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Joint use of resources with usage-dependent cost raises the question: who pays how much? We study cost sharing in resource
selection games where the strategy spaces are either singletons or bases of a matroid defined on the ground set of resources.
Our goal is to design cost sharing protocols so as to minimize the resulting price of anarchy and price of stability. We
investigate three classes of protocols: basic protocols guarantee the existence of at least one pure Nash equilibrium; separable
protocols additionally require that the resulting cost shares only depend on the set of players on a resource; uniform protocols
are separable and require that the cost shares on a resource may not depend on the instance, that is, they remain the same even
if new resources are added to or removed from the instance. We find optimal basic and separable protocols that guarantee the
price of stability and price of anarchy to grow logarithmically in the number of players, except for the case of matroid games
induced by separable protocols where the price of anarchy grows linearly with the number of players. For uniform protocols
we show that the price of anarchy is unbounded even for singleton games.
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1. Introduction. We study resource selection games, where a set of resources is given and the space of
pure strategies of a player consists of a set of subsets of the resources. The cost of a resource is a nondecreasing
function of the sum of the demands of players choosing the resource. Classical examples of resource sharing
games are Rosenthal’s congestion games (Rosenthal [50]), where the cost of a resource depends only on the
number of players choosing the resource, and the private cost of a player is the sum of the average costs of the
chosen resources.

In contrast to congestion games, we focus in this paper on applications where the load dependent cost of a
resource is money that can be shared arbitrarily among the players. One such application arises in network design
games modeling the interaction of selfish players jointly designing a network infrastructure (see Anshelevich
et al. [6], Chen et al. [18]). In a network design game, the resources correspond to edges in a directed or
undirected graph and each player wants to establish a path or a spanning tree satisfying a player-specific
bandwidth requirement. Although Chen et al. [18] assumed that edges have fixed costs with unbounded capacity
(or nondecreasing concave costs as in Anshelevich et al. [6]), a more realistic model for satisfying multiple
bandwidth requirements on an edge is the so-called cable model, where integer multiples of a cable with a
certain capacity can be bought at a fixed price per increment (Antonakopoulos et al. [7]). More complicated types
of cost functions may arise when there are different cable types that have a fixed cost per increment plus a load
dependent cost function that only holds for a particular capacity interval. Given the resource cost functions and
bandwidth requirements, in an ideal solution resources are allocated so as to minimize the aggregated resource
costs. In decentralized systems, however, players will selfishly select resources/edges for their demands based
on the cost shares they have to pay. Hence, the rules by which the cost of a resource is shared among its users
play a key role as they determine the equilibrium states of the strategic game induced.

Our goal in this paper is to define cost sharing protocols such that pure Nash equilibria (PNE for short)
of the induced strategic games always exist and the efficiency loss caused by selfish resource selection is
minimized. Koutsoupias and Papadimitriou [41] and later Anshelevich et al. [6] introduced measures to quantify
this efficiency loss known as the price of anarchy and the price of stability. The price of anarchy (PoA) is
defined as the worst-case ratio of the cost of a Nash equilibrium over the cost of a system optimum, while the
price of stability (PoS) captures the ratio of the best possible Nash equilibrium over a system optimum. We focus
on two combinatorial structures of strategy spaces. In the first case, we study singleton resource selection games
(singleton games for short), where every player uses exactly one resource. This class of games has applications
in scheduling where each player is associated with a job of nonnegative weight. The job can be processed
on every resource, and the monetary cost on a resource (for instance energy costs as in Yao et al. [57]) is a
nondecreasing function of its total load. In the second case, we lift the assumption of singleton strategies to the
more general setting of bases of matroids (matroid games for short). The strategy space of every player is the
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set of bases of some matroid defined on the ground set of the resources. Matroids have a rich combinatorial
structure and include, for instance, the aforementioned class of network design games, where each player wants
to allocate a spanning tree in a graph.

For both scenarios, we assume that the private cost of a player is determined by a cost sharing protocol, i.e.,
the protocol determines how the cost of each resource is shared among its users. For instance, a simple protocol
that has been analyzed in the literature on congestion games is average or proportional cost sharing (see Aland
et al. [3], Awerbuch et al. [9], Bhawalkar et al. [10], Correa et al. [22], and Roughgarden and Tardos [52]).
Before we can answer the question which protocol induces games with the best equilibrium states, we first have
to precisely define the design space of feasible cost sharing protocols. We impose the following four design
assumptions that are defined more formally in §2. These properties have been introduced first by Chen et al. [18]
in the context of the design of cost sharing protocols for fixed-cost network design games (a formal definition
of these games will be given in §1.3).

(i) Budget balance. For every outcome of a game induced by the cost sharing protocol, the cost of each
resource is exactly covered by the collected cost shares of the players using the resource.

(ii) Stability. There is at least one pure strategy Nash equilibrium in each game induced by the cost sharing
protocol.

(iii) Separability. When assigning the cost shares on a given resource, the protocol has no information about
the load on other resources.

(iv) Uniformity. When assigning the cost shares on a given resource, the protocol has no information about
the existence of other resources.

A cost sharing protocol is called basic if it satisfies (i)—(ii), separable if it satisfies (i)—(iii), and uniform if it
satisfies (i)—(iv). We briefly discuss the four properties and refer to Chen et al. [18] for a more detailed treatment.
The condition (i) is the least controversial in the context of cost sharing protocols. The stability condition (ii)
requires the existence of at least one Nash equilibrium in pure strategies. Although this requirement restricts the
search space for cost sharing protocols, it is certainly the solution concept of choice when mixed or correlated
strategies have no meaningful physical interpretation in the game played; see also the discussion in Osborne
and Rubinstein [48, §3.2] about critics of mixed Nash equilibria. Although condition (iii) seems restrictive, it
is crucial for practical applications in which cost sharing protocols have only local information about their own
resource usage (see for instance the TCP/IP protocol design, where routers drop packets based on some function
of the number of packets in the queue (Srikant [55])). Uniformity (iv) is the strongest and perhaps the most
problematic design restriction. A uniform protocol is not only separable but also strongly local in the sense that
the cost shares of a resource are independent of the set of resources available to the game designer. This property
may be crucial for systems in which the resources can be added or removed over time and a reconfiguration of
the system (changing the cost sharing protocol) is too costly.

1.1. Our results. We systematically analyze the achievable price of anarchy and stability by basic, separable,
and uniform cost sharing protocols in the context of singleton games and matroid games. Whereas the price
of anarchy and stability constitutes a worst-case measure for the inefficiency of pure Nash equilibria across all
instances, we also address the problem of designing universally optimal protocols that are optimal for every
instance.

1.1.1. Results for singleton games. For singleton games, we prove that among all basic and separable
protocols, there is an optimal protocol minimizing the resulting price of anarchy and price of stability simulta-
neously. For n-player singleton games, the optimal value of the price of anarchy and stability is precisely the
nth harmonic number #, = Y_}_  (1/i). As a key element of the proof, we obtain a complete characterization of
pure Nash equilibria that can be induced by a basic or separable protocol. We also derive sufficient conditions
for a strategy profile to be the most expensive pure Nash equilibrium. Our proof of this result is constructive by
providing a cost sharing protocol that induces a strategy profile as the most expensive pure Nash equilibrium
provided that it satisfies these conditions. We then show that this protocol gives rise to an optimal cost sharing
protocol simultaneously minimizing the price of anarchy and stability as mentioned above. Our characterization
of pure Nash equilibria can further be used to design a universally optimal separable protocol minimizing the
cost of an achievable pure Nash equilibrium for every instance. For uniform cost sharing protocols we show that
they cannot guarantee a bounded price of anarchy. We construct a lower bound involving a family of instances
with only three players, at most three resources, and cost functions with nondecreasing costs per unit.
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1.1.2. Results for matroid games. Matroid games are a generalization of singleton games and consequently
all lower bounds obtained for singleton games carry over to the matroid setting. For separable and basic protocols,
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TaBLE 1. Overview about the price of stability and price of anarchy results.

Singleton games Matroid games
PoS PoA PoS PoA
Uniform >, oo >,
Separable H, #, #, n
Basic V4 H V4 #

n

we devise an optimal (separable) protocol minimizing the price of stability resulting in a tight worst-case bound
of #,. We again prove this result by obtaining a complete characterization of pure Nash equilibria that can
be induced by a separable protocol. This characterization crucially relies on the unique resource exchange
properties of matroids. We can again use this characterization to obtain a universally optimal separable protocol
minimizing the cost of an achievable pure Nash equilibrium for every instance. In contrast to singleton games,
however, our characterization does not carry over to basic protocols. In fact, we find a structural difference of
the achievable price of anarchy when going from separable to basic protocols: we devise an optimal separable
protocol with price of anarchy of exactly n. For the larger class of basic protocols we devise an optimal basic
protocol having price of anarchy of #,. All our results are summarized in Table 1.

1.2. Significance and techniques used. Our work is closely related to the paper by Chen et al. [18]. In
their paper, the authors study the design of cost sharing protocols for fixed-cost network design games. In a
network design game, each player i wishes to send a (unit) demand along a path in a (directed or undirected)
network, connecting her source node s; to her terminal node ¢,. Every edge has a fixed cost and the goal is to
design a separable or uniform cost sharing protocol so as to minimize the resulting price of anarchy and stability.
Our approach follows their lead in terms of the protocol design perspective and the feasible protocol space,
but we apply cost sharing protocols to the structurally different class of singleton and matroid models. Matroid
games include the class of network design games, where instead of single s-¢ paths, players wish to send their
demand along a spanning tree. In contrast to previous works on network design games, our model allows for
the first time arbitrary nondecreasing cost functions instead of fixed costs (or concave costs) on the resources.
This way we are able to model more realistic cost structures occurring in network design. Typical cost functions
are step functions (see Figure 1 (left)), where every cost level corresponds to a different cable type that can be
installed (cf. Antonakopoulos et al. [7]). Andrews et al. [5] recently introduced a network design problem in
telecommunications, where cost functions with “diseconomies of scale” are used to model the cost accounting
for energy consumption when routers apply speed scaling to process packets. The proposed cost function is
defined as ¢,({) =0 +6-£%, a>1, o, §>0if £ >0 and, c,(0) =0; see Figure 1 (right) for an illustration.
Clearly, this function and also the previous function are neither concave nor convex.

