis et al. [16] and Libman
and Orda [24] each constructed a single-commodity network instance with two players having
demands one and two, respectively, and showed that these games do not have a PNE. Their
instances use different non-decreasing cost values per edge that are defined at the three possible
loads 1, 2, 3. Goemans et al. [19] constructed a two-player single-commodity instance without
a PNE that uses different polynomial cost functions with nonnegative coefficients and degree
of at most two. Interestingly, Anshelevich et al. [5] showed that for cost functions of the form
cf (x) = c̄f/x, c̄f ∈ R≥0, every two-player game possesses a PNE. For games with affine cost
functions, Fotakis et al. [16, 17] proved that every weighted congestion game possesses a PNE.
Later, Panagopoulou and Spirakis [30] proved that PNE always exist for instances with uniform
exponential cost functions (cf (x) = ex). Harks et al. [22] generalized this existence result to

non-uniform exponential cost functions of the form cf (x) = af e
φx + bf for some af , bf , φ ∈ R,

where af and bf may depend on the facility f , while φ must be equal for all facilities. It is worth
noting that the positive results of [16, 17, 22, 30] are particularly important as they establish
existence of PNE for the respective sets of cost functions independent of the underlying game
structure, that is, independent of the underlying strategy set, demand vector, and number of
players, respectively.

In this paper, we further explore the equilibrium existence problem in weighted congestion
games. Our goal is to precisely characterize which types of cost functions actually guarantee the
existence of PNE. To formally capture this issue, we introduce the notion of PNE-consistency or
simply consistency of a set of cost functions. Let C be a set of cost functions and let G(C) be the
set of all weighted congestion games with cost functions in C. We say that C is consistent if every
game in G(C) possesses a PNE. Using this terminology, the results of [16, 17, 22, 30] yield that
C is consistent if C contains either affine functions or certain exponential functions. A natural
open question is to decide whether there are further consistent functions, that is, functions
guaranteeing the existence of a PNE. We thus investigate the following question: How large is
the set C of consistent cost functions? We also introduce a stricter notion of consistency which we
term FIP-consistency. Formally, we say that a set C of cost functions is FIP-consistent, if every
game in G(C) possesses the Finite Improvement Property, that is, every sequence of unilateral
improvements is finite, see Monderer and Shapley [28].

1.1. Our results

In order to obtain a complete characterization of the equilibrium existence problem in weighted
congestion games, we first derive necessary conditions. Let C be a set of continuous functions. We
show that if C is consistent, then C may only contain monotonic functions. We here use "mono-
tonic" in the literal sense, i.e., every function c ∈ C is either non-decreasing or non-increasing.
We further show that monotonicity of cost functions is necessary for consistency even in singleton
games with only two players, two facilities, identical cost functions and symmetric strategies. As
our first main result we show that a set of continuous cost functions C is consistent for two-player
games if and only if C contains only monotonic functions and for all non-constant c1, c2 ∈ C, there
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are constants a, b ∈ R such that c1(x) = a c2(x) + b for all x ∈ R≥0. This characterization pre-
cisely explains the seeming dichotomy between the positive result of Anshelevich et al. [5] for
two-player games and the two-player instances without PNE given by [16, 19, 24]. Our second
main result establishes a characterization for the general case. We prove that a set C of contin-
uous functions is consistent for games with at least three players if and only if exactly one of
the following cases hold: (a) C contains only affine functions; (b) C contains only exponential
functions such that c(x) = ac e

φx + bc for some ac, bc, φ ∈ R, where ac and bc may depend on
c, while φ must be equal for every c ∈ C. This characterization is even valid for three-player
games. We further show that for both two player games and games with at least three players
consistency of C is equivalent to FIP-consistency.

While the above characterizations hold for arbitrary strategy spaces, we also study con-
sistency of cost functions for restricted strategy spaces. First, we consider weighted network
congestion games. Assuming strictly positive costs, we show that essentially all results translate
to directed network congestion games. For games on undirected networks, we give respective
characterizations for games with two players and at least four players leaving a gap for three-
player games. For singleton weighted congestion games with two players we show that C is
consistent if and only if C contains only monotonic functions. This characterization does not
extend to games with three players. We give an instance with three players and monotonic
cost functions without a PNE. For symmetric singleton weighted congestion games, however, we
prove that C is consistent if and only if C contains only monotonic functions. In contrast to
the characterizations for arbitrary strategy spaces, both characterizations do not carry over to
FIP-consistency. We provide corresponding instances with improvement cycles.

1.2. Techniques and Outline of the Paper

The proofs of our main results essentially rely on two ingredients. First, we derive in Section 3
for continuous and consistent cost functions two necessary conditions (Monotonicity Lemma and
Extended Monotonicity Lemma). The Monotonicity Lemma states that any continuous and
consistent cost function must be monotonic. The lemma is proved by constructing a generic
two-player weighted congestion game in which we identify a unique 4-cycle of deviations of two
players. Then, we show that for any non-monotonic cost function, there is a weighted congestion
game with a unique improvement cycle. By adding additional players and carefully choosing the
players’ weights and strategy spaces, we then derive the Extended Monotonicity Lemma, which
ensures that the set of cost functions contained in a certain finite integer linear hull of the con-
sidered cost functions must be monotonic. By analyzing functions contained in the finite integer
linear hull corresponding to two-player games, we prove in Section 4 that a set of continuous cost
functions is consistent for two-player games if and only if all cost functions are monotone and
every two non-constant cost functions are affine transformations of each other. In Section 5, we
consider games with at least three players. We show that the Extended Monotonicity Lemma for
games with at least three players implies that consistent and continuous cost functions must be
either affine or exponential. In Section 6 and Section 7, we derive characterizations of consistency
and FIP-consistency of cost functions for games with restricted strategy spaces, such as weighted
network congestion games and weighted singleton congestion games, respectively.

1.3. Significance

Weighted congestion games are among the core topics in the game theory, operations research,
computer science and economics literature. This class of games has several applications such as
scheduling games, routing games, facility location games, network design games, etc. see [1, 5, 11,
18, 23, 27]. In all of the above applications there are two fundamental goals from a system design
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perspective: (i) the system must be stabilizable, that is, there must exist a stable point (PNE)
from which no player wants to unilaterally deviate; (ii) myopic play of the players should guide
the system to a stable state. Because the number of players and their types (expressed by the
demands and the strategy spaces) are only known to the players and not available to the system
designer, it is very natural to study the above two issues with respect to the used cost functions.
In fact, in most of the above mentioned applications, the cost functions are under control of the
system designer since they represent the technology associated with the resources, e.g., queuing
discipline at routers, latency function in transportation networks, etc. Therefore, our results may
help to predict and explain unstable traffic distributions in telecommunication networks and road
networks. For instance in telecommunication networks, relevant cost functions are the so-called
M/M/1-delay functions (see also [35]). These functions are of the form ca(x) = 1/(ua−x), where
ua represents the capacity of arc a. In road networks, for instance, the most frequently used
functions are monomials of degree 4 put forward by the U.S. Bureau of Public Roads [10]. Our
results imply, that for these special types of cost functions, there is always a multi-commodity
instance (with three players and identical cost functions) that is unstable in the sense that a
PNE does not exist. On the other hand, our characterizations can be used to design a stable
system: for instance, uniform M/M/1-delay functions are consistent for two-player games.

Our results are also relevant for the large body of work quantifying the worst-case efficiency
loss of PNE for different sets of cost functions, see Awerbuch et al. [6], Christodoulou and
Koutsoupias [12], and Aland et al. [3]. While mixed Nash equilibria are guaranteed to exist,
their use is often unrealistic in practice. On the other hand, our work reveals that for most
classes of cost functions pure Nash equilibria as the stronger solution concept may fail to exist
in weighted congestion games. Thus, our work provides additional justification to study the
worst-case efficiency loss for different solution concepts, such as sink equilibria [19], correlated
and coarse correlated equilibria [9],[34].

1.4. Related Work

In contrast to ordinary congestion games as introduced by Rosenthal [32], games with weighted
players and/or player-specific cost functions need not possess a PNE. As for weighted players,
even two-players games may fail to admit a PNE, see the examples given by Fotakis et al. [16],
Goemans et al. [19] and Libman and Orda [24]. Also related is the early work of Rosenthal [33]
who showed that in weighted congestion games where players are allowed to split their demand
integrally, a PNE need not exist. On the positive side, Fotakis et al. [16] and Panagopoulou
and Spirakis [30] proved the existence of a PNE in games with affine and exponential costs,
respectively. Dunkel and Schulz [13] showed that it is strongly NP-hard to decide whether or not
a weighted congestion game with nonlinear cost functions possesses a PNE. If the strategy of every
player contains a single facility only (singleton games), Fotakis et al. [15] showed the existence
of PNE for linear cost functions (without a constant). Even-Dar et al. [14] derived the existence
of PNE for load balancing games on parallel unrelated machines. Andelman et al. [4] proved
even the existence of a strong Nash equilibrium - a strengthening of the pure Nash equilibrium
to resilience against coalitional deviations - in scheduling games on unrelated machines. In fact,
strong Nash equilibria exist in all singleton weighted congestion games with non-decreasing costs,
see Harks et al. [21]. This also holds for non-increasing cost functions as proven by Rozenfeld
and Tennenholtz [36]. Allowing for player-specific cost functions, Milchtaich [25] showed that
unweighted singleton congestion games with player-specific cost functions possess at least one
PNE. He also presented an instance with weighted players and player-specific cost functions
without a PNE. Gairing et al. [18] showed that best response dynamics do not cycle if the
player-specific cost functions are linear without a constant term. Milchtaich [27] further showed
that general network games with player-specific costs need not admit a PNE in general. In fact,
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the corresponding decision problem turns out to be NP-complete, as shown by Ackermann and
Skopalik [2]. Ieong et al. [23] proved that in congestion games with singleton strategies and
non-decreasing cost functions, best response dynamics converge in polynomial time to a PNE.
Ackermann et al. [1] extended this result to weighted congestion games with a so called matroid
property, that is, the strategy of every player forms a basis of a matroid. In the same paper, they
showed that the matroid property is the maximal property that gives rise to a PNE for all non-
decreasing cost functions, that is, for any strategy space not satisfying the matroid property, there
is an instance of a weighted congestion game not having a PNE. The consistency approach that
we pursue in this paper is orthogonal to that of Ackermann et al. [1]. While they characterize
the structure of the strategy space guaranteeing the existence of a PNE assuming arbitrary
positive and non-decreasing costs, we characterize the structure of cost functions guaranteeing
the existence of a PNE assuming arbitrary strategy spaces. Orda et al. [29] study the issue
of uniqueness of PNE in weighted network congestion games with splittable demands (see also
Fleischer et al. [8], Milchtaich [26], Richman and Shimkin [31] and Yang and Zhang [37]). They
give sufficient conditions for uniqueness of PNE for several classes of cost functions. Interestingly,
in the final section of their paper, the authors raise the issue about the existence of pure Nash
equilibria in such games (depending on the cost functions) under the assumption that the flow
is unsplittable. The results in this paper give a complete answer to their question.

An extended abstract of parts of this paper appeared in the Proceedings of the 37th Inter-
national Colloquium on Automata, Languages and Programming, 2010, see [20].

2. Preliminaries

We consider finite strategic games G = (N,S, π), where N = {1, . . . , n} is the non-empty and
finite set of players, S =

�
i∈N Si is the non-empty strategy space, and π : S → R

n is the
combined private cost function that assigns a private cost vector π(s) to each strategy profile
s ∈ S. We consider cost minimization games and (unless specified otherwise) we allow private
cost functions to be negative or positive. We call an element s ∈ S strategy profile. For i ∈ N ,
we write S−i =

�
j 6=i Sj and s = (si, s−i) meaning that si ∈ Si and s−i ∈ S−i. A strategy

profile s is a pure Nash equilibrium (PNE) if πi(s) ≤ πi(ti, s−i) for all i ∈ N and ti ∈ Si. A
pair

(
s, (ti, s−i)

)
∈ S × S is called an improving move (or profitable deviation) of player i if

πi(si, s−i) > πi(ti, s−i). We call a sequence of strategy profiles γ = (s1, s2, . . . ) an improvement
path if for every k the tuple (sk, sk+1) is an improving move for some player i. A closed path
(s1, . . . , sl, s1) is referred to as an l-improvement cycle. A game has the Finite Improvement
Property (FIP) if no such cycle exists. A function P : S → R with P (s) > P (t) for all improving
moves (s, t) is called potential function. As noticed by Monderer and Shapley [28], every game
that admits a potential function has the FIP and every finite game with the FIP possesses a
PNE.

A tuple M = (N,F, S =
�

i∈N Si, (cf )f∈F ) is called a congestion model, where N is the set
of players, F is a non-empty, finite set of facilities and for each player i ∈ N , her collection of
pure strategies Si is a non-empty, finite set of subsets of F . A cost function cf : R≥0 → R is
associated with every facility f ∈ F . In contrast to most previous works, we do neither assume
monotonicity nor positivity of costs. In the following, we define weighted congestion games
similar to Goemans et al. [19].

Definition 2.1 (Weighted congestion game). LetM = (N,F, S, (cf )f∈F ) be a congestion model
and (di)i∈N be a vector of demands with di ∈ R>0. The corresponding weighted congestion
game is the strategic game G(M) = (N,S, π), where π is defined as π =

�
i∈N πi, πi(s) =

∑

f∈si
di cf

(
ℓf (s)

)
and ℓf (s) =

∑

j∈N :f∈sj
dj .
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We sometimes write G instead of G(M). Let C be a set of cost functions and let G(C) be the
set of all weighted congestion games with cost functions in C. Then, we say that C is consistent
if every G ∈ G(C) admits a PNE; we call C FIP-consistent if every G ∈ G(C) has the FIP. If the
set G(C) is restricted, for instance to two player games etc., we say that C is consistent for G(C)
if every G ∈ G(C) possesses a PNE.

3. Necessary Conditions on the Existence of a PNE

As a first result, we prove that if C is consistent, then every function c ∈ C is monotonic. We
first need a technical lemma.

Lemma 3.1. Let c : R≥0 → R be a continuous function. Then, the following two statements
are equivalent:

(1) c is monotonic on R≥0.
(2) The following two conditions hold:

(a) For all x > 0 with c(x) > c(0) there is ǫ > 0 such that c(y) ≥ c(x) for all
y ∈ (x, x+ ǫ).

(b) For all x > 0 with c(x) < c(0) there is ǫ > 0 such that c(y) ≤ c(x) for all
y ∈ (x, x+ ǫ).

Proof. 1 ⇒ 2: Trivial.
For proving 2⇒ 1, we first derive a useful property of functions satisfying 2. Let c : R≥0 → R

be a continuous function satisfying 2. Moreover, assume that there is an open interval (α, ω) with
c(x) 6= c(0) for all x ∈ (α, ω). We claim that c is non-decreasing on (α, ω) if c(x) > c(0) for all
x ∈ (α, ω) and that c is non-increasing on (α, ω) if c(x) < c(0) for all x ∈ (α, ω). We prove only
the first case because the second follows by the same arguments. Let c(x) > c(0) for all x ∈ (α, ω).
For a contradiction, assume that there are p1, p2 ∈ (α, ω) with p1 < p2 and c(p1) > c(p2). We
define p′1 = max{x ∈ [p1, p2] : c(x) ≥ c(p1)}. Note that the set {x ∈ [p1, p2] : c(x) ≥ c(p1)} is non-
empty because it contains p1 and closed because c is continuous. Using 2, there is ǫ = ǫ(p′1) > 0
such that c(y) ≥ c(p′1) ≥ c(p1) for all y ∈ (p′1, p

′
1 + ǫ), contradicting the maximality of p′1.

Now we prove 2 ⇒ 1. Let α = inf{x > 0 : c(x) 6= c(0)}. If α = ∞, we are done as
c is constant. Otherwise, we claim that c(x) 6= c(0) for all x > α. For a contradiction, let
ω = min{x > α : c(x) = c(0)} and δ = c(ω+α

2 ) (the minimum is attained because c is continuous).
By construction, c(x) 6= c(0) for all x ∈ (α, ω). If c(x) > c(0) for all x ∈ (α, ω), we have c(x) ≥
δ > c(0) for all x ∈ (ω+α

2 , ω) and thus c(0) = c(ω) = limxրω c(x) ≥ δ > c(0), a contradiction. If
on the other hand c(x) < c(0) for all x ∈ (α, ω) we get c(0) = c(ω) = limxրω c(x) ≤ δ < c(0)
again a contradiction. We conclude that c(x) 6= c(0) for all x > α. Thus, for every ω > α, the
function c is monotonic on the open interval (α, ω) and thus, c is monotonic on R≥0. �

The following existence result for continuous, non-monotonic functions can be derived directly
from Lemma 3.1 and will be very useful in the remainder of this paper.

Lemma 3.2. Let c : R≥0 → R be a continuous, non-monotonic function. Then, there are
x, y ∈ R>0 with y > x such that either c(y − x) < c(y) < c(x) or c(y − x) > c(y) > c(x).

Proof. Using the characterization of monotonic functions of Lemma 3.1, for every continuous
non-monotonic function c, there is x > 0 such that one of the following holds: c(x) > c(0) and
for every ǫ > 0 there is y = y(ǫ) ∈ (x, x + ǫ) such that c(y) < c(x); or c(x) < c(0) and for every
ǫ > 0 there is y = y(ǫ) ∈ (x, x+ ǫ) such that c(y) > c(x). Fix such x. Because of the continuity
of c, we have c(y − x) → c(0) and c(y) → c(x) for ǫ → 0. For sufficiently small ǫ, x and y(ǫ)
have the desired property. �
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Figure 1. As shown in Lemma 3.2, for every continuous non-monotonic function there are
x, y ∈ R>0 with y > x such that one of the following cases holds: (a) c(y − x) < c(y) < c(x);
(b) c(y − x) > c(y) > c(x).

The two cases occurring in Lemma 3.2 are depicted in Figure 1. Now consider a facility f
with a non-monotonic cost function and two players with demands d1 = y−x and d2 = x, where
x and y are as in Lemma 3.2. Clearly, in case c(y−x) < c(y) < c(x) player 1 prefers to be alone
on f while player 2 would like to share the facility with player 1. If c(y − x) > c(y) > c(x), the
argumentation works the other way round. This observation is the key to construct a two-player
weighted congestion game with singleton strategies that does not admit a PNE.

Lemma 3.3 (Monotonicity Lemma). Let C be a set of continuous functions. If C is consistent,
then every c ∈ C is monotonic.

Proof. For a contradiction, suppose that c ∈ C is a non-monotonic function and consider the
congestion model M = (N,F, S, (cf )f∈F ) with N = {1, 2}, F = {f, g}, S1 = S2 =

{
{f}, {g}

}
,

cf = cg = c. Since c is non-monotonic, by Lemma 3.2 we can find x, y ∈ R>0 with y > x such
that either c(y − x) < c(y) < c(x) or c(y − x) > c(y) > c(x). Regard the game G(M) with
d1 = y − x and d2 = x. Calculating the differences of the deviating players’ private costs along
the 4-cycle γ =

((
{f}, {f}

)
,
(
{g}, {f}

)
,
(
{g}, {g}),

(
{f}, {g}

)
,
(
{f}, {f}

))
, we obtain

π1({g}, {f}) − π1({f}, {f}) = (y − x)
(
c(y − x)− c(y)

)
, (1)

π1({f}, {g}) − π1({g}, {g}) = (y − x)
(
c(y − x)− c(x)

)
, (2)

π2({g}, {g}) − π2({g}, {f}) = x
(
c(y)− c(x)

)
, (3)

π2({f}, {f}) − π2({f}, {g}) = x
(
c(y)− c(x)

)
. (4)

If c(y − x) < c(y) < c(x), the differences (1)-(4) are negative and γ is an improvement cycle.
If c(y − x) > c(y) > c(x), we can reverse the direction of γ and still get an improvement cycle.
Using that every strategy combination is contained in γ, the claimed result follows. �

Besides the continuity of the functions in C, the proof of Lemma 3.3 relies on rather mild
assumptions and, thus, this result can be strengthened in the following way.

Corollary 3.4. Let C be a set of continuous functions. Let G(C) be the set of weighted congestion
games with cost functions in C satisfying one or more of the following properties: (i) Each game
G ∈ G(C) has two players; (ii) Each game G ∈ G(C) has two facilities; (iii) For each game
G ∈ G(C) and each player i ∈ N , the set of her strategies Si contains a single facility only; (iv)
Each game G ∈ G(C) has symmetric strategies; (v) Cost functions are identical, that is, cf = cg
for all f, g ∈ F . If C is consistent for G(C), then, each c ∈ C must be monotonic.

We now extend the Monotonicity Lemma to obtain an even stronger result by regarding more
players and more complex strategies. To this end, for K ∈ N we consider those functions that
can be written as the integral linear combination of K functions in C, possibly with an offset.
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Formally, we define the finite integer linear hull of C as

LZ(C) =
{

c : R≥0 → R : c(x) =
K∑

k=1

ak ck(x+ bk) : K ∈ N, ak ∈ Z, bk ∈ R≥0, ck ∈ C
}

, (5)

and show that consistency of C implies that LZ(C) contains only monotonic functions.

Lemma 3.5 (Extended Monotonicity Lemma). Let C be a set of continuous functions. If C is
consistent, then LZ(C) contains only monotonic functions.

Proof. Assume by contradiction that c ∈ LZ(C) is not monotonic. By allowing ck = cl for k 6= l,
we can omit the integer coefficients ak and rewrite c as c(x) =

∑m+

k=1 ck(x+bk)−
∑m−

k=1 c̄k(x+ b̄k)
for some ck, c̄k ∈ C,m+,m− ∈ N and bk, b̄k ∈ R≥0.

We define the congestion model M = (N,F, S, (cf )f∈F ), where N = Np ∪ N+ ∪ N− and
F = F 1 ∪ F 2 ∪ F 3 ∪ F 4. The set of players N+ contains for each ck, 1 ≤ k ≤ m+, a player with
demand bk and the set of players N− contains for each c̄k, 1 ≤ k ≤ m−, a player with demand
b̄k. We call the players in N− ∪N+ offset players. The set Np = {1, 2} contains two additional
(non-trivial) players. Offset players with demand equal to 0 can be removed from the game. For
ease of exposition, we assume that all offsets bk, k = 1 . . . ,m+ and b̄k, k = 1, . . . ,m− are strictly
positive.

We now explain the strategy spaces and the sets F 1, F 2, F 3, F 4. For each function ck, 1 ≤ k ≤
m+, we introduce two facilities f2

k , f
3
k with cost function ck. For each function c̄k, 1 ≤ k ≤ m−,

we introduce two facilities f1
k , f

4
k with cost function c̄k. To model the offsets bk in (5), for each

offset player k ∈ N+, we define Sk = {f2
k , f

3
k}. Similarly, for each offset player k ∈ N−, we

set Sk = {f1
k , f

4
k}. The non-trivial players in Np have strategies S1 = {F 1 ∪ F 2, F 3 ∪ F 4} and

S2 = {F 1 ∪ F 3, F 2 ∪ F 4}, where F 1 = {f1
1 , . . . , f

1
m−}, F 2 = {f2

1 , . . . , f
2
m+
}, F3 = {f3

1 , . . . , f
3
m+
},

and F 4 = {f4
1 , . . . , f

4
m−}.

As c is assumed to be non-monotonic, by Lemma 3.2, there are x, y ∈ R>0 with y > x such
that either c(y−x) < c(y) < c(x) or c(y−x) > c(y) > c(x). We consider the weighted congestion
game G(M) with d1 = y − x and d2 = x for 1, 2 ∈ Np. For the 4-cycle

γ =
((
F 1 ∪ F 2, F 1 ∪ F 3, . . .

)
,
(
F 3 ∪ F 4, F 1 ∪ F 3, . . .

)
,
(
F 3 ∪ F 4, F 2 ∪ F 4, . . .

)
,

(
F 1 ∪ F 2, F 2 ∪ F 4, . . .

)
,
(
F 1 ∪ F 2, F 1 ∪ F 3, . . .

))

,

it is straightforward to calculate that

π1(F
3 ∪ F 4, F 1 ∪ F 3, . . . )− π1(F

1 ∪ F 2, F 1 ∪ F 3, . . . )

= (y − x)
(
m+∑

k=1

ck(d1 + d2 + bk)−
m−∑

k=1

c̄k(d1 + d2 + b̄k) +

m−∑

k=1

c̄k(d1 + b̄k)−
m+∑

k=1

ck(d1 + bk)

)

= (y − x)
(
c(y)− c(y − x)

)
,

π2(F
3 ∪ F 4, F 2 ∪ F 4, . . . )− π2(F

3 ∪ F 4, F 1 ∪ F 3, . . . )

= x

(

−
m+∑

k=1

ck(d1 + d2 + bk) +

m−∑

k=1

c̄k(d1 + d2 + b̄k) +

m+∑

k=1

ck(d2 + bk)−
m−∑

k=1

c̄k(d2 + b̄k)

)

= x
(
c(x) − c(y)

)
,



4 A Characterization for Two-Player Games 121

π1(F
1 ∪ F 2, F 2 ∪ F 4, . . . )− π1(F

3 ∪ F 4, F 2 ∪ F 4, . . . )

= (y − x)
(
m+∑

k=1

ck(d1 + d2 + bk)−
m−∑

k=1

c̄k(d1 + d2 + b̄k) +

m−∑

k=1

c̄k(d1 + b̄k)−
m+∑

k=1

ck(d1 + bk)

)

= (y − x)
(
c(y)− c(y − x)

)
,

π2(F
1 ∪ F 2, F 1 ∪ F 3, . . . )− π2(F

1 ∪ F 2, F 2 ∪ F 4, . . . )

= x

(

−
m+∑

k=1

ck(d1 + d2 + bk) +

m−∑

k=1

c̄k(d1 + d2 + b̄k)−
m−∑

k=1

c̄k(d2 + b̄k) +

m+∑

k=1

ck(d2 + bk)

)

= x
(
c(x) − c(y)

)
.

If c(y−x) > c(y) > c(x), all private cost differences are negative and γ is an improvement cycle;
if on the other hand c(y−x) < c(y) < c(x), the 4-cycle in the other direction is an improvement
cycle. Because every strategy combination is contained in γ we get the claimed result. �

4. A Characterization for Two-Player Games

We analyze implications of the Extended Monotonicity Lemma (Lemma 3.5) for two-player
weighted congestion games. First, for ease of exposition, we restrict ourselves to the case K = 2,
that is, we only regard those functions that can be written as an integral linear combination of
two functions in C without offset. We define the following set of functions

L2Z(C) = {c : R≥0 → R : c(x) = a1 c1(x) + a2 c2(x), a1, a2 ∈ Z, c1, c2 ∈ C} ⊆ LZ(C).

We remark that by setting all offsets bk in (5) equal to zero, the construction in the proof of
Lemma 3.5 only involves two players. Thus, we immediately obtain the following result.

Proposition 4.1. Let C be a set of continuous functions. If C is consistent for two-player games,
then, L2Z(C) contains only monotonic functions.

We proceed investigating sets of functions C that guarantee that L2Z(C) contains only mono-
tonic functions.

Lemma 4.2. Let c1, c2 : R≥0 → R be two continuous, monotonic and non-constant functions.
Then, the following are equivalent.

(1) For all a1, a2 ∈ Z the function a1 c1 + a2 c2 is monotonic on R≥0.
(2) There are a, b ∈ R such that c2(x) = a c1(x) + b for all x ≥ 0.

Proof. 2 ⇒ 1: Calculus.
1⇒ 2: Without loss of generality, we may assume that c1 and c2 are non-decreasing because

multiplying functions with −1 has no impact on either statement of the lemma. As c1 is non-
constant and non-decreasing, there is x1 ≥ 0 with c1(x1) = c1(0) and c1(x) > c1(0) for all
x > x1. Fix such x > x1. For all a1, a2 ∈ Z, the function a1 c1 +a2 c2 is monotonic. This implies
that for every y > x1 and every α ∈ Q the expressions α c1(x) + c2(x) − α c1(0) − c2(0) and
α c1(y) + c2(y)− α c1(0)− c2(0) have identical signs. Thus, for all y > x1 and all α ∈ Q at least
one of the following two cases holds

(1) α ≥ − c2(x)−c2(0)
c1(x)−c1(0) and α ≥ − c2(y)−c2(0)

c1(y)−c1(0)

(2) α ≤ − c2(x)−c2(0)
c1(x)−c1(0) and α ≤ − c2(y)−c2(0)

c1(y)−c1(0)
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This clearly implies

c2(y)− c2(0)
c1(y)− c1(0)

=
c2(x)− c2(0)
c1(x)− c1(0)

(6)

for all y > x1, because otherwise any rational

α ∈
(
min

{
−c2(y)− c2(0)
c1(y)− c1(0)

,−c2(x)− c2(0)
c1(x)− c1(0)

}
,max

{
−c2(y)− c2(0)
c1(y)− c1(0)

,−c2(x)− c2(0)
c1(x)− c1(0)

})

would violate both constraints. From (6), we obtain

c2(y) =
c2(x)− c2(0)
c1(x)− c1(0)

· c1(y)−
c2(x)− c2(0)
c1(x)− c1(0)

· c1(0) + c2(0)

for all y > x1. This shows the existence of a, b ∈ R with c2(x) = a c1(x) + b for all x > x1.
Exchanging the roles of c1 and c2, we may also derive the existence of a′, b′ ∈ R such that
c1(x) = a′ c2(x) + b′ for all x > x2, where x2 is such that c2(x2) = c2(0) and c2(x) > c2(0) for
all x > x2. This implies x1 = x2. Using the fact that c1 and c2 are continuous and constant on
[0, x1] finishes the proof. �

We are now ready to prove our first main result.

Theorem 4.3. Let C be a set of continuous functions. Let G2(C) be the set of two-player games
such that cost functions are in C. Then, the following conditions are equivalent.

(1) C is consistent for G2(C).
(2) C is FIP-consistent for G2(C).
(3) C contains only monotonic functions and for all non-constant c1, c2 ∈ C, there are

constants a, b ∈ R such that c1(x) = a c2(x) + b for all x ≥ 0.

Proof. 2 ⇒ 1 is trivial.
1 ⇒ 3: Using Proposition 4.1 we get that L2Z(C) contains only monotonic functions. As

C ⊆ L2Z(C), this implies in particular that C contains only monotonic functions. For all non-
constant functions c1, c2 ∈ C and all a1, a2 ∈ Z the function a1 c1 + a2 c2 ∈ L2Z(C) is monotonic.
Applying Lemma 4.2 then yields the result.

3⇒ 2: Let C be as specified in 3. Trivially, the claimed result holds if C contains only constant
functions. If C contains a non-constant function c consider the set C̄ = {a c(x)+b : a, b ∈ R} ⊇ C.
We show that C̄ is consistent for G2(C̄). To this end, consider an arbitrary two-player game with
costs in C̄ and demands d1 < d2. We distinguish the following three cases.

First case: c(d1) < c(d2) < c(d1 + d2), or c(d1) > c(d2) > c(d1 + d2). Since c is strictly
monotonic with respect to the points d1, d2 and d1 + d2, there is a strictly monotonic function c̃
with c̃(d1) = c(d1), c̃(d2) = c(d2) and c̃(d1 +d2) = c(d1 +d2). Consequently, we can replace every

cost function c ∈ C̄ = {a c(x) + b : a, b ∈ R} by a cost function c̃ ∈ C̃ = {a c̃(x) + b : a, b ∈ R}
without changing the players’ private costs. As shown by Harks et al. [22], for any strictly
monotonic function c̃, every weighted congestion game G with two players and cost functions in
C̄ = {a c̃(x) + b : a, b ∈ R} admits a potential function and, thus, has the FIP.

Second case: c(d1) = c(d2). We set d̃1 = d̃2 = 1 and chose for every facility f ∈ F a new
cost function c̃f with c̃f (1) = cf (d1) = cf (d2) and c̃f (2) = cf (d1 + d2). By construction, the

unweighted congestion game with demands d̃1, d̃2 and costs (c̃f )f∈F has the same private costs as
the original game. Rosenthal [32] showed the existence of a potential function in all unweighted
congestion games, thus, the game has the FIP.

