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Abstract. We study the problem of distributing a file initially located at a server
among a set of peers. Peers who downloaded the file can upload it to other peers.
The server and the peers are connected to each other via a core network. The
upload and download rates to and from the core are constrained by user and
server specific upload and download capacities. Our objective is to minimize
the makespan. We derive exact polynomial time algorithms for the case when
upload and download capacities per peer and among peers are equal. We show
that the problem becomes strongly NP-hard for equal upload and download ca-
pacities per peer that may differ among peers. For this case we devise a poly-
nomial time (1 + 2

√
2)-approximation algorithm. To the best of our knowledge,

neither NP-hardness nor approximation algorithms were known before for this
problem.

1 Introduction

In the past decade, the concept of data distribution based on peer-to-peer overlay
networks has become increasingly popular. A significant fraction of Internet traffic
is nowadays generated by peer-to-peer file sharing applications [3]. The key princi-
ple underlying peer-to-peer file sharing is that peers who downloaded parts of the file
(chunks), start to assist the server in uploading them to other peers. A chunk is the small-
est indivisible unit w.r.t. the download source, that is, a peer cannot download parts of a
chunk from different sources. It is assumed that the server and the peers are connected
via a core network (Internet). The upload and download rates to and from the core are
constrained by peer and server specific upload and download capacities. The core itself
is usually overprovisioned, thus, there are no capacity constraints present.

While in the past many algorithms and protocols have been studied in the literature
for the important problem of optimizing the download process [1,9,10], a systematic
performance evaluation of the proposed solutions with respect to optimal solutions has
not received similar attention. In this paper, we address the fundamental problem of
minimizing the total completion time (makespan) of distributing a file among a set of
peers in a peer-to-peer network. Due to the intrinsic difficulty of the problem, in this
work we restrict ourselves to the case of a single chunk only. To the best of our knowl-
edge, even for this restricted case there are no algorithms with provable performance
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guarantee known. While the case of multiple chunks still eludes us, we see our study as
an important first step towards understanding the general peer-to-peer file distribution
problem.

The Model. An instance of this problem is described by a tuple I = (N, cd, cu), where
N = {0, . . . , n} is the set of peers, cd = (cd

0, . . . , c
d
n) ∈ Qn+1

≥0 is the vector of download
capacities from the core network and cu = (cu

0, . . . , c
u
n) ∈ Qn+1

≥0 is the vector of upload
capacities to the core network. We will identify the server with peer 0 and assume
that only the server initially owns a file of unit size, which is not divided into several
chunks. See Figure 1 for an illustration. A feasible solution S =

(
si, j

)
i, j∈N is a family

of integrable functions si, j : R≥0 → R≥0, i, j ∈ N, where si, j(t) denotes the sending
rate of peer i to peer j at time t. We require that every peer i ∈ N receives its data
from a unique peer, denoted by p(i) � i: sk,i(t) = 0 for all k � p(i) and all t ∈ R≥0.
In addition, only peers that possess the file can send with a positive rate: si, j(t) = 0

for all i, j ∈ N \ {0}, t ∈ R≥0 with
∫ t

0

∑
k∈N sk,i(τ) dτ < 1. Finally, the sending rates

have to obey download and upload capacity constraints:
∑

j∈N si, j(t) ≤ cu
i for all i ∈ N,

t ∈ R≥0 and sp( j), j(t) ≤ cd
j for all j ∈ N, t ∈ R≥0. We denote by xi(t) =

∫ t

0
sp(i),i(τ) dτ the

proportion of the file owned by peer i ∈ N\{0} at time t. For notational convenience, we
set x0(t) = 1 for all t ∈ R≥0. We denote by Ci = inf{t ∈ R≥0 : xi(t) = 1} the completion
time of peer i. The makespan of a solution S is then defined as M = maxi∈N\{0}Ci. If an
instance satisfies cu

i = cd
i = cu

j = cd
j for all i, j ∈ N \{0} we speak of an instance with

homogeneous symmetric capacities. If an instance satisfies cu
i = cd

i for all i ∈ N (but
possibly cu

i � cu
j for some i, j ∈ N\{0}) we speak of heterogeneous symmetric capacities.