A central challenge in cost sharing protocol design involving arbitrary nondecreasing cost functions is to
ensure that the induced strategic games always posses a PNE. Because prevailing approaches for proving the
existence of PNE (such as potential functions and fixed-point theorems) are not directly applicable to our games
we develop a new approach to cope with the equilibrium existence problem: we exploit structural properties
of PNE in resource selection games to derive a complete (protocol independent) characterization of strategy
profiles that can be obtained as a PNE. We call such a strategy profile decharged. Informally, a strategy profile is
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Ficure 1. Cost functions with nonconcave/nonconvex cost functions.
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decharged if the cost on every resource is less than the sum of the costs that arise if every player on the resource
exchanges this resource with her best alternative. We then devise a family of protocols (x-enforcing protocols)
parameterized by a decharged profile x. Using the notion of decharged profiles, we devise an algorithm that
takes the optimal strategy as input and iteratively modifies the optimal profile until it is decharged. For each
iteration of the algorithm we keep track of the resulting cost of the intermediate strategy profiles and prove that
the final strategy profile is at most a factor #, away from the optimal cost. Thus, we use our characterization
not only to show the existence of PNE but also to determine the cost of PNE and hence the price of stability.
This proof technique is quite different from the prevailing approaches of combining the Nash inequality with the
potential function method (cf. Christodoulou and Koutsoupias [19], Correa et al. [22]), or by arguing directly
that the optimal solution can be a pure Nash equilibrium (cf. Anshelevich et al. [6], Epstein et al. [23], Harks
et al. [32]).

For obtaining our bounds on the price of anarchy, we develop a new approach that is different from the
prevailing “smoothness” arguments (cf. Aland et al. [3], Bhawalkar et al. [10], Harks [30], Roughgarden [51])
relating the cost of a worst-case Nash equilibrium via the Nash inequalities to a weighted average of the cost
of an optimal strategy and the cost of the worst-case Nash equilibrium itself. Instead, in our approach, we first
relate the cost of a worst-case Nash equilibrium to the payments of the players if they individually deviated
to the strategy of the decharged profile returned by the algorithm. We then use properties of the protocol, the
decharged condition, and the algorithm to estimate the resulting term against the cost of an optimal profile
achieving a tight bound. Although this part of the paper is perhaps the most involved, we are confident that our
approach can be useful if standard approaches for bounding the price of anarchy fail.

1.3. Further related work. In the previous section we described structural differences (weighted players,
arbitrary nondecreasing cost functions, and symmetric strategy spaces) between our work and the paper by Chen
et al. [18]. These structural differences also apply to other works on network design games (cf. Anshelevich
et al. [6], Bild et al. [11], Chekuri et al. [15], Chen and Roughgarden [16]) and result in different approaches
and different achievable bounds. For example, whereas Chen et al. [18] proved bounds on the price of anarchy
for uniform protocols of order ®(log(n)), O(polylog(n)), and n for undirected single-sink instances, undirected
multicommodity instances, and directed single-sink instances, respectively, we show that in our model even
for singleton games such results are impossible. The price of anarchy for uniform protocols inducing singleton
games is unbounded. Finally, it is worth noting that, whereas Chen et al. [18] analyzed separable and uniform
protocols, we additionally analyze the larger class of basic protocols.

There is a large body of work on scheduling games (or singleton congestion games) with unweighted and
weighted players (Ackermann et al. [2], Even-Dar et al. [24], Fotakis et al. [27], Gairing et al. [28], leong
et al. [36], Milchtaich [42]). Most of these papers study the existence and price of anarchy of pure Nash
equilibria for the proportional cost sharing protocol in which the private cost of every player is equal to the
cost on the resource, or equivalently, the cost share of every player is proportional to its own demand, that
is, if player i has a demand of d; > 0, then she pays d,(¢,) - d;, where d, is a nondecreasing delay function.
These works, however, do not consider the design perspective of cost sharing protocols. For weighted congestion
games with arbitrary strategy spaces, proportional cost sharing has the severe drawback that PNEs need not
exist (unless the functions d,(¢,) are either affine or exponential (Fotakis et al. [25, 26], Goemans et al. [29],
Harks and Klimm [31], Milchtaich [43], Panagopoulou and Spirakis [49]), or the strategy spaces have a specific
combinatorial structure, e.g., matroid games (Ackermann et al. [2])). To address this drawback, Kollias and
Roughgarden [40] proposed a cost sharing protocol based on the Shapley value for which they are able to prove
existence of PNE. They further prove price of anarchy/stability results for polynomial cost per unit functions
with nonnegative coefficients. It is unknown, however, whether this protocol is optimal even for the special class
of polynomial cost per unit functions. For further work on congestion games with proportional sharing assuming
nonincreasing marginal cost functions (modeling economies of scale or buy at bulk) we refer to Albers [4],
Anshelevich et al. [6], Epstein et al. [23], Hoefer [35], and Rozenfeld and Tennenholtz [53].

Christodoulou et al. [20] and follow-up papers (such as Caragiannis [13], Cole et al. [21], Immorlica et al. [37])
study coordination mechanisms and their price of anarchy in scheduling games in which n players assign a task
to one of m machines. Rather than paying a share of the resulting cost of a machine as in our scenario, the
players in these games consider the completion time of their respective job as private cost. Hence, although they
assume a mechanism/protocol design perspective as we do, the class of games analyzed is quite different.

Sharing the cost of resources from the perspective of cooperative game theory is a central topic in economics
and operations research (cf. Archer et al. [8], Bogomolnaia et al. [12], Moulin and Shenker [47], or the survey of
Moulin [44] with a pointer to further references). There is also a large body of papers studying cost sharing from
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a noncooperative perspective (cf. Chen and Zhang [17], Harks and Miller [33], Johari and Tsitsiklis [38, 39],
Moulin [45, 46]). The model considered in these papers is different to ours as they all assume a compact and
convex strategy space together with convexity assumptions on the feasible cost sharing functions.

1.4. Structure of the paper. In §2 we present the model together with our key assumptions on feasible
cost sharing protocols used in this paper. We first start in §3 with the more intuitive setting of singleton games
on parallel resources. In §4, we then turn to the more general setting of matroids. We conclude the paper in §5
by pointing out open questions and new research directions.

2. Model and problem statement. A resource selection model is represented by a tuple (N, M, 3, d, ¢),
where N ={1, ..., n} is the set of players and M ={a,,...,a,} the set of resources. Each player i chooses a
subset X; of these resources contained in her strategy set 3, € 2. We denote by X := (X, ..., X,) the strategy
profile across all players and correspondingly 2 :=[],.y %;. Unless stated otherwise, we assume that 3, =3,
for all i, j € N, that is, the strategy spaces are symmetric. The vector d = (d,),.y specifies the player’s weights,
which in a strategy profile X sum up on each resource a € M to the load £,(X) := 3 ;.5 (x) d;, where S,(X) :=
{i: a € X;} is the set of players using a. The resources’ cost functions are given by the vector ¢ = (¢,) cu>
they are nondecreasing in the load. We define the social cost of profile X as C(X) : =",y ¢,(£,(X)). Abusing
notation, we often refer to the cost on resource a by c,(X). We now give two concrete scenarios of resource
selection models that we study in this paper.

ExaMmpPLE 2.1 (SINGLETON GAMES). In a singleton game (or scheduling game), every player i chooses
exactly one resource, that is |X;| =1 for all X; € 3, and i € N. A natural interpretation is that each player has a
job of weight d; and chooses a resource to process its job.

We now give a more complex scenario that captures the situation where players want to build a spanning tree
in an undirected graph.

ExampLE 2.2 (MST GamEs). We are given an undirected graph G = (V, E) with nonnegative and nonde-
creasing edge cost functions ¢,(£), e € E. In a minimum spanning tree (MST) game, every player i is associated
with demand of size d; > 0 and routes its demand along a spanning tree. Formally, we set M = E and the sets
X;, i € N, are the spanning trees of G.

We study how different ways of sharing the costs of a resource affect the resulting pure Nash equilibria of the
induced game. To model this, we introduce cost sharing protocols = that assign cost share functions ¢; ,: = — R
for all i € N and a € M to the resource selection model (N, M, 3, d, ¢) and thus induce the strategic game
(N,%, §). For a player i, her total private cost is §(X) := > ,cx & ,(X) and we assume that every player
strives to minimize her private cost. An important solution concept in noncooperative game theory are pure Nash
equilibria. Using standard notation in game theory, for a strategy profile X € 3 we denote by

Z. X )=X,....X.Z, X;11,.--.X,) €

the profile that arises if only player i deviates to strategy Z; € 3,..

DEFINITION 2.1 (PURE NAsSH EQUILIBRIUM). Let (N, 3, &) be a strategic game. The profile X is a pure
Nash equilibrium if no player i can strictly reduce her private cost by unilaterally moving to a different strategy,
that is, for all i e N

EX)<é(Z,X_;) forall Z €3,

Two well-established concepts that quantify the efficiency of Nash equilibria are the price of anarchy and the
price of stability. The price of anarchy measures the largest possible ratio of the cost of a Nash equilibrium
and the cost of an optimal profile. The price of stability measures the smallest ratio of the cost of a Nash
equilibrium and the cost of an optimal profile. For a cost sharing protocol &, we define by PoA(Z) and PoS(Z)
the corresponding worst-case price of anarchy and price of stability across games induced by protocol E. The
main goal of this paper is to design cost sharing protocols that minimize the price of anarchy and price of
stability, respectively. Of course, the attainable objective values crucially depend on the design space that we
permit. The following properties have been first proposed by Chen et al. [18] in the context of designing cost
sharing protocols for network design games.