Third case: c(d2) = c(d1 + d2). We have c̄(d2) = c̄(d1 + d2) for all c̄ ∈ C̄ and thus player 2 is
always indifferent whether player 1 shares a facility with her or not. For the FIP and the existence
of a PNE, we argue as follows: Consider the vector valued function φ : S → R, s 7→ (π2(s), π1(s))
which assigns to every strategy profile the vector which has the private cost of players 2 and 1 in
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first and second component respectively. We claim that φ decreases lexicographically along any
improvement path. This is trivial for improvement moves of player 2. Since player 2 is indifferent
whether player 1 shares with her a facility or not, every improvement move of player 1 does not
affect the private cost of player 2 but decreases the private cost of player 1. This implies that
the lexicographical order of φ(s) decreases along any improvement path, thus, every such path
is finite. �

5. A Characterization for the General Case

We now consider the case n ≥ 3, that is, we consider weighted congestion games with at least
three players. We will show that a set of continuous cost functions is consistent if and only
if this set contains either only linear or only certain exponential functions. Our main tool for
proving this result is to analyze implications of the Extended Monotonicity Lemma (Lemma 3.5)
for three-player weighted congestion games. Formally, define

L3Z(C) = {c : R≥0 → R : c(x) = a1 c1(x) + a2 c1(x+ δ) : a1, a2 ∈ Z, c1 ∈ C, δ ∈ R>0} ⊆ LZ(C).
Note that L3Z(C) involves a single offset δ > 0, which requires only three players in the construc-
tion of the proof of the Extended Monotonicity Lemma. However, regarding three-player games
in which the strategy available to the third player does not intersect with the strategies of the
first two players we still get as a necessary condition that L2Z(C) may only contain monotonic
functions. We, thus, obtain the following result.

Proposition 5.1. Let C be a set of continuous functions. If C is consistent for three-player
games, then both L2Z(C) and L3Z(C) contain only monotonic functions.

We proceed characterizing the set of cost functions C for which L3Z(C) contains only monotonic
functions.

Lemma 5.2. Let C be a set of continuous functions. Then, the following two are equivalent:

(1) L3Z(C) contains only monotonic functions.

(2) For every c ∈ C either c(x) = a eφx + b for some a, b, φ ∈ R, or c(x) = ax+ b for some
a, b ∈ R.

Proof. 2 ⇒ 1: Let c ∈ C be an exponential or an affine function. By simple calculus one can
verify that every function c̃(x) = a1 c(x) + a2 c(x+ δ) with a1, a2 ∈ Z, δ ∈ R>0 is exponential if
c is exponential and affine if c is affine.

1 ⇒ 2: By contradiction, assume that c ∈ C is neither affine nor exponential. As L3Z(C)
contains only monotonic functions, for all δ > 0 and all a1, a2 ∈ Z the function c̃ : R≥0 →R, x 7→ a1 c(x)+a2 c(x+ δ) is monotonic. Referring to Lemma 4.2, this implies that for all δ > 0
there are a, b ∈ R such that for all x ≥ 0

c(x+ δ) = a c(x) + b. (7)

As c ∈ C is neither affine nor exponential on R≥0, there must exist four points 0 ≤ p1 < p2 <
p3 < p4 following neither an exponential nor an affine law, i.e. there are neither α, β, φ ∈ R
such that c(pi) = α eφpi + β for all i ∈ {1, 2, 3, 4} nor are there α, β ∈ R such that c(pi) =
αpi + β for all i ∈ {1, 2, 3, 4}. As c is continuous, we may assume without loss of generality
that p1, p2, p3, p4 are rational and we write them as p1 = 2m1/(2k), . . . , p4 = 2m4/(2k) for some
m1,m2,m3,m4, k ∈ N. For δ = 1/k we derive from (7) that there are a, b ∈ R such that for all
n ∈ N

c
(
(n+ 1)/k

)
= a c

(
n/k

)
+ b, (8)

c
(
(n+ 2)/k

)
= a c

(
(n+ 1)/k

)
+ b. (9)



124 On the Existence of Pure Nash Equilibria in Weighted Congestion Games

Subtracting (8) from (9) and rearranging terms, we obtain for all n ∈ N
c
(
(n+ 2)/k

)
− (a+ 1) c

(
(n+ 1)/k

)
+ a c

(
n/k)

)
= 0. (10)

This defines a second order linear homogeneous recurrence relation on the sequence c
(
n/k

)

n∈N.

Such recurrence relations can be solved with the method of characteristic equations, see [7, §3.2]
for more details. The characteristic equation of the recurrence relation equals x2−(a+1)x+a =
(x − 1)(x − a). If a 6= 1, then the characteristic equation has two distinct roots and we obtain
for even m that

c
(
m/k

)
= β · 1m + α · am = β + α · |a|m = α · exp(m ln |a|) + β

for some constants α, β ∈ R. If on the other hand a = 1, we can evaluate c
(
m/k

)
as

c
(
m/k

)
= β · 1m + αm · 1m = α ·m+ β

for some constants α, β ∈ R. �

We are now ready to state our second main theorem.

Theorem 5.3. Let C be a set of continuous functions. Then, the following three are equivalent:

(1) C is consistent.
(2) C is FIP-consistent.
(3) C contains only affine functions or C contains only functions of type c(x) = ac e

φx + bc
where ac, bc ∈ R may depend on c while φ ∈ R is independent of c.

Proof. 2 ⇒ 1 is trivial.
3 ⇒ 2 follows because every weighted congestion games with such cost functions possesses a

weighted potential, see [16, 22, 30].
1 ⇒ 3: By Proposition 5.1 both L2Z(C) and L3Z(C) may only contain monotonic functions.

Applying Lemma 5.2 we obtain that every c ∈ C is either affine or exponential. In addition, as
shown in Lemma 4.2 for each two non-constant functions c1, c2 ∈ C there are a, b ∈ R such that
c2(x) = a c1(x) + b for all x ≥ 0. Both results together imply 3. �

We conclude this section by giving an example that illustrates the main ideas presented so far.
Recall, that Theorem 5.3 establishes that for each continuous, non-affine and non-exponential
cost function c, there is a weighted congestion game G with uniform cost function c on all facilities
that does not admit a PNE. In the following example, we show how such game for c(x) = x3 is
constructed.

Example 5.4. As the function c(x) = x3 is neither affine nor exponential, there are a1, a2 ∈ Z
and δ ∈ R>0 such that c̃(x) = a1 c(x) + a2 c(x+ δ) has a strict local extremum. In fact, we can
choose a1 = 2, a2 = −1 and δ = 1, that is, the function c̃(x) = 2c(x)− c(x+ 1) = 2x3 − (x+ 1)3

has a strict local minimum at x0 = 1 +
√

2. In particular, we can choose d1 = 1 and d2 = 2
such that c̃(d1) = −6 > c̃(d2) = −11 < c̃(d1 + d2) = −10. The weighted congestion game
without PNE is now constructed as follows: We introduce 2(|a1|+ |a2|) facilities f1, . . . , f6 and
the following strategies sa1 = {f1, f2, f3}, sb1 = {f4, f5, f6}, sa2 = {f1, f2, f4}, sb2 = {f3, f5, f6},
and s3 = {f3, f4}. We then set S1 = {sa1, sb1}, S2 = {sa2, sb2}, and S3 = {s3}, see Figure 2 for an
illustration of the strategies. The so defined game has four strategy profiles, namely (sa1, s

a
2, s3),

(sa1, s
b
2, s3), (sb1, s

a
2, s3), (sb1, s

b
2, s3). As Player 3 is an offset player, she has a single strategy only,

thus, the players’ private costs depend only on the choice of players 1 and 2. We derive that the
4-cycle γ shown in Figure 2 is a best-reply cycle in G. As there are no strategy profiles outside
γ we conclude that G has no PNE.
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f1
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sa2
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︸ ︷︷ ︸

sb1
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a
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b
2, x3) = (66, 2 · 80, 65) π(xb1, x
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2, x3) = (62, 2 · 81, 35)

γ

Figure 2. (a) The players’ strategies and (b) the improvement cycle γ of the game constructed
in Example 5.4 that does not admit a PNE.

6. Weighted Network Congestion Games

In this section, we discuss the implications of our characterizations to the important subclass
of weighted network congestion games. In these games, the facilities correspond to edges of a
directed or undirected graph. Every player is associated with a positive demand that she wants
to route from her origin to her destination on a path of minimum cost. We consider directed
and undirected networks separately, starting with directed networks.

6.1. Directed Networks

We first give a version of the Extended Monotonicity Lemma for directed networks with two
players and strictly positive costs.

Lemma 6.1 (Extended Monotonicity Lemma for Two-Player Games on Directed Networks). Let
C be a set of strictly positive and continuous functions. If C is consistent for two-player directed
network congestion games, then L2

Z
(C) contains only monotonic functions.

Proof. Because singleton congestion games are a subclass of directed network congestion games
by Corollary 3.4 every set C of consistent functions contains only monotonic functions. For a
contradiction, assume that there are a1, a2 ∈ Z and monotonic functions c1, c2 ∈ C such that the
function c : R≥0 → R defined as c(x) = a1c1(x)+a2c2(x) is not monotonic. By Lemma 3.2 there
are x, y ∈ R>0 with y > x such that either c(y− x) < c(y) < c(x) or c(y− x) > c(y) > c(x). We
choose the demands equal to d1 = y − x and d2 = x. Note that c is monotonic if and only if −c
is monotonic, thus we may assume w.l.o.g. that a2 > 0. In order to define the players’ strategies
we distinguish the following two cases.

First case: a1 < 0: We use a construction similar to the proof of Lemma 3.5. To define the
players’ strategy spaces, consider the left network of Figure 3. The two players are represented
by the two source-terminal pairs (si, ti), i = 1, 2. The set of strategies available to player i
equals the set of directed (si, ti)-paths. The dashed edges in Figure 3 correspond to directed
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s t

P ′1

P ′2

Figure 3. Directed network congestion games used in the proof of the Extended Monotonicity
Lemma for Two-Player Directed Networks (Lemma 6.1).

paths P1, . . . , P4, which we choose as follows: the directed path P1 from v1 to v2 contains |a1|
edges with cost function c1, the directed path P2 from v3 to v4 contains a2 edges with cost
function c2, the directed path P3 from v5 to v6 contains a2 edges with cost function c2, and
the directed path P4 from v7 to v8 contains |a1| edges with cost function c1. All other edges
have an arbitrary cost function in C, say c1. Because all costs are strictly positive, for player
1 all strategies except the upper path Pu = {s1 → v1, P1, v2 → v3, P2, v4 → t1} and the lower
path Pd = {s1 → v5, P3, v6 → v7, P4, v8 → t1} are strictly dominated in the sense that they
have strictly higher costs than either Pu or Pd regardless of the strategy played by player 2. For
player 2, all strategies except the left path Pl = {s2 → v1, P1, v2 → v5, P3, v6 → t2} and the right
path Pr = {s2 → v3, P2, v4 → v7, P4, v8 → t2} are strictly dominated. We consider the 4-cycle
γ =

(
(Pu, Pl), (Pd, Pl), (Pd, Pr), (Pu, Pr), (Pu, Pl)

)
, and calculate that

π1(Pd, Pl)− π1(Pu, Pl) = (y − x)
(
c1(y − x) + a2c2(y) + c1(y − x)− a1c1(y − x) + c1(y − x)

− c1(y − x) + a1c1(y)− c1(y − x)− a2c2(y − x)− c1(y − x)
)

= (y − x)
(
a1c1(y) + a2c2(y)− a1c1(y − x)− a2c2(y − x)

)

= (y − x)
(
c(y)− c(y − x)

)

In the same fashion, we obtain π2(Pd, Pr)−π2(Pd, Pl) = x
(
c(x)−c(y)

)
, π1(Pu, Pr)−π1(Pd, Pr) =

(y− x)
(
c(y)− c(y−x)

)
, and π2(Pu, Pl)−π2(Pu, Pr) = x

(
c(x)− c(y)

)
. If c(y−x) > c(y) > c(x),

then γ is an improvement cycle which gives that none of the strategy profiles contained in γ is
a PNE. If on the other hand c(y − x) < c(y) < c(x), we can reverse the direction of γ and get
an improvement cycle. Because every strategy profile that uses only non-dominated strategies is
contained in γ, the constructed directed network congestion game does not admit a PNE.

Second case: a1 > 0: Consider the right network shown in Figure 3. Here, both players want
to route from s to t, that is, S1 = S2 = {P ′1, P ′2}. The directed paths P ′1 and P ′2 each contain a1

edges with cost function c1 and a2 edges with cost function c2. If c(y − x) < c(y) < c(x), player
1 prefers to be alone on an (s, t)-path while player 2 wants to share the path with player 1. If
c(y − x) > c(y) > c(x), the argumentation works the other way round. We conclude that the
game does not admit a PNE. �

Together with Lemma 4.2 and Theorem 4.3, we obtain the following characterization of
consistency for two-player network congestion games on directed networks.
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Theorem 6.2. Let C be a set of strictly positive and continuous functions and let G2
dn(C) be the

set of two-player directed network games such that cost functions are in C. Then, the following
conditions are equivalent.

(1) C is consistent for G2
dn(C).

(2) C is FIP-consistent for G2
dn(C).

(3) C contains only monotonic functions and for all non-constant c1, c2 ∈ C, there are
constants a, b ∈ R with c1(x) = a c2(x) + b for all x ∈ R≥0.

Using similar ideas as in the case of two players, we can also prove a version of the Extended
Monotonicity Lemma for directed network games with three or more players.

Lemma 6.3 (Extended Monotonicity Lemma for Directed Networks). Let C be a set of strictly
positive and continuous functions. If C is consistent for three-player directed network congestion
games, then L3

Z
(C) contains only monotonic functions.

Proof. Assume by contradiction that there are a1, a2 ∈ Z, δ ∈ R>0 and a monotonic function
c1 ∈ C such that the function c : R≥0 → R defined as c(x) = a1c1(x) + a2c1(x + δ) is not
monotonic. We may again assume w.l.o.g. that c1 is monotonic and that a2 > 0. Note that
because c1 is monotonic, this implies a1 < 0.

Consider the network in Figure 4 where again the directed paths P1 and P4 contain |a1| edges
each, and the the directed paths P2 and P3 contains a2 edges each. In addition to the players
i = 1, 2 corresponding to the pairs (si, ti), i = 1, 2 we now have a third player corresponding
to the pair (s3, t3) with a single strategy PQ = {P3, Q, P2} and demand d3 = δ. Moreover, we
set d1 = y − x, d2 = x for x, y ∈ R>0 with y > x such that either c(y − x) < c(y) < c(x) or
c(y − x) > c(y) > c(x) holds (by Lemma 3.2 such values exist). We design the directed path Q
from v6 to v3 so as to contain a sufficiently large number of edges, such that for players 1 and
2 all (si, ti)-paths not containing Q are strictly less costly than every path that contains Q. As
every (si, ti)-path that does not contain Q has costs less than 2(a2 − a1 + 6) c1(y + δ) and every

edge in Q has cost at least c1(δ), it is sufficient to let Q contain 2(a2 − a1 + 6)
⌈ c1(y+δ)

c1(δ)

⌉
+ 1

edges. By construction of Q, for player 1, all strategies except the upper path Pu = {s1 →
v1, P1, v2 → v3, P2, t3 → t1} and the lower path Pd = {s1 → s3, P3, v6 → v7, P4, v8 → t1} are
strictly dominated in the sense that they have strictly higher costs than either Pu or Pd regardless
of the strategies played by players 2 and 3. For player 2, all strategies except the left path Pl =
{s2 → v1, P1, v2 → s3, P3, v6 → t2} and the right path Pr = {s2 → v3, P2, t3 → v7, P4, v8 → t2}
are strictly dominated. With the same calculations as in Lemma 6.1 one can show that the
4-cycle γ =

(
(Pu, Pl, PQ), (Pd, Pl, PQ), (Pd, Pr, PQ), (Pu, Pr, PQ), (Pu, Pl, PQ)

)
is an improvement

cycle when traversed in the right direction. Because every strategy profile that uses only non-
dominated strategies is contained in γ, we conclude that the thus constructed network congestion
game does not admit a PNE. �

Using Lemma 5.2, we obtain the following characterization of cost functions that are consis-
tent for weighted directed network congestion games.

Theorem 6.4. Let C be a set of strictly positive and continuous functions and let Gdn(C) be the
set of directed network congestion games such that cost functions are in C. Then, the following
are equivalent:

(1) C is consistent for Gdn(C).
(2) C is FIP-consistent for Gdn(C).
(3) C contains only affine functions or C contains only functions of type c(x) = ac e

φx + bc,
where ac, bc ∈ R may depend on c while φ ∈ R is independent of c.

This characterization is even valid for three-player games.
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s2

v1 v2 v3 t3

s1 t1

s3 v6 v7 v8

t2

P1 P2

P3 P4

Q

Figure 4. Multi-commodity directed network instance used in the proof of the Extended Mono-
tonicity Lemma for Directed Networks (Lemma 6.3).

Remark 6.5. In games with negative costs the players strive to establish long paths. In this case,
our construction does not work since e.g. player 2 prefers to take the detour v6 → v7 → v8 → t2
instead of the edge v6 → t2.

6.2. Undirected Networks

We first show that a version of the Extended Monotonicity Lemma holds also for two-player
games on undirected networks. In such a game, we are given an undirected graph and for each
player i two designated vertices si and ti. Facilities correspond to the edges of the graph and
the strategy set of each player i contains all simple si, ti-paths. Each edge can be traversed in
any direction and its cost depends on the aggregated flow.

Lemma 6.6 (Extended Monotonicity Lemma for Two-Player Games on Undirected Networks).
Let C be a set of strictly positive and continuous functions. If C is consistent for two-player
undirected network congestion games, then L2

Z
(C) contains only monotonic functions.

Proof. For a contradiction, let a1, a2 ∈ Z and c1, c2 ∈ C be such that the function c : R≥0 → R
defined as c(x) = a1 c1(x) + a2 c2(x) is not monotonic and w.l.o.g. a2 > 0. Moreover, let
x, y ∈ R>0 with y > x be such that either c(y−x) < c(y) < c(x) or c(y−x) > c(y) > c(x) holds.
We set d1 = y − x, d2 = x and distinguish the following two cases. If a1 < 0 we consider the
network in Figure 5 where the paths P1 and P4 each contain |a1| edges with cost function c1 and
the paths P2 and P3 each contain a2 edges with cost function c2. With similar calculations as
in the proof of Lemma 6.1 one can verify that the 4-cycle γ =

(
(P1 ∪P2, P1 ∪P3), (P3 ∪P4, P1 ∪

P3), (P3 ∪P4, P2 ∪P4), (P1 ∪P2, P2 ∪P4), (P1 ∪P2, P1 ∪P3)
)

is an improvement cycle if traversed
in the right sense. If on the other hand a1 > 0, we consider the undirected network shown in
Figure 5 on the right and obtain the same contradiction as in Lemma 6.1. �

Likewise, we obtain the following characterization for two-player games on undirected net-
works.

Theorem 6.7. Let C be a non-empty set of strictly positive and continuous functions and let
G2

un(C) be the set of two-player undirected network games such that cost functions are in C.
Then, the following conditions are equivalent.

(1) C is consistent for G2
un(C).
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Figure 5. Undirected network congestion games used in the proof of Extended Monotonicity
Lemma for Two-Player Undirected Networks (Lemma 6.6).

(2) C is FIP-consistent for G2
un(C).

(3) C contains only monotonic functions and for all non-constant c1, c2 ∈ C, there are
constants a, b ∈ R with c1(x) = a c2(x) + b for all x ∈ R≥0.

Turning to games with three players we are not able to characterize the set of consistent cost
functions. However, we can still characterize consistency for games with at least four players.

Lemma 6.8 (Extended Monotonicity Lemma for Undirected Networks). Let C be a set of strictly
positive and continuous functions. If C is consistent for undirected network congestion games
with at least four players, then L3

Z
(C) contains only monotonic functions.

Proof. For a contradiction, suppose that there are a1, a2 ∈ Z, δ ∈ R>0 and a monotonic function
c1 ∈ C such that the function c : R≥0 → R defined as c(x) = a1c1(x) + a2c1(x + δ) is not
monotonic, again w.l.o.g. c1 is monotonic, a2 > 0 and a1 < 0.

Consider the network in Figure 6 where the paths P1 and P4 each contain |a1| edges and the
the paths P2 and P3 each contain a2 edges. The players i = 1, 2 correspond to the source sink
pairs (si, ti), i = 1, 2. Additionally, there are players associated with the source sink pairs (si, ti),
i = 3, 4 and demand d3 = d4 = δ. Moreover, we set d1 = y − x, d2 = x for x, y ∈ R>0 with
y > x such that either c(y − x) < c(y) < c(x) or c(y − x) > c(y) > c(x) holds (by Lemma 3.2
such values exist).

We endow every edge in the paths Q1, . . . , Q8 with cost function c2 and make them sufficiently
long such that players 3 and 4 always prefer to choose a strategy not containing any of these paths.
Because the paths P2 and P3 have costs less than a2 c2(y+2δ) and every edge in Qi, i = 1, . . . , 8
used by players 3 or 4 has cost at least c2(δ), it suffices for all i = 1, . . . , 8 to let Qi contain

a2

⌈ c2(y+2δ)
c2(δ)

⌉
+ 1 edges each. Then, for player 3, all strategies except P2 are strictly dominated

by P2 and for player 4 all strategies except P3 are strictly dominated by P3. Given that players
3 and 4 will not use any of the Qi-paths in equilibrium, we may assume that players 1 and 2 will
not share any of the Qi paths in equilibrium, w.l.o.g. player 1 always uses the paths Q1, . . . , Q4

instead of Q5, . . . , Q8 while player 2 always uses paths Q5, . . . , Q8 instead of Q1, . . . , Q4. With
the same calculations as before one can show that there is an improvement cycle γ of the form γ =
(
(Pu, Pl, P2, P3), (Pd, Pl, P2, P3), (Pd, Pr, P2, P3), (Pu, Pr, P2, P3), (Pu, Pl, P2, P3)

)
, where Pu = P1∪

Q1 ∪Q2 ∪ P2, Pd = P3 ∪ Q3 ∪Q4 ∪ P4, Pl = Q5 ∪ P1 ∪ P3 ∪ Q7, and Pr = Q6 ∪ P2 ∪Q4 ∪ Q8.
Because every strategy profile that uses only non-dominated strategies is contained in γ the thus
constructed network congestion game does not admit a PNE. �

Using the above Lemma, we obtain the following result.

Theorem 6.9. Let C be a set of strictly positive and continuous functions and let Gun(C) be the
set of undirected network congestion games with at least four players and cost functions in C.
Then, the following are equivalent:

(1) C is consistent for Gun(C).
(2) C is FIP-consistent for Gun(C).
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Figure 6. Undirected network congestion games used in the proof of the Extended Monotonic-
ity Lemma for Undirected Networks (Lemma 6.8).

(3) C contains only affine functions or C contains only functions of type c(x) = ac e
φx + bc,

where ac, bc ∈ R may depend on c while φ ∈ R is independent of c.

For single-commodity network games (directed or undirected) we are not able to character-
ize consistency of cost functions. However, by introducing a super-source and a super-sink to
the network constructions used it follows that the improvement cycles are preserved, thus, all
characterizations for FIP-consistency obtained in this section continue to hold.

7. Weighted Singleton Congestion Games

In this section, we consider the case of singleton weighted congestion games. In this class of
games, for every player i, every strategy si ∈ Si contains a single facility only. As mentioned
in Corollary 3.4, the construction of the Monotonicity Lemma (Lemma 3.3) is even valid for
singleton games, establishing that every set of continuous cost functions C that is consistent for
singleton games may only contain monotonic functions. It is well known that singleton congestion
games with weighted players and either only non-decreasing or only non-increasing cost functions
admit a PNE, see [14, 15, 36]. Since the positive result for non-decreasing costs is established via
a potential function, these games also possess the FIP. With similar arguments it is not difficult
to establish the FIP also for the case of non-increasing costs.1 To the best of our knowledge it
was not known before, whether singleton weighted congestion games with both non-decreasing
and non-increasing cost functions admit a PNE or even the FIP. Regarding the existence of PNE,
for two-player games, we give a positive answer to this question.

Theorem 7.1. Let C be a set of continuous functions and let G2
sgl(C) be the set of two-player

games such that cost functions are in C and strategy spaces are sets of singletons. Then, C is
consistent for G2

sgl(C) if and only if C contains only monotonic functions.

Proof. The “only if”-part follows from Corollary 3.4. For the “if”-part letM = (N,F, S, (cf )f∈F )
be a congestion model with |N | = 2. W.l.o.g. we assume d1 ≤ d2. We partition the set of
facilities into sets F− and F+, where F+ contains all facilities with non-decreasing cost functions
(including all facilities with constant functions) and F− all other facilities. W.l.o.g. we can
assume that both player have access to all facilities in F−, since we can replace the cost function
of every facility that is contained in the strategy space of only one player by a constant function.

1Consider the function φ that assigns to each strategy profile the non-decreasingly sorted vector of the scaled
players’ private costs (πi/di)i∈N . Then, φ decreases lexicographically along any improvement path, establishing
that every such path is finite
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We initialize the players both playing g, where g = arg minf∈F− cf (d1 + d2). We distinguish two
cases.

First case: Player 1 has an improving move from ({g}, {g}). In this case, we let player 1
move to one of her best replies {f1} ∈ S1. Using the special choice of g, we have f1 ∈ F+.
If player 2 does not have an improving move from ({f1}, {g}), we are done. So, let {f2} be a
best reply of player 2 to ({f1}, {g}). If f1 6= f2, we claim that ({f1}, {f2}) is a PNE. To see
this, note that if f2 ∈ F+, then player 2 switching from {g} to {f2} does not make any of the
facilities more attractive to player 1. If on the other hand, f2 ∈ F−, we get π1({f2}, {f2}) ≥
π1({g}, {g}) > π1({f1}, {f2}) = π1({f1}, {g}) by the choice of g, thus player 1 does not want
to move to f2 and we have reached an equilibrium. The only interesting case that remains is
{f1} = {f2}. Again, if player 1 does not have an improving move, there is nothing left to show, so
let {h1} 6= {f1} be a best reply of player 1 to ({f1}, {f1}). Note that h1 /∈ F− because otherwise
we get π2({f1}, {h1})/d2 ≤ π1({h1}, {f1})/d1 < π1({f1}, {f1})/d1 = π2({f1}, {f1})/d2, where
the first inequality follows since d2 ≥ d1. This is a contradiction to the fact that {f1} was a best
reply of player 2. As π2({h1}, {f1}) ≤ π2({f1}, {f1}), player 2 does not want to deviate from
({h1}, {f2}). Also, player 1 will not deviate from ({h1}, {f2}) as {h1} was a best reply.

Second case: Player 1 has no improving move from ({g}, {g}). If also player 2 does not
have an improving move from ({g}, {g}), we are done. Otherwise, let {f2} ∈ S2 be a best reply
of player 2. Note that {f2} /∈ S1 because otherwise {f2} would have been an improving move
from ({g}, {g}) of player 1. If player 1 has no improving move from ({g}, {f2}), we are done.
Otherwise let {f1} be a best reply of player 1 to ({g}, {f2}). Using that f1 6= f2 and that
π2({f1}, {f2}) ≤ π2({g}, {g}), we have that ({f1}, {f2}) is a PNE. �

Two-player singleton weighted congestion games with monotonic costs need not possess the
FIP as shown in the following example.

Example 7.2. Consider the congestion model M = (N,F, S, (cf )f∈F ) with two players N =
{1, 2} who have access to all five facilities F = {g, f1, f2, f3, f4}. The cost functions of the
facilities are shown in Table 1(a). Note that the cost function of facility g is strictly decreasing
while all other cost functions are non-decreasing. The players’ demands are given by d1 = 1 and
d2 = 2. It is not hard to verify that the cycle γ defined as

γ =
(
({g}, {g}), ({g}, {f1}), ({f1}, {f1}), ({f1}, {f2}), ({f3}, {f2}),
({f3}, {f3}), ({f4}, {f3}), ({f4}, {g}), ({g}, {g})

)

is an improvement cycle.

We proceed showing that for singleton games with three players monotonicity of cost functions
alone is not enough for the existence of a PNE. This is illustrated in the following example.

Example 7.3. Consider the congestion model M = (N,F, S, (cf )f∈F ) with N = {1, 2, 3} and
F = {f, g, h}. The used cost functions are given in Table 1(b). We claim that the weighted
congestion game G(M) = (N,S, π) with S1 =

{
{g}, {h}

}
, S2 =

{
{f}, {g}

}
, S3 =

{
{f}, {h}

}

and d1 = 1, d2 = 2, d3 = 4 does not admit a PNE. To see this, note that the best-reply graph γ
shown in Figure 7 does not have a sink. Using that all strategy profiles are contained in γ the
claimed result follows.

However, we are able to give a positive result for symmetric games in which the players have
access to all facilities.

Theorem 7.4. Let C be a set of continuous functions and let Gsgl,sym(C) be the set of games
such that cost functions are in C and strategy spaces are sets of singletons and equal for every
player. Then, C is consistent for Gsgl,sym(C) if and only if C contains only monotonic functions.
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facility
cost c(x)

x = 1 x = 2 x = 3

g 10 5 3

f1 2 2 9

f2 8 8 8

f3 1 7 7

f4 6 6 6

facility
cost c(x)

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

f 0 0 2 3 3 3

g 5 1 1 1 0 0

h 2 2 2 2 4 4

Table 1. (a) Cost functions of the five facilities g, f1, f2, f3, and f4 facilities in the game of
Example 7.2; (b) Cost functions of the three facilities f, g, and h in the game of Example 7.3.

π({g}, {f}, {f}) = (5, 6, 12) π({g}, {g}, {f}) = (1, 2, 12) π({g}, {f}, {h}) = (5, 0, 8) π({g}, {g}, {h}) = (1, 2, 8)

π({h}, {f}, {f}) = (2, 6, 12) π({h}, {g}, {f}) = (2, 2, 12) π({h}, {f}, {h}) = (4, 0, 16) π({h}, {g}, {h}) = (4, 2, 16)

Figure 7. Best reply graph of the singleton weighted congestion game G(M) constructed in
Example 7.3. The vertical arcs correspond to best replies of player 1, the straight horizontal
arcs to best replies of player 2 and the wide horizontal arcs to best replies of player 3. Since the
graph does not have a sink, the game G(M) does not possess a PNE.

Note that the only if part also follows from Corollary 3.4. In order to prove the if part, we
give an algorithm that efficiently computes a PNE in such games. In the following, we denote
by F+ and F− the set of facilities with non-decreasing and non-increasing costs, respectively.
In order to obtain a partition of F , we introduce the convention, that facilities with constant
cost functions are contained in F+ only. The algorithm that we propose (Algorithm 1) initializes
all players on the facility g ∈ F− that minimizes cg(

∑

i∈N di). Clearly, then no player has an
incentive to switch to another facility h ∈ F−. The key observation is that, as long as there is
at least one player i ∈ N that wants to switch to a facility f ∈ F+, also the player with smallest
demand does so. So we iteratively take the player with smallest weight on g and let her move
to F+. Then, we compute a sequence of best replies of the players on F+ in order to assure
that none of them has an incentive to deviate to another facility in F+. Also, the players on
F− are placed on the facility minimizing cf (

∑

i∈N :si∈F− di). Since we can prove that a player
on F+ never wants to move back to a facility in F−, this process stops after a finite number of
best-reply steps.

Lemma 7.5. Algorithm 1 computes a PNE.

Proof. Let us first remark that the computation of the partial PNE of players N+ on F+ in line 5
finishes after a finite sequence of best replies since the cost functions of the facilities in F+ are
non-decreasing, see [1, 23]. As at most n times such PNE is computed, the algorithm terminates
after a finite number of best-reply steps.
Let z denote the outcome of the algorithm. Clearly, no player j ∈ N+ can improve switching to
another facility f ∈ F+ since we always recompute a partial PNE in line 5. Also, no player j ∈ N−
can improve unilaterally deviating to another facility f ∈ F− since cf (dj) ≥ cf (

∑

i∈N− di) ≥
cg(
∑

i∈N− di). In addition, we know that player k = arg mini∈N− di does not improve switching

from facility g to another facility f ∈ F+. In consequence, the same holds for every other player
j ∈ N− since the cost for her on a facility f ∈ F+ are not smaller. Finally, it is left to show that
in z no player j ∈ N+ has an interest to switch to some facility f ∈ F−.
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Algorithm 1 Computation of a PNE in symmetric singleton weighted congestion games

Input: Symmetric singleton weighted congestion game G
Output: PNE s of G
1: N− := N , N+ := ∅
2: Compute g := arg minf∈F− cf (

∑

i∈N− di) and set si := {g} for all i ∈ N−
3: if k = arg mini∈N− di can improve switching to f ∈ F+ then

4: sk := f , N− := N− \ {k}, N+ := N+ ∪ {k}
5: Compute a partial PNE (ti)i∈N+ of N+ on F+ by best replies and set (si)i∈N+ := (ti)i∈N+

6: Goto line 2
7: end if

8: return s

For proving this, let it, t = 1, . . . , T , T ∈ N denote the player that switches from gt ∈ F− to
ft ∈ F+ in the t-th iteration of the algorithm and let z̃t and zt denote the corresponding strategy
profiles before and after the re-computation of the partial PNE on F+ in line 5, respectively. We
claim that

min
g∈F−

cg(ℓg(z
t) + dit) > max

f∈F+:ℓf (zt)>0
cf (ℓf (z

t)) for all t = 1, . . . , T , (11)

where ℓg(z
t) and ℓf (z

t) denote the load on facility g respectively f in strategy profile zt. For t = 1,
the statement holds true, since player i1 improves switching from F− to F+. Now, suppose (11)
holds true for t − 1. In the t-th iteration, player it changes her strategy from gt ∈ F− to some
facility ft ∈ F+. In consequence, ming∈F− cg(ℓg(z

t) + dit) = cgt

(
ℓgt(z

t) + dit
)
> cft

(
ℓft

(z̃t)
)
. As

the facilities in F− have non-increasing cost functions, we obtain

min
g∈F−

cg
(
ℓg(z

t) + dit
)
≥ min

g∈F−
cg
(
ℓg(z

t−1) + dit−1

)
.