In both cases, we only write I = (N, c).
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Fig. 1. Graphical representation of the file distribution problem we consider

Previous Work. There is an enormous body of work on the (minimum time) broad-
casting problem, multicast problem, and gossiping problem, see [6] for a survey. In the
broadcasting problem, the task is to disseminate a message from a source node to the
rest of the nodes in a given communication network as fast as possible, see Ravi [15].
When the message needs to be disseminated only to a subset of the nodes, this task is
referred to as multicasting, see Bar-Noy et al. [2] for approximation algorithms. In the
gossiping problem, several nodes possess different messages and the goal is to transmit
every message to every node.

The usual underlying communication model for these problems is known as the tele-
phone model: a node may send a message to at most one other node in each round, and
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it takes one unit of time (round) to pass a message. For complete graphs on n nodes,
this process terminates in �log2(n + 1)	 rounds. It is known that for arbitrary communi-
cation graphs, the problem of computing an optimal broadcast in the telephone model
is NP-hard [5], even for 3-regular planar graphs [12].

Khuller et al. [7] study the problem of broadcasting in heterogeneous networks (see
Bar-Noy et al. [2] for the corresponding multicast problem). They extend the tele-
phone model by allowing the transmission time of a message to depend on the sender.
They prove that it is NP-hard to minimize the makespan and present an approximation
scheme.

Note that in contrast to both models, in our model a peer may upload the file to an
arbitrary number of peers simultaneously provided the capacity constraints are satisfied.
Moreover, the transfer time between any two peers is not given as part of the instance
but determined by the sending rates of a feasible solution. In fact, the model by Khuller
et al. [7] for broadcasting in heterogeneous networks reduces to a special case of our
model. If cd

i ≥ max j∈N cu
j for all i ∈ N, there is always an optimal solution in which no

peer will send the file to more than one other peer at a time, thus, the time to transfer the
file from one peer to another only depends on the sender’s upload capacity. In general,
however, it may be beneficial to serve multiple peers simultaneously as illustrated in
the following example. Peer 0 with capacity cu

0 = 2 initially owns the file, and there
are two further peers with capacities cu

i = cd
i = 1, i = 1, 2. The optimal solution is

s0,1(t) = s0,2(t) = 1 ∀t ∈ [0, 1) with a makespan of M∗ = 1. On the other hand,
restricting peers to upload to at most one other peer at a time results in an optimal
makespan of 2.

Mundinger et al. [13] studied a peer-to-peer file distribution problem, where a file
is subdivided in multiple parts and the goal is to disseminate the complete file to every
peer as fast as possible. The crucial difference to our model is that they assume that
the upload capacity of a peer is equally shared among concurrent uploads. Under this
fair sharing assumption they prove that for homogeneous capacities a simple greedy
algorithm is optimal. For our model we prove a similar result (though for a single in-
divisible file) without the fair-sharing assumption. Our proof is quite involved since
dropping the fair sharing assumption considerably complicates matters. For heteroge-
neous capacities, to the best of our knowledge, neither approximation algorithms nor
hardness results were known before.

Also related are works on the so called fluid limit model, where the number of file
parts tends to infinity [4,8,11,13,14].

Summary of the Results and Used Techniques. We first study the peer-to-peer file
distribution problem for the case of homogeneous symmetric (unit) capacities. We show
that a greedy algorithm computes an optimal solution with makespan �log2(n + 1)	.
Although similar results for the same algorithm have been obtained before, e.g. by
Mundinger et al. [13], or in the broadcast literature, our result holds for a more general
model (dropping the fair sharing assumption of [13] and dropping the telephone model).
For the case of unit peer capacities and an arbitrary integer server capacity, we propose
a polynomial time algorithm (that possibly splits up server capacity) and prove its op-
timality. We also give a closed-form expression of the minimal makespan. If peer ca-
pacities are heterogeneous and symmetric we show that the peer-to-peer file distribution
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problem becomes strongly NP-hard. A key ingredient of the reduction (from 3-partition)
is the capacity expansion lemma (Lemma 3.1) that provides an upper bound on the to-
tal amount of data downloaded at any point in time. In light of the hardness, we then
study approximation algorithms. We first devise a polynomial time 2

√
2-approximation

algorithm for instances with heterogeneous, symmetric capacities in which the upload
capacity of the server is larger than the download capacity of any other peer. For smaller
server capacities a slight modification of our algorithm gives a (1+2

√
2)-approximation.