DEFINITION 2.2 (PROPERTIES OF COST SHARING PROTOCOLS). A cost sharing protocol E is

(i) stable if it induces only games that admit at least one pure Nash equilibrium;

(ii) basic if it is stable and additionally budget balanced, i.e., if it assigns all resource selection models
(N, M, %,d,c) with cost share functions &; , such that for all a e M and X € 3

()= Y £.X) and  £,()=0 foralligs,(X)

i€S,(X)

—_~
@,
S
o
24
5 €
:L
T o
Rel
o c
=%
©
=
S
22
23
= fer
O
o <
",
© ©
n 2
iz
b
2T
8=
02
£y
B
S
'-QQ-
= C
® .9
S 3
52
2 E
c O
02
o¢
T ©
T o
i)
<
c D2
el
()}
2c
- O
< >
O O
T C
E -
c
[e]
@ e
S =
[ele)
<E
w_
[}
= C
e o
=
35
z-c
=<

(this property requires c,(0) =0 for unused resources, which we will assume in the paper);
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(iii) separable if it is basic and if it induces only games for which in any two profiles X, X’ € %, for every
resource a € M,

S.(X) =S,(X) = & ,(X)=¢ ,(X) forall ieS,(X);

(iv) uniform if it is separable and if it assigns any two models (N, M, >, d,c), (N,M',3,d, c") with cost
share functions ¢; , and &; , such that the following condition holds. For all a € M N M’ with ¢, = ¢, and all
profiles X € 2, X' € 3/

S(X)=8,(X) = & (X)=§& (X) forallieS,(x).

Informally, separability means that in a profile X the values ¢; ,(X), i € N depend only on the set S,(X)
of players sharing resource a and disregard all other information contained in X. Still, separable protocols can
assign cost share functions that are specifically tailored to the given resource selection model, for example based
on an optimal profile. Uniform protocols are not allowed to do this, they even disregard the layout of the model
and assign the same cost shares when resources are added to or removed from the model.

We denote by 9%B,, ¥ ,, and U, the set of basic, separable, and uniform protocols for resource selection games
with n players, respectively. We obtain the following optimization problems that we address in this paper:

min POA(E), minPoS(E), minPoA(E), minPoS(E),
=1 Ee,

EeB, EeB, EeY,

min PoA(E), and min PoS(E).

EeU, EeU,

3. Singleton games. This section deals with games such as the one in Example 2.1, where players choose
a single resource instead of multiple resources. More precisely, we call a resource selection model a singleton
model if for every player i the strategy set is exactly the set of available resources, i.e., %; = M. This allows
us to simplify notation for this section: we denote a singleton model by (N, M, d, ¢) and we denote a player’s
strategy by a single resource x; (instead of a set of resources X;). Consequently, we denote profiles as vectors
of n resources x € M". Budget balanced protocols have §; ,(x) =0 for all a # x; and, hence, §;(x) =¢; . (x),
which allows us to define these protocols by aggregate cost share functions §; instead of the per resource cost
share functions &, ,.

In the following, we start with studying basic and separable protocols. We find structural properties of Nash
equilibria of the games induced by such protocols that let us construct an optimal protocol. Throughout this
section, the players are assumed to be ordered by nondecreasing weights:

d<dy<---<d,. (1)

3.1. Characterization of Nash equilibria for basic and separable protocols. To design protocols that
have a cheap Nash equilibrium, it is crucial to understand structural properties of Nash equilibria. We find a
complete characterization of Nash equilibria in singleton games induced by basic and separable protocols. First,
let us introduce some notation.

DEFINITION 3.1 (WEAKLY DECHARGED PROFILE). Consider a singleton model (N, M, d, c). A resource
a € M is weakly decharged in a profile x e M" if
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c()= 3 mincy(b, x_).
i€S,(x)

The profile x itself is called weakly decharged if all resources are weakly decharged.
We further introduce the x-enforcing protocol.
DEFINITION 3.2 (x-ENFORCING PrOTOCOL). The x-enforcing protocol takes as input a weakly decharged pro-
file x. We use x to define for any profile z and resource a the set of foreign players on a S}(z) := {i € S,(2)\S,(x)}
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and the set of strong foreign players on a S.(z) := {i € S,(2)\S,(x): ¢, (x) =0}. Then, the x-enforcing protocol
assigns for all i € N, z € M" the cost share functions

Zje:-l(i:iﬁilnf,iib;;l;,)x—j) ¢ (x), if S, (z) =S (x) and ¢, (x) >0,
c. (2), if Szzi (z) # @ and i = min Szzi (2),
£(z) = e. (). if $2(z) =2, 5! (z) # @ and i =min S! (2),
. (2, if $! (z)=2,5,(z) C S, (x) and i =min S, (),
0, else.

Informally, if S,(z) = S,(x), the players on resource a share the cost proportional to their opportunity cost (cost
of change) in profile x. Otherwise, the smallest strong foreign player (deviating from x although &, ,(x) =0),
foreign player (deviating from x), or home player (not deviating from x) pays the entire cost of the resource.
Observe that in weakly decharged profiles x we have

> Il}lil&lcb(b, x_;)>0 forallae M with c,(x)>0
€

J€Sa(x)
and thus the protocol is well defined. We are now ready to state our first characterization.

THEOREM 3.1.  For any singleton model (N, M, d, ¢) and profile x, the following statements are equivalent.
(i) the profile x is weakly decharged,

(ii) the profile x is a pure Nash equilibrium in the game induced by some basic protocol, and

(iii) the profile x is a pure Nash equilibrium in the game induced by some separable protocol.

Observe that (iii) = (ii) holds because by definition separable protocols are a subclass of basic protocols. We
prove (i) = (iii) and (ii) = (i) by two lemmas.
LeEMMA 3.1.  For every weakly decharged profile x, the x-enforcing protocol is a separable protocol and x

is a pure Nash equilibrium in the induced game.

PrOOF. Budget balance and separability follow immediately from the definition of the protocol. Thus, we
prove only that x is a pure Nash equilibrium in the induced game. For all resources a € M with ¢,(x) > 0 we
are in the first case of the definition of the protocol, thus, we obtain for all i € S,(x)

min,,cy, ¢,(b, x_;)
ZjES“(x) min,,,, ¢, (b, x—j)

where the first inequality holds because profile x is weakly decharged. For all other resources a € M, we have
& (x)=c,(x)=0 for all i € S,(x) and thus x is a pure Nash equilibrium. [
We prove (ii) = (i) from Theorem 3.1 by the following lemma.

&(x) =

. <minc,(b,x_) < min &(b,x_.),
Ca(x)_beM cb( X 1)_b€M\{a}§l( X l)

LEMMA 3.2.  Consider the game induced by some basic protocol on some singleton model (N, M, d, c).
Then, any pure Nash equilibrium x is weakly decharged.

ProofF. If x is a pure Nash equilibrium, then &;(x) <min,,, &(b, x_;) for all i € N and, hence, because of
budget balance of the protocol,

W= Y &Ws X ming(bx )= ¥ mine,(bx)

ieS,(x) i€S,(x) ieS,(x)
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for all resources a € M. Thus, x is weakly decharged. O
The above characterization reduces the problem of finding the basic/separable protocol with lowest PoS to
the minimization problem

min C(x) st. ¢, (x)< Y minc,(b,x_;) VaeM,
xeM" ies, (x) eM

that is, to finding the cheapest weakly decharged profile. As the characterization is independent of our
social welfare function C(x), similar minimization problems can be formulated when designing PoS-optimal
basic/separable protocols for arbitrary objective functions.




von Falkenhausen and Harks: Optimal Cost Sharing for Resource Selection Games
Mathematics of Operations Research 38(1), pp. 184-208, ©2013 INFORMS 191

COROLLARY 3.1. Let (N, M,d, c) be a singleton model and let F: M" :— R be a social welfare function.
Then, ming 5 PoS(E; F) and ming_y, PoS(E; F) can be reduced to solving the optimization problem

. - . ,
min F(x) st oc,(x) < iGSX(:x) min c,(b,x_;)) VYaeM.

The x-enforcing protocol is, given the cheapest decharged profile x, universally optimal for any social welfare
function F. In other words, it is not only optimal from a worst-case perspective, but even on a per instance
perspective.

Before we show how to find cheap decharged profiles and estimate their cost in §3.2.1, we first establish a
corresponding structural result for the PoA.

3.2. Criterion for worst-case Nash equilibria for basic and separable protocols. The characterization of
pure Nash equilibria will allow us to design a PoS-optimal protocol, but for a PoA-optimal protocol we need
to go a step further and ask which profiles are the most expensive pure Nash equilibria of games induced by
basic and separable protocols. We derive a sufficient condition for this, using the x-enforcing protocol from the
previous section.

DEFINITION 3.3 (STRONGLY DECHARGED PROFILE). Consider a singleton model (N, M, d, c). A resource
a € M is strongly decharged if it is weakly decharged and additionally

c(x)< > Il’;nlﬁgl ¢y (b, x_;), if |S,(x)]>1 and c,(x) > 0. (2)
€

i€S,(x)

Resources that are not strongly decharged are called charged. The profile x is called strongly decharged if all
resources are strongly decharged.

THEOREM 3.2. Let (N, M, d, c) be a singleton model and x be a strongly decharged profile. Then x is the
most expensive pure Nash equilibrium in the game induced by the x-enforcing protocol.