By the induction hypothesis, this implies ming∈F− cg
(
ℓg(z

t)+dit
)
> cf (ℓf (z̃

t)) for all f ∈ F+\{ft}
with ℓf (z̃

t) > 0. Thus, we have established ming∈F− cg
(
ℓg(z

t)+dit
)
> maxf∈F+:ℓf (z̃t)>0 cf (ℓf (z̃

t)).

Since the maximum cost on F+ cannot increase in the sequence of best-reply steps (c.f. [21]), we
obtain ming∈F− cg

(
ℓg(z

t) + dit
)
> maxf∈F+:ℓf (zt)>0 cf (ℓf (z

t)) as claimed.
Because the algorithm moves always the player with the currently smallest weight from F− to

F+ (line 3) it holds that diT = maxi∈N+ di which gives ming∈F− cg
(
ℓg(z)+di

)
≥ ming∈F− cg

(
ℓg(z)+

diT
)
> maxf∈F+ cf (ℓf (z̃)) for all i ∈ N+. Thus, no player i ∈ N+ has an incentive to switch to

a facility g ∈ F−. �

While the above result implies that the set C of continuous and monotonic cost functions is
consistent for symmetric singleton games, Example 7.2 implies that C is not FIP-consistent.

8. Conclusions

We obtained a characterization of the equilibrium existence problem in weighted congestion
games with respect to the facilities’ cost functions. The following issues have not been resolved.
Our characterizations for network games require that cost functions are strictly positive. More-
over, for single-commodity games we were only able to characterize the FIP, not consistency. The
single-commodity case, however, behaves completely different as every congestion game with pos-
itive and non-increasing costs admits a PNE in which all players use the socially optimal path
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(see also Anshelevich et al. [5] for a similar result in the context of network design games). Fi-
nally, it would be interesting to characterize consistency of cost functions for undirected networks
with three players.
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Abstract. We study a class of finite strategic games with the property that every deviation of a
coalition of players that is profitable to each of its members strictly decreases the lexicographical
order of a certain function defined on the set of strategy profiles. We call this property the
Lexicographical Improvement Property (LIP) and show that in finite games it is equivalent to
the existence of a generalized strong potential function. We use this characterization to derive
existence, efficiency and fairness properties of strong equilibria. As our main result, we show
that an important class of games that we call bottleneck congestion games has the LIP and thus
the above mentioned properties. Turning to infinite games, the LIP does not imply the existence
of a generalized strong potential and also the existence of strong equilibria does not follow. We
introduce the slightly more general concept of the pairwise LIP and prove that whenever the
pairwise LIP is satisfied for a continuous function, then there exists a strong equilibrium. As a
consequence, we prove that splittable bottleneck congestion games with continuous facility cost
functions possess a strong equilibrium.

1. Introduction

The theory of non-cooperative games is used to study situations that involve rational and selfish
agents who are motivated by optimizing their own utilities rather than reaching some social
optimum. In his seminal work [36] showed that every finite non-cooperative game has an
equilibrium in mixed strategies. It is well known that mixed or correlated strategies have no
meaningful physical interpretation for many strategic games arising in practice; see also the
discussion by Osborne and Rubinstein about critics on mixed Nash equilibria [38, § 3.2]. For
such games, one usually resorts to pure strategies and pure Nash equilibria (PNE) are the solution
concept of choice. A PNE is a strategy profile from which no player has an incentive to unilaterally
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change her pure strategy. While the PNE concept excludes the possibility that a single player
can unilaterally improve her utility, it does not necessarily imply that a PNE is stable against
coordinated deviations of a group of players if their joint deviation is profitable for each of its
members. So when coordinated actions are possible, the Nash equilibrium concept is not sufficient
to analyze stable states of a game. To cope with the issue of coordination, we adopt the solution
concept of a strong equilibrium (SE for short) proposed by [5]. In a strong equilibrium, no
coalition (of any size) can deviate and strictly improve the utility of each of it members (while
possibly lowering the utility of players outside the coalition). Clearly, every SE is a PNE, but
the converse does not always hold. Thus, even though SE may rarely exist, they constitute a
very robust and appealing stability concept.

One of the most successful approaches in establishing existence of PNE in finite games is the
potential function approach introduced by [41] and formalized by [34]. One defines a real-valued
function P on the set of strategy profiles of the game and shows that every improving move of
a single player strictly reduces the value of P . Since the set of strategy profiles of such a (finite)
game is finite, every sequence of improving moves reaches a PNE. In particular, every local
minimum1 of P is a PNE. [22] generalized this concept to generalized strong potential functions.
Here, it is required that every improving move of a coalition (that is profitable to each of its
members) strictly decreased the value of P . Clearly, the global minimum of a generalized strong
potential is an SE, while the local minima of P correspond to (potentially non-strong) PNE.

In a recent line of research [16, 15, 2] lexicographic arguments have been used to prove
the existence of (strong) equilibria. Here, it is argued that the strategy profile that minimizes
the vector of the players’ private costs with respect to the lexicographical order is a PNE or
an SE. In this paper, we formalize and generalize this approach. We consider strategic games
G = (N,X, π), where N is the set of players, X the strategy space, and players experience non-
negative private costs πi(x), i ∈ N , for a strategy profile x. We say that G has the lexicographical
improvement property (LIP) if there exists a vector-valued function φ : X → Rq+, q ∈ N, such
that every improving move (profitable deviation of an arbitrary coalition) from x ∈ X strictly
reduces φ(x) with respect to the lexicographical order. We say that G has the π-LIP if G satisfies
the LIP with φi(x) = πi(x), i ∈ N . Clearly, requiring q = 1 in the definition of the LIP reduces
to the case of a generalized strong potential.

The main focus of this paper is twofold. We first study desirable properties of arbitrary
finite games having the π-LIP. These properties concern the existence, efficiency and fairness of
SE. Second, we identify an important and quite general class of games, the bottleneck congestion
games, for which we can prove the π-LIP and, hence, prove that these games possess SE with
the above desirable properties.

Before we outline our results in more detail, let us give an informal definition of bottleneck
congestion games. In a standard congestion game, there is a set of facilities, and the pure
strategies of players are subsets of this set. Each facility f has a cost that is a function of its load
usually defined as the number (or total weight) of players that select strategies containing f . The
private cost of a player’s strategy in a standard congestion game is given by the sum of the costs of
the facilities in her strategy. In a bottleneck congestion game, the private cost function of a player
is equal to the cost of the most expensive facility that she uses (L∞-norm of the vector of players’
costs of the strategy). Bottleneck congestion games occur in many real-world applications, e.g.,
communication networks. Referring to [6], [10], [24] and [39], the throughput of a stream of
packets in a communication network is usually determined by the available bandwidth or the
capacity of the weakest links. This aspect is captured more realistically by bottleneck congestion
games in which the individual cost of a player is the maximum (instead of sum) of the delays

1Here, a local minimum is a strategy profile with the property that each other strategy profile that is reachable
by a unilateral deviation has no smaller value of P .



1 Introduction 139

in her strategy. Although they are a more realistic model for network routing than classical
congestion congestion games, they have not received similar attention in the literature.

1.1. Our Results

We first develop a simple characterization of games having the LIP by means of the existence
of a generalized strong potential function. The proof is constructive, that is, given a game G
having the LIP for a function φ, we explicitly construct a generalized strong potential P . We
further investigate games having the π-LIP with respect to efficiency and fairness of SE. Our
characterization implies that there are SE satisfying various efficiency and fairness properties,
e.g., Pareto efficiency and min-max fairness. Moreover, we derive tight bounds on the strong
prices of stability and anarchy.

One of our main results shows that bottleneck congestion games have the π-LIP and, thus,
possess SE with the above mentioned properties. Moreover, our characterization of games having
the LIP implies that bottleneck congestion games have the strong finite improvement property.
Note that for singleton congestion games, [15] and [16], have already proved existence of PNE by
arguing that the vector of facility costs decreases lexicographically for every improving move. [2]
used the same argument to even establish existence of SE in this case. Our work generalizes these
results to arbitrary strategy spaces and more general facility cost functions. In contrast to most
congestion games considered so far, we require only that the facility cost functions satisfy three
properties: "non-negativity", "independence of irrelevant choices", and "monotonicity". Roughly
speaking, the second and third condition assume that the cost of a facility solely depends on the
set of players using that facility and that the cost decreases if some players leave that facility,
respectively. Thus, this framework extends classical load-based models in which the cost of a
facility depends on the number or total weight of players using it. Our assumptions are weaker
than in the load-based models and even allow that the cost of a facility may depend on the set
of players using it.

We then study infinite games, that is, games with infinite strategy spaces that can be de-
scribed by compact subsets of Rp, p ∈ N. We slightly generalize the LIP by introducing the
notion of a pairwise vector-valued potential function φ : X → Rq+×Rq+, q ∈ N. Informally, G has
the pairwise lexicographical improvement property if every coalitional improving move from x ∈ X
strictly reduces a certain lexicographical order of φ(x) (see Section 5 for the formal definition).
We prove that continuity of φ in the definition of the pairwise LIP is sufficient for the existence of
SE. We then introduce splittable bottleneck congestion games. A splittable bottleneck congestion
game arises from a bottleneck congestion game G by allowing players to fractionally distribute
a certain demand over the pure strategies of G. We prove that these games have the pairwise
LIP when facility cost functions satisfy non-negativity, independence of irrelevant choices, and
monotonicity. If additionally the facility cost functions are continuous we obtain the pairwise
LIP for a continuous function φ and, thus, we obtain the existence of SE for splittable bottleneck
congestion games. For bounded cost functions on the facilities (that may be discontinuous), we
show that α-approximate SE exist for every α > 0.

1.2. Further Related Work

The concept of a strong equilibrium (SE) was introduced by [5] and refined by [7] to coalition-
proof Nash equilibria (CPNE). These are states that are stable against those deviations, that
are themselves stable against further deviations by subsets of the original coalition. This implies
that every SE is also a CPNE, but not conversely.

Congestion games were introduced by [41] and further studied by [34]. [22] studied the
existence of SE in congestion games with monotone increasing cost functions. They showed that
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SE need not exist in such games and gave a structural characterization of the strategy space for
symmetric (and quasi-symmetric) congestion games that admit SE. Based on the previous work
of [34], they also introduced the concept of a generalized strong potential function: a function
on the set of strategy profiles that decreases for every profitable deviation of a coalition. [42]
further explored the existence of (correlated) SE in congestion games with non-increasing cost
functions.

A further generalization of congestion games has been proposed by [33], who allows for
player-specific facility cost functions (for subsequent work on weighted congestion games with
player-specific facility cost functions see also [31], [19] and [1]). Milchtaich proves existence
of PNE under restrictions on the strategy space (singleton strategies). As shown by [45], the
model of [26] is equivalent to that of Milchtaich, which is worth noting as [26] established the
existence of SE in these games.

Several authors studied the existence and efficiency of PNE and SE in specific classes of
congestion games. For example, [15] showed that job scheduling games (on unrelated machines)
have a PNE by arguing that the load-lexicographically minimal schedule is a PNE. [16] considered
a scheduling model in which the processing time of a machine may depend on the set of jobs
scheduled on that machine. For this model, they proved existence of PNE analogous to the proof
of Even-Dar et al. [2] considered scheduling games on unrelated machines and proved that the
load-lexicographically minimal schedule is even an SE. They further studied differences between
PNE and SE and derived bounds on the (strong) price of anarchy and stability, respectively. [9]
recently studied the strong price of anarchy of SE in general congestion games.

Bottleneck congestion games with network structure have been considered by [6]. They
studied existence of PNE in the unsplittable flow and in the splittable flow setting, respectively.
They observed that standard techniques (such as Kakutani’s fixed-point theorem) for proving
existence of PNE do not apply to bottleneck routing games, as the players’ private cost functions
may be discontinuous. They proved existence of PNE by showing that bottleneck games are
better reply secure, quasi-convex, and compact. Under these conditions, they recall Reny’s
existence theorem [40] for better reply secure games with possibly discontinuous private cost
functions. Banner and Orda, however, do not study SE. Note that our proof of the existence of
SE is direct and constructive. Bottleneck routing with non-atomic players and elastic demands
has been studied by [10]. Among other results, they derived bounds on the price of anarchy. For
subsequent work on the price of anarchy in bottleneck routing games with atomic and non-atomic
players, we refer to the paper by [32].

After the publication of a preliminary version of this paper [21], there has been subsequent
work on the computational complexity of SE and their worst-case inefficiency. [20] settled the
complexity of computing SE for the unit-demand model. [46] studied bottleneck congestion
games on networks with weighted demands and identified cases in which there are efficient
algorithms computing SE; [12] investigated the worst-case inefficiency of strong equilibria in
bottleneck congestion games with affine linear cost functions.

2. Preliminaries

We consider strategic games G = (N,X, π), where N = {1, . . . , n} is the non-empty and finite
set of players, X =

�
i∈N Xi is the non-empty strategy space, and π : X → R

n
+ is the combined

private cost function that assigns a private cost vector π(x) to each strategy profile x ∈ X. These
games are cost minimization games and we assume additionally that the private cost functions
are non-negative. A strategic game is called finite if X is finite. We use standard game theory
notation; for a coalition S ⊆ N we denote by −S its complement and by XS =

�
i∈S Xi we

denote the set of strategy profiles of players in S.
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Definition 2.1 (Strong equilibrium (SE)). A strategy profile x is a strong equilibrium if there is
no coalition ∅ 6= S ⊆ N that has an alternative strategy profile yS ∈ XS such that πi(yS, x−S)−
πi(x) < 0 for all i ∈ S.

A pair
(
x, (yS , x−S)

)
∈ X×X is called an improving move (or profitable deviation) of coalition

S if πi(xS , x−S)− πi(yS, x−S) > 0 for all i ∈ S. We denote by I(S) the set of improving moves
of coalition S ⊆ N in a strategic game G = (N,X, π) and we set I =

⋃

S⊆N I(S). We call a

sequence of strategy profiles γ = (x0, x1, . . . ) an improvement path if every pair (xk, xk+1) ∈ I for
all k = 0, 1, 2, . . . . One can interpret an improvement path as a path in the improvement graph
G(G) derived from G, where every strategy profile x ∈ X corresponds to a node in G(G) and
two nodes x, x′ are connected by a directed edge (x, x′) if and only if (x, x′) ∈ I. An important
property of finite strategic games is the finite improvement property (FIP). This property requires
that each improvement path of unilateral improvements is finite. Equivalently, we say that G
has the strong finite improvement property (SFIP) if every improvement path is finite. Clearly,
the SFIP implies the FIP, but not conversely. A necessary and sufficient condition for the SFIP
is the existence of a generalized strong potential function, which we define below (see also [34]
and [22]).

Definition 2.2 (Generalized strong potential game). A strategic game G = (N,X, π) is called
a generalized strong potential game if there is a function P : X → R such that P (x)− P (y) > 0
for all (x, y) ∈ I. P is called a generalized strong potential of G.

In this paper, we define an equivalent property, the Lexicographical Improvement Property
(LIP). For this purpose, we will first define the sorted lexicographical order.

Definition 2.3 (Sorted lexicographical order). Let a, b ∈ Rq+ and denote by ã, b̃ ∈ Rq+ be
the sorted vectors derived from a, b by permuting the entries in non-increasing order, that is,
ã1 ≥ · · · ≥ ãq and b̃1 ≥ · · · ≥ b̃q. Then, a is strictly sorted lexicographically smaller than b

(written a ≺ b) if there exists an index m such that ãi = b̃i for all i < m, and ãm < b̃m. The

vector a is sorted lexicographically smaller than b (written a � b) if either a ≺ b or ã = b̃.

The lexicographical improvement property of a strategic game requires that there is a vector-
valued function φ : X → R

q
+ that is strictly decreasing with respect to the sorted lexicographical

order on R
q
+ for every improvement step.

Definition 2.4 (Lexicographical improvement property, π-LIP). A finite strategic game G =
(N,X, π) has the lexicographical improvement property (LIP) if there exist q ∈ N and a function
φ : X → Rq+ such that φ(x) ≻ φ(y) for all (x, y) ∈ I. G has the π-LIP if G has the LIP for
φ = π.

If a game G has the LIP for a function φ, we will call φ a generalized strong vector-valued
potential of G. Clearly, the function φ is a generalized strong potential if q = 1. The next
proposition states that the LIP is equivalent to the existence of a generalized strong potential,
regardless of q.

Proposition 2.5. Let G = (N,X, π) be a finite strategic game. Then, the following statements
are equivalent.

(1) G has a generalized strong vector-valued potential φ : X → Rq+, q ∈ N.
(2) G has a generalized strong potential function P : X → R+.

Proof. We only prove 1. ⇒ 2. as the reverse direction is trivial. We will show that PM (x) =
∑q

i=1 φi(x)
M is a generalized strong potential forM large enough. Let S ⊆ N and (x, (yS , x−S)) ∈

I(S) be arbitrary. We will calculate PM ′(x)−PM ′(yS , x−S) =
∑q

i=1(φi(x)
M ′−φi(yS, x−S)M

′
) for

some M ′. To this end, let us denote by φ̃(x) and φ̃(yS, x−S) the vectors that arise by sorting φ(x)
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and φ(yS , x−S) in non-increasing order. As φ(yS, x−S) ≺ φ(x), there is an index m ∈ {1, . . . , q}
such that φ̃i(x) = φ̃i(yS , x−S) for all i < m and φ̃m(x) < φ̃m(yS , x−S). We then obtain

PM ′(x)− PM ′(yS , x−S) =

q
∑

i=1

φi(x)
M ′ −

q
∑

i=1

φi(yS , x−S)M
′

= φ̃m(x)M
′ − φ̃m(yS , x−S)M

′
+

q
∑

i=m+1

φ̃i(x)
M ′ −

q
∑

i=m+1

φ̃i(yS , x−S)M
′

≥ φ̃m(x)M
′ − φ̃m(yS , x−S)M

′ − (q −m)φ̃m(yS, x−S)M
′

≥ φ̃m(x)M
′ − qφ̃m(yS , x−S)M

′
. (1)

Standard calculus shows that the expression on the right hand side of (1) is positive if

M ′ > log(q) /
(
log(φ̃m(x)) − log(φ̃m(yS , x−S))

)
> 0.

Clearly, M ′ depends on (x, y) ∈ I, but as the number of improvement steps is finite, we may
chose M = max(x,y)∈IM

′((x, y)
)

and obtain the claimed result. �

3. Efficiency and Fairness of SE in Games with the π-LIP

As the LIP implies the existence of SE, it is natural to investigate efficiency and fairness properties
of these SE. We here consider strict Pareto efficiency, min-max fairness, strong price of anarchy,
and strong price of stability.

3.1. Pareto Efficiency

Pareto efficiency is one of the fundamental concepts studied in the economics literature, see [30].
For a strategic game G = (N,X, π), a strategy profile x is called weakly Pareto efficient if there
is no y ∈ X such that πi(y) < πi(x) for all i ∈ N. A strategy profile x is strictly Pareto efficient
if there is no y ∈ X such that πi(y) ≤ πi(x) for all i ∈ N , where at least one inequality is strict.
So strictly Pareto efficient strategy profiles are those for which every improvement of a coalition
of players is to the expense of at least one player outside the coalition. Pareto efficiency has
also been studied in the context of standard congestion games (with sum-objective); [22] give
sufficient conditions on the strategy spaces of congestion games that guarantee the existence of
an SE which is strictly Pareto efficient, [9] quantify the social welfare achieved in weakly Pareto
efficient pure Nash equilibria.

Clearly, every SE is weakly Pareto optimal as it is resilient against a profitable deviation of
the whole player set N . In games with the π-LIP this result can be strengthened in the sense
that there is always an SE, which is even strictly Pareto efficient.

Theorem 3.1. Let G be a finite strategic game having the π-LIP. Then, there exists an SE that
is strictly Pareto optimal.

Proof. The sorted lexicographic minimum x of π is an SE. To see that it also strictly Pareto
efficient, assume by contradiction that there is y ∈ X and a player i such that πi(y) < πi(x) and
πj(y) ≤ πj(x) for all j ∈ N \ {i}. Then, y ≺ x, contradicting the minimality of x. �

3.2. Min-Max-Fairness

Min-max fairness is a central topic in resource allocation in communication networks, see [43]
for an overview and pointers to the large body of research in this area. While strict Pareto
efficiency requires that there is no alternative profile that improves the cost for a single player
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without strictly deteriorating the costs of the other players, the notion of min-max-fairness is
stronger. A profile x is called min-max fair if for any other strategy profile y with πi(y) < πi(x)
for some i ∈ N, there exists either j ∈ N \ {i} such that πj(x) ≥ πi(x) and πj(y) > πj(x), or
there exists j ∈ N \ {i} such that πj(x) < πi(x) and πj(y) ≥ πi(x). Note that in contrast to
Pareto efficiency, an improvement that increases the cost of a player with smaller original cost
is allowed (up to the threshold πi(x)). It is easy to see that every min-max-fair strategy profile
is a strictly Pareto efficient state, but not conversely.

Theorem 3.2. Let G be a finite strategic game having the π-LIP. Then, there exists an SE that
is min-max fair.

Proof. We show that the strategy profile x minimizing π with respect to the sorted lexicographic
order � is min-max fair. Assume by contradiction that there is another strategy profile y such
that πi(y) < πi(x) for some i ∈ N and the following two statements hold:

(1) πj(y) ≤ πj(x) for all j ∈ N \ {i} with πj(x) ≥ πi(x)
(2) πj(y) < πi(x) for all j ∈ N \ {i} with πj(x) < πi(x).

We can observe that every entry of π(x), which is above πi(x) only decreases under y, while
every entry strictly below πi(x) may only increase to a value strictly below the threshold πi(x).
Because the value πi(x) strictly decreases under y, we obtain π(y) ≺ π(x), contradicting the
minimality of x. �

3.3. Price of Stability and Price of Anarchy

To quantify the efficiency loss of selfish behavior with respect to a predefined social cost function,
two notions have evolved. The price of anarchy has been introduced by [28] in the context of
congestion games and is defined as the ratio of the cost of the worst pure Nash equilibrium and
that of the social optimum. A more optimistic performance index termed the price of stability
measures the ratio of the cost of the best pure Nash equilibrium and that of the social optimum
[3, 4]. Both concepts have been studied extensively in the computer science and operations
research literature, see [37, Part III] for a survey. More recently, they have also been studied in
the economic literature, see e.g. [23, 35].

[2] propose to study also the worst case ratio of the cost of an SE and that of a social
optimum, which they term the strong price of anarchy. Clearly, the strong price of anarchy is
not larger than the price of anarchy. For some classes of games this inequality is strict, see e.g.
the results of [11] and [18] on the price of anarchy and strong price of anarchy of scheduling
games on related machines, respectively. [2] also define the strong price of stability in the obvious
way as the ratio of the cost of the best SE and that of the social optimum. Formally, given a game
G = (N,X, π) and a social cost function C : X → R+, whose minimum is attained in a strategy
profile y ∈ X, let XSE ⊆ X denote the set of strong equilibria. Then, the strong price of anarchy
for G with respect to C is defined as supx∈XSE C(x)/C(y) and the strong price of stability for G
with respect to C is defined as infx∈XSE C(x)/C(y). We will consider the following natural social
cost functions: the sum-objective or L1-norm defined as L1(x) =

∑

i∈N πi(x), the Lp-objective or

Lp-norm, p ∈ N, defined as Lp(x) = (
∑

i∈N πi(x)
p)1/p, and the min-max objective or L∞-norm

defined as L∞(x) = maxi∈N{πi(x)}.
Theorem 3.3. Let G be a finite strategic game with the π-LIP. Then, the strong price of stability
w.r.t. L∞ is 1, and for any p ∈ N, the strong price of stability w.r.t. Lp is less or equal to n1/p.

Proof. To see that the strong price of stability w.r.t. L∞ is 1, note that a lexicographic minimum
x∗ of π is an SE. By construction, x∗ minimizes L∞.

For the proof of the result concerning Lp we first show that for arbitrary p, q ∈ N with p < q

and x ∈ Rn+ we have Lp(x) ≤ n1/p−1/qLq(x) and Lp(x) ≤ n1/pL∞(x). To see the first inequality,
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l r
u (k−ǫ, k−ǫ, k−ǫ, . . . , k−ǫ) (k, k, k, . . . , k)
d (k, 0, 0, . . . , 0) (k, ǫ, k, . . . , k)

l r
u (0, 0) (0, k)
d (k, k) (0, k)

Figure 1. (a) Private costs received by the players for strategy profiles X1 × X2 of the game
considered in Example 3.4. (b) A game with unbounded price of anarchy w.r.t. any Lp-norm
as considered in Example 3.5.

set a = q
p > 1 and b > 0 be such that 1

a + 1
b = 1. By Hölder’s inequality we have

Lp(x) =
( n∑

i=1

xpi

)1/p
≤
(
( n∑

i=1

xp·ai

)1/a(
n∑

i=1

1
)1/b

)1/p

= n1/(pb)Lq(x) = n1/p−1/qLq(x).

For the L∞-norm we have a =∞ and b = 1, thus, we obtain Lp(x) ≤ n1/pL∞.
Next, let x∗ be a lexicographic minimum of π. Fix p ∈ N and let y be a strategy profile

minimizing Lp. We derive the inequalities Lp(x
∗) ≤ n1/pL∞(x∗) ≤ n1/pL∞(y) ≤ n1/pLp(y),

where we use for the second inequality that x∗ minimizes L∞ and for the third inequality that
the Lp-norm is decreasing in p. �

We now provide an example of a class of games with the π-LIP whose parameters can be
chosen in such a way that the price of stability w.r.t. Lp is arbitrarily close to n1/p, implying
that the result of Theorem 3.3 is tight.

Example 3.4 (Price of stability). Consider the game G = (N,X, π) with N = {1, . . . , n},
X1 = {u, d}, X2 = {l, r} and Xi = {z} for 3 ≤ i ≤ n. For k > ǫ, the private costs are shown
in Fig. 1 (left). It is straightforward to check that this game has the π-LIP. The unique SE is
the strategy profile (u, l, z, . . . , z) realizing a private cost vector of (k − ǫ, . . . , k − ǫ). For any
p ∈ N, there is ǫ > 0 such that Lp(·) is maximized in strategy profile (d, l, z, . . . , z) realizing a

cost vector of (k, 0, . . . , 0). Hence the price of stability approaches n1/p.

So far, our results concern the price of stability only. The next example shows that games
with the π-LIP may have an unbounded price of anarchy.

Example 3.5 (Unbounded price of anarchy). Consider the game G = (N,X, π) with N =
{1, 2}, X1 = {u, d}, X2 = {l, r} and private costs given in Fig. 1 (right) for any k > 0. It is
straightforward to check that this game has the π-LIP and that both (u, l) and (d, r) are SE.
Hence, the price of anarchy w.r.t. any Lp norm is unbounded from above.

4. Bottleneck Congestion Games

We now present a rich class of finite games satisfying the π-LIP. We call these games bottleneck
congestion games. They are natural generalizations of variants of congestion games. In contrast
to standard congestion games, we focus on bottleneck-objectives, that is, the cost of a player
only depends on the highest cost of the facilities she uses. For the sake of a clean mathematical
definition, we introduce the general notion of a congestion model.

Definition 4.1 (Congestion model). A tuple M = (N,F,X, (cf )f∈F ) is called a congestion
model if N = {1, . . . , n} is a non-empty, finite set of players, F = {1, . . . ,m} is a non-empty
set of facilities, and X =

�
i∈N Xi is the set of strategies. For each player i ∈ N , her collection

of pure strategies Xi is a non-empty set of subsets of F . Given a strategy profile x, we define
Nf (x) = {i ∈ N : f ∈ xi} for all f ∈ F. Every facility f ∈ F has a cost function cf :

�
i∈N Xi →R+ satisfying
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Non-negativity : cf (x) ≥ 0 for all x ∈ X,
Independence of Irrelevant Choices: cf (x)=cf (y) for all x, y ∈ X with Nf (x)=Nf (y),
Monotonicity : cf (x) ≤ cf (y) for all x, y ∈ X with Nf (x) ⊆ Nf (y).

Given a congestion model, we now define bottleneck congestion games.

Definition 4.2 (Bottleneck congestion game). Let M = (N,F,X, (cf )f∈F ) be a congestion
model. The corresponding bottleneck congestion game is the strategic game G(M) = (N,X, π)
in which π is defined as π =

�
i∈N πi and πi(x) = maxf∈xi

cf
(
x
)
.

A bottleneck congestion game with |xi| = 1 for all xi ∈ Xi and i ∈ N will be called a
singleton bottleneck congestion game. Note that for singleton strategies, congestion games with
bottleneck objective and congestion games with sum-objective coincide.

Our assumptions on the cost functions are weaker than the load-based models often used
in the congestion games literature, e.g., [6]. In our approach, we only require that the cost
function cf (x) of facility f for strategy profile x depends on the set of players using f in x and
that costs are increasing with larger sets. Note that this may cover, e.g., dependencies on the
identities of players using f . Our condition "Independence of Irrelevant Choices" is also weaker
than the one frequently used in the literature. In [25, 26, 27], the definition of "Independence of
Irrelevant Choices" requires that the strategy spaces are symmetric and, given a strategy profile
x = (x1, . . . , xn), the utility of a player i depends only on her own choice xi and the cardinality
of the set of other players who also choose xi. On the one hand, our model is more general as it
does neither require symmetry of strategies, nor that the utility of player i only depends on the
set-cardinality of other players who also choose xi. On the other hand, the model of Konishi et al
allows for player-specific facility cost functions, which our model does not. For the relationship
between games considered by [25, 26, 27] and congestion games, see the discussion in [45].

Before we prove that bottleneck congestion games have the π-LIP and thus possess an SE
with the efficiency and fairness properties shown in the last section, we give a series of examples
of games that fit into the rich class of bottleneck congestion games and show how they are related
to the literature.

Scheduling Games. Scheduling games model situations where each player controls a task
that needs to be processed by one machine out of a finite number of available machines, see [44]
for a survey. In each strategy profile each player i ∈ N selects a single machine xi ∈ Xi where
her job is processed. In the most general machine model of unrelated machines each job is asso-
ciated with a machine-dependent weight wi,f ∈ R+. Scheduling games are singleton bottleneck
congestion games where the cost function of machine f is defined as cf (x) =

∑

i∈N :xi=f
wi,f .

This function satisfies non-negativity, independence of irrelevant choices and monotonicity. The
existence of SE in scheduling games has been established before by [2] by arguing that the
lexicographically minimal schedule is a strong equilibrium. They also showed that the strong
price of stability w.r.t. L∞ is 1. Note that our general framework of bottleneck congestion games
allows more complex cost structures on the machines than in these classical load-based models.
One such example are dependencies between the weights of jobs on the same machine.

Resource Allocation in Wireless Networks. Interference games are motivated by re-
source allocation problems in wireless networks. Consider a set of n terminals that want to
connect to one out of m available base stations. Terminals assigned to the same base station
impose interferences among each other as they use the same frequency band. We model the
interference relations by an undirected interference graph D = (V,E), where V = {1, . . . , n} is
the set of vertices/terminals and an edge e = (v,w) between terminals v,w has a non-negative
weight we ≥ 0 representing the level of pair-wise interference. We assume that the service
quality of a base station j is proportional to the total interference w(j), which is defined as
w(j) =

∑

(v,w)∈E:xv=xw=j w(v,w).
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We now obtain an interference game as follows. The nodes of the graph are the players, the
set of strategies is given by Xi = {1, . . . ,m}, i = 1, . . . , n, that is, the set of base stations, and
the private cost function for every player is defined as πi(x) = w(xi), i = 1, . . . , n. Interference
games fit into the framework of singleton bottleneck congestion games with m facilities.