Our algorithm proceeds in two phases; in a first phase, we use a time-varying resource
augmentation to construct a so called

√
2-augmented solution that violates the capacity

constraints of the peers at any point in time by a factor of at most
√

2. By exploit-
ing again our capacity expansion lemma, we prove that the makespan of the thus con-
structed augmented solution is at most a factor of 2 away from the optimal makespan of
the original instance. We then rescale the relaxed solution to obtain a feasible solution
with makespan less than a factor 2

√
2 away from the optimal makespan.

2 Homogeneous Symmetric Capacities

In this section we consider the homogeneous symmetric setting, i.e. cu
i = cd

i = ci = 1
for all i ∈ N \ {0}. The server has a capacity of cu

0 = c. For the simplest case, c = 1, we
propose a Greedy procedure: At each point in time, any peer that already owns the file
uploads it to exactly one other peer, which takes one unit of time. Thus in each step, the
number of peers owning the file is doubled, resulting in a makespan of

⌈
log2(n + 1)

⌉
.

Lemma 2.1. If ci = 1 for all i ∈ N, Greedy computes an optimal solution. The optimal
makespan is

⌈
log2(n + 1)

⌉
.

To prove this, we consider an arbitrary solution and modify it in such a way that in the
time interval [0, 1) only one peer is served, without increasing the makespan. Iterating
this argument for later points in time and other peers proves that there is an optimal
solution with the Greedy structure. More specifically, let peer 1 be a peer that finishes
its download first in the given solution. We serve this peer in [0, 1) and change the
sending rates from the server to the other peers in such a way that the fraction of the
file they own at time C1 is the same as in the given solution. This can be done without
violating the capacities, and obviously the makespan is not increased. A detailed proof
will be included in the full version of the paper.

We now consider the case where c is an arbitrary integer, and start with a Lemma
stating that in this case there always is an optimal solution that uses fair-sharing, i.e.
whenever peer 0 serves several peers simultaneously, all of them are served with equal
rate. The proof is quite involved, and the integrality condition on c is crucial. To see
this, consider an example with c = 3/2 and n = 4. In an optimal solution, the server
serves peer 1 in [0, 1) and peer 2 in [1, 2) with a rate of 1 each and peer 3 with a rate
of 1/2 in [0, 2). Peer 4 is served by peer 1 in [1, 2), resulting in a makespan of M∗ = 2.
The best solution that uses fair-sharing, however, has a makespan of M = 7/3: The
server serves peers 1 and 2 in [0, 4/3) with a rate of 3/4 each, and peer 3 and 4 are both
served at a rate of 1 in [4/3, 7/3) by the server and peer 1.
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Lemma 2.2. For any instance I = (N, (ci)i∈N) with c0 = c ∈ N and ci = 1 ∀ i =
1, . . . , n, there always exists an optimal solution that uses fair sharing. Also, the sending
rates si, j are piecewise constant with discontinuities only at points in time where some
peer finishes its download.

[Proof will be included in the full version of the paper.]
In the same setting, we also know that the server always serves groups of c peers jointly,
except in the beginning, where a group of at least c and most 2c peers is served.

Lemma 2.3. For any instance I = (N, (ci)i∈N) with c0 = c ∈ N and ci = 1 ∀ i =
1, . . . , n, there always exists an optimal solution where only at the beginning more than
c peers are served simultaneously.

[Proof will be included in the full version of the paper.]
Summing up, we know so far that there always is an optimal solution where peer 0 at the
beginning serves a set of peers N1, c ≤ |N1| < 2c, in |N1| / c time units, then some sets
N2, . . . ,Nk−1 with |Nj| = c ∀ j ≥ 2, in one time unit each, and finally a set Nk containing
at most c peers, in another unit of time.

We are now ready to present an exact algorithm for this special case and prove its
correctness. The algorithm is an extended Greedy procedure: Set h =

⌈
log2(n/c + 1)

⌉
.

If n < c(2h − 1 + 2h−1), let |N1| = ⌈(
n − c(2h−1 − 1)

)
/2h−1⌉ and k = h, otherwise let

|N1| = c and k = h + 1. Let |Nj| = c for j = 2, . . . , k. The server serves N1 in [0, |N1|/c)
and Nj in [|N1|/c+ j− 2, |N1|/c+ j− 2). Meanwhile, any peer that finishes its download
starts serving other peers greedily.