ProoF. We show that for any pure Nash equilibrium z # x we have C(z) < C(x). To this end, fix such a z
and let i :=min {j € N: z; # x;} be the smallest player who deviates from x. First, note that for all j > i,

&:(z;,72-;,)=0, ifc (x)>0
;(z)s{f N G)
§(xj2.;)=0, i ij(x)— )
because z is a pure Nash equilibrium. Hence,
c,(z) =0 for all resources a # z; with foreign players S.(z) # 2. 4)

Also, ¢,(z) < ¢,(x) for all resources a # z; that only have home players S%(z) = S,(z), because for these
resources £,(z) < £,(x). Thus, we already have

c,(z) <c,(x) for all resources a # z;. 5)

S~
D
S 9
c un
5 €
:L
T o
L
o c
9
©
2 €
=
@0
23
= fer
O
o <
=
© ©
n 2
“3
b
53
O ®©
2
£y
i
>
'_QQ.
= C
® .9
S 3
o2
2 E
T O
o2
o¢
T ©
T o
§2)
0 £
c .2
el
o
2c
a— O
=)
O O
= £
a -
c
O o
°8
@ e
S =
[ele)
==
w_
©
= C
c o
=
Q3
z-c
=<

If there is a strong foreign player on z;, then even ¢, (z) =0 and we are done. Thus, from now on we assume
that there are no strong foreign players on z;. We can bound c, (z) from above using the Nash inequality
¢, (2) = &i(2) < &(x;, z_;). The remaining proof focuses on bounding the value &;(x;,z_;) from above.

The value of ¢;(x;,z_;) assigned by the x-enforcing protocol depends on S, (x;,z_;) and ¢, (x), for which
there are three possibilities, corresponding to the first, fourth, and fifth case from the definition of the x-enforcing
protocol. These cases are

@) S, (x;,z_;) =S, (x) and ¢, (x) > 0, where the protocol returns & (x;, z_;) = &(x);

(i) S, (x;,z_;) C S, (x) and i =min S, (x;, z_;), where the protocol returns &;(x;, z_;) = ¢, (x;,z_;); and

(iii) all cases in which the protocol returns &;(x;,z_;) =0.

In each case we will find ¢, (z) + ¢, (z) < ¢, (x) +c,_(x) and thus with (5) we have C(z) < C(x), which proves
the Theorem. Note that (5) already implies ¢, (z) < ¢, (x).
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We begin with Case (i). The condition ¢, (x) > 0 implies that if there is some strong foreign player j > i (with
z;# x; and ¢, (x) =0), then ¢, (2) = §,(z) < &i(z;,z;) =0 and we are done. Thus, we will in the following
assume that there are no strong foreign players at all. If &,(x) =0, we obtain 0 = &,(x) = &,(x;,z_;) > &(2) =
¢, (z), because we are in Case (i). Thus, we will also assume

&(x) > 0. (6)

We now compare the allocation of load in the profiles z and x, respectively. First, we consider resources a # z;,
which host foreign players j € S,(z)\S,(x). For these foreign players we obtain

ll;l’éi[&[l cp(b,x_;) = gélﬁl} cp (b, x_;) (7a)
> &i(x) (7b)
> 0. (7¢)

We chose player i such that j > i for all other foreign players j and hence (by (1)) d; > d;. As the cost
functions are nondecreasing, the first inequality (7a) follows. Inequality (7b) holds because x is decharged. The
last inequality (7¢) follows from (6). We conclude for resource a

c(a,x_;) = &(a, x_))

> §;(x) (®)
e .

B Zkesx/ (v MiN, ey € (D, x_y) bent (b x-)) ©)

>0 (10)

= ¢,(2), (1

where (8) holds because x is a pure Nash equilibrium and (9) stems from the definition of the protocol because
there are no strong foreign players and hence ¢, (x) > 0. Inequality (10) holds because of (7) and finally (11)
holds because of (4). Hence, there must be a n]onempty set of players S,(x)\S,(z). These players cannot be
strong foreign players, thus ¢,(x) > 0. With ¢,(z) =0 and ¢,(x) > 0 we have ¢,(x) > €,(z) for all resources
a # z; with foreign players. For all resources a without foreign players we know ¢,(x) > £,(z) and for resource
x; even £, (x) = ¢, (z) + d; because we are in Case (i). Because the total load is the same in x and z, we have
for resource z;

(2 x ) =1L, (x)+d; = £, (2). (12)
Consequently,
&i(2) = ¢ (1) Z ¢ (20 X (13)
) iney(bx.) (19
> - -minc, (b, x_;
Zjesxi (v Min,y ¢, (b, x_;) beM b
= &(x) =&(xnz22), (15)

where the first inequality (13) holds because of (12) and the second inequality (14) because x is decharged
and ¢, (z;, x_;) > min,y, ¢, (b, x_;). Equality (15) holds by the definition of the strong x-enforcing protocol for
Case (i) and the last equation holds because we assume Case (i). If |S, (x)| > 1, then inequality (14) is strict,
because x is strongly decharged (i.e., (2) holds), which implies &;(z) > &(x;, z_;). This contradicts the fact that z
is a pure Nash equilibrium. Thus, S, (x) = {i} and ¢, (2) = §:(z) < &(x;, z_;) = ¢, (x;, 2_;) = ¢, (x). Moreover,
using ¢, (z) =0, because ¢, (z) =0, we obtain ¢, (z) + ¢, (z) < ¢, (x) +c_(x) as desired.
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Case (ii) is S, (x;,z_;) C S, (x) and i =min S, (x;, z_;). Here, we obtain

¢, (2)=§&(2) <&i(xiz-) = ¢ (x;,2) < ¢, (%),

where the first inequality holds because z is a pure Nash equilibrium. The second inequality holds because
Case (ii) implies €, (x;,z_;) < ¢, (x). We also have

Cxi(z): Z gj(z)f Z ‘fj(Z,',Z_j)ZO.

JjeSy (2) j€Sy(2)

This inequality holds because z is Nash equilibrium and because in this case all players j € S, (z) have a higher
index j > i. Consequently, we have again ¢, (z) + ¢, (z) < ¢, (x) + ¢, (x).

Finally, we examine Case (iii) where the protocol returns &;(x;, z_;) =0 and thus for the pure Nash equilib-
rium z we have ¢, (z) = §:(2) < §i(x;, z_;) =0. Again, ¢, (z) +¢,(2) < ¢, (x) + ¢, (x). O

REMARK 3.1. In contrast to the characterization of Theorem 3.1, the most expensive pure Nash equilibrium
of a game is not necessarily strongly decharged. As an example consider the model with two players, d, =d, =1
and two resources with identical cost functions satisfying ¢, (1) =c¢,, (1) =1 and ¢, (2) = ¢,,(2) = 2. Here, all
profiles have the same cost and x = (a,, a,) is a pure Nash equilibrium under the x-enforcing protocol, but x is
not strongly decharged.

3.2.1. An optimal protocol. Using the insights gained in the previous sections, we show that among all basic
and separable protocols, the x-enforcing protocol gives rise to an optimal protocol simultaneously minimizing
the price of anarchy and stability. Our main result involves the nth harmonic number #, =>"1_, (1/i).

THEOREM 3.3.  For singleton games,
min PoS(E) = min PoA(E) = min PoS(E) = min PoA(E) =%,
EeB, Ee%, Ee, Ee,

We prove the theorem by two subsequent lemmas. We first present an algorithm that returns for any singleton
model a strongly decharged profile of cost at most #, times the cost of an optimal profile. Hence, we can design
a protocol that for any singleton model

(i) runs the algorithm to obtain a strongly decharged profile x, and

(ii) uses x as input for the x-enforcing protocol to obtain cost share functions.

This protocol is separable and has PoA as well as PoS of #,. In the second lemma, we show that the protocol
is optimal by proving that #, is a lower bound on the price of stability for every basic protocol.

LEMMA 3.3.  Any singleton model (N, M, d, ¢) with an optimal profile y has a strongly decharged profile x
with C(x) <%, C(y) = Y1_, (1/k) - C(y).

ProoOF. The desired profile x is found by Algorithm 1. The algorithm takes as input an optimal profile y.
In each cycle k of the algorithm’s main loop (lines 4-20), a player i* on the most expensive charged resource
a* is selected (line 5) and moved to the cheapest available resource b* (lines 16, 17). If possible, the algorithm
selects a player who can be moved to a cost-free resource, this is called zero move (line 6). Otherwise, it selects
a player that has been moved before in a last-in/first-out scheme that is maintained through the stacks Q,.
Such moves are called shuffles (line 9). If neither a zero move nor a shuffle is possible, the smallest player on
the resource is selected, which is called kickoff (line 12). The algorithm terminates when no charged resources
are left. We show in two claims that the algorithm indeed terminates and that returned profiles are as cheap
as desired.

Claim. Algorithm 1 terminates. Observe that shuffles are only performed when zero moves are not possible.
Hence, if in cycle k a shuffle is performed, the following inequalities hold:
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min ¢, (b, x’ij) >0 forall jeS,(x"). (16)
beM

We now consider two cases. For |S . (x*)] = 1, we obtain

cp (X > min c, (b, x* ) = e (b, X8 ) = o (x5,

where the inequality follows because a* is charged in x* and the equality follows because Algorithm 1 moves
i* to the cheapest available resource.
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Algorithm 1 (Find strongly decharged profile x)
Input: Singleton resource selection model (N, M, d, c), profile y
Output: Strongly decharged profile x
1: k<1 {stepnumber}
2: x! <~y {starts with optimal profile y}
3: Q,«< @ forallae M {stacks that return the last element entered}
4: while there are charged resources do
5:  a* < argmax{c,(x*): a € M is charged} {select the most expensive charged resource}
6: if min{c,(b,x*,): be M} =0 for i=minS,(x*) then
7 {player can move to cost-free resource, case called zero move}
8 i* <~ min S (x*) {select smallest player}
9: else if O, # @ then

k

10: {some player on a* was moved before, case called shuffle}
L1 i* < extract from Q. {select last moved player}

12:  else

13: {no foreign players on a*, case called kickoff}

14: i* <~ min S (x*) {select smallest player}

15:  end if

16:  b* < argmin{c,(b, x* ;,): be M} ({select cheapest resource}
17: XM« (b*,x* ) {move player}

18: enter i* to stack Oy

19: k<«k+1 ({iterate}

20: end while

21: return x < x*

If |S,(x¥)| > 1, then we obtain

e () > min c, (b, x* ) (17)
je.%%x") beM J

> géiﬁ{llcb(b,xliik)=cbk(bk,x]iik) = (XM, (18)
where (17) is valid because a* is charged in x*. The second inequality (18) holds because of (16) and the
equalities follow as above. In both cases, a shuffle moves the player to a strictly cheaper resource. To see that
the algorithm terminates, we will now follow some player i over the course of the algorithm. Each zero move
and each shuffle take her to a strictly cheaper resource. If the player is moved in cycle k and is next moved by a
shuffle in cycle /, the cost of her resource x**' = x! may increase in the meantime as other players arrive on that
resource. The algorithm assures by its last-in/first-out mechanism that these other players have been moved again
before the shuffle in cycle / and consequently the cost has decreased to the original level ¢ 1 (x**1) > ¢/ (x').
Because only resources with positive costs can be charged, this implies that after a zero move, the playef will
never again be considered for shuffles. Hence, a player can be moved by at most one kickoff, afterward a
sequence of shuffles and thereafter only zero moves. The sequence of shuffles is finite because each shuffle takes
the player to a strictly cheaper resource. Once the player has been moved by a zero move, further zero moves
are only possible if in between some other player arrives on the player’s resource via a kickoff or a shuffle, but
again this is only finitely often possible. Altogether, each player can only be moved finitely often and thus the
algorithm terminates after a finite number of cycles.