Note that in interference games, we crucially exploit the property that facility cost functions
depend on the set of players using the facility, that is, their identity determines the resulting
cost. While the existence of an SE in all interference games follows from our main theorem, most
previous game-theoretic works addressing wireless networks only considered Nash equilibria, see
for instance [29] and [14].

Bottleneck Routing in Networks. A special case of bottleneck congestion games are
bottleneck routing games. Here, the set of facilities are the edges of a directed or undirected
graph D = (V,A). Every edge a ∈ A has a load dependent cost function ca. Every player is
associated with a pair of vertices (si, ti) and a fixed demand di > 0 that she wishes to send along
the chosen path in D connecting si to ti. The private cost for every player is the maximum arc
cost along the path, which is a common assumption for data routing in computer networks, see
[24, 6, 10, 39]. The existence of PNE in bottleneck routing games has been studied before by [6].
They, however, did not study the existence of SE. To the best of our knowledge, our main result
(Theorem 4.3) establishes also for the first time that bottleneck routing games have the FIP; [6]
only proved that best-response dynamics converge.

4.1. Existence of SE

We are now ready to state our main result for bottleneck congestion games, providing a large
class of games that satisfies the π-LIP.

Theorem 4.3. Every bottleneck congestion game has the π-LIP.

Proof. For an arbitrary improving move (x, (yS , x−S)) ∈ I, let j ∈ S be a member of the
coalition with highest cost before the improvement step, i.e., j ∈ arg maxi∈S πi(x). We set
N+ = {i ∈ −S : πi(x) ≥ πj(x)} and claim that πi(x) ≥ πi(yS , x−S) for all i ∈ N+. To see this,
suppose there is i ∈ N+ such that πi(x) < πi(yS , x−S). The independence of irrelevant choices
and the monotonicity of the cost functions imply that there is a member k ∈ S of the coalition
with yk ∩ xi 6= ∅. We obtain

πj(x) ≥ πk(x) > πk(yS, x−S) ≥ πi(yS , x−S) > πi(x),

which contradicts i ∈ N+. Next, we define N− = {i ∈ −S : πi(x) < πj(x)} and claim that
πi(yS, x−S) < πj(x) for all i ∈ N−. To see this, suppose there is i ∈ N− such that πi(yS , x−S) ≥
πj(x). Because πj(x) ≥ πi(x), the independence of irrelevant choices and the monotonicity of
the cost functions, there is a member k ∈ S of the coalition with yk ∩ xi 6= ∅ giving rise to

πj(x) ≥ πk(x) > πk(yS , x−S) ≥ πi(yS, x−S) ≥ πj(x),
which is a contradiction. Note that N = N+∪N−∪S and that we have shown πi(x) ≥ πi(yS , x−s)
for all i ∈ N+ and πi(yS , x−S) < πj(x) for all i ∈ N−. As the private cost of the players with
cost larger than πj(x) does not increase, the private cost of player j strictly decreases, and the
private costs of all other players may only increase up to a value strictly smaller than πj(x), we
have π(x) ≻ π(yS , x−S) as claimed. �

As a corollary of Theorem 4.3 we obtain that bottleneck congestion games possess SE with
the efficiency and fairness properties shown in Section 3. Note that our existence result holds
for arbitrary strategy spaces. This contrasts a result of [22] who have shown that for standard
congestion games (with sum-objective) a certain combinatorial property of the players’ strategy
spaces (called good configuration) is necessary and sufficient for the existence of SE.
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t d c

a b

s0|1

0|1

0|2

1|2

1|21|2

0|2

Figure 2. Bottleneck routing game with multiple SE.

In bottleneck congestion games, the vector-valued potential function need not be unique. In
fact, one can prove with similar arguments as in the proof of Theorem 4.3 that the function
ψ : X → R

mn
+ defined as ψi,f (x) = cf (x), if f ∈ xi, and ψi,f = 0, otherwise, decreases lexico-

graphically along any improvement path. Moreover, if cost functions are strictly monotonic, one
can show along the same lines, that also the function υ : X → R

m defined as υ(x) = (cf (x))f∈F
has this property. Interestingly, the lexicographical minima of the functions π, ψ, and υ need not
coincide, as illustrated in the following example.

Example 4.4. Consider the symmetric bottleneck routing game with two players N = {1, 2}
depicted in Fig. 2. Here, edges correspond to facilities; the cost of each edge depends only on
the number of players using it and is given explicitly for the two possible values. The strategy
set Xi of each player i ∈ N comprises all paths from s to t, that are P1 = {(sa), (at)}, P2 =
{(sb), (bc), (cd), (dt)} and P3 = {(sb), (ba), (at)}. There are three types of SE. In the first type,
one player plays P1 and the other player plays P2. Here, the player on P1 experiences a cost of 0
while the player on P2 experiences a cost of 1. It is easy to see, that (upon permutation of the two
players) this strategy profile is the unique lexicographical minimum of π. In the second type of
SE one player chooses P1 while the other player chooses P3. Here, both players experience a cost
of 1, thus this SE is not strictly Pareto efficient. It is easy to see that this equilibrium minimizes
lexicographically both ψ and ν. There is a third SE where both players choose P1. This profile
minimizes none of the functions π, ψ, and υ. These different SE have also different efficiency
properties. While the lexicographical minimum xπ of π is strictly Pareto efficient and min-max
fair (as show in Theorems 3.1 and 3.2), the lexicographical minimum xυ of υ has the property
that it is strictly Pareto efficient with respect to using the resources, i.e., there is no strategy
profile y ∈ X such that cf (y) ≤ cf (x

υ) for all f ∈ F where at least one of these inequalities is
strict.

5. Infinite Strategic Games

We now consider infinite strategic games in which the players’ strategy sets are topological
spaces and the private cost functions are defined on the product topology. Formally, an infinite
game is a tuple G = (N,X, π), where N = {1, . . . , n} is a set of players, and X = X1 ×
· · · × Xn is the set of pure strategies, where we assume that Xi ⊆ Rni , ni ∈ N, i ∈ N are
compact sets. The cost function for player i is defined by a non-negative real-valued function
πi : X → R+, i ∈ N. Turning from finite games to infinite games, it becomes more complicated
to characterize structural properties of games having the LIP. First, for an infinite game (as
described above), Proposition 2.5 is no longer valid, that is, infinite games with the LIP need
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not possess a generalized strong potential.2 Also the existence of an SE does not immediately
follow. The global minimum of the function φ associated with the LIP need not exist as the
strategy space is not finite. We will show that continuity of φ is sufficient for the existence of an
SE. However, this assumption may be too strong for many classes of games. For instance, the
splittable version of bottleneck congestion games (formally defined in Section 5.1) has the π-LIP
but the function π may be discontinuous in general.

To obtain existence results for SE also for splittable bottleneck congestion games, we slightly
generalize the lexicographical improvement property. Let G = (N,X, π) be an infinite game
and let φ : X → Rq+ × Rq+ be a function that associates with each strategy profile a pair

φ(x) = (φ(1)(x), φ(2)(x)). For two indices i, j ∈ {1, . . . , q} and two strategy profiles x, y ∈ X, let

φi(x) ≤ φj(y) if and only if φ
(1)
i (x) < φ

(1)
j (y) or φ

(1)
i (x) = φ

(1)
j (y) and φ

(2)
i (x) ≤ φ

(2)
j (y). Let

φi(x) < φj(y) if and only if φi(x) ≤ φj(y) and φi(x) 6= φj(y). Moreover, let � denote the sorted
lexicographical order, where φi(x) is sorted according to ≤. Then, we say that φ is a pairwise
strong vector-valued potential if φ(y) ≺ φ(x) for all (x, y) ∈ I. G has the pairwise lexicographical
improvement property if it admits a pairwise strong vector-valued potential.

Clearly, every game with the LIP has also the pairwise LIP, as we may simply set the
second component of the pairwise strong vector-valued potential equal to the first component
(or, alternatively, equal to zero). We proceed showing that every game with a continuous pairwise
strong vector-valued potential admits an SE.

Theorem 5.1. Every infinite game having a continuous pairwise strong vector-valued potential
φ possesses an SE.

Proof. By assumption, there exists q ∈ N and a function φ : X → Rq+ × Rq+ such that
φ(yS, x−S) ≺ φ(x) for all (x, (yS , x−S)) ∈ I.

To get the desired result, we will show by complete induction over q ∈ N that for each q ∈ N,
each compact X 6= ∅ and each continuous function φ : X → Rq+ ×Rq+ there is strategy profile
xmin ∈ X with xmin � x for all x ∈ X.

For the base case q = 1, let Y = {x ∈ X : φ(1)(x) = minx∈X φ(1)(x)} be the subset of X

where the first component φ(1) is minimized. Note that Y is non-empty and compact as φ is
continuous and X is compact. Next, let Y ′ = {x ∈ Y : φ(2)(x) = minx∈Y φ(2)(x)}. With the
same arguments, Y ′ 6= ∅ and by construction, Y ′ contains all vectors that minimize φ.

For the induction step, suppose that for fixed k ∈ N the statement holds true for all functions
φ′ : X ′ → Rq+×Rq+ with q ≤ k−1 and consider an arbitrary compact X and an arbitrary function

φ : X → Rk+×Rk+. In order to construct a lexicographical minimum of φ, we set K = {1, . . . , k}
and solve the minimization problem

min
x∈X

max
i∈K

φ
(1)
i (x) (2)

of minimizing the maximum value within the first component of φ. Let α be the optimal value of
(2). Intuitively, α is the maximum value in the first component of all candidate lexicographically
minimal vectors of φ. It follows that for each candidate lexicographically minimal vector x ∈ X,

there will be a subset J ⊆ K of indices such that φ
(1)
j (x) = α for all j ∈ J . For arbitrary

∅ 6= J ⊆ K, we set

Y J = {x ∈ X : φ
(1)
i (x) ≤ α ∀i ∈ K \ J, φ(1)

j (x) = α ∀j ∈ J}

2This observation resembles Debreu’s result showing that the lexicographical ordering on an uncountable
subset of R

2 cannot be represented by a real-valued function [13].
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and solve the minimization problem

αJ = min
x∈Y J

max
j∈J

φ
(2)
j (x), (3)

where we set αJ = ∞, if Y J = ∅. For each ∅ 6= J ⊆ K with αJ < ∞ and j ∈ J , consider the

compact set Y J,j = {x ∈ X : φ
(1)
i (x) ≤ α ∀i ∈ K \ J, φ(1)

i (x) = α ∀i ∈ J, φ(2)
j (x) = αJ} and

the function φJ,j : Y J,j → Rk−1
+ that arises from φ by deleting the j-th index, i.e., φJ,ji (y) =

(φ
(1)
i (y), φ

(2)
i (y)) for all i < j and φJ,ji (y) = (φ

(1)
i+1(y), φ

(2)
i+1(y)) for all i ∈ {j, . . . , k − 1}. Clearly,

for all J ∈ 2K \ ∅ with αJ <∞ and j ∈ J , the function φJ,j is continuous and its domain Y J,j is
compact. Note that additionally for all J ∈ 2K \ ∅ with αJ <∞, there is at least one j ∈ J with
Y J,j 6= ∅. Next, for all J ∈ 2K \∅ and j ∈ J with Y J,j 6= ∅ we apply the induction hypothesis and

obtain finitely many vectors yJ,jmin minimizing φJ,j on Y J,j. We claim that the lexicographically

minimal vector among the vectors
(
(α,αJ ), yJ,jmin

)
∈ Rk+ × Rk+ for each such pair J, j is also a

lexicographical minimum of the original function φ on X. For a contradiction, suppose that there

is a vector z ∈ X with φ(z) ≺
(
(α,αJ ), yJ,jmin

)
for all such J, j. Note that there is a non-empty set

∅ 6= J ′ ⊆ K such that φ
(1)
i (z) = α for all i ∈ J ′ as otherwise we obtain a contradiction to the fact

that α is the optimal value of (2). Moreover, because αJ is the optimal value of (3), for at least

one index j ∈ J ′, we have φ
(2)
j′ (z) = αJ

′
. Using this fact together with the induction hypothesis

that yJ
′,j′

min is minimal among the vectors with φ
(1)
j (z) = α for all j ∈ J ′ and φ

(2)
j′ = αJ

′
gives the

contradiction.
�

5.1. Splittable Bottleneck Congestion Games

In this section, we introduce the splittable counterpart of bottleneck congestion games. We start
with a congestion model M = (N,F,X, (cf )f∈F ) with Xi = {xi,1, . . . , xi,ni

}, ni ∈ N, i ∈ N ,
where as usual every xi,j is a subset of facilities of F . From M we derive a corresponding
splittable congestion model Ms = (N,F,X, d,∆, (cf )f∈F ), where d ∈ Rn+, ∆ = ∆1 × · · · ×∆n,
and

∆i =
{

ξi = (ξi,1, . . . , ξi,ni
) : ξi,k ≥ 0 ∀k ∈ {1, . . . , ni},

ni∑

k=1

ξi,k = di

}

.

The strategy profile ξi = (ξi,1, . . . , ξi,ni
) of player i can be interpreted as a distribution of non-

negative intensities over the elements in Xi satisfying
∑ni

k=1 ξi,k = di for di ∈ R+, i ∈ N .
Clearly, ∆i is a compact subset of Rni

+ for all i ∈ N . For a profile ξ = (ξ1, . . . , ξn), we define
ξi,f =

∑

k∈{1,...,ni:f∈xi,k} ξi,k as the total intensity put on facility f by player i; the set of used

facilities of player i is defined as Fi(ξ) = {f ∈ F : ξi,f > 0}. We assume that for all f ∈ F the
cost function cf : ∆→ R+ satisfies the assumptions

Non-negativity : cf (ξ) ≥ 0 for all ξ ∈ ∆,
Independence of Irrelevant Choices:

cf (ξ) = cf (ξ
′) for all ξ, ξ′ ∈ ∆ with ξi,f = ξ′i,f for all i ∈ N ,

Monotonicity : cf (ξ) ≤ cf (ξ′) for all ξ, ξ′ ∈ ∆ with ξi,f ≤ ξ′i,f for all i ∈ N ,

Continuity : cf (ξ) is continuous in ξi,f for all i ∈ N, f ∈ F .

Up to continuity, we basically impose the same assumptions as in the case of finite bottleneck
congestion games.

Definition 5.2 (Splittable bottleneck congestion game). For the splittable congestion model
Ms = (N,F,X, d,∆, (cf )f∈F ), we define the corresponding splittable bottleneck congestion game
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as the infinite strategic game G(Ms) = (N,∆, π), where π is defined as π =
�

i∈N πi and
πi(ξ) = maxf∈Fi(ξ) cf (ξ).

Before we show that splittable bottleneck congestion games always have an SE, we give
examples of games that fit into the model.

Bottleneck routing games with splittable demands. The facilities correspond to the
edges of a directed graph D = (V,A). Each player i is associated with a source-sink pair
(si, ti) ∈ V × V and a positive demand di that she wishes to route from si to ti. The private
cost of each player equals the maximum cost over all facilities she uses with positive demand.
The fundamental difference to non-splittable bottleneck congestion games is that each player i
is allowed to distribute her demand among all paths connecting si and ti, thus, bottleneck
routing games with splittable demands serve as a model of multi-path routing protocols in
telecommunication networks, see [6]. They, however, study only existence of PNE. In addition
to being more general, our result gives also an alternative and constructive proof for the existence
of PNE in bottleneck routing games with splittable demands compared to the involved proof
by [6].

Scheduling of malleable jobs. In the scheduling literature jobs are called malleable if
they can be distributed among multiple machines [17, 8]. In a scheduling game with malleable
jobs, each player i controls a job with weight wi that she distributes over an arbitrary subset of
allowable machines. The private cost is determined by the makespan, which is a non-decreasing
function of the total load of the machine that finishes latest among the chosen machines. To the
best of our knowledge, our work investigates for the first time the existence of equilibria (PNE
or SE) in such games.

5.2. Existence of SE

As mentioned earlier, using similar arguments as in the proof of Theorem 4.3 one can prove that
splittable bottleneck congestion games have the π-LIP. However, the function π may be discon-
tinuous even if cost functions are continuous. To see this, consider the bottleneck congestion
game with one player having access to two facilities X1 = {{f1}, {f2}} over which she has to
assign a demand of size 1. The facility f1 has a cost function equal to the load, while facility f2

has a constant cost function equal to 2. Let ξ1,2(ǫ) = ǫ > 0 be assigned to facility f2 and the
remaining demand ξ1,1(ǫ) = 1 − ǫ be assigned to f1. Then, for any ǫ > 0 we have π(ξ(ǫ)) = 2,
while π(ξ(0)) = 1.

To resolve this difficulty, we define the load of facility f under strategy profile ξ as ℓf (ξ) =
∑

i∈N ξi,f and show that ν : ∆ → Rm+ × Rm+ , ξ 7→ (cf (ξ), ℓf (ξ))f∈F is a continuous pairwise
strong vector-valued potential.

Theorem 5.3. Every splittable bottleneck congestion game possesses an SE.

Proof. We show that the function ν : ∆ → Rm × Rm, ξ 7→ (cf (ℓf (ξ), ℓf (ξ))f∈F is a pairwise
strong vector-valued potential. Because ν is continuous, Theorem 5.1 gives then the desired
result. Let S ⊆ N be an arbitrary coalition and let (ξ, (ξ′S , ξ−S)) ∈ I(S) be an arbitrary
improving move of coalition S. Choose a deviating player j ∈ arg maxi∈S πi(ξ) with highest
cost before the improving move and one of the facilities g ∈ arg maxf∈Fj(ξ) cf (ξ) at which πj(ξ)

is attained. Decompose F into F+ and F− defined as F+ = {f ∈ F : cf (ξ) ≥ cg(ξ)} and
F− = {f ∈ F : cf (ξ) < cg(ξ)}.

We first claim that cf (ξ
′
S , ξ−S) ≤ cf (ξ) for all f ∈ F+. Assume by contradiction that

there is f ∈ F+ with cf (ξ
′
S , ξ−S) > cf (ξ). By the independence of irrelevant choices and the

monotonicity of the cost functions, this implies that there is a player k ∈ S with ξ′k,f > 0. We

obtain πk(ξ
′
S , ξ−S) ≥ cf (ξ

′
S, ξ−S) > cf (ξ) ≥ cg(ξ) = πj(ξ) ≥ πk(ξ), which contradicts that k

must improve.
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Next we show that ℓf (ξ
′
S, ξ−S) ≤ ℓf (ξ) for all f ∈ F+ with cf (ξ

′
S , ξ−S) = cf (ξ). For a

contradiction, assume that there is f ∈ F+ with ℓf (ξ
′
S , ξ−S) > ℓf (ξ) and cf (ξ

′
S , ξ−S) = cf (ξ).

Again this implies the existence of a player k ∈ S with ξ′k,f > 0. Using cf (ξ
′
S , ξ−S) = cf (ξ), we

obtain the same contradiction to the fact that k improves as before.
Finally, we claim that cf (ξ

′
S , ξ−S) < cg(ξ) for all f ∈ F−. To see this, assume that there

is f ∈ F− with cf (ξ
′
S , ξ−S) ≥ cg(ξ). This again implies that there is a player k ∈ S with

ξ′k,f > 0, thus, πk(ξ
′
S , ξ−S) ≥ cf (ξ′S , ξ−S) ≥ cg(ξ) = πj(ξ) ≥ πk(ξ), and player k did not improve,

contradiction!
To finish the proof, we show that (cg(ξ

′
S, ξ−S), ℓg(ξ

′
S , ξ−S)) < (cg(ξ), ℓg(ξ)). We distinguish

two cases. If ξ′j,g > 0, we obtain cg(ξ
′
S , ξ−S) < cg(ξ) using the fact that player j improves.

For the second case, let ξ′j,g = 0 and assume by contradiction that (cg(ξ
′
S , ξ−S), ℓg(ξ

′
S , ξ−S)) ≥

(cg(ξ), ℓg(ξ)). If cg(ξ
′
S , ξ−S) > cg(ξ), we immediately derive the existence of a player k ∈ S

with ξ′k,g > 0. On the other hand, if cg(ξ
′
S, ξ−S) = cg(ξ) and ℓg(ξ

′
S , ξ−S) ≥ ℓg(ξ), we obtain the

existence of k ∈ S with ξ′k,g > 0 using that ξ′j,g = 0. In both cases, we calculate πk(ξ
′
S , ξ−S) ≥

cg(ξ
′
S , ξ−S) ≥ cg(ξ) = πj(ξ) ≥ πk(ξ), a contradiction to the fact that k improves.

�

5.3. Existence of Approximate SE

In this section, we relax the continuity assumption on the facility cost functions by assuming
that they are only bounded from above. We will prove that bottleneck congestion games with
bounded cost functions possess an α-approximate SE for every α > 0. An α-approximate strong
equilibrium is stable only against (coalitional) improving moves that decrease the private cost
of every moving player by at least α > 0. More formally, we denote by Iα(S) ⊂ X ×X the set
of tuples (x, (yS , x−S)) of α-improving moves for S ⊆ N and define by Iα their union. Then
a strategy profile x is an α-approximate strong equilibrium if no coalition ∅ 6= S ⊆ N has an
alternative strategy profile yS such that πi(x)−πi(yS, x−S) > α, for all i ∈ S. We call a function
P : X → R an α-generalized strong potential if (x, y) ∈ Iα implies P (x) > P (y).

Theorem 5.4. Every splittable bottleneck congestion game with bounded cost functions pos-
sesses an α-approximate SE for every α > 0.

We prove the theorem by stating a useful lemma.

Lemma 5.5. Let the function ψ : ∆→ R
mn
+ be defined as

ψi,f (ξ) =

{

cf (ξ), if f ∈ Fi(ξ)
0, else

for all i ∈ N, f ∈ F.

Moreover, let α > 0 and define PM (ξ) =
∑

f∈F,i∈N ψi,f (ξ)
M , where M ≥ (2ψmax/α+1) log(nm)

and ψmax = supξ∈∆,f∈F cf (ξ). Then, PM is an α-generalized strong potential satisfying PM (ξ)−
PM (ξ′) ≥ (α/2)M for all (ξ, ξ′) ∈ Iα.

Proof. We must show that PM (ξ) − PM (ξ′S , ξ−S) ≥ (α/2)M for an arbitrary α-improving move
(ξ, (ξ′S , ξ−S)) ∈ Iα. Let j ∈ arg maxi∈S πi(ξ′S , ξ−S). We define Ψ+ = {(i, f) ∈ −S×F : ψi,f (ξ) ≥
πj(ξ

′
S , ξ−S)} and Ψ− = {(i, f) ∈ −S × F : ψi,f (ξ) < πj(ξ

′
S , ξ−S)}. We claim that

ψi,f (ξ
′
S , ξ−S) ≤ ψi,f (ξ) for all (i, f) ∈ Ψ+, (4)

ψi,f (ξ
′
S , ξ−S) ≤ πj(ξ′S , ξ−S) for all (i, f) ∈ Ψ−. (5)

To prove (4), suppose there is (i, g) ∈ Ψ+ such that ψi,g(ξ) < ψi,g(ξ
′
S , ξ−S). Because of the

independence of irrelevant choices and the monotonicity of cost functions there exists k ∈ S with
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g ∈ Fk(ξ′S , ξS) implying

πj(ξ
′
S, ξ−S) ≤ ψi,g(ξ) < ψi,g(ξ

′
S , ξ−S) ≤ πk(ξ′S , ξ−S) ≤ πj(ξ′S , ξ−S),

which is a contradiction. For proving (5), suppose there is (i, g) ∈ Ψ− such that ψi,g(ξ
′
S , ξ−S) >

πj(ξ
′
S , ξ−S). Again, independence of irrelevant choices and monotonicity of cost functions implies

that there is k ∈ S with g ∈ Fk(ξ′S, ξ−S) giving rise to

πk(ξ
′
S , ξ−S) ≥ ψi,g(ξ′S , ξ−S) > πj(ξ

′
S , ξ−S) ≥ πk(ξ′S , ξ−S),

which is a contradiction. To finish the proof, we observe that N × F = Ψ+ ∪ Ψ− ∪ (S × F ).
Then,

PM (ξ)− PM (ξ′S , ξ−S) =
∑

(i,f)∈Ψ+∪Ψ−∪(S×F )

ψi,f (ξ)
M−ψi,f (ξ′S , ξ−S)M

≥
∑

(i,f)∈Ψ−∪(S×F )

ψi,f (ξ)
M − ψi,f (ξ′S, ξ−S)M .

The inequality follows from the first claim. We further derive
∑

(i,f)∈Ψ−∪(S×F )

ψi,f (ξ)
M − ψi,f (ξ′S , ξ−S)M

≥
∑

f∈(S×F )

ψi,f (ξ)
M(α) −

∑

(i,f)∈Ψ−∪(S×F )

ψi,f (ξ
′
S , ξ−S)M

≥ (πj(ξ
′
S , ξ−S) + α)M − nmπj(ξ

′
S , ξ−S)M ,

where the first inequality follows from the non-negativity of ψ. The second inequality follows
from πj(ξ) ≥ πj(ξ′S, ξ−S) + α and the second claim. To this end, we obtain

PM (ξ)− PM (ξ′S , ξ−S) ≥ (α/2)M +
(
πj(ξ

′
S , ξ−S) + α/2

)M − nmπj(ξ
′
S , ξ−S)M ≥ (α/2)M ,

where the last inequality follows from the choice of M . �

Proof of Theorem 5.4. Fix α > 0. Since ∆ is compact and PM (as defined in Lemma 5.5) is
bounded, there is a strategy profile z satisfying PM (z) ≤ infξ∈∆ PM (ξ)− ǫ with 0 < ǫ < (α/2)M .
We claim that z is an α-approximate SE. Suppose not. Then by Lemma 5.5 there exists a
profitable deviation (z, (ξ′S , z−S)) ∈ Iα(S) with PM (z) − PM (νS , z−S) ≥ (α/2)M > ǫ, which
contradicts the approximation guarantee of z.

�
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Abstract. Bottleneck congestion games properly model the properties of many real-world net-
work routing applications. They are known to possess strong equilibria – a strengthening of
Nash equilibrium to resilience against coalitional deviations. In this paper, we study the com-
putational complexity of pure Nash and strong equilibria in these games. We provide a generic
centralized algorithm to compute strong equilibria, which has polynomial running time for many
interesting classes of games such as, e.g., matroid or single-commodity bottleneck congestion
games. In addition, we examine the more demanding goal to reach equilibria in polynomial time
using natural improvement dynamics. Using unilateral improvement dynamics in matroid games
pure Nash equilibria can be reached efficiently. In contrast, computing even a single coalitional
improvement move in matroid and single-commodity games is strongly NP-hard. In addition, we
establish a variety of hardness results and lower bounds regarding the duration of unilateral and
coalitional improvement dynamics. They continue to hold even for convergence to approximate
equilibria.

1. Introduction

One of the central challenges in algorithmic game theory is to characterize the computational
complexity of equilibria. Results in this direction yield important indicators if game-theoretic
solution concepts are plausible outcomes of competitive environments in practice. Probably
the most prominent stability concept in (non-cooperative) game theory is the Nash equilibrium
– a state, from which no player wants to unilaterally deviate – and its’ complexity has been
under increased scrutiny for quite some time. A drawback of Nash equilibrium is that in general
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it exists only in mixed strategies. There are, however, practically important classes of games
that allow pure Nash equilibria (PNE), most prominently congestion games. In a congestion
game [40], there is a set of resources, and the pure strategies of players are subsets of this set.
Each resource has a delay function depending on the load, i.e., the number of players that select
strategies containing the respective resource. The individual cost for a player in a ordinary
congestion game is given by the sum over the delays of the resources in his strategy.

Congestion games are an elegant model to study the effects of resource usage and congestion
with strategic agents. They have been used frequently to model competitive network routing
scenarios [41]. For these games the complexity of exact and approximate PNE is now well-
understood. A detailed characterization in terms of, e.g., the structure of strategy spaces [18, 2]
or the delay functions [11, 8, 44] has been derived. However, ordinary congestion games have
shortcomings, especially as models for the prominent application of routing in computer networks.
The throughput of a stream of packets is usually determined by the delay experienced due to
available bandwidth or capacity of links. Here the throughput of a player is closely related to
the performance of the most congested (bottleneck) link (see, e.g., [30, 6, 12, 39]). A model that
captures this aspect more realistically are bottleneck congestion games, in which the individual
cost of a player is the maximum (instead of sum) of the delays in his strategy. Despite being
a more realistic model for network routing, they have not received similar attention in the
literature. For classes of non-atomic (with infinitesimally small players) and atomic splittable
games (finite number of players with arbitrarily splittable demand) existence of PNE and bounds
on the price of anarchy were considered in [12, 35]. For atomic games with unsplittable demand
PNE do always exist [6]. In fact, Harks et al. [25] establish the finite improvement property
via a lexicographic potential function. Interestingly, they are able to extend these conditions to
hold even if coalitions of players are allowed to change their strategy in a coordinated way. This
implies that bottleneck congestion games do admit even (pure) strong equilibria (SE), a solution
concept introduced by Aumann [5]. In an SE, no coalition (of any size) can deviate and strictly
decrease the individual cost of each member. Every SE is a PNE, but the converse holds only in
special cases (e.g., for singleton games [27]).

SE represent a very robust and appealing stability concept. In general games, however, they
are quite rare, which makes the existence guarantee in bottleneck congestion games even more
remarkable. For instance, even in dominant strategy games such as the Prisoner’s Dilemma
there might be no SE. Not surprisingly, for ordinary congestion games with linear aggregation
the existence of SE is not guaranteed [31, 27] and, in fact, NP-hard to decide [26]. The existence
of PNE and SE in bottleneck congestion games raises a variety of important questions regarding
their computational complexity. In which cases can PNE and SE be computed efficiently? As the
games have the finite improvement property, another important issue is the duration of natural
(coalitional) improvement dynamics. More fundamentally, it is not obvious that even a single
such coalitional improving move can be found efficiently. These are the main questions that we
address in this paper.

1.1. Our Results

We examine the computational complexity of PNE and SE in bottleneck congestion games. In
Section 2 we focus on computing PNE and SE using (centralized) algorithms. Our first main
result is a generic algorithm that computes an SE for any bottleneck congestion game. The
algorithm iteratively decreases capacities on the resources and relies on a strategy packing oracle.
The oracle decides if a given set of capacities allows to pack a collection of feasible strategies
for all players and outputs a feasible packing if one exists. The running time of the algorithm
is essentially determined by the running time of this oracle, i.e., the problem of computing SE
can be reduced to solving the strategy packing problem. As a characterization we also prove the
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reverse direction: The class of set packing problems addressed by strategy packing oracles can
be solved efficiently if we can efficiently compute SE in bottleneck congestion games. A slight
drawback is that the games constructed in this reduction exhibit a slightly different combinatorial
structure than the packing problem. For the case of two players we can circumvent this problem
and show polynomial equivalence between packing and SE computation even when we fix the
underlying combinatorial structure.

In terms of complexity, we prove a number of upper and lower bounds for specific classes
of games. For upper bounds we focus on three classes of games: single-commodity networks,
branchings, and matroids (see Section 2.2 for the definition of single-commodity networks and
branchings and Section 1.3 for the definition of matroids). Single-commodity network games
represent a natural and frequently studied class of network routing. Branchings model a natural
scenario when players strive to implement a broadcast from a set of source nodes to all other nodes
in the network. Finally, matroid games have been studied prominently in ordinary congestion
games [2] and represent a straightforward extension of the popular singleton case. In all these
cases, there are strategy packing oracles that can be implemented in polynomial time. Thus,
our generic algorithm yields an efficient algorithm to compute SE for all these classes of games.
For general games, however, we show that the problem of computing an SE is NP-hard, even in
two-commodity networks.

In Section 3 we study the duration and complexity of sequential improvement dynamics that
converge to PNE and SE. Note that quick convergence (i.e., in a polynomial number of rounds)
implies efficient computation. Therefore, we focus particularly on the classes of games, for which
we found positive results in terms of computation. In particular, we first observe that for every
matroid bottleneck congestion game a variant of best response dynamics presented in [2] called
“lazy best response” converge in polynomial time to a PNE. In contrast to this positive result for
unilateral dynamics, we show that it is NP-hard to decide if a coalitional improving move exists,
even for matroid and single-commodity network games, and even if the deviating coalition is
fixed a priori. This highlights an interesting contrast for these two classes of games: While there
are polynomial-time algorithms to compute an SE, it is impossible to decide efficiently if a given
state is an SE – the decision problem is co-NP-hard.