Theorem 2.4. For any instance I = (N, (ci)i∈N) with c0 = c ∈ N and ci = 1 ∀ i =
1, . . . , n, the extended Greedy yields an optimal solution. The optimal makespan is

M∗ =

⎧
⎪⎪⎨
⎪⎪⎩

h − 1 + 1
c

⌈
n−c(2h−1−1)

2h−1

⌉
if n ∈ [c(2h − 1), c(2h − 1 + 2h−1))

h + 1 if n ∈ [c(2h − 1 + 2h−1), c(2h+1 − 1)) ,

where h =
⌈
log2(n/c + 1)

⌉
.

Proof. For j = 1, . . . , k, we denote by Ñ j the set of peers that are directly or indirectly
served by a peer in Nj:

Ñ j = {i ∈ N : p�(i) = i′ for some i′ ∈ Nj, � ∈ N0}
Here p�( j) means that the function p is applied � times to j. W.l.o.g. we can assume
that in the solution produced by our algorithm |Ñ j| = c · 2k− j for all j = 2, . . . , k, i.e.
all sets Ñ j for j ≥ 2 are as big as possible. If this is not the case we can move peers
from Ñ1 to these sets. The lemmas above state that there also is an optimal solution with
this structure and c ≤ |N1| < 2c. In the argumentation below, we therefore restrict to
solutions of this structure.

The integer h is chosen such that c(2h − 1) ≤ n < 2h+1 − 1. We first consider the
case where n ≥ c(2h − 1 + 2h−1). Our algorithm sets k = h + 1 and |N1| = c. The
maximum number of peers that can be served like this is c(2h+1 − 1) > n, so indeed
all peers are served within a makespan of h + 1. Assume that in an optimal solution
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only k = h sets are served by the server. The maximum number of peers served in this
way is |N1| · 2h−1 + c(2h−1 − 1) < c(2h + 2h−1 − 1) ≤ n, so not all peers can be served,
contradiction! Therefore in the optimal solution it must hold that k = h+1 and |N1| ≥ c,
proving that the solution produced by our algorithm is optimal.

If n < c(2h − 1 + 2h−1), the size of N1 in an optimal solution (with |Ñ j| = c · 2k− j for
j ≥ 2) has to be chosen such that |Ñ1| = n − c(2h−1 − 1) ≤ |N1| · 2h−1, i.e.

|N1| = min

{

� ∈ N : � ≥ n − c(2h−1 − 1)
2h−1

}

=

⌈
n − c(2h−1 − 1)

2h−1

⌉

,

which is exactly how the algorithm chooses N1. It is obvious that choosing k ≤ h − 1
does not lead to a solution where all peers are served, and choosing k ≥ h + 1 leads to a
solution with a makespan of at least h+1. Since the solution produced by our algorithm
has a makespan of t1 + k − 1 ≤ h + 1 this proves the correctness of our algorithm. �

3 Heterogeneous Symmetric Capacities

In this section, we consider the case of heterogenous and symmetric capacities. First, we
show that the peer-to-peer file distribution for heterogenous symmetric peers is strongly
NP-hard. Then, we devise an algorithm that approximates the optimal makespan by a
factor 1 + 2

√
2. Our hardness and approximation results rely on a useful lemma that

bounds the work done in any feasible solution. For a feasible solution, let ui(t1, t2) and
zi(t1, t2) denote the total upload and the idleness of peer i in time interval [t1, t2], defined
as ui(t1, t2) =

∫ t2
t1

∑
j∈N si, j(τ) dτ and zi(t1, t2) =

∫ t2
max{t1,Ci}

(
ci −∑

j∈N si, j(τ)
)

dτ. For t ≥ 0,
we define X(t) =

∑
i∈N xi(t) and Z(t) =

∑
i∈N zi(0, t).

Lemma 3.1 (Capacity Expansion Lemma). Let I = (N, (ci)i∈N) be an instance of the
peer-to-peer file distribution problem with c = maxi∈N ci. Then, for all solutions S of I,
the following two hold:

1. ui(t1, t2) + zi(t1, t2) ≤ max
{
0,

(
t2 − t1 − 1−xi(t1)

ci

)
ci

}
= max

{
0, (t2 − t1) ci − 1 + xi(t1)

}

for all peers i ∈ N and all times 0 ≤ t1 < t2.
2. X(k/c) + Z(k/c) ≤ 2k for all k ∈ N. This inequality is strict if there is i ∈ N with

ci < c and 0 < Ci ≤ k/c.