Claim. The final profile x has cost C(x) <#,- C(y). The concept of this final part of the proof is that in
profile x the cost of every used resource is determined by the player who has last moved there or, if there are
no such players, the home players. For this, some new notation is needed. Let p;, i € N, correspond to the
position (by index) of player i on her optimal resource y;, i.e., on any resource a we have p; =1 for player
j=maxS$,(y), p; =2 for j'=max(S,(y)\{j}), and so on. Consequently, when some player i performs her
kickoff in cycle k, there are p, players sharing her resource a* =y, at that moment and she is the smallest of
them. We obtain for resource b* that she is moved to
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ey (XY = e (bF, X)) = {bnll\l} ¢y (b, x*)
€
1 , .
<— > ggﬁcb(b,x_j) (19)

Pi jes  (xh)
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1
k
< —cu(x) (20)
Di
1
< —-¢, (. 21
Di

where the first inequality (19) is valid because i is the smallest of the p; players on resource a* in step k, the
second inequality (20) holds because a* is charged in x* and the last inequality (21) holds because there are no
foreign players on a* =y, and hence £ (x*) < €, (y) =¢, ().

Because shuffles and zero moves assign player i to cheaper resources, after her last move in cycle k’, she is
on resource b at cost )

o () < — e, ()
pi

Altogether, in the final profile x, the cost of a resource a € M to which players have been moved is determined
by the last player who was moved there, which we denote by i,. We thus obtain c,(x) < (1/p; ) - ¢, (y). For
resources a € M that are used in x but where no player has been moved, the player i, :=max S,(y) with p; =1
is still on resource a. In this case, the cost is bounded from above by c,(x) <¢,(y)=(1/p; ) ¢y, (¥). Unused
resources a € M have cost ¢,(x) = 0. Altogether, we obtain c,(x) = (1/p; ) ¢, (y) for all a € M with £,(x) >0,
and c,(x) =0 for all a € M with £,(x) =0. This yields the desired bound for the cost of profile x, because now
every used resource a € M has a unique player i, that determines the resource’s cost. We obtain

1 1
C()C)Z an(x)f Z _'Cyia(y)fz_'cy[(y)sZ%pmax'ca(y)
aeM za(fcﬁo i ieN Pi aeM

=#,. CO)=H,-C(y), where py,, :=max{|S,(y)|: a € M}.

Observe that the bound for the price of anarchy obtained here can be much lower than #, for singleton
models that have optimal profiles, where the players are scattered over the resources and where therefore p,,,.
is smaller than n. 0O

REMARK 3.2. Although Lemma 3.3 shows that an optimal profile can be turned into a strongly decharged
profile of cost at most #, times the cost of an optimal profile, this holds true more generally: Algorithm 2 turns
every profile into a strongly decharged profile with a cost increase of a factor at most # ,.

Whereas the previous Lemma showed how to find a strongly decharged profile of at most #, times the cost
of an optimal profile, we now present an instance that has no weakly decharged profile cheaper than #, times
the cost of an optimal profile, thus giving a lower bound on the PoS.

LEMMA 3.4. The price of stability is at least #, for games induced by basic protocols. This lower bound
holds even for models with unit demands.

ProofF. Consider the singleton model (N, M, d, ¢) with n players that have unit demand d, =1 for all i e N
and n resources with cost functions as in Table 2.

The only optimal profile is clearly y = (ay, ..., a;) with C(y) =1+ €. A profile z can only be a pure Nash
equilibrium if it is weakly decharged (Lemma 3.2). We show that the cheapest weakly decharged profiles are
those in which each resource is used by exactly one player, which all have the same cost as x = (a, ..., a,).
It is easy to see that profile x is weakly decharged and with C(x)=>"/_,(1/i) =%, this proves the lemma.

If in a profile z some resource other than a, is used by multiple players, then C(z) > n, thus such profiles
are more expensive than x. If in profile z multiple players use resource a,, say k players, then there are at least
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TaBLE 2. Cost functions for resources used in the proof of Lemma 3.4.

14 q (0) 4, (0) .. ., (0) .. ¢, (€)

0 0 0 0 0
1 1+e ! ! !

2 i n
>1 1+e€ n n n

Note. For some small € > 0.
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TaBLE 3. Cost functions of resources used in the proof of Theorem 3.4.

o (O (O (O (O (O () ¢, (0)

0 0 0 0 0 0 0 0
2 0 0 0 0 0 k? 0
3 0 0 0 K 0 k* 0
4 1 k 1 2k3 k® 2k* k*
5 2 K k° 2k3

6 K K’

7 k*

k — 1 unused resources and for the cheapest of these, say resource a, we have c;(1) < 1/k. Thus, z is not weakly
decharged as .
c@=1+e>1= Y —>= 3 ci(a,z ;)= ) minc,(b,z,).
i€S,, () i€S,, () i€S,, (2) beM
Altogether, only such profiles in which all resources are used by exactly one player are cheap weakly decharged
profiles and x is the cheapest pure Nash equilibrium. O

3.3. Uniform protocols. The basic and separable protocols that we introduced so far were always tailored
to a desirable (decharged) profile. Because uniform protocols need to work independent of the set M, they
cannot be based on specific profiles. We show in this section that uniformity leads to an unbounded price of
anarchy. The question of min,, PoS({) remains open.

THEOREM 3.4. There is no uniform protocol for which the price of anarchy has an upper bound. This holds
even for models with at most three players, three resources, and nondecreasing costs per unit.

ProoEk. The essence of uniform protocols is that adding resources to or removing them from the model does
not change the cost shares of players using a certain resource, as long as the player set and the weight vector
remain the same. This motivates the definition of cost share functions §; that return the cost share ¢; of player
i as a function of the resource a that she uses and the set of players S € N sharing the resource:

£(a,S):=&(x) YaeM, SCN, i€S, xeM" S,(x)=S5.

As in Definition 2.1, a profile x is a pure Nash equilibrium if none of the players can reduce their private cost
by choosing a different resource. This can be expressed via cost share functions as follows. For alli e N, ae M
it holds that ) .

&i(x;, 8, (%) = &(a, S,(x) U{i}). (22)
For the proof of the theorem, we propose a number of singleton models and show that for any uniform protocol
at least one of these models has a pure Nash equilibrium of more than k times the cost of an optimal profile
for arbitrary k > 2. Throughout the entire proof, the player set will always be N = {1, 2,3} with weights
d =(4,3,2). The resources will be a subset of M ={a,, ..., a,} with cost functions as outlined in Table 3.

First, consider the model with resources M, = {a,, a,} and their respective cost functions. The optimal profile
v, = (a,, a,, a;) has cost C(y,) =k +2, while the profile x; = (a,, a,, a,) has cost C(x,) = k*+ 1. Either x, is
a pure Nash equilibrium and hence the protocol has a price of anarchy greater than k or one of the three players
can reduce her cost share by choosing a different resource, which results by (22) in the following three cases:

(a) & (ay,{1,2,3}) < &,(a;,{1}) = 1. In this case, consider M, = {a,,a;}. The optimal profile y, =
(as, ay, a,) with C(y,) = k> + 1 is not a pure Nash equilibrium and because of stability some other profile x
with cost C (x)>k° has to be a pure Nash equilibrium.

() &(ayp, {1,2}) < &(a,, {2,3}) < k°. In this case, consider My = {a,, a,, a,}. The optimal profile y, =
(a,, a,, a,) has cost C(y;) =1, and the profile x; = (a,, a,, a,) has cost C(x;) = k. Either x; is a pure Nash
equilibrium or, again, one of the players can reduce her cost share by choosing a different resource, which leads
to the following cases: A
(b)) &i(ay, {1,2}) < & (ap, {1}) = k. This contradicts (b), that is
§(a, {1,2)) =c,(d, +dy) — &(ay, {1,2}) > k=& > k.

(b.2) & (a4, {1,3}) < &,(ay,{1}) = k. In this case, consider M, = {a,, a,, as}. The optimal profile y, =
(ay, as, a,) with C(y,) =k is not a pure Nash equilibrium and because of stability some other profile k with
cost C(x) > k> has to be a pure Nash equilibrium.

(b.3) Players 2 and 3 cannot reduce their cost share as §,(x;) = ¢, (x3) =0 and &(x;) = ¢, (x;) =0.
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(c) g%(al, {1,3}) < 53(512, {2,3}) < k*. In this case, consider M5 = {a,, a,, as}. The optimal profile ys =
(ay, a,, a,) has cost C(ys) =k + 1, and the profile x5 = (a,, a,, az) has cost C(xs) = k*+ 1. Either x is a pure
Nash equilibrium or, again, one of the players can reduce her cost share by choosing a different resource.

(c.1) & (ay, {1,2}) < §(a;,{1}) = 1. In this case, consider again M; = {a,, a,, a,}. The optimal profile
v, = (a,, a,, ay) with C(y;) =1 is not a pure Nash equilibrium and because of stability some other profile x
with cost C(x) > k has to be a pure Nash equilibrium.