For more general games, we observe in Section 3.2 that constructions of [44] regarding the
hardness of computing PNE in ordinary games can be adjusted to yield similar results for bot-
tleneck games. In particular, in (a) symmetric games with arbitrary delay functions and (b)
asymmetric games with bounded-jump delay functions computing a PNE is PLS-complete. In
addition, we show that in both cases there exist games and starting states, from which every
sequence of improvement moves to a PNE is exponentially long. We extend this result to the
case when moves of coalitions of size O(n1−ǫ) are allowed, for any constant ǫ > 0. In addition, we
observe that all of these hardness results generalize to the computation of α-approximate PNE
and SE (see Section 1.3 for the definition), for any polynomially bounded factor α.

We conclude the paper in Section 4 by outlining some interesting open problems regarding
the convergence to approximate equilibria.

1.2. Related Work

Congestion games (in the ordinary sense) were introduced by Rosenthal [40] and further charac-
terized by Monderer and Shapley [37]. Holzman and Law-Yone [27] studied the existence of SE in
congestion games with monotone increasing cost functions. They showed that SE need not exist
in such games and gave a structural characterization of the strategy space for symmetric (and
quasi-symmetric) congestion games that admit SE. They also introduced the concept of a strong
potential function: a function on the set of states that decreases for every profitable deviation
of a coalition. More recently, Hoefer and Skopalik [26] showed that deciding existence of SE in
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congestion games is NP-hard, even for two players, and even in games which are both matroid
and single-commodity network games. Rozenfeld and Tennenholtz [42] explored the existence of
(correlated) SE in congestion games with non-increasing cost functions. Exact and approximate
SE have also been considered in other games, e.g., in cost sharing congestion games [17, 3, 33].

A generalization of congestion games has been proposed by Milchtaich [36], where he allows
for player-specific delay functions on the resources (see also [34, 24, 1, 26] for subsequent work
on (weighted) congestion games with player-specific cost functions). For games with singleton
strategies and monotonic delay functions, Milchtaich proves existence of PNE. As shown by
Voorneveld et al. [46], the singleton games considered by Milchtaich are equivalent to the games
considered by Konishi et al. [31]. This is worth noting as they established existence of SE in
such games. Closely related, Andelman et al. [4] considered scheduling games on unrelated ma-
chines and proved that the load-lexicographically minimal schedule is an SE. Efficiency of strong
equilibria in scheduling games has been studied by Fiat et al. [21], and notions of approximate
strong equilibria were analyzed by Feldman and Tamir [19].

Bottleneck congestion games with network structure have been considered by Banner and
Orda [6]. They proved existence of PNE in the unsplittable and splittable flow settings. Harks
et al. [25] considered a generalization of bottleneck congestion games and proved that these
games possess the strong finite improvement property. Epstein et al. [16] characterized network
topologies for both ordinary and bottleneck network congestion games such that in the resulting
games all PNE are socially optimal. The price of anarchy for PNE in bottleneck congestion
games was studied in [9, 14, 29].

Bottleneck routing with non-atomic players and elastic demands has been studied by Cole
et al. [12], who derived bounds on the price of anarchy. For subsequent work on the price of
anarchy in bottleneck routing games with atomic and non-atomic players, we refer to the paper
by Mazalov et al. [35].

1.3. Preliminaries

Bottleneck congestion games are strategic games G = (N,S, (ci)i∈N ), where N = {1, . . . , n} is
the non-empty and finite set of players, S =

�
i∈N Si is the non-empty set of states or strategy

profiles, and ci : S → N is the individual cost function that specifies the cost value of player i
for each state S ∈ S. A game is called finite if S is finite. For the sake of a clean mathematical
definition, we define strategies and costs using the general notion of a congestion model. A tuple
M = (N,R,S, (dr)r∈R) is called a congestion model if N = {1, . . . , n} is a non-empty, finite set
of players, R = {1, . . . ,m} is a non-empty, finite set of resources, and S =

�
i∈N Si is the set of

states or profiles. For each player i ∈ N , the set Si is a non-empty, finite set of pure strategies
Si ⊆ R. Given a state S, we define ℓr(S) = |{i ∈ N : r ∈ Si}| as the number of players using r
in S. Every resource r ∈ R has a delay function dr : S → N defined as dr(S) = dr(ℓr(S)). In
this paper, all delay functions are non-negative and non-decreasing. Delay function dr satisfies
the β-bounded-jump condition if dr(x + 1) ≤ β · dr(x) for any x ≥ 1. A congestion model M is
called matroid congestion model if for every i ∈ N there is a matroid Mi = (R,Ii) such that Si
equals the set of bases of Mi. We denote by rk(M) = maxi∈N rk(Mi) the rank of the matroid
congestion model. (Bottleneck) congestion games corresponding to matroid congestion models
will be called matroid (bottleneck) congestion games. Matroids exhibit numerous nice properties,
some of which are summarized in the Appendix 5. For a comprehensive overview see standard
textbooks [32, Chapter 13] and [43, Chapters 39 – 42].

LetM be a congestion model. The corresponding bottleneck congestion game is the strategic
game G(M) = (N,S, (ci)i∈N ) in which ci is given by ci(S) = maxr∈Si

dr
(
ℓr(S)

)
. We drop

M whenever it is clear from context. We define the corresponding ordinary congestion game in
the same way, the only difference is that ci(S) =

∑

r∈Si
dr
(
ℓr(S)

)
. For a coalition C ⊆ N we
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denote by −C its complement and by SC =
�

i∈C Si the set of states of players in C. A pair
(
S, (S′C , S−C)

)
∈ S × S is called an α-improving move of coalition C if ci(S) > αci(S

′
C , S−C)

for all i ∈ C and α ≥ 1. For α = 1 we call
(
S, (S′C , S−C)

)
an improving move (or profitable

deviation). A state S is a k-strong equilibrium (k-SE), if there is no improving move (S, ·) for a
coalition of size at most k. We say S is a strong equilibrium (SE) if and only if it is an n-SE.
Similarly, S is a pure Nash equilibrium (PNE) if and only if it is a 1-SE. We call a state S
an α-approximate SE (PNE) if no coalition (single player) has an α-improving move (S, ·). We
denote by I(S) the set of all possible α-improving moves (S, S′) to other states S′ ∈ S. We
call a sequence of states (S0, S1, . . . ) an improvement path if every tuple (Sk, Sk+1) ∈ I(Sk) for
all k = 0, 1, 2, . . . . Intuitively, an improvement path is a path in a so-called state graph G(G)
derived from G, where every state S ∈ S corresponds to a node in G(G) and there is a directed
edge (S, S′) if and only if (S, S′) ∈ I(S).

2. Computing Strong Equilibria

In this section, we investigate the complexity of computing a SE in bottleneck congestion games.
We first present a generic algorithm that computes a SE for an arbitrary bottleneck congestion
game. It uses an oracle that solves a strategy packing problem (see Definition 2.1), which we
term strategy packing oracle. For games in which the strategy packing oracle can be implemented
in polynomial time, we obtain an efficient algorithm computing a SE. We then examine games
for which this is the case. In general, however, we prove that computing a SE is NP-hard, even
for two-commodity bottleneck congestion games.

2.1. The Dual Greedy

The general approach of our algorithm is to introduce upper bounds ur (capacities) on each
resource r. The idea is to iteratively reduce upper bounds of costly resources as long as the
residual capacities admit a feasible strategy packing, see Definition 2.1 below. Our algorithm
can be interpreted as a dual greedy, or worst out algorithm as studied, e.g., in the field of network
optimization, see Schrijver [43].

Algorithm 1 Dual Greedy, the strategy packing oracle is denoted by O.

Input: Bottleneck congestion game G(M) to the modelM = (N,R,S, d)
Output: SE of G
1: set N ′ = N , ur = n, lr = 0 for all r ∈ R, and S′ = O(R,SN ′ , ur)
2: while {r ∈ R : ur > 0} 6= ∅ do

3: choose r′ ∈ arg maxr∈R:ur>0{dr(ur + lr)}
4: ur′ := ur′ − 1
5: if O(R,SN ′ , ur) = ∅ then

6: ur′ := ur′ + 1
7: for all j ∈ N ′ with r′ ∈ S′j do

8: Sj := S′j
9: set lr := lr + 1, ur := ur − 1 for all r ∈ S′j

10: N ′ := N ′ \ {j}
11: end for

12: end if

13: S′ = O(R,SN ′ , ur)
14: end while

15: return S
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Definition 2.1 (Strategy packing oracle).
Input: Finite set of resources R with upper bounds (ur)r∈R, and n collections S1, . . . ,Sn ⊆ 2R

given implicitly by a certain combinatorial property.
Output: Sets S1 ∈ S1, . . . , Sn ∈ Sn such that |i ∈ {1, . . . , n} : r ∈ Si| ≤ ur for all r ∈ R, or the
information, that no such sets exist.

More specifically, when the algorithm starts, no strategy has been assigned to any player and
each resource can be used by n players, thus, ur = n. If r is used by n players, its cost equals
dr(n). The algorithm now iteratively reduces the maximum resource cost by picking a resource
r′ with maximum delay dr(ur) and ur > 0. The number of players allowed on r′ is reduced
by one and the strategy packing oracle checks, if there is a feasible strategy profile obeying the
capacity constraints. If the strategy packing oracle outputs such a feasible state S, the algorithm
reiterates by choosing a (possibly different) resource that has currently maximum delay. If the
strategy packing oracle returns ∅ after the capacity of some r′ ∈ R was reduced to ur′ − 1,
we fix the strategies of those ur′ many players that used r′ in the state the strategy packing
oracle computed in the previous iteration and decrease the bounds ur of all resources used in the
strategies accordingly. This ensures that r′ is frozen, i.e., there is no residual capacity on r′ for
allocating this resource in future iterations of the algorithm. The algorithm terminates after at
most n ·m calls of the oracle. For a formal description of the algorithm see Algorithm 1.

Theorem 2.2. Dual Greedy computes a SE.

Proof. Let S denote the output of the algorithm. In addition, we denote by Nk, k = 1 . . . ,K,
the sets of players whose strategies are determined after the strategy packing oracle (denoted by
O) returned ∅ for the k-th time. Clearly, ci(S) ≤ cj(S) for all i ∈ Nk, j ∈ Nl, with k ≥ l. We
will show by complete induction over k that the players in N1 ∪ · · · ∪Nk will not participate in
any improving move of any coalition.

We start with the case k = 1. Let (ur)r∈R be the vector of capacities in the algorithm after
the strategy packing oracle returned ∅ in line 5 for the first time and ur′ is updated in line 6.

Suppose there is a coalition C ⊆ N with C ∩ N1 6= ∅ that deviates profitably from S to
T = (S′C , S−C). We distinguish two cases.

Case 1: ℓr(T ) ≤ ur for all r ∈ R. Let ũr = ur − 1, if r = r′ and ũr = ur, else. Since
O(R,S, ũ) = ∅, at least |N1| players use r′ in T . Using dr′(T ) ≥ dr(S) for all r ∈ R, we obtain a
contradiction to the fact that every member of C must strictly improve.

Case 2: There is r̃ ∈ R such that ℓr̃(T ) > ur. Using that Dual Greedy iteratively reduces
the capacity of those resources with maximum delay (line 3), we derive that dr̃(T ) ≥ dr(S) for
all r ∈ R. Using ℓr̃(T ) > ur, there is at least one player i ∈ C with r̃ ∈ S′i, hence, this player
does not strictly improve.

For the induction step k → k+1, suppose the players in N1∪· · ·∪Nk stick to their strategies
and consider the players in Nk+1. As the strategies of the players in N1 ∪ · · · ∪Nk are fixed, the
same arguments as above imply that no subset of Nk+1 will participate in a profitable deviation
from S. �

It is worth noting that the dual greedy algorithm applies to arbitrary strategy spaces. If
the strategy packing problem can be solved in polynomial time, this algorithm computes a SE
in polynomial time. Hence, the problem of computing a SE is polynomial-time reducible to the
strategy packing problem. For general bottleneck congestion games the converse is also true.

Theorem 2.3. The strategy packing problem is polynomial-time reducible to the problem of
computing a SE in a bottleneck congestion game.

Proof. Given an instance of the strategy packing problem Π we construct a bottleneck congestion
game GΠ. Let Π be given as set of resources R with upper bounds (ur)r∈R, and n collections
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S1, . . . ,Sn ⊆ 2R. The game GΠ consists of the resources R ∪ {r1, . . . , rn} and the players
1, . . . , n + 1. The set of strategies of player i ∈ {1, . . . , n} is {Si ∪ {ri} | Si ∈ Si}. Player n + 1
has the strategies R and {r1, . . . , rn}. For each resource r ∈ R the delay is 0 if used by at most
ur + 1 players and 2 otherwise. For each resource r ∈ {r1, . . . , rn} the delay is 0 if used by at
most one player and 1 otherwise.

If a strategy profile of players 1, . . . , n violates an upper bound ur on a resource r ∈ R, player
n+ 1 has delay of 2 if he plays strategy R. If he plays {r1, . . . , rn}, he and all other players have
delay of 1. Hence, if there is a feasible strategy packing, every SE of the game yields delay 0 for
every player. Otherwise, every SE yields delay 1 for every player. Therefore, the state of the
players 1, . . . , n in a SE of GΠ corresponds to a solution for the strategy packing problem Π, if
such a solution exists. On the other hand, if there is no solution for Π, every player in every SE
in GΠ has delay of 1. �

Note that while the previous theorem establishes a reduction in general, the game GΠ con-
structed from the instance Π of the packing problem has a different combinatorial structure than
Π. More concretely, GΠ is based on a larger set of resources and different strategy sets than
the ones used in Π. The next theorem shows that for games with two players, we can obtain a
stronger equivalence result without changing the underlying combinatorial structure. It remains
an open problem to extend this stronger result to games with an arbitrary number of players
and more general packing problems.

Theorem 2.4. Let R be a finite set and S1,S2 ⊆ 2R two collections of subsets of R. Then the
following two problems are polynomially equivalent:

(1) Compute a SE of G(M) for the congestion model M = ({1, 2}, R,S, (dr)r∈R) where
(dr)r∈R is an arbitrary set of non-decreasing delay functions.

(2) Compute S1 ∈ S1, S2 ∈ S2 such that |i ∈ {1, 2} : r ∈ Si}| ≤ ur or decide that no such
strategies exist where ur ∈ {1, 2} for all r ∈ R is arbitrary.

Proof. ”2. → 1.”: As the dual greedy algorithm computes a SE using polynomial many calls of
the strategy packing oracle the first problem is polynomially reducible to the second one.

”1. → 2.”: Suppose we are given an instance
(
R,S, (ur)r∈R

)
of the second problem. We

regard the congestion model M =
(
{1, 2}, R,S, (dr)r∈R

)
where dr is defined as

dr(ℓ) =

{

0, if ℓ ≤ ur
1, otherwise.

Now, let G be a corresponding bottleneck congestion game and let S∗ be a SE of G. We claim
that c1(S

∗) = c2(S
∗) = 0 and S∗ is a solution of the strategy packing problem if such a solution

exists, and c1(S
∗) = c2(S

∗) = 1, otherwise. At first, we remark that either c1(S
∗) = c2(S

∗) = 1
or c1(S

∗) = c2(S
∗) = 0. So suppose that c1(S

∗) = c2(S
∗) = 1 and assume for a contradiction

that there is solution S′ = (S′1, S
′
2) to the strategy packing problem. Then, by the definition of

dr we get that c1(S
′) = c2(S

′) = 0 and, thus, the deviation from S∗ to S′ is profitable both for
player 1 and 2. This is a contradiction to the fact that S∗ is a SE. Hence, no such state S′ exists.

For the other direction, it is easy to check that c1(S
∗) = c2(S

∗) = 0 only if the strategies S∗1
and S∗2 obey the upper bounds on each resource. �

2.2. Complexity of Strategy Packing

In the previous section we have characterized the computation of SE in terms or a set packing
problem. In this section, we examine the computational complexity of strategy packing and
SE computation. In particular, we consider three classes of games, in which strategy packing
can be done efficiently. For the general case, we show that computation becomes NP-hard. A
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more detailed characterization as to which structural properties are crucial for efficient strategy
packing or hardness is an interesting avenue for future work.

Our first result is for matroid games, which represent a natural extension of singleton games.
In a singleton game we have |Si| = 1 for every strategy Si ∈ Si of every player i. In such games,
SE are exactly the PNE and computation of SE can trivially be done in polynomial time. Also,
strategy packing reduces to perfect matching in a bipartite graph.1 For matroid games, we have
to resort to more advanced algorithmic techniques.

Theorem 2.5. The strategy packing problem can be solved in polynomial time for matroid
bottleneck congestion games where the strategy set of player i equals the set of bases of a
matroid Mi = (R,Ii) given by a polynomial independence oracle.

Proof. For each matroid Mi = (R,Ii), we construct a matroid M ′i = (R′,I ′i) as follows. For each
resource r ∈ R, we introduce ur resources r1, . . . , rur to R′. We say that r is the representative
of r1, . . . , rur . Then, a set I ′ ⊂ R′ is independent in M ′i if the set I that arises from I ′ by
replacing resources by their representatives is independent in Mi. This construction gives rise to
a polynomial independence oracle for M ′i .

Now, we regard the matroid union M ′ = M ′1 ∨ · · · ∨M ′n, see Definition 5.1 in the Appendix,
which again is a matroid. Using the algorithm proposed by Cunningham [13] we can compute
a maximum-size set B in I ′1 ∨ · · · ∨ I ′n in time polynomial in n, m, rk(M), and the maximum
complexity of the n independence oracles.

Clearly, if |B| < ∑

i∈N rk(Mi), there is no feasible packing of the bases of M1, . . . ,Mn. If,
in contrast, |B| = ∑

i∈N rk(Mi), we obtain the corresponding strategies (S1, . . . , Sn) using the
algorithm. �

Let us now consider strategy spaces defined as a-arborescences, which are in general not
matroids. Let D = (V,R) be a directed graph with |R| = m. For a distinguished node in a ∈ V ,
we define an a-arborescence as a directed spanning tree, where a has in-degree zero and every
other vertex has in-degree one. In this case, we can regard a ∈ V as a common source, and each
player strives to make a broadcast with source a by allocating a tree.

Theorem 2.6. The strategy packing problem can be solved in time O(m2 n2) for a-arborescence
games in which the set of strategies of each player equals the set of a-arborescences in a directed
graph D = (V,R).

Proof. The problem of finding k disjoint a-arborescences in G can be solved in polynomial time
O(m2 k2), see Gabow [23, Theorem 3.1]. Introducing ur copies for each edge r ∈ R, the problem
of finding admissible strategies in the original problem is equivalent to finding n disjoint a-
arborescences. �

Recently, the polynomial packing algorithm for a-arborescences has been extended to branch-
ings. Formally, we are given for each player i a root set Ri ⊆ V and a convex2 set Ui ⊆ V with
Ri ⊆ Ui. For any vector of capacities (ur)r∈R, the polynomial algorithm of Bérczi and Frank [7]
computes for every player a branching which is rooted in Ri and spans Ui, that is, the in-degree
of every vertex v ∈ Ri is zero and the in-degree of every vertex v ∈ Ui \ Ri is one, such that
the capacity restriction of every edge is satisfied. This more general framework allows to model
situations in which the players wish to broadcast from multiple broadcasting stations, where
the broadcasts need not cover all vertices. It is worth mentioning that the convexity of Ui is

1We construct the graph as follows. The first partition contains a node for each player, the second partition
contains ur nodes for each r ∈ R. The node of player i is connected to all nodes of each r ∈ Si.

2In this context, a subset of vertices U ⊆ V is called convex if there is no vertex v ∈ V \U such that there is
both a directed path from v to some vertex u ∈ U and a directed path from some node u′ ∈ U to v.
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necessary for efficient computation, because otherwise, the corresponding decision problem turns
out to be NP-complete.

When we turn to single-commodity networks, then efficient computation of a SE is pos-
sible using well-known flow algorithms to implement the oracle. For more general cases with
two commodities, however, a variety of problems concerning SE become NP-hard by a simple
construction.

Theorem 2.7. The strategy packing problem can be solved in time O(m3) for single-commodity
bottleneck congestion games.

Proof. Assigning a capacity of ur to each edge and using the algorithm of Edmonds and Karp
we obtain a maximum flow within O(m3). Clearly, if the value of the flow is smaller than n, no
admissible strategies exist and we can return ∅. If the flow is n or larger we can decompose it in
at least n unit flows and return n of them. �

Theorem 2.8. In two-commodity network bottleneck games it is strongly NP-hard to (1) com-
pute a SE, (2) decide for a given state whether any coalition has an improving move, and (3)
decide for a given state and a given coalition if it has an improving move.

Proof. We reduce from the 2 Directed Arc-Disjoint Paths (2DADP) problem, which is
strongly NP-hard, see Fortune et al. [22]. The problem is to decide if for a given directed
graph D = (V,A) and two node pairs (s1, t1), (s2, t2) there exist two arc-disjoint (s1, t1)- and
(s2, t2)-paths. For the reduction, we define a corresponding two-commodity bottleneck game by
introducing non-decreasing delay functions on every arc r by dr(x) = 0, if x ≤ 1 and 1, else. We
associate every commodity with a player. For proving (1), we observe that 2DADP is a Yes-
instance if and only if every SE provides a payoff of zero to every player. For proving (2) and (3),
we simply construct a solution in which the strategies for both players are not arc-disjoint. �

3. Convergence of Improvement Dynamics

In the previous section, we have outlined some prominent classes of games, for which SE can
be computed in polynomial time. Furthermore, it is known [25] that sequential improvement
dynamics converge to PNE and SE. In this section, we consider the duration of improvement
dynamics in these games. As polynomial-time convergence implies polynomial-time computation,
we first focus on classes of games, in which we have shown efficient computation, i.e., matroid
and single-commodity network games. For matroid games we show polynomial-time convergence
to a PNE using unilateral improving moves. For the convergence to SE we have to consider
coalitional improving moves, but we show that deciding if such a move exists is NP-hard even in
matroid games or single-commodity network games. This implies that even in these specialized
classes of games with efficient computation of a SE, recognition of a state as a SE is co-NP-hard.

In more general games, hardness of recognition is not the only source of difficulty. In par-
ticular, we prove that in general games even computing an α-approximate PNE is PLS-hard.
There are games and starting states, for which every sequence of unilateral improving moves is
exponentially long. Perhaps surprisingly, this also holds when we consider coalitional improving
moves of coalitions of size O(n1−ǫ), for any constant ǫ > 0.

3.1. Matroid and Single-Commodity Network Games

We first observe that bottleneck congestion games can be transformed into ordinary congestion
games while preserving useful properties regarding the convergence to PNE. This allows to show
fast convergence to PNE in matroid bottleneck games and mirrors a prominent result for ordinary
matroid games [2].
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3.1.1. Convergence to Pure Nash Equilibria

The following lemma establishes a connection between bottleneck and ordinary congestion games.
For a bottleneck congestion game G we denote by Gsum the ordinary congestion game with the
same congestion model as G except that we choose d′r(S) = mdr(·), r ∈ R.

Lemma 3.1. Every PNE for Gsum is a PNE for G.

Proof. Suppose S is a PNE for Gsum but not for G. Thus, there is player i ∈ N and strategy
S′i ∈ Si, such that maxr∈Si

dr(ℓr(S)) > maxr∈S′i dr(ℓr(S
′
i, S−i)). We define the value d̄ :=

maxr∈S′i dr(ℓr(S
′
i, S−i)). This implies maxr∈Si

dr(ℓr(S)) ≥ d̄ + 1. We obtain a contradiction by
observing

∑

r∈Si

d′r(ℓr(S)) ≥ max
r∈Si

d′r(ℓr(S)) ≥ md̄+1 > (m− 1)md̄ ≥
∑

r∈S′i

d′r(ℓr(S
′
i, S−i)).

�

We analyze the lazy best response dynamics considered for ordinary matroid congestion
games presented in [2]. Note that in matroid games, a player always picks as strategy a basis
of a matroid. A lazy best response means that a player only exchanges a minimum number of
resources that is needed to arrive at a basis representing a best response strategy (for details
see [2]). Our analysis here is quite simple and does not explicitly rely on these details. In
particular, we transform the game to an ordinary game as outlined in Lemma 3.1. Then we
use the lazy best response dynamics in the ordinary game and the convergence result of [2] as a
“black box” with the slight adjustment that we only execute moves yielding a strict improvement
in the bottleneck resource of the moving player. This allows to establish the following result.

Theorem 3.2. Let G be a matroid bottleneck congestion game. Then the lazy best response
dynamics converges to a PNE in at most n2 ·m · rk(M) steps.

Proof. We consider the lazy best response dynamics in the corresponding game Gsum. In addition,
we suppose that a player accepts a deviation only if his bottleneck value is strictly reduced. This
might lead to even earlier termination of the dynamics. Thus, the duration is still bounded from
above by n2 ·m · rk(M) moves as shown in [2]. �

3.1.2. Convergence to Strong Equilibria

For matroid bottleneck congestion games we have shown above that there are polynomially long
sequences of unilateral improving moves to a PNE from every starting state. While previous
work [25] also establishes convergence to SE for every sequence of coalitional improving moves, it
may already be hard to find one such move. In fact, we show that even an α-improving move can
be strongly NP-hard to find, for any polynomial-time computable α, even if strategy spaces have
simple matroid structures. This implies that deciding whether a given state is an α-approximate
SE is strongly co-NP-hard – even if all delay functions satisfy the β-bounded-jump condition, for
any β > α.

Theorem 3.3. In matroid bottleneck congestion games it is strongly NP-hard to decide for
a given state S if there is some coalition C ⊆ N that has an α-improving move, for every
polynomial-time computable α.

Proof. We reduce from Set Packing. An instance of Set Packing is given by a set of elements
E and a set U of sets U ⊆ E, and a number k. The goal is to decide if there are k mutually
disjoint sets in U . Given an instance of Set Packing we show how to construct a matroid game
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G and a state S such that there is an improving move for some coalition of players C if and only
if the instance of Set Packing has a solution.

The game will include |N | = 1 + |U|+ |E| +∑U∈U |U | many players. First, we introduce a
master player p1, which has two possible strategies. He can either pick a coordination resource
rc or the trigger resource rt. For each set U ∈ U , there is a set player pU . Player pU can choose
either rt or a set resource rU . For each set U and each element e ∈ U , there is an inclusion
player pU,e. Player pU,e can use either the set resource rU or an element resource re. Finally, for
each element e, there is an element player pe that has strategies {rc, re} and {rc, ra} for some
absorbing resource ra.

The state S is given as follows. Player p1 is on rc, all set players use rt, all inclusion
players the corresponding set resources rU , and all element players the strategies {rc, re}. The
coordination resource rc is a bottleneck for the master player and all element players. The delays
are drc(x) = α + 1, if x > |E| and 1, otherwise. The trigger resource has delay drt(x) = 1, if
x ≤ |U| − k + 1, and α+ 1, otherwise. For the set resources rU the delay is drU (x) = 1, if x ≤ 1
and α+1, otherwise. Finally, for the element resources the delay is dre(x) = 1 if x ≤ 1 and α+1
otherwise.

Suppose that the underlying Set Packing instance is a Yes-instance, then an α-improving
move is as follows. The master player moves to rt, the k set players corresponding to a solution
choose their set resources, the respective inclusion players move to the element resources, and
all element players move to ra. The delay of rc reduces from α + 1 to 1, and the delay of rt
reduces from α+1 to 1. Thus, the master player, all set players, and all element players improve
their bottleneck by a factor of α+ 1. The migrating inclusion players do not interfere with each
other on the element resources. Thus, they also improve the delay of their bottleneck resource
by factor α+ 1, and we have constructed an α-improving move for the coalition of all migrating
players, all set players, and all element players.

Suppose that the underlying Set Packing instance is a No-instance. For contradiction,
assume that there is a coalition C that has an α-improving move. Consider any player p ∈ C.
We will show that for any player p 6= p1, i.e., any set, inclusion, or element player, p1 ∈ C is
a prerequisite for achieving any strict improvement. We first note that the master player can
never strictly improve without changing his strategy, because all element players will always use
rc in their strategy. A move from rc to rt is an improvement if and only if at least k set players
drop rt. These players must switch to the corresponding resources. However, for a set player pM
such a move is an improvement if and only if all inclusion players on rU drop this resource from
their strategy. These inclusion players must switch to the element resources. An inclusion player
pU,e improves by such a move if and only if the element player drops the resource and pU,e is the
only inclusion player moving to re. This implies that the moving set players must correspond
to sets that are mutually disjoint. Finally, the element players move from re to ra with delay
dra = 0, and this is an improvement if and only if the master player moves away from rc. This
last argument establishes that p ∈ C implies p1 ∈ C.

However, if the master player p1 ∈ C, then we again follow the chain of reasoning above and
see that the players corresponding to at least k mutually disjoint sets must move and therefore
be in C. This is a contradiction to having a No-instance.

Finally, we can add the resource ra to every strategy of the master, set, and inclusion players.
In this way, the combinatorial structure of all strategy spaces is the same – a partition matroid
M with rk(M) = 2 and partitions of size 1 and 2 – only the mapping to resources is different
for each player. �

The previous theorem shows hardness of the problem of finding a suitable coalition and a
corresponding improving move. Even if we specify the coalition in advance and search only for
strategies corresponding to an improving move, the problem remains strongly NP-hard.
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Corollary 3.4. In matroid bottleneck congestion games it is strongly NP-hard to decide for a
given state S and a given coalition C ⊆ N if there is an α-improving move for C, for every
polynomial-time computable α.

Proof. We will show this corollary using the games constructed in the previous proof by fixing
the coalition C = N . Consider the construction in the previous proof. The coalition described
above that has an improving move for a Yes-instance consists of the master player, all set players,
all element players and the inclusion players that correspond to the sets of the solution to Set

Packing. However, the inclusion players are only needed to transfer the chain of dependencies
to the element players. We can set the strategy space of player pU,e to {rh, rl} × {rU , re}. Here
rh and rl are two resources with delays drh = α + 1 and drl = 0. In S we assign the inclusion
players to strategies {rh, rU}. Then an improving move for the inclusion players that remain
on rU is to exchange rh by rl. Thus, the problem of finding an arbitrary coalition with an
improving move becomes trivial. However, we strive to obtain an improving move for C = N ,
and this must generate improvements for the master player and the set players. Thus, we still
must reassign some inclusion players from the resources rU to the element resources re. Here
we need to resolve conflicts as before, because otherwise inclusion players end up with a delay
of α + 1 on re and do not improve. Following the previous reasoning we have an α-improving
move if and only if the underlying Set Packing instance is solvable. Finally, by appropriately
adding dummy resources, we can again ensure that the combinatorial structure of all strategy
spaces is the same. �

We can adjust the previous two hardness results on matroid games to hold also for single-
commodity network games.

Theorem 3.5. In single-commodity network bottleneck congestion games it is strongly NP-hard
to decide for a given state S (1) if there is some coalition C ⊆ N that has an α-improving
move, and (2) if a given coalition C ⊆ N has an α-improving move, for every polynomial-time
computable α.

Proof. We transform the construction of Theorem 3.3 into a symmetric network bottleneck con-
gestion game, see Fig. 1 for an example. First, we introduce for each resource rc, rt, rU for all
U ∈ U and re for all e ∈ E an edge with the corresponding delay function as before. Additionally,
we identify players and their strategies by routing them through a set of gadgets composed of
edges, which have capacities implemented by cost functions that are 1 up to a capacity bound
and α+ 10 above.

The first gadget is to separate the players into groups. An edge with capacity 1 identifies
the master player, an edge with capacity |U| the set players, an edge with capacity

∑

U∈U |U |
the inclusion players, and an edge with capacity |E| the element players. The set and inclusion
players are then further divided into their particular identities by edges of capacity 1. The
element players route all over rc. In addition, the master player has the alternative to route over
rc or rt. After the players have passed rc they again split into specific element players using
edges of capacity 1. One player is allowed to route directly to the source t. This is meant to be
the master player, but it does not hurt our argument if this is not the case.

After the players have routed through the capacitated gadgets, they can be assumed to reach
an identification point (indicated by gray nodes in Fig. 1) and obtain an identity. Then they
decide on a strategy from the previous game by routing over one of two allowed paths. In
particular, we can allow the set players to route either over rt or their rU , the inclusion players
over rU or re, and the element players over re or directly to the sink t.

We can create the corresponding state S as before by assigning the master player to route
over rc directly to the sink, the set players over rt, the inclusion players over rU and the element
players over re. This assignment is such that every player receives one identity (i.e., routes over
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s t

rc

rt

rM1

rM2

rM3

re1

re2

re3

Figure 1. Network construction for a Set Packing instance with U =
{{e1, e2}, {e2, e3}, {e3, e1}}. Gray nodes serve as identification for players as discussed
in the text.

exactly one gray node) and every identity is taken (i.e., every gray node is reached by exactly one
player). This property also holds for every improving move – with the exception of one element
player, who might route directly from rc to the sink, but as noted before this does not hurt the
argument.