Proof. To see 1., note that for any peer i with Ci ≤ t1, the upload rate (integrand of the
total upload) and the idle rate (integrand of the idleness) sum up to ci for all t ∈ [t1, t2],
thus ui(t1, t2)+zi(t1, t2) ≤ (t2− t1) ci. If xi(t1) < 1, peer i needs at least

(
1− xi(t1)

)
/ci time

units to finish its download, thus only a time interval of length t2 − t1 − (
1 − xi(t1)

)
/ci

remains for the upload and the claimed inequality follows.
We prove 2. by induction over k. The inequality is trivial for k = 0. So, let us assume

that for k ∈ N, we have X
(
(k − 1)/c

)
+ Z

(
(k − 1)/c

) ≤ 2k−1. Using 1., we obtain the
inequality

X(k/c) − X((k−1)/c) + Z(k/c) − Z((k−1)/c) =
∑

i∈N
ui((k−1)/c), k/c) + zi((k−1)/c), k/c)

≤
∑

i∈N
max{0, ci/c − 1 + xi((k − 1)/c)} ≤ X((k − 1)/c),
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where we use ci ≤ c. Note that the latter inequality is satisfied strictly if there is a peer
i with Ci ≤ k/c and ci < c. Rearranging terms and using the induction hypothesis, we
obtain X(k/c) + Z(k/c) ≤ 2X

(
(k − 1)/c

)
+ Z

(
(k − 1)/c

) ≤ 2k, as claimed. �

Hardness. We are now ready to prove strong NP-hardness of the peer-to-peer file
distribution problem.

Theorem 3.2. The peer-to-peer file distribution problem for heterogeneous symmetric
peers is strongly NP-hard.

We reduce from 3-Partition, where a multiset P = {k1, . . . , kn} of n = 3m numbers has
to be partitioned into sets P0, . . . , Pm−1 such that

∑
ki∈Pj

ki = B for all j = 0, . . . ,m − 1.
W.l.o.g. we can assume m = 2�. The idea is to introduce m subset peers with capacity B
and n master element peers with capacity ki. If we have a yes-instance of 3-Partition,
we can first serve all subset peers, and then each subset peer serves those master element
peers that correspond to elements in one of the sets Pj with full capacity, resulting in
a makespan of � + �/B. To show that for no-instances the makespan is strictly greater
than � + �/B, we have to introduce 2�ki − 2 element peers for all ki ∈ P. This is also the
point where the capacity expansion lemma is used. The proof of the hardness result is
quite involved and will be included in the full version of the paper.

Approximation. In this section, we devise an algorithm that runs in time O(n log n)
and computes a solution with makespan no larger than (1 + 2

√
2)M∗, where M∗ is the

optimal makespan. We first consider the case c0 ≥ ci for all i = 1, . . . , n, for which
we will show a 2

√
2-approximation. Then, we will use this result to obtain a (1+ 2

√
2)-

approximation for arbitrary server capacities. Before we present details of the algorithm
we give a high-level picture of our approach. The intrinsic difficulty in proving any
approximation bound is to obtain lower bounds on the optimal makespan. Let us recall
the inequality shown in Lemma 3.1: for any solution, peer i’s contribution to the upload
in time interval [t1, t2] is bounded by ui(t1, t2) ≤ max{0, ci (t2− t1)−1+ xi(t1)}. To exploit
this capacity bound, our algorithm should fulfill two properties: it should finish peers
with large capacity as soon as possible and it should avoid idle time as long as possible.
To achieve exactly this, we use the concept of time-varying resource augmentation.
We call a possibly infeasible solution S̃ a

√
2-augmented solution if at any point in

time the original peer capacities are not exceeded by more than a factor of
√

2, i.e.
∑

j∈N si, j(t) ≤
√

2cu
i and sp(i),i(t) ≤

√
2cd

i for all i ∈ N, t ∈ R≥0. We will show that there
is an efficiently computable

√
2-augmented solution that satisfies the above mentioned

properties. This allows to apply the capacity expansion lemma, and we get that the
makespan M̃ of S̃ is not larger than 2M∗. Rescaling the augmented solution S̃ to obtain
a feasible solution S we get an additional factor of

√
2.