(c.2) & (aq, {1,3}) < &,(ay, {1}) = 1. In this case, consider M, = {as, as, as}. The optimal profile y, =
(as, as, ag) with C(yg) = k* + 1 is not a pure Nash equilibrium and because of stability some other profile x
with cost C(x) > k* has to be a pure Nash equilibrium.

(c.3) Player 2 cannot reduce her cost share because &,(xs) = c,, (xs5) =0.

(c.4) {%(al, {1,3}) < é(aé, {3}) = k% In this case, consider M, = {a,, a4, a,}. The optimal profile y, =
(a,,a;,ag) with C(y;) =k*+ 1 is not a pure Nash equilibrium and because of stability some other profile x
with cost C(x) > &’ has to be a pure Nash equilibrium.

- (c5) &(ay,{2,3)) < &(ag, {3)) = k*. This extends the original assumption from (c), which is
&(ay, {1,3})) < &(ay, {2,3}) < k. Therefore this case implies (c.4).

Altogether, every uniform protocol allows in at least one of the analyzed cases a pure Nash equilibrium of at
least k times the cost of an optimal profile for an arbitrarily large £ > 2. Consequently, the price of anarchy is
not bounded. O

4. Matroid games. We now turn to matroid games, where each player chooses multiple resources that form
a basis of some matroid (a definition will be given below). The singleton games analyzed so far are a subclass
of matroid games and consequently all lower bounds also hold in this new setting. Notably, there is no bound on
the price of anarchy for matroid games induced by uniform protocols. We find a characterization of pure Nash
equilibria in games induced by separable protocols and use it to show that the PoS for these games is exactly #,,.
For the PoA, however, we find a structural difference when going from singleton to matroids, showing that the
PoA is exactly n. Moreover, our characterization of pure Nash equilibria induced by separable protocols cannot
be carried over to basic protocols. Nevertheless, we use insights gained from the characterization to design an
optimal basic protocol with PoS and PoA equal to #,. Before we present the details, we recall some basic
definitions of matroids.

4.1. Matroids. A resource selection model (N, M, 3, d, c) is called matroid model if there is a matroid
M= (M, . ¥) such that the players’ strategy sets X, equal the set of bases of ./ for every i € N. Recall that a
nonempty anti-chain' 98 C 2 is the base set of a matroid / = (M, .) on resource (ground) set M if and only
if the following basis exchange property is satisfied: whenever X, Y € %, and x € X\Y, then there exists some
y € Y\X such that X\{x} U {y} € %. For a comprehensive overview on matroid theory, the reader is referred
to Schrijver [54]. To shorten notation, we define X +a:=X U {a} and X — a := X\{a} for each set X C M
and each element a € M. We denote by 3, = B(/) the collection of bases (i.e., the inclusion-wise maximal
independent sets) of matroid /. Every basis of a matroid has the same number of elements. The number of
elements in a basis is called the rank of ., or simply rk(/). Hence, in a given matroid model, the players’
strategies consist of rk(.#) resources. We will sometimes adopt the interpretation that each player has rk(/)
jobs that she “schedules” on certain machines in M. These schedules must of course correspond to a basis of
the matroid.

4.2. Characterization of Nash equilibria for separable protocols. Throughout this section, contrary
to §3.1, the players are assumed to be ordered by nonincreasing weights: d, > d, > --- > d,. We extend the

concept of decharged ]}J)roﬁles to prepare a characterization of pure Nash equilibria.
DEFINITION 4.1 (DECHARGED PROFILE). In a matroid model (N, M, 3, d,c), a profile X € 3 is called

weakly decharged, if
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,(X)=< Y min c,(X;+b—a,X_;) forallaeM.
i€S,(X) X, +baes,
The profile is called strongly decharged if additionally
c,(X)< > 5]15‘141 c,(X;+b—a,X_;) forallae M: ¢,(X)>0 and |S,(X)| > 1.
i€8,(X) X, +b—acs,;
Otherwise the profile is called charged.

We further introduce the simple X-enforcing protocol. )
DEFINITION 4.2 (SIMPLE X-ENFORCING PrROTOCOL). The protocol takes as input a weakly decharged pro-

' B C2M is an anti-chain (with respect to (2%, C)) if B, B' € %, B C B’ implies B=B'.
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file X. We use X to define for any profile Z and resource a the set of foreign players S}(Z) := S,(Z)\S,(X).
Then, the simple X-enforcing protocol assigns for all i € N, a € M and Z € %, the cost share functions
MiNyepy. X, +p—aes, Cb (Xi+b—a,X_)

Zjesa(x) minbeM:Xj+b7aeEj Cp (Xj +b—a, ij)

-, (X), if S,(Z)=S5,X) and ¢, (X) >0,

£ .(2) = ¢, (2), if $}(Z) # @ and i =min S} (2),
¢.(2), if S1(2) = 2, 5,(2) € 5,(X)
and i =min S, (Z),
0, else.

Note that this protocol is an extension of the x-enforcing protocol from §3, but without strong foreign players.

THEOREM 4.1. Consider a matroid model (N, M, 3., d, c). A profile X € 3 is weakly decharged if and only
if it is a pure Nash equilibrium in the game induced by some separable protocol.

PrOOF.  We start with the “if” direction. If X is a pure Nash equilibrium under some separable protocol = that
assigns cost share functions &, then for any i € N, and any a* € X;, b ¢ X, such that X, + b — a* € 3, we have

Zfi,a(x) =&EX) <&(Xi+b—a", X )= Z fi,a(Xi+b_a*vX—i) (23)
= Z ‘fi,a(X)‘i‘fi,h(Xi‘i‘b_a*’X—i)’ (24)
aeX;\{a*}

where inequality (23) follows because X is a pure Nash equilibrium and (24) follows because the protocol is
separable. Consequently,

& .,X)< min &, (X;+b—a, X ;) forallaeM, ieS, (X). (25)
X,-+bb€—[l262,-
With
c(X)= > &.(X)= X IbnR} &p(Xi+b—a, X)) (26)
€8, (X) 1€5,(X) X, +haes,
< > min ¢(X;+b—a,X;) foralaeM (27)

1€5,(0) X, +hes,
we conclude that the profile X is weakly decharged. Here, (26) follows from (25) and (27) because the protocol
is budget balanced.

We now turn to the “only if” direction of the proof. For a weakly decharged profile X, it is clear that the
simple X-enforcing protocol is budget balanced, we only show that X is a pure Nash equilibrium. For all
resources a € M with ¢,(X) > 0 we are in the first case of the definition of the protocol, thus, we obtain

£ (X) = MiNyeyy x4 p—qes, € (X 0 —a, X))
i ZjeSa(X) minbeM:Xj+b—a€2i Cb(Xj +b—a, X—j)
< min o (X;+b—a, X))

T beM:X;+b—ac3;

= ' o(X;+b—a,X_;) forallieS,(X), 28
_bEM\{a;".nXl,-I-l#b—aGEigl’b( l+ a ,) or all 1 a( ) ( )

: Ca(X)

where the first inequality holds because the profile x is weakly decharged. For all other resources a € M, we have
& (X)=c,(X)=0 for all i € S,(X). Thus, so far we have shown that no player can improve by exchanging a
single resource a € X; with another resource b ¢ X, that is, playing a strategy X; +b — a. We call such exchanges
of single resources (1, 1)-exchanges. Using the (1, 1)-exchange property of bases of matroids, we now show that
X is a pure Nash equilibrium, i.e., that &,(X) < §,(Z,, X_,) for all Z; € 3. This approach has been used before
by Ackermann et al. [2] in the context of classic weighted matroid congestion games.

To this end, fix a Z; € X, and denote by G(X,;AZ,) the bipartite graph (V, E) with V := (X \Z,) U (Z\X,)
and E:={(a,b): ae X\Z;,,be Z\X;,(X;+b—a) e 3,}.

PROPOSITION 4.1 (SCHRUVER [54]). There exists a perfect matching in the graph G(X;AZ,).
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Consider such a matching and observe that for any matching edge (a, b) with a € X;, b € Z, we have
Eb(Zin X)) =c(Zi, X)) =c,(Xi+b—a, X)) =¢& ,(Xi+b—a, X)) (29a)

> & o(X), (29b)
where the equations in (29a) are given by the definition of the protocol and inequality (29b) follows from (28).
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Because this holds for any matching edge and the matching is perfect, we conclude

EX) =) & X)= Y &0+ Y &.(X)
aeX; aeX;NZ; aeX\Z;
< Y &0+ Y &,(Z.X) (30)
aeX;NZ; beZ\X;
= Z gi,a(zi’X—i)+ Z gi,b(zi’X—i)zgi(Zi’X—i)' (31)
aeX;NZ; beZ\X;

Inequality (30) follows from (29) and (31) follows from the definition of the protocol. [

Whereas our characterization of pure Nash equilibria in singleton games works for both separable and basic
protocols, in matroid games the characterization is limited to separable protocols. This is due to the nature of
nonsingleton games: when the players’ strategies consist of multiple resources, the question whether a certain
profile can be a pure Nash equilibrium can generally not be answered by looking at the resources one by one.
A special case is the class of matroid games induced by separable protocols: here, if a player can decrease his
cost share by moving to a different strategy, he can also decrease his cost share by a (1, 1)-exchange (because of
matroid properties) and this exchange of one resource in his strategy will not affect his cost share on the other
resources (because of the separability of the protocol). Consequently, only in this unique setting we can again
characterize pure Nash equilibria by a “per resource” condition.

REMARK 4.1. The above characterization allows the same extension as shown for the characterization of pure
Nash equilibria in singleton games in Corollary 3.1. It holds on a per instance basis and is independent of the
social welfare function. Hence, the simple X-enforcing protocol is universally PoS-optimal among all separable
protocols for any social welfare function.

4.3. Bounds for the price of stability for separable protocols. Just like for singleton games, our charac-
terization of pure Nash equilibria in matroid games induced by a separable protocols allows us to design an
optimal protocol.