Our network structure allows to reconstruct the reasoning as before. Any improving move
must include the master player, which improves if and only if he moves together with players
corresponding to a solution to the Set Packing instance. Note that even by switching player
identities, we cannot create an improving move when the underlying Set Packing instance is
unsolvable. This proves the first part of the theorem.

For the second part, we use the same adjustment as in Corollary 3.4 to ensure that inclusion
players can always improve. Directly before the middle fan out (see Figure 1) that results in
identification of inclusion players we simply insert a small gadget with 2 parallel edges rl and rh.
In this way, all inclusion players must route over one of rl or rh and one of their corresponding rU
or re. This resembles the strategy choices in the matroid game and yields hardness of computing
an improving move for the coalition C = N . This proves the theorem. �

3.2. General Games and Approximation

The results of the previous sections imply hardness of the computation of SE or coalitional
deviations, even in network games. Therefore, when considering general games we here restrict
ourselves mostly to unilateral improving moves and PNE. Unfortunately, even in this restricted
case the hardness results for ordinary congestion games in Skopalik and Vöcking [44] immediately
imply identical results for bottleneck congestion games. The main result of [44] shows that
computing an approximate PNE is PLS-hard. The proof is a reduction from CircuitFlip, a
prominent PLS-complete problem for feedback-free Boolean circuits. The problem is to find a
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local optimum, i.e., a bit string x such that the output resulting from applying the circuit to x
cannot be improved lexicographically by switching a single bit in x [28].

We can regard the resulting congestion game in the reduction of [44] as a bottleneck con-
gestion game. It is straightforward to adjust all arguments in the proof of [44] to remain valid
for bottleneck congestion games. This simple fact has been observed before, e.g. in [45], and we
include it here for completeness. We provide some details on the construction of the class G(n)
of games used in the reduction in the Appendix 6. A standard transformation [18] immediately
yields the same result even for symmetric games, in which Si = Sj for all i, j ∈ N .

Corollary 3.6. Finding an α-approximate PNE in a symmetric bottleneck congestion game with
positive and increasing delay functions is PLS-complete, for every polynomial-time computable
α > 1.

A second result in [44] reveals that sequences of α-improving moves do not reach an α-
approximate PNE quickly – even if all delay functions satisfy the β-bounded-jump condition
with a constant β. Again, the proof remains valid if one regards the game as an asymmetric
bottleneck congestion game. This yields the following corollary.

Corollary 3.7. For every α > 2, there is a β > 1 such that, for every n ∈ N, there is a bottleneck
congestion game G(n) and a state S with the following properties. The description length of
G(n) is polynomial in n. The length of every sequence of α-improving moves leading from S
to an α-approximate equilibrium is exponential in n. All delay functions of G(n) satisfy the
β-bounded-jump condition.

Using the same trick as before to convert an asymmetric game in a symmetric one yields a
similar result for symmetric games. However, we must sacrifice the β-bounded-jump condition
of the delay functions, for every β polynomial in n.

Despite the fact that (coalitional) improving moves are NP-hard to compute, one might hope
that the state graph becomes sufficiently dense such that it allows short improvement paths.
Unfortunately, we can show that this is not true, even if we consider all improving moves of
coalitions of size up to O(n1−ǫ), for any constant ǫ > 0. Again, the same result holds for
symmetric games when sacrificing the bounded-jump condition.

Theorem 3.8. For every α > 2, there is a β > 1 such that, for every n ∈ N and for every
k ∈ N, there is a bottleneck congestion game G(n, k) and a state S with the following properties.
The description length of G(n, k) is polynomial in n and k. The length of every sequence of
α-improving moves of coalitions of size at most k leading from S′ to an α-approximate k-SE is
exponential in n. All delay functions of G(n, k) satisfy the β-bounded-jump condition.

Proof. Our proof adjusts the construction of [44], which we recapitulate in the Appendix 6. The
main idea of our adjustment is to construct a bottleneck congestion game G(n, k) by generating
k copies of the game G(n). We then add resources to the strategies. These resources make sure
that there is an improvement step for a player in G(n) if and only if there is an improvement
step of corresponding k players of the k copies in G(n, k).

For each j ∈ {1, . . . , 9}, i ∈ {1, . . . , n}, and m ∈ {1, . . . , k}, we add a resource Aji,k to strategy

j of player Maini in copy m. Additionally, we add this resource to all strategies j′ 6= j of all players
Maini of every other copy m′ 6= m. Each of these resources has delay of δi−1 if it is allocated
by at most one player and δi+3 otherwise. Analogously, we add resources to the strategies of

the auxiliary players. That is, for every player Blockji of every copy m ∈ {1, . . . , k}, we add a

resource Bj
i in his strategy 1. We also add this resource in every strategy 2 of every player Blockji

of every copy m′ 6= m. Similarly, for every player Blockji of every copy m ∈ {1, . . . , k}, we add

a resource Cji in his strategy 2, which we also add to every strategy 1 of every player Blockji of
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every copy m′ 6= m. Each of these resources has a delay of δi−1 if it is allocated by at most one
player and δi+3 otherwise. Finally, we have to increase δ slightly.

We obtain the initial strategy profile s′ of G(n, k) if every player of every copy m of G(n)
plays according to the initial strategy profile S of his copy. It it easy to see, that no coalition of
less than k players of a copy m has an incentive to change their strategies. At least one of them
would have to allocate a A-, B-, or C-resource that is already in use by another player. Thus,
it is not an improvement step for these players. We, therefore, can conclude that all k copies of
a player always choose the same strategy. On the other hand, if there is an improving move of
one player in G(n), there is a coalitional improving move of all k copies of that player in G(n, k).
If all players mimic this deviation in their copies, by construction, no two players allocate the
same A-, B-, or C-resource. Furthermore, if the improvement step decreases the delay in G(n),
it does so for every copy of the player in G(n, k).

Finally, note that as long as k is polynomial in n we obtain a reduction of polynomial size. In
particular, for k = n1/ǫ−1 we obtain a new game with nk players, for which the unilateral moves
of G(n) are exactly moves of coalitions of size (nk)1−ǫ and no smaller coalitions have improving
moves. This proves the theorem.

�

4. Conclusion

We have provided a detailed study of the computational complexity of exact and approximate
pure Nash and strong equilibria in bottleneck congestion games. However, some important and
fascinating open problems remain. A major open problem is to find other interesting classes
of games, for which efficient computation of and/or fast convergence to SE can be shown. As
computation postulates less stringent requirements in terms of locality, there is generally more
hope to derive positive results. In particular, what can be said about efficient computation of
α-approximate SE?

For convergence to SE, we have provided a series of quite strong lower bounds. In this case,
it natural to consider weaker concepts of stability that avoid our hardness results. For instance,
we did not succeed in translating positive results known for ordinary congestion games and
convergence to approximate PNE [11, 8, 10]. In addition, there are open problems regarding the
duration of unilateral dynamics in symmetric network games and hardness of computing PNE
in asymmetric networks. Finally, it is a major open problem how to augment the concept of
PNE with resilience to coalitional deviations and avoid the hardness results we have observed.
It would be interesting to consider computation and convergence characteristics of, e.g., k-SE,
for 1 < k < n, or partition equilibria [20].
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Appendix

5. Basics in Matroid Theory

In the following, we will briefly introduce the notion of matroids. For a comprehensive introduc-
tion as well as for the proofs of the mentioned results we refer the reader to the textbooks of
Korte and Vygen [32, Chapter 13] and Schrijver [43, Chapters 39 – 42].

Let F be a finite set. A tuple M = (F,I) where I ⊂ 2F is called a matroid if (i) ∅ ∈ I, (ii)
if I ∈ I and J ⊆ I, then J ∈ I, and (iii) if I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J
with J ∪ {i} ∈ I. A set A ⊆ F is called independent if A ∈ I and dependent, otherwise. The set
of (inclusion wise) maximal independent subsets of F is called the basis of M .

For given F , a matroid (F,I) may be of exponential size, thus, one frequently assumes that
a matroid comes with an independence oracle that returns for all sets A ⊆ F whether A ∈ I
or not. It shall be noted that for many subclasses of matroids an independence oracle can be
implemented in polynomial time.

Another way of representing matroids is via a rank function rk : 2F → N. Every sub-cardinal,
monotonic and sub-modular function rk gives rise to a matroid whose independent sets then are
defined as {A ⊆ F : rk(A) = |A|}. If the independent sets are known a priori via an independence
oracle the rank function is defined as rk(A) = maxI∈I:I⊆A |I|. With a slight abuse of notation,
we define for a matroid M = (F,I) the rank of the matroid itself as rk(M) = rk(F ).

To present our positive results for matroid bottleneck congestion games in a general frame-
work we give the definition of matroid union. This concept has been introduced by Nash-
Williams [38] and Edmonds [15].

Definition 5.1 (Matroid union). Let M1 = (S1,I1), . . . ,Mk = (Sk,Ik) be matroids. Define the
union of these matroids as M1 ∨ · · · ∨Mk = (S1 ∪ · · · ∪ Sk,I1 ∨ · · · ∨ Ik) where

I1 ∨ · · · ∨ Ik = {I1 ∪ · · · ∪ Ik : I1 ∈ I1, . . . , Ik ∈ Ik}.
Nash-Williams proved that for k matroids M1 = (S1,I1), . . . ,Mk = (Sk,Ik) their union

M1 ∨ · · · ∨Mk is a matroid again. The maximum cardinality of an independent set in I1 ∨ · · · ∨
Ik equals the maximum cardinality of a common independent set of two suitably constructed
matroids. This observation reduces the problem of finding a maximum-size set in I1 ∨ · · · ∨
Ik to the intersection problem of two matroids, which can be solved in polynomial time, see
Cunningham [13].

6. Description of G(n)

In this section, we recapitulate the construction of G(n) from [44]. This shows that (bottleneck)
congestion games do not converge quickly to a PNE even if the players only perform unilateral
α-improving moves.

We construct a (bottleneck) congestion game G(n) that resembles a recursive run of n pro-
grams, i.e., sequences of unilateral α-improving moves. After its activation, program i triggers a
run of program i−1, waits until it finishes its run, and triggers it a second time. These sequences
are deterministic apart from the order in which some auxiliary players make their improvement
steps.

A program i is implemented by a gadget Gi consisting of a main player that we call Maini and
eight auxiliary players called Block1

i , . . . ,Block8
i . The main player has nine strategies numbered

from 1 to 9. Each auxiliary player has two strategies, a first and a second one. A gadget Gi is idle
if all of its players play their first strategy. Gadget Gi+1 activates gadget Gi by increasing the
delay of (the bottleneck resource in) the first strategy of player Maini. In the following sequence
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Strategies of Blockji Resources Delays

(1) tji δi−1/2α2δi−1

bji δi−1/δi+2

(2) c1i 2αδi−1/δi+2

Figure 2. Definition of the strategies of the players Blockj
i

Strategy Resources Delays

(1) e1i δi/9α9δi

(2) e2i 8α8δi

c1i−1, . . . , c
9
i−1 2αδi−2/δi+1

t1i δi−1/2α2δi−1

(3) e3i 7α7δi

e1i−1 δi−1/9α9δi−1

t2i δi−1/2α2δi−1

b1i δi−1/δi+2

(4) e4i 6α6δi

b8i−1 δi−2/δi+1

t3i δi−1/2α2δi−1

b2i δi−1/δi+2

(5) e5i 5α5δi

t4i δi−1/2α2δi−1

b3i δi−1/δi+2

(6) e6i 4α4δi

c1i−1, . . . , c
9
i−1 2αδi−2/δi+1

t5i δi−1/2α2δi−1

b4i δi−1/δi+2

(7) e7i 3α3δi

e1i−1 δi−1/9α9δi−1

t6i δi−1/2α2δi−1

b5i δi−1/δi+2

(8) e8i 2α2δi

b8i−1 αδi−2/δi+1

t7i δi−1/2α2δi−1

b6i δi−1/δi+2

(9) e9 αδi

t8i δi−1/2α2δi−1

b7i δi−1/δi+2

Figure 3. Definition of the strategies of the players Maini. The delay of resource e1
n is

constantly 9α9δn.

of improvement steps the player Maini successively changes to the strategies 2, . . . , 8. We call
this sequence a run of Gi. During each run, Maini activates gadget Gi−1 twice by increasing
the delay of the (bottleneck resource in the) first strategy of Maini−1. Gadget Gi+1 is blocked
(by player Block8

i ) until player Maini reaches its strategy 9. Then Gi+1 continues its run, that
is, it decreases the delay of the bottleneck resource in the first strategy of player Maini, waits
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until gadget Gi becomes idle again, and afterwards triggers a second run of Gi. The role of the
auxiliary players of Gi is to control the strategy changes of Maini and Maini+1.

In the initial state s, every gadget Gi with 1 ≤ i ≤ n − 1 is idle. Gadget Gn is activated.
In every improvement path starting from s, gadget Gi is activated 2n−i times, which yields the
theorem.

Now we go into the details of our construction. The (bottleneck) congestion game G(n)
consists of the gadgets G1, . . . , Gn. Each gadget Gi consists of a player Maini and the players
Block1

i , . . . ,Block8
i . The nine strategies of a player Maini are given in Figure 3. The two strategies

of a player Blockji are given in Figure 2. δ = 10α9 is a scaling factor for the delay functions.

The auxiliary players implement a locking mechanism. The first strategy of player Blockji
is {tji , b

j
i} and its second strategy is {cji }. The delays of the resources bji and cji are relatively

small (δi−1 and 2αδi−1, respectively) if allocated by only one player. If they are allocated by
two or more players, however, then each of them induce a significantly larger delay of δi+2.
Theses resources are also part of the strategies of Maini or Maini+1. Note, that neither Maini
nor Maini+1 has an incentive to change to a strategy having a delay of δi+2 or more. The delay

of the resource tji is chosen such that Blockji has an incentive to change to its second strategy if

Maini allocates this resource. If Maini neither allocates this resource nor the resource bji , it has
an incentive to change to its first strategy. Due to scaling factor δi−1 the delays of the resource

tji do not affect the preferences of Maini.

These definitions yield the following properties. If auxiliary player Blockji of gadget Gi plays

its first strategy then this prevents Maini from choosing strategy j + 2. Player Blockji has an
incentive to change to its second strategy only if player Maini chooses its strategy j+ 1. By this
mechanism, we ensure that Maini chooses the strategies 1 to 8 in the right order. In addition,
the first strategy of Block8

i prevents Maini+1 from going to strategy 4 or 8. This ensures that
Maini+1 waits until the run of player Maini is completed. Furthermore, Maini+1 can enter into
strategy 3 or 7 only if all auxiliary players of gadget Gi use their first strategy. This ensures that
a run starts with all auxiliary players being in their first strategy.

This shows that in every sequence of improvement steps from s to a Nash equilibrium in the
(bottleneck) congestion game G(n) each gadget i is activated 2n−i times. One can easily check
that every improvement step of a player decreases its delay (of the bottleneck resource) by a
factor of at least α and every delay function satisfies the β-bounded-jump condition with β = δ3

with δ = 10α9.
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Abstract. An approximation algorithm for an optimization problem runs in polynomial time
for all instances and is guaranteed to deliver solutions with bounded optimality gap. We derive
such algorithms for different variants of capacitated location routing, an important generalization
of vehicle routing where the cost of opening the depots from which vehicles operate is taken
into account. Our results originate from combining algorithms and lower bounds for different
relaxations of the original problem, and besides location routing we also obtain approximation
algorithms for multi-depot capacitated vehicle routing by this framework. Moreover, we extend
our results to further generalizations of both problems, including a prize-collecting variant, a
group version, and a variant where cross-docking is allowed. We finally present a computational
study of our approximation algorithm for capacitated location routing on benchmark instances
and large-scale randomly generated instances. Our study reveals that the quality of the computed
solutions is much closer to optimality than the provable approximation factor.

1. Introduction

The broad realm of vehicle routing addresses the omnipresent logistic challenge of minimizing
the cost of operating vehicles performing pickups and/or deliveries of goods for clients from a
given set of depots. In many logistics applications, however, the cost of opening these depots
constitutes a second major cost driver. Integrating this aspect of location decisions into the model
leads to an additional and distinct optimization challenge. The two families corresponding to
the routing and location subproblems, namely vehicle routing and facility location, have been
studied extensively from practical as well as theoretical points of view. The integrated problem
of jointly making location and routing decisions is known as location routing and has received
significant attention in the operations research community as well.

A basic variant of location routing is the capacitated location routing problem (CLR) defined
as follows. We are given an undirected connected graph G = (V,E), where the node set V =
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C ∪̇F of the graph is partitioned into a set of clients C and a set of facilities F . We will use
the term facilities interchangeably with the term depots. There are cost functions c : E → R+

on the edge set, and φ : F → R+ associated with the depots modeling opening costs. Every
potential depot maintains an unbounded fleet of vehicles, each with a uniform capacity u > 0.
Each client v ∈ C has a demand dv > 0. A feasible solution to CLR is given by a tuple (F,T ),
where F ⊆ F is a set of open depots and T is a set of tours {T1, . . . , Tk} such that (1) every
tour starts at an open depot and returns to the same depot at the end, (2) the demand of every
client is served by the tours by which it is visited, and (3) the total demand served by a tour
does not exceed u. The total cost of a solution is defined by

∑

T∈T c(T ) +
∑

w∈F φ(w), where
c(T ) =

∑

e∈T ce denotes the routing cost of tour T . Note that we may assume w.l.o.g. that G is
complete and the edge costs c satisfy the triangle inequality: If this is not the case, we replace G
by its metric closure. Furthermore, note that this model also implicitly covers depot-dependent
fixed costs per tour, i.e., each vehicle sent out from depot v incurs a cost of av ∈ R

+. This can
be easily modeled by adding 1

2av to the cost of all edges incident to v, as each tour originating
at v contains exactly two of these edges.

In the version of the problem described above, a client’s demand may be split up and served
by multiple facilities, which is not always desired or even possible in practice. This motivates the
following terminology. A solution to CLR fulfills the single-assignment property (cf. [37, 31]),
if the demand of each client is served by exactly one facility. A solution fulfills the single-tour
property, if each client’s demand is served by exactly one tour. Clearly, this latter property can
only be fulfilled if dv ≤ u for all v ∈ C.

The special case of CLR where location decisions have already been made (i.e., φ ≡ 0) is the
multi-depot capacitated vehicle routing problem (MDCVR). Note that in the uncapacitated case
(u = ∞), CLR and MDCVR are equivalent: By triangle inequality, every optimal solution to
either problem can be transformed such that each depot is visited by at most one tour (without
increasing cost). Hence, facility opening cost can be modeled by adding 1

2φ(v) to c(e) for all
edges e incident to a facility v ∈ F .

Not surprisingly, CLR contains NP -hard combinatorial optimization problems as a special
case. When there is only one facility and infinite vehicle capacity, for instance, the problem
becomes the travelling salesman problem. Or, when demands are uniform and match the vehicle
capacity, CLR becomes the (metric) uncapacitated facility location (UFL) problem, as an optimal
routing corresponds to finding shortest paths from each client to an open facility.

Because of this intrinsic hardness, an exact solution method for most location routing prob-
lems including CLR is very likely to perform poorly on some problem instances. Speaking more
formally, its worst-case running time is likely to grow exponentially with problem size [25]. In
fact, even for simple variants of vehicle routing problems, only relatively small instances are
solved to optimality, see the book by [41] and references therein. On the other hand, problem
sizes encountered in real-life problems have grown tremendously over the past years (and are
expected to grow further), thus fast heuristics are becoming increasingly important for solv-
ing location and vehicle routing problems [15, 18]. While (meta-)heuristics used today deliver
feasible solutions to larger instances in reasonable time, there is usually no guaranteed bound re-
garding solution quality. Merely for some restricted special cases, there are heuristics for which
such bounds are known, see [25].

To address this apparent dilemma regarding worst-case running time and guaranteed solution
quality, we use approximation algorithms in this paper, a solution methodology in the intersection
of mathematics, computer science, and operations research. An approximation algorithm for an
NP -hard combinatorial optimization problem is a heuristic enjoying two desirable properties:
Its worst-case running time is bounded by a polynomial in problem size, and there are provable
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a priori bounds (constant numbers in the best case) on the worst-case quality of the solution
generated:

Definition 1.1. An algorithm ALG for a minimization problem P is a ρ-approximation algorithm
if it runs in time polynomial in the input size, and for every instance I of P , we have

ALG(I) ≤ ρ ·OPT(I),

where ALG(I) and OPT(I) denote the objective values of the solution returned by ALG and of
an optimal solution for I, respectively.

While this worst-case guarantee gives theoretical evidence for the reasonability of the algo-
rithm, the quality of solutions may be much closer to optimality in practice than the approxima-
tion factor indicates. A standard reference containing approximation algorithms for a multitude
of hard optimization problems is the book of [27]. Another recent and very good reference,
containing a detailed introduction to the various techniques used in the design of approximation
algorithms, is the book by [46].

Within this framework, we devise a constant factor approximation algorithm for CLR with
arbitrary demands. For MDCVR with arbitrary demands, we obtain an improved approximation
factor, which is, to the best of our knowledge, the best constant factor approximation algorithm
for this problem to date. Moreover, we consider three practically relevant extensions of the above
model. Suppose a company has the option not to serve all clients’ demands itself, but to outsource
any number of transports to clients at given customer-dependent prices. This extended model
is known as the prize-collecting capacitated location routing problem (PC-CLR). In the second
extension, we consider group capacitated location routing (G-CLR) where the set of clients is

partitioned into groups C1, . . . , Ck, with C =
⋃k
i=1 Ci. In a feasible solution, only one client

from each group needs to be served. Applications include intermodal transport networks, where
goods can be transferred from one logistics network to the next at one of several hub locations. In
the third extension, cross-docking is allowed: We allow consolidation tours which do not visit a
facility, but contain one node where they meet with other tours. From there, spare capacity on the
latter tours is utilized jointly to forward all demand of the consolidation tour to facilities. Being of
profound practical interest (see e.g. [43, 45]), cross-docking operations may significantly improve
capacity utilization and hence reduce total cost. We extend our constant factor approximations
to all three of these variants, where for the group version, our approximation guarantee depends
on the cardinality of the largest group.

1.1. Previous Results

Location routing (as the integration of vehicle routing and facility location) has occupied a central
place in the operations research literature over the past decades. Since hundreds of papers have
been published in this broad area, we will give pointers to text books and survey articles when
referring to the main streams in location routing. However, we give a concise overview of works
regarding approximation algorithms on the subject.

Location Routing. Perhaps one of the earliest models of location routing appears in the paper
by [44]. [29] gives a comprehensive overview of the literature prior to the late 80s. More recent
survey articles summarizing heuristic algorithms and mathematical programming formulations
for many variants of location routing can be found in [36] and [37]. Very recently, there have
been several works on integer programming formulations for CLR with capacitated facilities using
strengthened cut inequalities, see [5] and [14].

There are only a few works that are concerned with approximation theory for location routing
problems. For unbounded vehicle capacity, a (2 − 1

|V |−1)-approximation algorithm is given by

[21]. [20] generalize this result to the case of (uncapacitated) group location routing, where one
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is given a system of groups of clients, and only one client from each group needs to be served.
Among other results, they derive a (2− 1

|V |−1)L-approximation algorithm, where L denotes the

cardinality of the largest group. Finally, [11] provide a 24-approximation for location routing
with soft facility capacities (i.e., facilities can be installed multiple times, each copy capable to
serve a limited amount of demand, while vehicle loads are still unbounded).

Vehicle Routing. When facilities can be opened at no cost, location routing becomes the
multi-depot vehicle routing problem, for which countless exact and heuristic solution methods
have been proposed. For an overview of the rich literature in this field, we refer the reader to the
books edited by [41], [23], and the surveys of [3], [15, 16], [25], [30], and [32]. For vehicle
routing problems with additional side constraints (such as time-windows, heterogeneous fleets,
fleets of limited size) see also [6], [3], and [18].

There is a large body of work regarding the classical capacitated vehicle routing problem
(with a single depot) including the seminal PTAS of [24] for geometric distances. [33] consider
the multi-depot capacitated vehicle routing problem (MDCVR) and present, among other results,
a (2 + 2ρTSP)-approximation algorithm for arbitrary, unsplittable demands, where ρTSP denotes
the factor of an approximation algorithm for the travelling salesman problem. This is the best
previously known approximation algorithm for this version of the problem, with ρTSP = 3/2
using the algorithm by [12]. There is also a PTAS for the case of Euclidean distances and
uniform demands, albeit with running time exponential in vehicle capacity as well as the number
of depots [8].

[10] studied the related k-delivery TSP in which a single vehicle with capacity k needs to
transport n (unit-sized) items located at arbitrary locations to given demand points. For this
problem they derive a 5-approximation.

Facility Location. Approximation algorithms for (metric) uncapacitated facility location (UFL)
constitute a central topic in combinatorial optimization. As a reference, we point the reader to
the 1.52-approximation of [35]. Using ideas of [13], a recent publication by [7] improves this
factor to 1.5, also introducing a bifactor approximation that provides separate approximation
ratios for connection and opening costs with respect to an initially solved LP relaxation.

[40] study the related capacitated cable facility location problem. As in CLR, one is given
a complete undirected graph with costs on the edges. A set of clients needs to be served from
facilities with associated opening costs. Facilities need to be opened and clients need to be
connected to open facilities by Steiner trees, where an edge e of a tree is associated with a number
of cables bought for the corresponding connection, each at price c(e). Each cable has uniform
capacity u, and each connection needs to comprise enough cables to provide capacity no less
than the number of clients depending on it. The authors propose a (ρUFL + ρST)-approximation
algorithm, where ρUFL and ρST denote the approximation factors of algorithms for UFL and
Steiner tree, respectively, which are used as subroutines. Their algorithm computes a feasible
solution by merging a UFL and a Steiner tree solution. The merging procedure first routes the
entire demand along the Steiner tree and then iteratively relieves overloaded subtrees of excessive
demand by rerouting it to a closest open facility in the UFL solution.

The approximation algorithms in this paper use a similar technique of merging two solutions
(UFL and a minimum spanning tree) by iteratively rerouting demand from overloaded subtrees
of the spanning tree to a closest open facility of the UFL solution. Since our model is tour-based,
however, we cannot argue on individual link capacities, or use corresponding flow arguments.
The merging procedure in [40] crucially relies on the flexibility to install sufficient cable capacity
on individual edges, and to fractionally route flow under these capacity constraints. In contrast,
we have to decide about buying complete tours from open facilities, requiring a different rerouting
procedure.
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Extended Models. In the prize-collecting (PC) version of the above problems, a feasible so-
lution does not have to serve all clients. Instead, an individual penalty may be paid for each
unserved client. Thereby, PC can precisely model outsourcing decisions and is hence of profound
practical interest. For the PC version of UFL, [28] claim to obtain a 2-approximation, improving
the 3-approximation by [9], but omitting a complete proof. We are not aware of any previous
approximation results for PC vehicle routing or PC location routing.

In the group variant, the set of clients is partitioned into disjoint subsets, or groups of clients,
and only one client from every group has to be served. Group facility location is closely related
to unweighted set cover, as we shall see in Section 4. For the group case of uncapacitated vehicle
and location routing, the only previous result we know of is the algorithm by [20] mentioned
above.

Finally, in capacitated location routing and multi-depot capacitated vehicle routing, cross-
docking may be allowed in certain application scenarios. Here, some clients are served by con-
solidation tours which do not connect directly to a facility, but meet with other tours having
spare capacity. These latter tours jointly forward all demand required by the consolidation tour
to their respective facilities. Cross-docking plays a significant role in numerous logistics appli-
cations, and some heuristic approaches have recently been proposed for vehicle routing with
cross-docking [43, 45]. This model also exhibits strong similarity to a practically relevant prob-
lem called mixed truck delivery which is studied in [34]. Here, delivery tours are sought as well,
and clients may be served by tours either from facilities or from hubs, which are in turn served by
facilities. The authors develop a heuristic solution approach and present computational results
suggesting that routing cost can be reduced on average by around 10% for random instances
when allowing cross-docking. Our model corresponds to the case where each client node may
also function as a hub.

1.2. Our contribution and structure of the paper

In Section 2 we develop a framework for combining approximation algorithms for facility loca-
tion with spanning or Steiner tree algorithms in order to obtain approximation algorithms for
capacitated location routing and multi-depot capacitated vehicle routing problems. We apply
our technique to devise a constant factor approximation algorithm for CLR with arbitrary de-
mands. We are not aware of any previous results regarding constant factor approximations for
CLR. For MDCVR, we obtain an improved approximation guarantee which is, to the best of
our knowledge, the best approximation factor to date. In Sections 3, 4 and 5 we study the
prize-collecting, group, and cross-docking variants. We extend our approximation algorithm to
all three variants. While we derive constant factor approximations for the prize-collecting and
cross-docking versions, the approximation guarantee for the group version depends on the cardi-
nality of the largest group. In fact, we show that this version of the problem does not allow for
a constant factor approximation by providing a lower bound on the achievable approximation
factor depending on the number of groups. In Section 6 we present a computational study of
our algorithm for CLR, where we compare solution quality and running time with those of other
algorithms for CLR from the literature on benchmark instances. It turns out that in practice,
the algorithm’s performance greatly exceeds its theoretically proven approximation guarantee.
On the benchmark test set, the quality of our solutions is on average within a factor of 1.1–1.2
of best known solutions. While the increase in cost over other algorithm is mild, our algorithm’s
running time is several magnitudes faster, taking only negligible time on benchmark instances.
To further demonstrate this computational efficiency we test our algorithm on a set of large-scale
randomly generated instances (1000–10000 customers, 100–1000 facilities per instance). We are
not aware of any previous work solving CLR instances of comparable size. We conclude the
paper in Section 7 with a brief summary and a discussion of open problems.
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2. Approximation Algorithm for Capacitated Location Routing

In this section, we present our main approximation result. After deriving two lower bounds, we
present our algorithm for CLR followed by its analysis. Finally, we describe a specialization for
multi-depot capacitated vehicle routing yielding an improved approximation guarantee.

Before we start, we introduce some additional notation. As described in the introduction, a
feasible solution to CLR consists of a set of open facilities F and a set of tours (or, in mathematical
terms, closed walks) T such that (1) each tour visits an open facility, (2) the demand of each
client is served by the tours by which it is visited, and (3) the demand transported by a tour
does not exceed the vehicle capacity u. The second and third condition can be expressed by the
existence of demand assignments, i.e., non-negative values xvi for each v ∈ C and i ∈ T with
xvi > 0 only if client v is visited by tour Ti, and fulfilling (2)

∑

i∈T xvi = dv for all v ∈ C and
(3)

∑

v∈C xvi ≤ u for all i ∈ T . Although these demand assignments are not part of the actual
solution output, they can be computed efficiently from the tuple (F,T ) and we will use them in
proofs throughout the paper.

2.1. Two Lower Bounds

We provide two lower bounds on the optimal solution, which will be used to derive a constant
approximation factor for our algorithm.

Lemma 2.1. Given an instance of CLR, consider an uncapacitated facility location (UFL) in-
stance defined as follows. The sets of clients and facilities remain the same as in CLR, but we
set the costs of edges to c̃ := 2

uc. Then, the cost of an optimal solution to UFL (w.r.t. c̃) is at
most the cost of an optimal solution to CLR (w.r.t. c).

Proof. Consider a feasible solution (F,T ) of CLR with demand assignments xvi. Construct a
solution U of the UFL instance by opening all facilities that were opened by CLR and connecting
each client v ∈ C to a closest open facility w(v) ∈ F . The connection cost of U is c̃(U) =
∑

v∈C c̃vw(v)dv. We will show that c̃(U) ≤∑T∈T c(T ), which proves the lemma.
Consider a flow f constructed from the CLR solution as follows. For every client v ∈ C and

each tour Ti serving v, partition Ti into two paths from the facility to the client and send xvi
units of flow along each path. Note that the amount of flow carried by edge e ∈ E is at most u

times the number of tours containing e and, thus, e is contained in at least
⌈
fe

u

⌉

tours. Denoting

the cost of f w.r.t. c̃ by c̃(f) we deduce

1

2
c̃(f) =

1

u

∑

e∈E
cefe ≤

∑

e∈E
ce

⌈
fe
u

⌉

≤
∑

e∈E

∑

T∈T :e∈T
ce =

∑

T∈T
c(T ).