Now, we explain our algorithm (termed Scale-Fit) in more detail. Let the peers be
labeled such that c0 ≥ · · · ≥ cn. We choose an index k such that

c0
/√

2 ≤
k∑

j=1

c j ≤
√

2c0 (1)

is satisfied, and assign peers 1, . . . , k to peer 0. Note that there always exists such an
index k unless peer 0 can serve all peers simultaneously at full download rate. This is
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formally proven in the following lemma, which we give for the slightly weaker assump-
tion c0 ≥ c1/

√
2.

Lemma 3.3. Let c1 ≥ · · · ≥ cn and let c0 ≥ c1/
√

2. If
∑n

j=1 c j > c0, then there is k < n
such that c0

/√
2 ≤ ∑k

j=1 c j ≤
√

2c0.

Proof. If c0/
√

2 ≤ c1, there is nothing left to show. Otherwise, let k′ = max{� ∈
{1, . . . , n} :

∑�
j=1 c j < c0/

√
2}. Since we assume c1 < c0/

√
2 and

∑n
j=1 c j > c0, we

have 1 ≤ k′ ≤ n − 1. We set k = k′ + 1. By definition,
∑k

j=1 c j ≥ c0/
√

2. In addition, we

have
∑k

j=1 c j ≤ 2
∑k′

j=1 c j <
√

2c0. �
Given the choice of k according to (1), we now explain the scaling of the capacities. We
distinguish two cases. If the total capacity of the downloading peers 1, . . . , k exceeds
the capacity of the uploading peer 0, we augment the upload capacity to match the total
download capacity. Otherwise the downloaders’ capacities are scaled by a common
factor in order to fit the uploader’s capacity. Formally, the capacities of peers 1, . . . , k
are increased by a factor of α = max{1, c0/

∑k
j=1 c j} and that of peer 0 by a factor of

β =
∑k

j=1 αc j/c0. Note that by (1) the scaling factor is not greater than
√

2 in either
case.

At time 0, all k peers start downloading from peer 0 with their full (possibly aug-
mented) capacity. Whenever a peer finishes its download, the algorithm rescales the
augmented capacity (either that of the downloader or that of the uploader) to the orig-
inal level. After rescaling, we proceed serving new peers by the respective unused ca-
pacities of the parent and the finished peer according to (1), breaking ties arbitrarily.
The process stops as soon as the total capacity of the remaining peers is less than the
currently available upload capacity. From this point on, all remaining peers are served
simultaneously at full download rate (this last step takes at most M∗ time). The choice
of the augmentation factors and the rescaling procedure ensures the invariant that the
augmented capacities do not exceed the original capacities by a factor of

√
2. A formal

proof of this fact will be included in the full version of this paper.
Before we formally analyse the performance of Scale-Fit, let us illustrate the algo-

rithm by an example:

Example 3.4. Consider an instance with 6 peers and capacities c0 = 5, c1 = 3, c2 = 3,
c3 = 5/2, c4 = 2, and c5 = 2. We first describe how to construct the augmented
solution S̃ . At time 0, the upload capacity of peer 0 is augmented by a factor of 6/5
in order to serve peers 1 and 2 at their full download capacities. These downloads are
completed at time 1/3. At that time, the rescaled upload capacities of the parent of
peers 1 and 2 (peer 0) can be used separately to serve further peers. The 5/2 units of
capacity (previously assigned to peer 1) are now assigned to peer 3 that downloads
with full capacity without any augmentation. The remaining 5/2 units of capacity are
assigned to peer 4, whose download capacity is augmented by a factor of 5/4. At the
same time, peer 1 starts serving peer 5 without any augmentation because peer 5 is the
only remaining peer. The highest augmentation factor is 5/4. Thus, we rescale all rates
by 4/5 and obtain the feasible solution S .

We now turn to the approximation guarantee of our algorithm. For this, let S̃ be the√
2-augmented solution generated by Scale-Fit, and let T0 denote the first point in time
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in this solution when a peer does not fully use its upload capacity, that is, T0 = min
{
t ≥

0 : ∃ i ∈ N with C̃i ≤ t and
∑

j∈N s̃i, j(t) < ci
}
. We first show that T0 is a lower bound on

the optimal makespan.

Lemma 3.5. Let I be an instance of the peer-to-peer file distribution problem with
c0 ≥ ci ∀i = 1, . . . , n and let S̃ be the

√
2-augmented solution generated by Scale-Fit.