Algorithm 2 (Find strongly decharged profile X)
Input: Matroid resource selection model (N, M, 3, d, c), profile Y
Output: Strongly decharged profile X
1: k<1 {stepnumber}
2: X! <Y {starts with optimal profile Y}
3: 0, <@ forall ae M {stacks that return the last element entered}
4: while there are charged resources do
5:  a* < argmax{c,(X*): a € M is charged} ({select the most expensive charged resource}
6: if c,(X¥+b—a*, X*,) =0 for some i € S, (X*) and some b€ M: X} + b —a* € 3, then
7 {player can have (1, 1)-exchange to cost-free resource, case called zero move}
8 i* <~ i {select player this player}
9: else if O, # @ then

k
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10: {some player on a* was moved before, case called shuffle}

11: i* < extract from Q. {select last moved player}

12:  else

13: {no foreign players on a*, case called kickoff}

14: i* <~ argmin  min ¢, (Xlkk +b—d, X" «)  {select player with cheapest (1, 1)-exchange}
ieS 4 (XK) X +lb7f1:14k62‘_k

15:  end if

16: b« argmin ¢, (X +b—a", X*,) {select cheapest (1, 1)-exchange}
Xi’jc +II;S]Z["eiik

17: XM« (X5 +b* —a*, X*,)  {execute (1, 1)-exchange}

18: enter i* to stack Q,

19: k<«k+1 ({iterate}

20: end while

21: return X < X*
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THEOREM 4.2. For matroid games,
min PoS(E) =%,

Ee¥,

ProOF. The lower bound of #, on the PoS for separable protocols established in Lemma 3.4 for singleton
games also holds for matroid games. Hence, we only need to prove the upper bound. To do this, we introduce
an adaption of Algorithm 1 to matroid games that returns for any matroid model a strongly decharged profile
of at most #, times the cost of an optimal profile. To prove that Algorithm 2 works as desired, we follow the
same steps as in the proof of Algorithm 1. First, we show that the algorithm terminates, then we deal with the
cost of profile X.

Claim. Algorithm 2 terminates. For the proof, we adhere to the interpretation of players scheduling rk(./)
jobs on the resources. We fix a player i and follow one of his jobs over the course of the algorithm, showing
that it can only be moved finitely often. There can be at most one kickoff involving this job, afterward the job
is always in the stack of the resource it is scheduled on. Say the algorithm is in cycle k and a shuffle involving
our job is performed. Then,

min ep(Xj+b—d' Xt )>0 forall jeS,.(X"), (32)
€

k k
Xj+b—a €3;

because otherwise the algorithm would perform a zero move. We now consider two cases. For [S(X*)| =1,

we obtain
cu(XF) > min e (X5 +b—a*, X5, (33)
szk +biak€2ik
= cp (X5 +b—a*, X4 ) = e (XF), (34)

k is charged in X*. Equality (34) follows because Algorithm 2 moves i* to the

where (33) follows because a
cheapest available resource.

If |S,(X*)| > 1, then we obtain

cax(XH > > imﬂgll cb(Xj.‘+b—ak,X_j) (35)
JeS.(xK) xXktb—dtes;
> min c,(Xf+b—d", X)) (36)
beM
Xitb—dkes,;

= Cpk (Xlk + bk — ak, X—i) = Cpk (Xk+1),

where (35) is valid because a* is charged in X*. The second inequality (36) holds because of (32) and the
equalities follow as above. In both cases, a shuffle moves the player to a strictly cheaper resource and the
last-in/first-out mechanism of the algorithm makes sure that in between two shuffles the cost of the resource
does not increase more than it decreases. Hence, the number of shuffles is limited. Also, the number of zero
moves is limited, as shown in the proof of Algorithm 1. Hence, each job is moved only finitely often and the
algorithm terminates.

Claim. Profile X returned by Algorithm 2 has at most #,, times the cost of the input profile Y. Throughout
the proof of this claim, we regard the set Q :={q,, ...} of all jobs instead of the players they belong to. We
denote the player to which a job ¢ belongs by i(g) and the resource on which job ¢ is scheduled in profile ¥
by y(q). If k is the cycle of the algorithm in which g has its kickoff, we define p(q) :=|S,,,(X*)| to be the
number of players on y(q) in X*. Then,

cp (X = Cbk(Xik(q) + b — y(q), Xfi(q)) = min ch(Xik(q) +b—y(q), Xfi(q))

be
k
Xi(q)+b—yﬂ(/{1)€§,,~(q)

> min  ¢,(Xj+b—y(q). X)) (37)

. " be
J€Sy @ (X5) Xk +b—y(q)e;
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b
r(q)

1

p(q)
1

p(q)

where the first inequality (37) is valid because i(q) has the cheapest alternative among the p(g) players on y(g)
in X*, the second inequality (38) holds because y(g) is charged in X* and the last inequality (39) holds because

=

-

0 (X%) (38)

=

“Cy(g) (Y). (39)
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there are no foreign players on y(¢q) and hence ¢, (X9 < £, (Y). Because shuffles take job ¢ to strictly
cheaper resources, we have for any cycle / in which g is moved, ¢, (X'*") < (1/p(q)) - ¢,(,(Y). Altogether,
in the final profile X, the cost of a resource b € M to which jobs have been moved is determined by the last
job that was moved there, which we denote by g,. We have ¢,(X) < (1/p,,) - ¢, (Y). For resources b € M
that are used in X but where no player has been moved, we have €,(X) < £,(Y) and hence ¢,(X) <¢,(Y). On
these resources, we pick an arbitrary job, call it g, and set p, =1 so that again ¢,(X) < (1/p,, ) ¢, (Y). We
thus obtain

1 1
CX)=cX)= 3 —rcyyyM)= X —-up)=D#, -c,(Y)
beM beM b qeQ (q) aeM
Sp(X)#2 p(q) defined

=%, -C(Y)<#, -C(Y), wherep,, =max{|S,(y)|:aeM}. O

REMARK 4.2. Again, as observed for singleton games in Remark 3.2, the algorithm turns every profile into
a strongly decharged profile with a cost increase of a factor at most #, and can, hence, take approximations of
the optimal profile as input.

4.4. Bounds for the price of anarchy for separable protocols. A decharged profile X can be made a pure
Nash equilibrium by the simple X-enforcing protocol, but we cannot enforce it as the game’s most expensive
pure Nash equilibrium. Instead, we find that across games induced by the X-enforcing protocol with a cheap
decharged profile as input, the PoA is n.

THEOREM 4.3. For matroid games,
min PoA(E) = n.
Ee,

We prove this result in two steps. In the upcoming lemma we give a matroid model that under any separable
protocol has a pure Nash equilibrium of n times the cost of the optimal profile, resulting in our lower bound.
Thereafter, we show that pure Nash equilibria in games induced by the simple X-enforcing protocol cost at most
n times as much as the optimal profile, resulting in our upper bound.

LEmMMA 4.1.  For matroid games,
min PoA(E) > n.
Ee¥,

This lower bound holds even for models with unit demands and uniform matroids.

ProofF. Consider the matroid model (N, M, X, d, c) with n players that have unit demand d; =1 for all

i € N and resources M = {b,, b, ..., b,} with cost functions as in Table 4. All players i € N have identical
strategy sets 3, = {Z, C M: |Z;| = n}. Note that the sets in 3, are the bases of the uniform matroid on M of
rank n.

Consider the profile X with X; ={b,,...,b,} for all players i € N. We show for any separable protocol that

assigns cost share functions &; , that X is a pure Nash equilibrium. First, note that any strategy Z; € 3, Z; # X;,
can be written as Z; = X; + by — b; for some j € N. Now,

§X) =2 & (X)) =D & (X)— i, (X) + &4 (Xi+ by — b, X)) (40)
= gi(Xi+bO_bj’X—i)zgi(zi’X—i)’ (41)

where (40) holds because &b, (X) = c,,j(X) =1=§ ,(X;+ by —b;, X_;) because of budget balance of the
protocol and (41) because &; ,(X) =¢&; ,(X;+by—b;, X_;) for all a € X;, a# b; because of separability of the
protocol. Clearly, Y with ¥; = M\{b,} is an optimal profile with C(Y) = 1. Hence, the fact that X with C(X) =n
is a pure Nash equilibrium under any separable protocol proves that the PoA is a least n. U
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TaBLE 4. Cost functions for resources used in the proof of Lemma 4.1.

Load i (0) (0 .. ¢y, (€)
=0 0 0 0
O<fl<n 1 0 0

L=n 1 1 1
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LEMMA 4.2.  For matroid games,
min PoA(E) < n.
Ee¥,

Proor. Let (N, M, 3, d, c) be a matroid model with optimal profile Y. Let X be the strongly decharged
profile returned by Algorithm 2 with intermediate profiles X', ... and let ¢, , for i € N, a € M be the cost share
functions assigned by the simple X-enforcing protocol. We use notation for players and jobs interchangeably,
denoting the set of jobs on resource a by g € S,(X). For each job ¢, define y(g) and p(g) as in the analysis of
the algorithm (proof of Theorem 4.2) and denote additionally by x(g) the resource a € M that job g is on in
profile X and by X¢ the algorithm’s intermediate profile in which g is first on x(g). From the analysis of the
algorithm, we know

1
Cyq(XT) = (@)@ (Y) (42)

for all jobs g that were moved by the algorithm. For jobs ¢ that were not moved by the algorithm, we set
X1:=Y.

To prove the lemma, we show C(Z) <n-C(Y) for any pure Nash equilibrium Z. To this end, we fix such a
profile Z and link it to the profiles (X;, Z_;) via the Nash property,

C(Z) = th(z) = Zfi(xiv Z—i) = Z Z fi,a(xi’ Z—i) = Z Z §i,a(Xi’ Z—i)

ieN ieN ieN aeX; aeM €S, (X)
si(z)=o Si(2)=2
1
< Z ( Z Ca(Y)+2' Z _Cy(q)(Y))' (43)
S0 \aES,00n5, (1) 4es, s, P(@)
1(2)=0

Proving (43) is a major challenge of this proof and beforehand we give a brief intuition for this inequality: for
jobs that are moved by the algorithm we have an at most logarithmic cost increase going from profile Y to
profile Z, represented by the second term, and for jobs not moved by the algorithm, the cost increase can even
be linear as represented by the first term. In our worst-case example in Lemma 4.1, this linear cost increase
dominates the logarithmic cost increase: no jobs are moved by the algorithm.