Note that the construction of the flow f induces a path decomposition. Let Pv be the set of
all paths from a facility to client v ∈ C used in the construction of f and let fP be the flow value

assigned to that path. Note that
∑

P∈Pv
fP =

∑k
i=1 2xvi = 2dv, because every tour contributes

two paths for every client it serves. Furthermore, c̃(P ) ≥ c̃vw(v), i.e., the length of any of the
facility-client-paths is at least the distance to a closest facility. Thus, we obtain

c̃(f) =
∑

v∈C

∑

P∈Pv

c̃(P )fP ≥
∑

v∈C
c̃vw(v)

∑

P∈Pv

fP =
∑

v∈C
c̃vw(v)2dv = 2c̃(U)

showing that c̃(U) ≤∑T∈T c(T ). �

Lemma 2.2. Given an instance of CLR, consider the graph G′ = (V ∪ {r}, E ∪ E′), where
E′ = {{r, w} : w ∈ F} and define costs c′rw = 0, c′vw = cvw + 1

2φ(w) for all v ∈ C, w ∈ F , and
c′vw = cvw for all other {v,w} ∈ E. Then the cost of a minimum spanning tree in G′ with respect
to the costs c′ is a lower bound on the cost of an optimal solution of CLR (w.r.t. c).



2 Approximation Algorithm for Capacitated Location Routing 181

Proof. Consider a feasible solution (F,T ) to CLR. We will construct a spanning tree in G′ that
has at most the same cost. For every open facility w ∈ F , let T1, . . . , Tj be the tours based at w
with Ti = (w, vi1, . . . , v

i
li
, w) where li is the number of clients in Ti. For i = 1, . . . , j − 1, replace

the last edge {vili , w} of Ti and the first edge {w, vi+1
1 } of Ti+1 by the direct edge {vili , v

i+1
1 }.

Also remove the final edge {vjlj , w} of Tj . As a result, we get a walk Pw from w to vjlj along all
clients that are served by w. Note that c′(Pw) =

∑

e∈Pw
c′(e) ≤∑j

i=1 c(Ti) + 1
2φ(w) by triangle

inequality and the fact that Pw contains only one edge incident to w.
Now let S be the union of all Pw for w ∈ F and all edges in E′. As S spans all facilities and

contains a walk from any client to a facility, it contains a spanning tree of G′ with cost at most
c′(S) ≤∑T∈T c(T ) +

∑

w∈F φ(w). �

2.2. Algorithm

We construct an approximate solution to CLR from an approximate solution to the UFL instance
described in Lemma 2.1 and a minimum spanning tree on the graph G′ as described in Lemma 2.2.
Essentially, the idea is to decompose the spanning tree into subtrees with demands between u/2
and u, which can then be turned into tours by doubling edges. These tours are serviced by
facilities opened by either the spanning tree or the UFL solution. The cost of the resulting
solution is bounded by the sum of twice the cost of the spanning tree, twice the connection
cost of the UFL solution, and once the opening cost of the UFL solution. Using the bifactor
approximation algorithm of [7] for UFL, we obtain a total approximation factor of 4.38 for CLR.

We now describe the algorithm in more detail. After solving the UFL instance approximately
and computing a minimum spanning tree, we open all facilities that are opened in the UFL
solution and also all facilities w that are incident to an edge other than {w, r} in the spanning
tree S. Any client with demand dv ≥ u is assigned to a closest open facility and served by
⌈dv

u ⌉ tours comprising only the assigned facility and the client. We proceed to describe how to
construct tours for the remaining demands by merging the given spanning tree on G′ with a UFL
solution to obtain a feasible solution to CLR (this will later be referred to as the “merge phase”).
For a better understanding, direct the spanning tree towards the root r and denote the subtree
rooted at node v by Sv with Dv being the sum of the demands of all clients in Sv.

If z is a facility and the total demand in Sz is at most u, we turn this subtree into a tour
based at z by doubling edges and short-cutting by triangle inequality. If the total demand in
Sz exceeds u, we will relieve this subtree by rerouting excessive demand to other open facilities,
charging the costs to the UFL solution, until the remaining demand is at most u. This last step
resembles a technique introduced by [40].

We now describe our rerouting procedure in detail. Let v be a node in Sz such that Dv > u
but Dw ≤ u for all children w of v. Let I be the set containing all subtrees Sw with w being
a child of v and the set {v} itself. We want to make sure that less than u units of demand
have to be routed to the parent of v in the tree and the rest of the demand is connected with
additional edges paid for by the UFL solution. To this end, we greedily partition I into groups
I0, . . . , Ik such that the sum of demands of all subtrees in each group Ij is at most u but at least
u/2 (unless j = 0). We keep the connection of all trees in I0 to the node v, but we extract the
trees of all other groups from the spanning tree (including the edges connecting them with v).
For each j = 1, . . . , k, the subtrees in group Ij together with the edges to v form one single tree
which can be turned into a tour by doubling edges and short-cutting. Among all clients on this
tour we choose one with the cheapest connection cost to an open facility and insert this facility
into the tour, paying at most twice the cost of the corresponding edge by triangle inequality.
Observe that this edge carries at least u/2 units of demand. We repeat this procedure until the
total demand in the subtree Sz is at most u. Then we turn the remainder of Sz into a tour,
again by doubling edges.
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Algorithm 1 Algorithm for CLR.

Input: An instance of CLR.
Output: A feasible solution to CLR.
1: UFL phase:

2: Create an UFL instance with edge costs c̃ = 2
uc as described in Lemma 2.1.

3: Apply the bifactor approximation algorithm of Byrka and Aardal with γ = 2.38 on this
instance and let F1 be the set of facilities opened in the resulting UFL solution.

4: Tree phase:

5: Construct the graph G′ with edge costs c′ as described in Lemma 2.2 and compute a minimum
spanning tree S.

6: Let F2 be the set of facilities that are incident to an edge in S ∩ E.
7: Large demand phase:

8: Open all facilities in F1 ∪ F2.
9: for all v ∈ C with dv ≥ u do

10: Construct ⌈dv

u ⌉ copies of a tour from v to a closest open facility.
11: Add the tours to T and remove the corresponding demand dv.
12: end for

13: Merge phase:

14: for all z ∈ F2 do

15: while Dz > u do

16: Let v ∈ V (Sz) such that Dv > u but Dw ≤ u for all children w of v.
17: Let I = {V (Sw) : w is a child of v} ∪ {{v}}.
18: Find a partition I = I0∪̇ . . . ∪̇Ik, such that

∑

v∈Ij dv ≤ u for all j ∈ {0, . . . , k} and
∑

v∈Ij dv >
u
2 for all j ∈ {1, . . . , k}.

19: for all j ∈ {1, . . . , k} do

20: Find a pair (w, z′) such that w is a vertex of a tree in Ij, z
′ ∈ F1 ∪ F2 and cwz is

minimal.
21: Construct a tour visiting all vertices of trees in Ij and z′ by doubling wz and the

edges of all trees in Ij and short-cutting.
22: Add the tour to T and remove the corresponding subtrees in Ij from S.
23: end for

24: end while

25: Construct a tour from Sz by doubling all edges and short-cutting.
26: Add the tour to T .
27: end for

28: Clean-up phase:

29: Remove all facilities from F1 ∪ F2 that are not on any of the tours in T .
30: return (F1 ∪ F2,T )

2.3. Analysis

We analyze the algorithm presented in the previous section to show that it is a 4.38-approximation
for CLR. We start by estimating the cost of the solution produced in the merge phase against
the cost of the spanning tree and the facility location solution.

Lemma 2.3. The solution to CLR constructed by Algorithm 1 in the large demand and merge
phases from the spanning tree S and the UFL solution U has cost at most 2c′(S)+2c̃(U)+φ(U).
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Proof. Every tour constructed in the large demand phase for a client v ∈ C has cost at most
2 ⌈dv

u ⌉ cvw(v), where w(v) is a closest open facility in U . This is bounded by twice the connection
cost for v in the UFL solution as 2⌈dv

u ⌉ cvw(v) ≤ 2 · 2dv

u cvw(v) ≤ 2 c̃vw(v)dv, because dv

u ≥ 1.
Consider a tour T constructed during an iteration of the inner “for” loop of the merge phase

in Algorithm 1. The cost of the tour is at most twice the cost of the edges of the corresponding
subtree plus 2cwz′ . Observe that, by the choice of w and z′, the edge {w, z′} is at most as
expensive as any other edge used in U to connect any of the clients x on the tour to its facility
y(x). As the sum of the demands on the tour is at least u

2 , we obtain
∑

x∈V (T )

c̃xy(x)dx ≥ c̃wz′
∑

x∈V (T )

dx ≥ c̃wz′
u

2
= cwz′ .

Thus, the total cost of all tours constructed in the inner loop amounts to at most twice the
connection cost of U plus twice the costs of the corresponding subtrees. The tours constructed
in the outer loop and the opening costs of all facilities in F2 are bounded by twice the costs of
the remaining subtrees Sz (w.r.t. c′), and the opening costs of all facilities in F1 are φ(U). As
all subtrees are pairwise disjoint, summing everything up yields the desired result. �

Consequently, if S is a minimum spanning tree and U is a ρ-approximation to a minimum cost
solution to the UFL instance, the merge phase of Algorithm 1 returns an (2+2ρ)-approximation
to CLR. Note, however, that in this analysis φ(U) is counted twice while the actual solution
only pays it once. We can improve the approximation factor by using a bifactor approximation
algorithm for UFL of [7]. Given a parameter γ > 1.678, this algorithm returns a solution whose
opening cost exceeds the opening cost of an initially computed optimal fractional LP solution
ULP by at most a factor of γ, and whose connection cost exceeds the connection cost of the
fractional solution by at most 1+2e−γ . In this way, we obtain a solution U with 2 c̃(U)+φ(U) ≤
2 (1+2e−γ) c̃(ULP)+γ φ(ULP), which is bounded by γ(c̃(ULP)+φ(ULP)) for all γ ≥ 2.38. Choosing
γ = 2.38, Lemma 2.3 yields our main result.

Theorem 2.4. Algorithm 1 is a 4.38-approximation algorithm for CLR. The solution it produces
fulfills the single-assignment property. If dv ≤ u for all v ∈ C, it furthermore fulfills the single-tour
property.

On the other hand, the approximation ratio of our algorithm improves naturally in cases
where an approximation algorithm for UFL with an approximation ratio better than 1.19 can
be used. One example are graphs with Euclidean edge cost. Here, a PTAS for UFL [1] can be
applied to obtain a (4 + ǫ)-approximation for CLR.

2.4. Special Case: Multi-Depot Capacitated Vehicle Routing

The special case of CLR, where opening facilities does not incur cost (φ ≡ 0) is the multi-depot
capacitated vehicle routing problem (MDCVR) as considered in [33, 8]. By a slight modification
of Algorithm 1, we obtain an improved approximation ratio for this problem: Instead of solving
the UFL instance approximately in the UFL phase, we solve it exactly by opening all facilities
and assigning clients to facilities along shortest client-facility paths. We thus can replace the
factors incurred by the bifactor UFL-algorithm by 1 and obtain the following result.

Theorem 2.5. When solving the UFL instance by shortest path computation, Algorithm 1 is a
4-approximation algorithm for MDCVR. The solution it produces fulfills the single-assignment
property. If dv ≤ u for all v ∈ C, it furthermore fulfills the single-tour property.

Note that this improves the previously best known approximation guarantee of 5 for MDCVR
in [33] yielding the single-assignment property.
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3. Prize-Collecting Location Routing

We now apply our algorithmic framework for CLR and MDCVR to the prize-collecting (PC)
variant of these problems. In a prize-collecting setting, we can decide for each client whether to
serve it by our solution, or to pay a penalty for not serving it. Note that prize-collecting can
naturally be viewed as a way of incorporating outsourcing decisions into an optimization model:
In this case, a customer’s penalty corresponds to the cost of having it served by an outside
service provider. As outsourcing is an important option in many logistics applications, the prize-
collecting variants of CLR and MDCVR are highly relevant in practice. Moreover, it is not hard
to see that PC-CLR and PC-MDCVR are generalization of CLR and MDCVR, respectively: By
setting penalties high enough, we can force any optimal solution to serve all clients.

Formally, an instance of PC-CLR comprises an instance of CLR together with a penalty
function p : C → R+, and a solution is now a three-tuple (F,T , C), where F ⊆ F is a set of open
facilities as before, C ⊆ C is the set of clients served, and T is a set of tours as before, except
that we require only the demands of clients in C to be served by T . The cost of a solution to
PC-CLR is

∑

T∈T c(T )+
∑

w∈F φ(w)+
∑

v∈C\C p(v). As before, PC-MDCVR is the special case

of PC-CLR where φ ≡ 0.

3.1. Algorithm

The key challenge in solving the prize-collecting variant by our algorithm lies in the choice of C:
On the one hand, both our solution to UFL (Lemma 2.1) and our spanning tree (Lemma 2.2)
need to serve the same set of clients in order for our rerouting procedure to work. On the other
hand, we need to ensure that the sum of the costs of these partial solutions remains a lower
bound for the original problem. We accomplish this by utilizing an approximation algorithm
for PC-UFL, and an LP-based approximation algorithm for the prize-collecting Steiner tree to
determine two respective sets of customers served. We then compute a solution to PC-CLR
serving exactly those customers served by both the tree and the facility location solution.

A formal description of the algorithm is given in Algorithm 2. We will prove that it is a
(ρPC-ST + 2ρPC-UFL)-approximation algorithm for PC-CLR, where ρPC-ST and ρPC-UFL denote
the approximation factors of the approximation algorithms used for prize-collecting Steiner tree
(w.r.t. the undirected cut relaxation) and PC-UFL, respectively. Currently, the best known
approximation algorithm for PC-UFL achieves an approximation ratio of ρPC-UFL = 2 [28],
while for prize-collecting Steiner tree the algorithm of [21] achieves an approximation factor of
2 − 1

|V | , meeting the integrality gap of the LP relaxation. Using these algorithms results in an

approximation factor of 6 for our algorithm.
First note that an equivalent of Lemma 2.1 still holds in a prize-collecting setting: In its

proof, we constructed a feasible solutions to a scaled instance of UFL from any feasible solution
to CLR without increasing cost. It is easy to see that this construction adapts naturally when
transferring the set of clients served from an optimal PC-CLR solution to a feasible solutions to
PC-UFL: The penalties for customers not served are exactly the same in both solutions.

To obtain the second, tree based lower bound, we consider a prize-collecting Steiner tree
instance defined as follows. We add a root node r to the network and connect it to all facilities,
i.e., we consider the graph G′ = (V ∪ {r}, E ∪E′) with E′ = {{r, w} : w ∈ F} as constructed in
Lemma 2.2. We then extend the cost function c to E′ by defining cost crw = 1

2φw for each w ∈ F
and define new penalties by setting p′ := 1

2p. We let R = C ∪ {r} be the set of terminals. We
will use an approximation algorithm on this prize-collecting Steiner tree instance that is based
on the following undirected cut relaxation.
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Algorithm 2 Algorithm for PC-CLR.

Input: An instance of PC-CLR.
Output: A feasible solution to PC-CLR.
1: UFL phase:

2: Create a UFL instance as in the UFL phase of Algorithm 1. Add p to obtain an instance of
PC-UFL.

3: Run an approximation algorithm for PC-UFL. Let U be the returned UFL solution and C1

denote the set of served clients and F1 be the set of opened facilities in U .
4: Steiner tree phase:

5: Construct the graph G′ as in Lemma 2.2.
6: Run an approximation algorithm for prize-collecting Steiner tree on the instance given by
G′, the terminal set C ∪ {r} and penalties p. Let S be the resulting tree and C2 denote set
of connected customers and F2 be the set of connected facilities in the Steiner tree.

7: Merge phase:

8: Set C := C1 ∩ C2.
9: Run the large demand and merge phases of Algorithm 1 using U and S, serving only clients

in C. Let T be the resulting set of tours.
10: return (F1 ∪ F2,T , C).

(PC-STLP)

min
∑

e∈E∪E′
c(e)y(e) +

∑

N⊆C
(
∑

v∈N
p′(v))z(N)

s.t.
∑

e∈δG′ (S)

y(e) +
∑

N⊆C: S∩C⊆N
z(N) ≥ 1 ∀S ⊆ V, S ∩ C 6= ∅

y ≥ 0

Here, δG′(S) denotes the cut in G′ induced by the vertex set S, i.e., the set of all edges of G′

that have one endpoint in S and one endpoint outside of S. The intuition for the LP formulation
is the following: Given a feasible solution to prize-collecting Steiner tree, define z(N) = 1 for
the set N of clients that are not connected to the Steiner tree, and z(N) = 0 for all other sets
of clients. Moreover, set y(e) = 1 if edge e is in the Steiner tree, y(e) = 0 otherwise. The
inequalities follow from the fact that any cut that separates a served terminal from the root has
to be crossed by at least one edge of the tree.

Lemma 3.1. OPT(PC-STLP) ≤ 1
2OPT (PC-CLR)

Proof. Let (F,T , C) be an optimal solution to PC-CLR. Construct a solution (z̃, ỹ) to PC-STLP

by setting z̃(N∗ := C \ C) = 1 and z̃(N) = 0 for all other N ⊆ C, and ỹ({r, w}) = 1 for all
w ∈ F , ỹ({r, w}) = 0 for all w ∈ F \ F , and ỹ(e) = 1

2 |{T ∈ T : e ∈ E(T )}|. It is easy to observe

that the constructed solution (ỹ, z̃) has cost 1
2

∑

w∈F φ(w) + 1
2

∑

v∈C\C p(v) + 1
2

∑

T∈T c(T ).

It remains to show that (z̃, ỹ) is feasible for PC-STLP. So let S denote an arbitrary subset
of V with S ∩ C 6= ∅. If S contains an open facility w, then {r, w} ∈ δG′(S), and by definition
of ỹ, the constraint for S is fulfilled. Else, if S ∩ C = ∅, then S contains only unserved clients
and the set {N ⊆ C : S ∩ C ⊆ N} contains N∗. Hence, by definition of z̃, the constraint for S is
satisfied as well. Finally, if S does not contain an open facility and S ∩ C 6= ∅, then there is a a
client v ∈ C ∩ S connected to an open facility outside of S by a tour. At least two edges of this
tour lie in the cut δG′(S), hence the constraint for S is again satisfied by definition of ỹ. �

Theorem 3.2. Using the algorithm of [21] in its Steiner tree phase, Algorithm 2 is a (2 +
2ρPC-UFL)-approximation algorithm for PC-CLR. The solution it produces fulfills the single-
assignment property. If dv ≤ u for all v ∈ C, it furthermore fulfills the single-tour property.
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Proof. Since the algorithm uses the large demand and merge phases of Algorithm 1, the claims
of the theorem regarding single-assignment and single-tour properties follow directly from The-
orem 2.4.

Moreover, by Lemma 2.3, the cost of the solution returned in the merge phase is bounded by

2c(S) + 2c̃(U) + φ(U) +
∑

v∈C\C
p(v) ≤ 2c(S) +

∑

v∈C\C1

2p′(v) + 2c̃(U) + φ(U) +
∑

v∈C\C2

p(v)

≤ 2 · 2 OPT(PC-STLP) + 2 ρPC-UFL ·OPT(PC-UFL)

≤ (2 + 2ρPC-UFL) OPT,

where the second to last inequality stems from the fact that the algorithm by [21] is a 2-
approximation, and the last from Lemma 3.1. �

Similar to Section 2.4, we can replace the algorithm for PC-UFL by shortest path com-
putations for the case of PC-MDCVR, which solve this subproblem to optimality: A client is
connected to a facility if and only if the shortest path distance to its closest facility is no greater
than its penalty. This yields an improved approximation ratio for PC-MDCVR.

Theorem 3.3. For the case φ ≡ 0, PC-UFL can be solved exactly by shortest path computations.
Thereby, Algorithm 2 becomes a 4-approximation algorithm for PC-MDCVR. The solution it
produces fulfills the single-assignment property. If dv ≤ u for all v ∈ C, it furthermore fulfills the
single-tour property.

4. Group Location Routing

We now consider a group version of location routing (G-CLR) where the set of clients is parti-

tioned into groups C1, . . . , Ck, with C =
⋃k
i=1 Ci and only one client from each group needs to be

served. The uncapacitated version of this problem was studied by [20], who give a (2− 1
|V |−1)L-

approximation algorithm with L being the cardinality of the largest group. Their idea is to
solve an LP relaxation of the problem and use the resulting fractional solution to decide which
client is to be served from each group. We extend this approach to the capacitated case which
is significantly more complex: In the absence of vehicle capacities, facility opening costs can
be transferred to edges of the graph, i.e. location routing is equivalent to multi-depot vehicle
routing in this case. In contrast to [20], our LP relaxation has to explicitly incorporate the
facility location aspect of the problem.

The dependence of our approximation factor on the parameter L gives rise to the question
whether there is a constant factor approximation algorithm for G-CLR that is independent of
any parameters in the input. At the end of this section, we answer this question in the negative
by showing that there is no o(log(k))-approxmation algorithm for G-CLR.

4.1. LP relaxation

In order to obtain an approximation for G-CLR, we describe how to transform a solution of
G-CLR into a multi-commodity flow variable assignment on the arcs and vertices of a directed
graph. We then prove a set of valid inequalities fulfilled by all assignments obtained from feasible
G-CLR solutions. The LP relaxation resulting from these inequalities can be used to decide on a
set of representatives, one for each client group. Replacing each group by its representative, we
obtain an instance of (non-group) CLR which can be approximated by an adaption of Algorithm 1
with the spanning tree replaced by a Steiner tree. We will show that the resulting solution to
G-CLR is a 4.38L-approximation.



4 Group Location Routing 187

While the problem remains based on an undirected graph, it is more convenient to consider
its directed equivalent in our LP relaxation: We replace each undirected edge e by two oppositely
directed arcs a+

e and a−e with costs c(a+
e ) = c(a−e ) = c(e) and denote the set of all such arcs by

A. We start constructing a multi-commodity flow on the edges in A from a given (undirected)
solution of G-CLR by fixing an arbitrary orientation for every tour. Let y(a) be the number
of tours using arc a ∈ A. Let Tv←w(a) and Tv→w(a) be the index sets of all tours that serve
client v ∈ C from facility w ∈ F with an occurrence of arc a ∈ A on the path from w to
v or, respectively, from v to w. Accordingly, define variables xv←w(a) =

∑

i∈Tv←w(a) xvi and

xv→w(a) =
∑

i∈Tv→w(a) xvi for all arcs, where the xvi are the demand assignments introduced

at the beginning of Section 2. Finally, for each facility w ∈ F , let z(w) = 1 if w is open and
z(w) = 0 otherwise.

The values xv←w(a) and xv→w(a) can be interpreted as multi-commodity flow with two
commodities v ← w and v → w for each pair v ∈ C and w ∈ F , respectively. The first
commodity corresponds to goods transported from facility w to client v, the second commodity
v → w emulates the empty truck capacity on the tour returning from v to w. We define the flow
balance of node v ∈ V with respect to commodity h ∈ {v ← w, v → w : v ∈ C, w ∈ F} as
bh(v) :=

∑

a∈δ+(v) xh(a)−
∑

a∈δ−(v) xh(a).

First observe that the total amount of flow on any arc can at most be the capacity u times
the number of tours using the arc, i.e.,

∑

v∈C

∑

w∈F
(xv←w(a) + xv→w(a)) ≤ uy(a) ∀a ∈ A. (1)

Furthermore, we obtain
∑

v∈Ci

∑

w∈F

1
dv

(xv←w(a) + xv→w(a)) ≤ y(a) ∀a ∈ A, i ∈ {1, . . . , k} (2)

by observing that the left hand side of the equation is at most 1 per tour that is using the arc:
Only one client v in a group is served, only dv units are transported to this client in total, and
in any tour, each arc occurs either before or after v but never both.

By construction of x, flow conservation holds for each commodity at all nodes that neither
correspond to its facility nor to its client. Furthermore, at clients v ∈ C, the value of any
commodity v → w for some w ∈ F leaving the client equals the value of v ← w entering it:

bv→w(p) = 0 = bv←w(p) ∀v ∈ C, w ∈ F , p ∈ V \ {v,w} (3)

bv←w(v) = −bv→w(v) = bv→w(w) = −bv←w(w) ∀v ∈ C, w ∈ F (4)

Moreover, as one client from every group needs to be served, the variables fulfill
∑

v∈Ci

∑

w∈F

1
dv
bw→v(v) = 1 ∀i ∈ {1, . . . , k}. (5)

Finally, at most dv units of flow are sent from an open facility to client v and thus
∑

v∈Ci

1
dv
bv←w(v) ≤ zw ∀w ∈ F , i ∈ {1, . . . , k}. (6)

We conclude that the value of an optimal solution to the group location routing problem is
at least the value of an optimal solution of the following LP.

(G-CLRLP)

min
∑

a∈A
c(a)y(a) +

∑

w∈F
φwzw

s.t. x, y, z fulfill (1)− (6)

x, y, z ≥ 0
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Let (x∗, y∗, z∗) be an optimal solution to G-CLRLP. For i ∈ {1, . . . , k}, let ri ∈ Ci be a
client with

∑

w∈F
b∗v←w

dv
maximum over all v ∈ Ci. We now define the set of group representatives

as R := {r1, . . . , rk}. The following inequality will be useful for deriving lower bounds on
OPT(G-CLRLP).

Lemma 4.1. Let L := max{|Ci| : i ∈ {1, . . . , k}}. Then L ·∑w∈F b
∗
ri←w ≥ dri for all i ∈

{1, . . . , k}.

Proof. By (5), in each group Ci, there has to be at least one client v ∈ Ci with
∑

w∈F
b∗v←w

dv
≥ 1

L ,
and thus this inequality holds for ri in particular. �

Now denote the instance of (non-group) CLR defined by the set of representatives R by
CLR(R). Consider the following LP relaxation for the uncapacitated facility location problem
arising from CLR(R) as described in Lemma 2.1. We will use it to derive a lower bound on the
value of an optimal solution to G-CLRLP.

(UFLLP(R))

min
∑

v∈R

∑

w∈F
c̃vwxvw +

∑

w∈F
φwzw

s.t.
∑

w∈F
xvw ≥ dv ∀v ∈ R

1
dv
xvw ≤ zw ∀v ∈ R,w ∈ F

x, z ≥ 0

Lemma 4.2. OPT(UFLLP(R)) ≤ L ·OPT(G-CLRLP).

Proof. Consider the solution (x̃, z̃) to UFLLP(R) obtained by setting z̃w = L · z∗w and x̃vw =
L · b∗v←w(w) for all v ∈ R,w ∈ F . Observe that by Lemma 4.1, we have for each representative
ri

∑

w∈F
x̃riw = L ·

∑

w∈F
b∗ri←w(ri) ≥ dri .

Together with (6), this immediately implies that (x̃, z̃) is a feasible solution to UFLLP. The flow
of each commodity v ← w (v → w) can be decomposed into flow on v-w-paths (w-v-paths), each
of which has at length at least cvw by triangle inequality. Combining this with (1), we obtain

∑

a∈A
c(a)y∗(a) ≥

∑

a∈A

ca
u

∑

v∈C

∑

w∈F
(x∗v←w(a) + x∗v→w(a)) ≥

∑

v∈C

∑

w∈F

2
ucvwb

∗
v←w(v)

≥ 1
L ·
∑

v∈R

∑

w∈F

2
ucvwx̃vw = 1

L ·
∑

v∈R

∑

w∈F
c̃vwx̃vw.

Furthermore, L ·∑w∈F φwz
∗
w =

∑

w∈F φw z̃w by construction, which implies OPT(UFLLP) ≤
L ·OPT(G-CLRLP). �

A second lower bound can be obtained from the LP relaxation of a Steiner tree instance
defined similar to that in Section 3. Again, we consider the graph G′ = (V ∪ {r}, E ∪ E′) with
E′ = {{r, w} : w ∈ F} as constructed in Lemma 2.2. We then extend the cost function c to E′

by defining cost crw = 1
2φw for each w ∈ F . We now consider the undirected cut relaxation of

the Steiner tree instance on G′ with terminals R ∪ {r}.
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(STLP(R))

min
∑

e∈E∪E′
c(e)y(e)

s.t.
∑

e∈δG′ (S)

y(e) ≥ 1 ∀S ⊆ V, S ∩R 6= ∅

y ≥ 0

Lemma 4.3. OPT(STLP(R)) ≤ 1
2L ·OPT(G-CLRLP)

Proof. Consider the solution ỹ to STLP(R) obtained by setting ỹ({v,w}) = 1
2L·(y∗(vw)+y∗(wv))

for all v,w ∈ V and ỹ({r, w}) = L·z∗w for all w ∈ F . Let S ⊆ V with ri ∈ S for some i ∈ {1, . . . k}.
By flow conservation and (6) we obtain

∑

a∈δ+(S)

x∗ri→w(a) +
∑

w∈S
drizw ≥ b∗ri→w(ri) and

∑

a∈δ−(S)

x∗ri←w(a) +
∑

w∈S
driz

∗
w ≥ b∗ri→w(ri),

where δ+(S) = {vw ∈ A : v ∈ S,w ∈ V \ S} and δ−(S) = {vw ∈ A : v ∈ V \ S,w ∈ S}. By
construction of ỹ and inequality (2) we obtain

∑

e∈δG′ (S)

ỹ(e) =
1

2
L




∑

a∈δ+(S)

y∗(a) +
∑

a∈δ−(S)

y∗(a)



 +
∑

w∈S
z∗w

≥ L

2dri




∑

a∈δ+(S)

x∗ri→w(a) +
∑

a∈δ−(S)

x∗ri←w(a) + 2 ·
∑

w∈S
driz

∗
w





≥ L
dri
· b∗ri→w(ri).

The last expression is at least 1 by Lemma 4.1. Thus, ỹ is a feasible solution to STLP(R) with
∑

e∈E∪E′ c(e)ỹ(e) = 1
2L
(∑

a∈A c(a)y
∗(a) +

∑

w∈F φw
)

= 1
2L ·OPT(G-CLRLP). �

Remark 4.4. The LP relaxation presented in this section also yields an alternative proof of the
minimum spanning tree lower bound in Lemma 2.2 for the non-group case, using the bidirected
cut formulation of the spanning tree polytope. However, the direct and combinatorial proof of
Lemma 2.2 given in Section 2.1 appears to be more intuitive and elegant.

4.2. Algorithm

Lemma 4.2 and Lemma 4.3 immediately lead to a 4.38L-approximation algorithm for G-CLR:
Compute an optimal solution to G-CLRLP, obtain a set of representatives R from this solution
and compute an approximation to the resulting instance CLR(R) with Algorithm 1, using an LP-
based Steiner tree 2-approximation algorithm instead of a minimum spanning tree computation.

Theorem 4.5. Algorithm 3 is a 4.38L-approximation for G-CLR. There is a 4L-approximation
for G-MDCVR.

Proof. The cost of the Steiner tree computed by the algorithm of [21] is a at most 2·OPT(STLP(R)).
The UFL solution U computed in Algorithm 1 approximates the opening cost of an optimal
solution to UFLLP(R) by γ, and its connection cost by (1 + 2e−γ), because the LP relax-
ation is equivalent to the one used in the algorithm of [7]. Thus, Lemmas 4.2 and 4.3 yield
2c(S) + 2c̃(U) + φ(U) ≤ 2 ·OPT(STLP(R)) + γ ·OPT(UFLLP(R)) ≤ 4.38L ·OPT(GCLR). �
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Algorithm 3 Algorithm for GCLR.

Input: An instance of G-CLR.
Output: A feasible solution to G-CLR.
1: Compute an optimal solution (x∗, y∗, z∗) to G-CLRLP.
2: for all i ∈ {1, . . . , k} do

3: Let ri ∈ Ci be a client with
∑

w∈F
b∗v←w

dv
maximum over all v ∈ Ci.

4: R = R ∪ {ri}
5: end for

6: Construct the graph G′ with extended edge costs crw = 1
2φw for w ∈ F .

7: Apply the algorithm of Goemans and Williamson to obtain a Steiner tree S with terminal
set R ∪ {r} in G′.

8: Apply Algorithm 1 on the instance CLR(R) with the minimum spanning tree computed in
the tree phase replaced by the Steiner tree S.

9: Return the computed solution.

4.3. Lower bound on the approximability

Observing that the approximation guarantee of Algorithm 3 depends on the cardinality of the
largest group, it is natural to ask whether the group version of CLR is indeed considerably harder
than the standard version or whether there is a constant factor approximation whose performance
is independent of any instance parameters. We answer this question by showing that there is no
approximation algorithm for G-CLR with a factor better than O(log(k)).

In fact, the inapproximability result already holds for the special case of G-CLR with unit
demands and unit capacity, which corresponds to the group version of (metric) uncapacitated
facility location (G-UFL), as well as for the uncapacitated case considered in [20]. It is derived
by a straightforward reduction from unweighted set cover.