Then T0 ≤ M∗, where M∗ is the optimal makespan.

Proof. Let us first consider the case T0 < M̃. For a contradiction, suppose M∗ < T0 and
fix an optimal solution S ∗. We have X̃(T0) < X∗(T0) = n. Let k0 be the peer with smallest
index that has not finished the download at time T0, that is, k0 = min{i ∈ N : C̃i > T0}.
Note that there is such peer since we assume T0 < M̃. If k0 = 1, then we obtain the
inequality T0 < 1/c1, which is a lower bound on M∗ and there is nothing left to show.
So we assume k0 > 1 and consider the point in time T1 = T0−1/ck0 . For a contradiction,
let us assume that X̃(T1) ≥ X∗(T1).

For the
√

2-augmented solution S̃ returned by Scale-Fit we have x̃k0 (T1) = 0, and
since peers start downloading in order we also get x̃i(T1) = 0 for all i ≥ k0. By construc-
tion, every peer i ∈ N with x̃i(T1) > 0 receives data with download rate di = αci ≥ ci

until C̃i. Using z̃i(T1,T0) = 0, we obtain

ũi(T1,T0) ≥
(

1
ck0

− 1 − x̃i(T1)
di

)

ci =
ci

ck0

+
ci

di

(
x̃(T1) − 1

) ≥ ci

ck0

+ x̃i(T1) − 1

for all i ≤ k0 with x̃i(T1) > 0 and ui(T1,T0) ≥ 0 for all other peers. Referring to
Lemma 3.1 (1.), we calculate

X∗(T0) − X∗(T1) ≤
∑

i∈N
max

{

0,
ci

ck0

− 1 + x∗i (T1)

}

=
∑

i∈N:x∗i (T1)>1−ci/ck0

(
ci

ck0

− 1 + x∗i (T1)

)

≤
∑

i<k0:x∗(T1)>1−ci/ck0

(
ci

ck0

− 1

)

+ X∗(T1),

where we use ci/ck0 ≤ 1 ∀i ≥ k0. We get X∗(T0)−X∗(T1) ≤ ∑
i<k0

(ci / ck0 −1)+ X̃(T1) ≤
X̃(T0)− X̃(T1), a contradiction. We conclude X∗(T1) > X̃(T1). Applying the same line of
argumentation for T1 instead of T0, we derive the existence of T2 = T1 − 1/ck1 for some
k1 ∈ N with X∗(T2) > X̃(T1). We can iterate this argument until we reach T�, with the
property that X∗(T�) > X̃(T�) and k� = min{i ∈ N : C̃i > T�} = 1. This is a contradiction
since in the time interval [0,T�] only the server can upload and its upload rate in S̃ is
not smaller than that in S ∗. We conclude that our initial assumption that T0 > M∗ was
wrong, finishing the proof for the case T0 < M̃. If T0 = M̃, we can use the same line
of argumentation for T0 − ε instead of T0, where ε > 0 is arbitrary. Thus we obtain
T0 ≤ M∗ also for that case. �
We are now ready to prove the approximation guarantee of Scale-Fit.

Theorem 3.6. For the peer-to-peer file distribution problem with heterogeneous sym-
metric peers, the following holds:
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1. If c0 ≥ c1, Scale-Fit is a 2
√

2-approximation.
2. If c0 < c1, uploading the file to the peer 1 and applying Scale-Fit is a (1 + 2

√
2)-

approximation.

Proof. We first show 1. By construction, peer n determines the makespan and starts
its download not after T0. Hence, the makespan of the

√
2-augmented solution S̃ is

not larger than T0 + 1/cn ≤ 2M∗ where we use Lemma 3.5 and the fact that 1/cn is a
lower bound on the optimal makespan. For rational input, the largest factor with which
a capacity constraint is violated is strictly smaller than

√
2. Dividing all sending rates

by that factor, we obtain a feasible solution with makespan smaller than 2
√

2M∗.
To see 2., note that the server needs 1/c0 ≤ M∗ time units to transfer the file to peer 1.

We then treat the instance as an instance where peer 1 is the server, i.e. we do not let
peer 0 upload the file to any other peer except peer 1. Using the same arguments as in
the proof of Lemma 3.5, we derive that this takes at most 2

√
2M∗ additional time units,

implying the claimed approximation factor. �
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