Proposition 4.6. There exists a constant α > 0 such that there is no α log(k)-approximation
for G-UFL, unless P = NP .

Proof. We reduce the unweighted set cover problem, for which the same log(n)-approximability-
threshold has been proven by [19], to G-UFL. An instance of unweighted set cover consists of a
ground set H and a set system S ⊆ 2H together with costs cS for every S ∈ S. The task is to
choose a subset S ′ of S such that every element of the ground set is covered, i.e.,

⋃

S∈S′ S = H,
while minimizing the total cost

∑

S∈S′ cS .
We create a G-UFL instance by introducing a facility wS for each S ∈ S and setting φ(wS) :=

cS . For every h ∈ H and every S ∈ S with h ∈ S we introduce a client vhS . We also introcude
a client group Ch for each element h ∈ H of the ground set and let it contain all clients vhS .
Finally, we set cwS ,vhS′

= 0, whenever S = S′, and to ∞ otherwise.
Note that any feasible solution to this G-UFL instance with finite costs corresponds to a

feasible solution to set cover with the same costs, by selecting the sets corresponding to open
facilities. As for every client group there is an open facility with connection cost 0 to one of its
members, every set is covered. Likewise, every feasible solution to set cover induces a solution
to G-UFL by opening the facilities corresponding to the chosen sets. Since every element of the
ground set is covered, for every client group there is a member that has connection cost 0 to an
open facility. Thus, any γ-approximation for G-UFL (or the group version of UFL) immediately
implies a γ-approximation for set cover. Choosing the same α as used in [19] for set cover, we
conclude that there is no α log(k)-approximation for G-UFL (unless P = NP ), since this would
imply a α log(|H|)-approximation for set cover (note that |H| is the number of groups in the
constructed G-UFL instance). �
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Corollary 4.7. There exists a constant α > 0 such that there is no α log(k)-approximation for
G-CLR (even if u =∞), unless P = NP .

Proof. As G-UFL is a special case of G-CLR, the inapproximability also holds for the latter. The
reduction also works if u =∞, as connection costs are either 0 or ∞ and so serving all clients at
a facility on one tour instead of serving them separately does not change the costs. �

5. Location Routing with Cross-Docking

A major trade-off in classic vehicle routing applications is good capacity utilization versus low
cost of each tour conducted. Especially in applications where clients with small demands are
located far away from facilities, significant cost savings can be realized by allowing consolidation
tours. In such a tour, a vehicle is positioned at a client node to collect goods from other vehicles
passing through. Then, it starts on its own tour to distribute the goods collected. Essentially, the
demand of a tour of clients is consolidated at one node and forwarded to facilities via other tours
from there. The necessitated process of loading goods from one vehicle to another at a client
node is commonly referred to as cross-docking. The example in Figure 1 shows that cross-docking
may indeed lead to cost savings.

2 1
1

2

1

2 1
2

Instance network Solution 1, without
cross-docking

Solution 2, with
cross-docking

Figure 1. A CLR instance with u = 5. The numbers on the edges indicate the edge costs.
The demand at the central client is 1, the demand at the other clients is 3. The optimal routing
scheme in Solution 1 without cross-docking has total cost 12. The routing scheme in Solution 2
uses cross-docking to consolidate the tours at the central vertex. Its total cost is 10.

Formally, a solution with cross-docking to CLR is again a tuple (F,T ), where F ⊆ F is a set
of open facilities and T = {T1, . . . , Tk} is a set of tours, but T = TF ∪̇ TH is now partitioned into a
set of facility tours TF and a set of consolidation tours TH. We now require that (1a) every facility
tour visits an open facility, (1b) in every consolidation tour Ti ∈ TH, exactly one client hi ∈ V (Ti)
is designated as the hub consolidating the hub-demand dhi :=

∑

v∈C xvi of all clients served by the
tour, (2) the demand of every client (including the additional demand occurring if the client is
the hub of one or more consolidation tours) is served by the tours by which it is visited, and (3)
the demand served by a tour does not exceed u. More precisely, there are non-negative values xvi
such that xvi > 0 only if client v is visited by tour i and

∑k
i=1 xvi = dv +

∑

Ti∈TH :v=hi
dhi for all

v ∈ C, and
∑

v∈C xvi ≤ u for all i ∈ {1, . . . , k}. We say that a solution fulfills the single-vehicle-
to-client property if each client’s demand arrives on a single vehicle, which can be important in
practice. Note that, in contrast to the single-tour property, single-vehicle-to-client deliveries still
can be split up on earlier segments of the transportation route or even originate from distinct
facilities.
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5.1. Algorithm

We now describe how to adapt Algorithm 1 in order to allow for cross-docking. As before,
we start by computing a solution to a UFL instance as defined in Lemma 2.1 and a minimum
spanning tree for the modified graph G′ as defined in Lemma 2.2. Then, we modify our rerouting
procedure as stated formally in Algorithm 4.

Algorithm 4 Algorithm for CLR with cross-docking.

Input: An instance of CLR.
Output: A feasible solution to CLR with cross-docking.
1: UFL phase:

2: Create an UFL instance with edge costs c̃ = 2
uc as described in Lemma 2.1.

3: Apply the 1.5-approximation algorithm of Byrka and Aardal on this instance and let F1 be
the set of facilities opened in the resulting UFL solution.

4: Run tree and large demand phase of Algorithm 1.
5: Merge phase:

6: for all z ∈ F2 do

7: while Dz > u do

8: Let v ∈ V (Sz) such that Dv > u but Dw ≤ u for all children w of v.
9: Let I = {V (Sw) : w is a child of v} ∪ {{v}}.

10: For every R ∈ I find a pair (vR, zR) such that vR ∈ V (R) and zR ∈ F1 ∪ F2 and cvRzR

is minimal.
11: Order the sets in I non-decreasingly by cvRzR

and include the first
⌊
Dv

u

⌋
sets in It. Let

Is := I \ It.
12: for all R ∈ It do

13: Construct a tour visiting zR, v and all vertices in R by adding vRzR to the tree and
then doubling edges and short-cutting.

14: Add the tour to TF and remove the subtrees corresponding to the elements of R from
S.

15: end for

16: for all R ∈ Is do

17: Construct a tour visiting v and all vertices in R by doubling edges and short-cutting.

18: Add the tour to TH with hub v and remove the subtrees corresponding to the elements
of R from S.

19: end for

20: end while

21: Construct a tour from Sz by doubling all edges and short-cutting.
22: Add the tour to TF.
23: end for

24: Run clean-up phase of Algorithm 1.

As in Section 2.2, we consider a node v with Dv > u but Dw ≤ u for all children w of v and
let I be the set containing all subtrees Sw, with w being a child of v, and {v} itself. For each
of these sets R ∈ I, we determine a node vR with cheapest connection cost cvRzR

to an open
facility zR. We order the sets R ∈ I non-decreasingly by cvRzR

and define the set of sink trees
It as the first

⌊
Dv

u

⌋
elements of I. The remaining elements I \ It comprise the set of source trees

Is. Each sink tree R ∈ It is turned into a facility tour by doubling edges and inserting the open
facility closest to vR, paying at most twice the tree edges plus the connection cost of vR to its
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facility. Each source tree is turned into a consolidation tour with hub v by doubling the edges
and short-cutting.

Note that by this construction, each facility tour visits v. Hence, any spare capacity on a
facility tour can be filled by hub demands ensuing at v from consolidation tours. Furthermore,
the sum of all demands that cannot be served by the facility tours constructed is strictly less
than u.

5.2. Analysis

We first point out that our lower bounds from Section 2.1 remain valid when allowing cross-
docking. These results can easily be obtained by slight modification of the corresponding proofs
of Lemma 2.1 and Lemma 2.2, respectively.

Lemma 5.1. Consider a UFL instance as defined in Lemma 2.1. The cost of its optimal solution
(w.r.t. c̃) is at most the cost of an optimal solution to CLR with cross-docking (w.r.t. c).

Proof. Consider an optimal solution (F,T ) of CLR with cross-docking and demand assignments
xvi. As in the proof of Lemma 2.1, we can construct a flow f from the CLR solution as follows.
For every client v ∈ C and each tour Si ∈ T serving v, partition Si into two paths from the
facility or hub of the tour to the client and send xvi units of flow along either path. Since flow
is sent along two paths for every client/tour pair and all hub demand is forwarded along further
tours to facilities, the net flow transported to any client v ∈ C equals 2dv. We can thus apply
flow decomposition on f to obtain a set of client-facility paths PP and cycles PC, respectively,
with corresponding flow values fP for every P ∈ PP ∪ PC. On this flow decomposition, we can
apply the same arguments as in the proof of Lemma 2.1. �

Lemma 5.2. The cost of a minimum spanning tree in the graph G′ w.r.t. costs c′ as defined in
Lemma 2.2 is a lower bound on the cost of an optimal solution to CLR with cross-docking (w.r.t.
c).

Proof. Let (F,T ) be a feasible solution to CLR with cross-docking. Note that S =
⋃

T∈T T ∪E′
spans all vertices of the graph G′ since for every client there is a path from a facility to this client
along edges used in the tours. We can modify S such that it spans the graph G′ but every facility
opened in the CLR solution is incident to at most one edge in E by applying the technique from
the proof of Lemma 2.2 on the set of facility tours. This set contains a spanning tree of cost at
most the cost of the CLR solution. �

It turns out that guaranteeing demand u on each of the tours constructed in the rerouting
procedure yields an improved approximation guarantee for the merge phase of our algorithm.

Lemma 5.3. The merge phase of Algorithm 4 constructs a solution to CLR with cross-docking
with cost at most 2c′(S) + c̃(U) + φ(U) from the spanning tree S and the UFL solution U .

Proof. Observe that each facility tour constructed in the inner loop serves a total demand of
u. Thus, the central inequality in the proof Lemma 2.3 changes to

∑

x∈V (T ) c̃xy(x)dx ≥ 2cwz′ .

Accordingly, the connection cost of the UFL solution is paid only once. �

Intuitively, the improved bound in Lemma 5.3 arises from the tight capacity utilization of
vehicles that are paid for by the UFL solution. We immediately obtain a better approximation
guarantee for Algorithm 4 when using the 1.5-approximation of [7] for constructing the UFL
solution U .

Theorem 5.4. Algorithm 4 is a 3.5-approximation algorithm for CLR with cross-docking. If
dv ≤ u for all v ∈ C, the obtained solution satisfies the single-vehicle-to-client property.
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Again, in the case of MDCVR with φ ≡ 0, we can apply shortest path computations to solve
the UFL instance exactly.

Theorem 5.5. When solving the UFL instance by shortest path computation, Algorithm 4 is a
3-approximation algorithm for MDCVR with cross-docking. If dv ≤ u for all v ∈ C, the obtained
solution satisfies the single-vehicle-to-client property.

We remark that, while Algorithm 1 produces a solution without cross-docking, its approxi-
mation factor still holds for the case where cross-docking is allowed as all lower bounds used in
Theorem 2.4 remain valid. Thus, we obtain the following bounds on the improvements realizable
by cross-docking in CLR and MDCVR.

Corollary 5.6.

(1) Algorithm 1 is a 4.38-approximation for CLR with cross-docking and a 4-approximation
for MDCVR with cross-docking. The produced solution fulfills the single-assignment
property. If dv ≤ u for all v ∈ C, it fulfills the single-tour property.

(2) The value of an optimal solution for CLR without cross-docking is at most 4.38 times
the value of a solution with cross-docking. The value of an optimal solution for MDCVR
without cross-docking is at most 4 times the value of a solution with cross-docking.

We close this section by observing that the validity of the lower bounds extend to the cases
of prize-collecting as well as group location routing with cross-docking. We can thus combine
the merge phase of Algorithm 4 with the modifications introduced in Algorithm 2 for PC-CLR
and Algorithm 3 for G-CLR, respectively.

Theorem 5.7. There is a (2 + ρPC-UFL)-approximation algorithm for PC-CLR with cross-
docking. There is a 3-approximation algorithm for PC-MDCVR with cross-docking.

Theorem 5.8. There is a 3.5L-approximation algorithm for G-CLR with cross-docking. There
is a 3L-approximation algorithm for G-MDCVR with cross-docking.

6. Computational Study

In Section 2, we have proven that our polynomial time algorithm for CLR is guaranteed to
compute solutions which are at most 4.38 times as expensive as the optimum. In this section,
we shall see that the algorithm’s performance in practice exceeds this theoretical worst-case
estimate by far. We would like to emphasize that we do not expect our algorithm to compete
with (meta-)heuristic approaches without an approximation guarantee. Rather, the question
addressed in this computational study is how much solution quality on typical instances needs to
be sacrificed in exchange for polynomial running time and a worst case performance guarantee
across all instances.

For our experiments, we implemented Algorithm 1 with the following minor modifications:
First, instead of using the bifactor approximation algorithm of Byrka and Aardal in the UFL
phase, we implemented the greedy approximation algorithm of [28]. While the latter has a slightly
worse approximation guarantee of 1.861, it is purely combinatorial, avoiding randomization and
linear programming, and far easier to implement. Moreover, before applying Prim’s algorithm
(see e.g. [17]) in the tree phase, we set the opening costs of all facilities opened in the UFL phase
to zero; doing so turns out to yield slightly improved results, while it does not interfere with
our theoretical analysis of the algorithm. Finally, once the algorithm has computed all tours, we
added an option to improve each single tour by solving the corresponding travelling salesman
problem (TSP) using LKH, an implementation of the Lin-Kernighan heuristic described in [26].

Fact 1. Our implementation of Algorithm 1 has an approximation guarantee of 5.722.
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Fact 2. The running time of our implementation of Algorithm 1 is O(n2m), where n and m
denote the number of clients and facilities, respectively.

Fact 1 results directly from Lemma 2.3 and the approximation factor of the greedy algorithm
used in the UFL phase. The running time of the implementation is dominated by that of the
UFL phase, cf. [28]. Moreover, experiments in [26] indicate that the practical running time of
LKH is quite low (close to quadratic). Our study supports this observation, as the additional
running time when employing the option for a-posteriori tour optimization by LKH turns out to
be small, immeasurable on moderately sized instances.

We report results for two different sets of instances: The first, referred to as the bench-
mark set, comprises 45 instances appearing frequently in the location routing literature, see
the references appearing below. Here, we compare our results with those obtained by recent
(meta-)heuristic algorithms as well as best known solutions (bks) from the literature. While the
benchmark instances are moderate in size (20–200 clients, 5–20 facilities), our second test set
consists of 27 randomly generated instances which are considerably larger (up to 10000 clients
and 1000 facilities). Our implementation was done in C++ using GCC 4.5 under SUSE Linux
11.3, and all computations were conducted on an Intel Core2 Duo E8400 processor at 3GHz with
4GB RAM.

6.1. Benchmark instances

Key properties of the benchmark instances used are listed in Table 1. The first 36 instances were
introduced in [42], the last nine in [4]; we will refer to them as sets TB and B, respectively. While
set TB is adopted as-is, our set B contains only those instances introduced in [4] which do not
have a capacity limit on facilities, as only those mirror the location routing problem addressed
here.

The best known solution values reported for TB were obtained in [39]. For B, some proven
optima were already reported in [4], while the remaining instances were solved to proven opti-
mality in [2], as reported in [14].

Table 2 contains gaps to bks and cpu times for our implementation of Algorithm 1, with
and without a-posteriori optimization of tours using LKH, compared to those of four other
algorithms for CLR: a greedy randomized adaptive search procedure (GRASP) proposed in [38]; a
Lagrangean relaxation granular tabu search (LRGTS) developed in [39]; a two-phase tabu search
(TS) studied in [42]; and finally an exact branch-and-cut-and-price approach (BCP) proposed in
[2]. Results for algorithms GRASP and LRGTS are stated in [39] for all 45 benchmark instances,
while results for TS and BPS are only available in the corresponding works for the instances in
TB and B, respectively.

Please note that our algorithms, GRASP and LRGTS, TS, and BCP were tested on different
machines, so the cpu times stated should not be compared directly. Since all tests were performed
on modern desktop computers, however, we do believe that a comparison of the magnitudes of
running times remains feasible.

On average, our approximation algorithm delivers solutions with cost about 19% above the
bks value. This figure improves to 10% when LKH is used to optimize tours a-posteriori. More-
over, the running time of our algorithm is negligible on these instances, regardless of whether
LKH is used or not. In comparison, the (meta-)heuristic algorithms GRASP, LRGTS, and TS
compute solutions with objective 1–4% above that of bks on average, while their running times
vary strongly from 1–7 seconds (TS) to up to 7 minutes (GRASP). The exact approach (BCP)
is able to find optimal solutions for all instances in B, while its running time is naturally very
high (up to several hours).
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name #facilities #clients ∅ demand vehicle capacity bks value

111112 10 100 15.17 150 1468.40
111122 20 100 15.00 150 1449.20
111212 10 100 14.39 150 1396.46
111222 20 100 15.19 150 1432.29
112112 10 100 15.28 150 1167.53
112122 20 100 14.32 150 1102.70
112212 10 100 15.06 150 793.97
112222 20 100 14.73 150 728.30
113112 10 100 14.81 150 1238.49
113122 20 100 15.10 150 1246.34
113212 10 100 14.73 150 902.38
113222 20 100 14.78 150 1021.31
121112 10 200 14.95 150 2281.78
121122 20 200 15.15 150 2185.55
121212 10 200 14.81 150 2234.78
121222 20 200 14.94 150 2259.52
122112 10 200 15.24 150 2101.90
122122 20 200 14.47 150 1709.56
122212 10 200 14.69 150 1467.54
122222 20 200 15.21 150 1084.78
123112 10 200 15.13 150 1973.28
123122 20 200 14.66 150 1957.23
123212 10 200 15.09 150 1771.06
123222 20 200 15.29 150 1393.62
131112 10 150 14.79 150 1866.75
131122 20 150 14.93 150 1841.86
131212 10 150 15.02 150 1981.37
131222 20 150 14.71 150 1809.25
132112 10 150 14.95 150 1448.27
132122 20 150 14.75 150 1444.25
132212 10 150 14.91 150 1206.73
132222 20 150 15.15 150 931.94
133112 10 150 14.95 150 1699.92
133122 20 150 14.93 150 1401.82
133212 10 150 15.18 150 1199.51
133222 20 150 14.91 150 1152.86
Chr69-100x10 10 100 14.58 200 842.90∗

Chr69-50x5 5 50 15.54 160 565.60∗

Chr69-75x10 10 75 18.19 160 861.60∗

Gas67-22x5 5 22 463.14 4500 585.11∗

Gas67-29x5 5 29 439.66 4500 512.10∗

Gas67-32x5 5 32 917.81 8000 562.20∗

Gas67-32x5-2 5 32 917.81 11000 504.30∗

Gas67-36x5 5 36 25.00 250 460.40∗

Min92-27x5 5 27 311.48 2500 3062.00∗

Table 1. Properties of benchmark instances and cost of a best known solution (bks, ∗ denotes
proven optimality). The bks values for the first 36 instances are from [39], those for the last
nine from a series of papers by [2], [4], and [42].

Since gaps to bks for GRASP and LRGTS are no greater for the instances in TB than for
those in B, where optimality has been proven, it seems reasonable to assume that the gap between
bks and an optimum solution is generally small. In this case, our algorithm vastly outperforms
its theoretical approximation guarantee of 5.722. When employing a simple post-optimization
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instance
approx approx+tsp GRASP LRGTS TS/BCP

gap cpu gap cpu gap cpu gap cpu gap cpu

111112 0.207 0.00 0.079 0.00 0.039 32.40 0.015 3.30 0.060 6.01
111122 0.235 0.00 0.117 0.00 0.054 40.70 0.016 6.50 0.057 5.71
111212 0.133 0.00 0.043 0.00 0.019 27.60 0.011 4.20 0.034 3.36
111222 0.342 0.00 0.246 0.00 0.035 36.20 0.008 7.40 0.055 5.52
112112 0.164 0.00 0.076 0.00 0.028 27.70 0.017 6.90 0.054 5.45
112122 0.133 0.00 0.095 0.01 0.019 34.30 0.012 6.80 0.027 2.66
112212 0.086 0.00 0.041 0.00 0.025 22.50 0.024 5.20 0.039 3.92
112222 0.119 0.00 0.070 0.00 0.027 37.30 0.020 5.90 0.017 1.68
113112 0.183 0.00 0.090 0.00 0.028 21.50 0.024 4.30 0.063 6.34
113122 0.201 0.00 0.131 0.00 0.021 36.00 0.008 6.30 0.023 2.26
113212 0.140 0.00 0.082 0.00 0.011 20.30 0.012 4.00 0.020 2.04
113222 0.166 0.00 0.126 0.00 0.004 38.40 0.007 4.90 0.023 2.05
131112 0.253 0.01 0.142 0.01 0.075 113.00 0.042 12.50 0.072 7.19
131122 0.230 0.01 0.110 0.01 0.026 161.40 0.018 18.50 0.028 2.77
131212 0.153 0.00 0.067 0.01 0.027 100.00 0.015 11.10 0.021 2.06
131222 0.206 0.01 0.102 0.01 0.026 132.40 0.006 15.80 0.025 2.53
132112 0.163 0.01 0.081 0.01 0.041 117.70 0.000 22.00 0.074 7.43
132122 0.301 0.01 0.230 0.02 0.009 166.10 0.034 28.00 0.024 2.39
132212 0.101 0.01 0.050 0.00 0.028 106.70 0.004 14.60 0.020 2.04
132222 0.170 0.00 0.123 0.01 0.010 142.40 0.005 13.70 0.018 1.75
133112 0.155 0.01 0.098 0.00 0.022 92.80 0.017 17.90 0.037 3.68
133122 0.127 0.01 0.075 0.01 0.017 128.40 0.016 18.50 0.062 6.17
133212 0.128 0.00 0.068 0.01 0.020 88.50 0.014 14.50 0.054 5.43
133222 0.081 0.00 0.029 0.01 0.068 134.90 0.008 14.30 0.026 2.55
121112 0.217 0.01 0.145 0.01 0.055 308.00 0.016 32.60 0.053 4.28
121122 0.139 0.01 0.050 0.02 0.047 410.00 0.010 39.60 0.012 1.20
121212 0.191 0.01 0.105 0.02 0.017 311.40 0.012 32.80 0.024 2.39
121222 0.225 0.02 0.122 0.02 0.042 418.90 0.004 40.20 0.047 4.26
122112 0.145 0.02 0.088 0.02 0.017 338.00 0.009 47.20 0.027 2.70
122122 0.179 0.02 0.125 0.02 0.057 370.00 0.017 59.30 0.045 4.53
122212 0.107 0.01 0.050 0.01 0.020 242.70 0.014 36.70 0.056 5.60
122222 0.119 0.01 0.049 0.00 0.010 308.50 0.005 38.70 0.026 2.60
123112 0.170 0.01 0.081 0.01 0.036 282.80 0.005 41.60 0.042 4.20
123122 0.126 0.01 0.050 0.02 0.068 399.20 0.015 51.80 0.023 2.31
123212 0.183 0.02 0.146 0.02 0.010 199.00 0.009 34.00 0.060 6.00
123222 0.182 0.01 0.134 0.01 0.011 296.30 0.005 43.20 0.015 1.52
Chr69-100x10∗ 0.283 0.00 0.108 0.00 0.022 25.50 0.000 28.20 0.000 13074.7
Chr69-50x5∗ 0.220 0.00 0.079 0.00 0.059 2.30 0.037 2.40 0.000 112.9
Chr69-75x10∗ 0.177 0.00 0.104 0.00 0.000 9.80 0.002 10.10 0.000 3413.5
Gas67-22x5∗ 0.244 0.00 0.021 0.00 0.000 0.20 0.004 0.20 0.000 6.0
Gas67-29x5∗ 0.279 0.00 0.165 0.00 0.006 0.40 0.000 0.40 0.000 178.2
Gas67-32x5∗ 0.245 0.00 0.179 0.00 0.017 0.60 0.040 0.60 0.000 63.4
Gas67-32x5-2∗ 0.205 0.00 0.123 0.00 0.000 0.50 0.001 0.50 0.000 117.9
Gas67-36x5∗ 0.448 0.00 0.094 0.00 0.000 0.80 0.035 0.70 0.000 2.9
Min92-27x5∗ 0.181 0.00 0.115 0.00 0.000 0.40 0.001 0.30 0.000 47.0

∅ 0.188 0.01 0.100 0.01 0.026 128.54 0.013 17.96
0.038 3.74
0.000 1890.69

Table 2. Gaps to best known solution (bks) and cpu times for various algorithms on benchmark
instances (∗ signifies proven optimality of bks). Results for algorithm TS are only available for
the first 36 instances, those for BCP only for the last nine, hence they share a column. The
last row contains average values, with those for TS (first 36 instances) and BCP (last nine) one
above the other.
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step using LKH, it yields solutions within a factor of 1.25 of bks on all instances, within 1.1 on
average. Moreover, its polynomial running time is reflected in very small cpu times on these
benchmark instances. When compared to (meta-)heuristic algorithms, solution quality suffers
only by a single-digit percentage on average, while cpu times are improved by several magnitudes.
Moreover, recall that this improvement in running time comes in addition to the advantage of
having a guarantee on solution quality across all possible instances, including malicious examples
where (meta-)heuristics might perform very poorly. In light of its extremely fast running time,
our algorithm can also be used to compute feasible start solutions for other search heuristics.

6.2. Larger, randomly generated instances

The extremely fast running time of our algorithm on benchmark instances, which are all of
moderate size, suggests that our algorithm is suitable for larger instances as well. To the best of
our knowledge, no instances of CLR which are significantly larger than those in the benchmark
set have been solved in the literature; hence, we generated a random test set from three input
parameters: size, facility opening cost, and vehicle capacity.

Instances were generated for three sizes: M (1000 clients, 100 facilities), L (5000, 500), and
XL (10000, 1000). Facility opening costs were drawn uniformly at random from three different
ranges: [0; 100], [100; 200], and [200; 500]. Vehicle capacities were set to either 9, 100, or 1000,
while client demands were drawn uniformly at random from [0; 10] in all cases. Finally, x- and y-
coordinates for clients and facilities were drawn uniformly at random from [0; 100], and Euclidean

distances d(i, j) :=
√

(xj − xi)2 + (yj − yi)2 are used in all instances.
All possible combinations of the three input parameters yield 27 different instances, which

we name by their size, indexed with their choice of facility opening cost and vehicle capacity.
E.g., M2,2 is an instance with 1000 clients, 100 facilities, facility opening costs in [100; 200], and
vehicle capacity 100.

Key properties of the solutions computed by our algorithm, again with and without LKH,
together with cpu times are depicted in Table 3. Cpu time for the largest instances is at most
about twenty minutes. On average, using LKH to optimize tours a-posteriori reduces total cost
by about 5%, while increasing cpu time by roughly 10%. Naturally, the effect of using LKH on
both solution quality and cpu time is more significant when vehicle capacity is large (i.e., tours
are long).

Since we did not compute lower bounds, we have no way to assess solution quality. However,
we encourage the authors of other algorithms for CLR to perform experiments on our random
test set, which we will gladly provide upon request, and compare their results to ours.

7. Summary & Outlook

Approximation algorithms combine efficient running times with provable a priori guarantees on
solution quality. We applied this concept to several versions of capacitated location routing
problems, which extend classical vehicle routing problems by depot location decisions. Variants
of our algorithms also yield improved approximation guarantees for multi-depot capacitated
vehicle routing.

We constructed a 4.38-approximation algorithm for capacitated location routing with arbi-
trary client demands, the first constant-factor approximation known for this problem. For the
case of multi-depot capacitated vehicle routing, our algorithm improves the best known approxi-
mation ratio from 5 to 4. We then extended our algorithms to practically relevant generalizations
of these problems, namely a prize-collecting version with penalties for non-served clients, and a
group version, where one client from each group needs to be chosen. In all three cases, a vari-
ant where cross-docking is allowed leads to better approximation factors. All algorithms in our
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name #open fac. fac. cost #tours
approx approx+tsp

cost cpu cost cpu

M1,1 8 31.8 10 3343.6 1.61 2478.9 1.65
M1,2 13 79.4 61 4111.6 0.95 3499.1 1.00
M1,3 33 779.4 760 13563.4 0.47 13478.9 0.55
M2,1 1 102.6 6 3520.2 1.62 2620.8 1.67
M2,2 5 528.2 57 5098.9 0.92 4468.7 0.98
M2,3 18 2157.9 760 18086.2 0.52 17997.0 0.62
M3,1 1 211.0 6 3656.8 0.83 2779.3 0.88
M3,2 3 665.8 56 6012.0 1.25 5345.9 1.32
M3,3 10 2370.3 757 23008.8 0.67 22926.8 0.76
L1,1 16 42.1 36 7344.7 120.44 5463.7 121.95
L1,2 47 337.3 289 9433.5 50.83 8106.1 59.29
L1,3 128 2426.4 3709 32473.0 23.33 32325.9 35.90
L2,1 2 206.0 30 8477.0 163.30 6624.8 165.08
L2,2 10 1063.7 273 13435.5 65.84 12059.5 73.81
L2,3 50 5900.5 3700 50380.6 28.81 50229.7 41.35
L3,1 1 209.2 29 8835.3 210.84 6966.5 213.44
L3,2 6 1273.0 271 15694.9 89.85 14372.4 97.81
L3,3 31 7093.3 3696 64058.9 38.12 63905.1 50.94
XL1,1 33 52.7 76 10400.0 742.56 7754.7 749.91
XL1,2 78 405.1 583 13752.3 314.78 11872.0 369.47
XL1,3 229 3394.8 7510 48879.5 136.27 48677.1 214.23
XL2,1 4 407.6 57 12018.2 881.25 9296.1 886.83
XL2,2 17 1752.7 555 20133.7 382.92 18159.1 434.58
XL2,3 82 9264.9 7490 77796.3 164.96 77580.6 243.40
XL3,1 2 409.7 57 13091.1 1317.87 10389.9 1322.69
XL3,2 11 2255.2 552 23304.5 518.57 21341.5 570.46
XL3,3 48 10593.1 7483 101676.0 227.77 101454.0 307.12

∅ 32.85 2000.51 1439.59 22651.35 203.23 21562.00 221.03

Table 3. Solution properties, costs, and cpu times for random instances.

framework are based on computing an uncapacitated solution via a minimum spanning tree or
Steiner tree, and rerouting excess demand according to the solution of a scaled facility location
problem (or along shortest paths for multi-depot capacitated vehicle routing).

Finally, we demonstrated in a computational study that our algorithm for CLR is also of
practical relevance. Our computational experiments revealed that the actual solution quality
achieved by our algorithm is much closer to optimality than suggested by the theoretical bounds.
On a benchmark set of instances from the literature, our algorithm for CLR computes solutions
with cost within a factor of 1.1–1.2 of best known solutions on average. Moreover, we demon-
strated that our algorithm is extremely fast, running in negligible time on benchmark instances.
Thus, it might be a valuable tool for solving large-scale problems.

A further investigation of the algorithms in this paper would be of practical as well as theo-
retical interest: Given its fast running time, using its solution as a starting point in local search
frameworks might lead to improved results of those heuristics without a significant increase in
running time. Further experiments could be conducted on extended location routing models,
e.g., with capacities on facilities, or heterogeneous vehicle fleets. Although the theoretical ap-
proximation guarantee might be lost in these cases, the algorithm could be adapted to still be
an efficient heuristic for those problems.

On the theoretical side, it might be possible to sharpen our analysis and prove stronger
theoretical approximation guarantees. Moreover, our paper does not address the issue of lower
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bounds on the possible approximation factor for basic capacitated location routing. It is easy
to see that it cannot be approximated better than by a factor of 1.5 (unless P = NP ), which
is the best known lower bound for approximating a single-depot vehicle routing problem with
uniform vehicle capacities [22]. However, an analysis that takes into account both the location
and routing aspects of the problem might lead to stronger inapproximability results.

Moreover, our algorithms strongly rely on the technique of tree-to-tour-conversion, thereby
incurring an additional factor of 2 in their approximation ratios. It would be interesting to find
out if a more tour-specific approach, e.g., the tour partitioning techniques widely used for vehicle
routing problems [33], could lead to better approximation factors.

The cross-docking model considered in this work assumes that the cost of actual cross-
docking operations is negligible, and the operations can be performed at arbitrary client nodes.
Deriving approximation algorithms for the case where cross-docking operations incur cost and
are restricted to certain cross-docking facilities is an open problem. In Section 5, we point out
that the possible improvement due to cross-docking is bounded by a factor of at most 4.38.
We suspect the actual bound to be much smaller and leave its determination as a further open
question for future research.

Acknowledgements: We would like to thank two anonymous referees, the guest editor, and
the editor in chief for motivating us to conduct the computational study in Section 6.
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