To prove (43), we partition the resources without foreign players into two sets:

e M :={aeM: S (Z)=2 and |S,(X)\S,(Z)| < 1}—resources, where at most one job is missing, and

o My:={aeM: S!(Z)=2 and |S,(X)\S,(Z)| > 1}—resources, where multiple jobs are missing.
For the resources in both sets, we find bounds corresponding to (43) in two separate claims. These claims
combined prove the lemma.

Cram 4.3.1. ForaeM,,

Z & a(XiZy) < Z c,(Y)+ Z _cy(q)(Y)'
i€5,(X) 4€8,(X)NS,(Y) ges, (s, r) P(@)
PrOOF. Recall that
c,(Y) for a e M with S, (X)\S,(Y) =2, (44)
ca(X) S 1
c(X%) < ——cy,\(Y) foraeM with S,(X)\S,(Y) # 2, (45)

r(q.)

where job ¢, denotes the last job moved to a by the algorithm. The second inequality (45) follows from (42).
To prove the claim, we have for a € M|,
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> & aXiZ) = L 7)o > & a(Z)+ lsa(X)\su(Z):{i*}'fi*,a(Xi*’ Z_) (46)
i€S,(X) i€S,(Z)
< X5 (2)20Ca(X) + Lg (x5, 2)=(i) €a(X) (47)
1
= > ¢, (Y)+2- > ( )cy(q)(Y)’ (48)
€8, (X)NS,(Y) ges,(xNs,(v) P\

where 1 denotes the indicator function tied to the condition in subscript and, if applicable, i* is the single player
using resource a in X but not in Z. Equation (46) is due to the nature of M, and for (47) we use that there are




von Falkenhausen and Harks: Optimal Cost Sharing for Resource Selection Games
Mathematics of Operations Research 38(1), pp. 184-208, ©2013 INFORMS 203

no foreign players on machines a € M,. In inequality (48), we estimate using both (44) and (45). For the case
where both indicator functions are true, we multiply the term from (45) by two. For the term from (44) this is
not necessary because, if both indicator functions are true and S,(X)\S,(Y) = @, then there are multiple jobs
g €S,(X)NS,(Y) and, hence, 3, cs x)ns,r) Ca(Y) =2-¢,(Y). O

Cramm 4.3.2. ForaeM,,

1
Z §a(XiZ) < Z c,(Y)+ Z ﬁcy(q)(y)'
i€5,(X) 4e5, ()NS5, (Y) ges, 00\, (1) P
Proor. We denote the jobs on a € M, in profile X by qf,...,q[s ), such that they are indexed with

nonincreasing weights dgo > --- > dq‘.,g W Let s(a) :=min{i: ¢/ € S,(Z)}. Because the jobs are indexed in the
same order as their players, the protocol assigns for i <|S,(X)|

c,(L(Z)+d,) ifi<s(a),

gql’-‘,a(xqi“ > Z—q‘-“) =16 (Ea(z)) ifi= s(a), (49)
0 if i > s(a).
We now define an automorphism o,: {qf,...,qfs x,} = {ai,---. 45 x)} that maps the first r(a) :=

IS, (X)\S,(Y)]| jobs (by index) to S,(X)\S,(Y), such that
e 0,(g) is the last job that was moved to a by the algorithm,
e 0,(q5) is the second-last job that was moved to a by the algorithm,
e ... and
e 0,(qy,) is the first job that was moved to a by the algorithm.
The remaining jobs are mapped arbitrarily to S,(X) N S,(Y), keeping o, bijective. Then,

s(a)—1

Ea(z) = Ea(X) - Z dq;‘ (503)
j=1
s(a)—1

<X - Y Ao, q) (50b)
j=1

< L, (X)), (50¢)

where (50a) holds because S,(Z) C S,(X) and g, . .., g, & S.(Z) by definition of s(a). Inequality (50b)
holds because we indexed the jobs from big to small and hence the first s(a) — 1 jobs are the “biggest” jobs on
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resource a. For (50c), if s(a) < r(a), that is, if o,(qy,,) was moved to resource a, then in profile X 7a%w) none
of the jobs 0,(g5,)_1)s- - - > 0,(q]) moved to a after job o,(gy,,) are on resource a, and consequently (50c)
follows. Otherwise, if s(a) > r(a), that is, if 0,(gy,) € S,(¥), then ¥ = X (%) and in this profile none of the
jobs 0,(q/(,)- - - -, 0,(q}) that were moved to resource a are on resource a and hence (50c) follows. We find
likewise for i < s(a),
i-1 i1
C(2)+dy <, (X) — Zl dy < £,(X) = Zl dy, g0 < La(X7), (51)
J= J=
where the above inequalities hold for similar reasons as (50). We complete the proof of Claim 4.3.2 by
s(a)—1
Z fi,a(Xi’ Z—i) = ca(ga(z)) + Z Ca(ga(z) +dql“) (52)
i€$,(X) i=1
s(a) .,
< Doca (X)) < 37 e (X7) (53)
i=1 q€8,(X)
= 2 (X9 (54)
9€54(X)
1
= X Mt Y —=guM), (55)

4€S,(X)NS,(Y) ges.0ons,(n) (@)
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where Equation (52) follows from (49) and inequality (53) follows from (50) and (51). Equation (54) holds
because o, is an automorphism on S,(X) and finally inequality (55) follows from our definition of the interme-
diate profiles X7 and our results regarding these profiles as in (42). O

We now continue the proof of Lemma 4.2 where we left off with (43) and conclude across both sets

C2y= Y Y &.X.Z.)

S;?;)Ai €S (X)
1
= Z ( Z Ca(Y) + 2. Z Cy(q)(Y)> (56)
aeM UM, \geS,(X)NS,(Y) gE€S,(X)\S,(Y) p(q)
2
> ( Y e+ Y ca<Y>) (57)
aeM \ges,(X)NS, (Y) ges, (s, P(4)
15,(1)] )
<> (lSa(Y)ﬂSa(X)I e, (Y)+ > —-Cu(Y)> (58)
aeM p=IS NS, (x)+1 P

< 2 IS.(N)]-c,(Y) <n-C(Y).

aeM

Here, (56) follows from Claims 4.3.1 and 4.3.2. In (57), we change the order of summation: instead of summing
up the g € S,(X)\S,(Y) that were moved from other resources by the algorithm, we sum up the ¢ € S,(Y)\S,(X)
that were moved fo other resources by the algorithm. For (58), recall how we introduced p(q): the first job that
is moved away has p(g) =|S,(Y)|, the next has p(g) = |S,(Y) — 1| until the last job that is moved away has
p(g) =18, (Y)NS,(X)|+1. O

4.5. An optimal basic protocol. For matroid games induced by basic protocols, we do not give a complete
characterization of pure Nash equilibria. Instead, we find that the “decharged” condition is sufficient to make
a profile a pure Nash equilibrium and even the most expensive pure Nash equilibrium of the game. Using this
structural result, we give an optimal basic protocol that simultaneously minimizes PoS and PoA.

LEmMA 4.3.  Consider a matroid model (N, M, 3., d, ¢) and a profile X € 3. If X is strongly decharged, there
is a basic protocol that assigns cost share functions such that X is the most expensive pure Nash equilibrium of
the induced game.

For the proof of this lemma, we introduce the anarchy eliminating protocol that just like the simple
X-enforcing protocol relies on a decharged profile X.

DEFINITION 4.3 (ANARCHY ELIMINATING ProTOCOL). The anarchy eliminating protocol takes as
input a strongly decharged profile X. For any profile Z denote a global set of foreign players by
S1(Z):={i e N: Z,# X,}. Then, the anarchy eliminating protocol assigns for all i € N and a € M the cost share

S~
D
S 9
c un
5 €
:L
T o
L
o c
9
©
2 €
=
@0
23
= fer
O
o <
=
© ©
n 2
“3
b
53
O ®©
2
£y
i
>
'_QQ.
= C
® .9
S 3
o2
2 E
T O
o2
o¢
T ©
T o
§2)
0 £
c .2
el
o
2c
a— O
=)
O O
= £
a -
c
O o
°8
@ e
S =
[ele)
==
w_
©
= C
c o
=
Q3
z-c
=<

functions
MiN,ep. x,+paes, Cp(X; +b—a, X_;) e.(X)
2 jes, (0 Miyeyrx 1paes, Cp(X; +b—a, X_j) e
. it Z=X,
D=1 (2), if Z#X, SY(Z)NS,(Z) # @ and i =min S'(Z) N S, (Z),
c.(2), if Z#X,8(Z)NS,(Z) =& and i = min S, (Z).
0, else.

ProOF OF LEMMA 4.3.  We first show that the profile X is a pure Nash equilibrium under the anarchy elim-
inating protocol. To this end, let £* be the cost share functions assigned by the simple X-enforcing protocol.
Then, for any i € N and any Z; € 3,

EX) =2 &)= &.(X)=d & .(Z,X) (59)
= Z c(Zi, X)) = Z fz‘,a(zia X)) =&(Z, X)), (60)

aeZ; aeZ;
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where (59) holds because X is a pure Nash equilibrium under the simple X-enforcing protocol and (60) holds
because the simple X-enforcing protocol is budget balanced.

To complete the proof, we show that X is the most expensive pure Nash equilibrium, that is, C(Z) < C(X)
for any pure Nash equilibrium Z. We denote the foreign player with the smallest index by i* := min S'(Z).
Then,

£(2)<é(Z..Z_)=0 foralljeS (Z), j#i", (61)

because Z is a pure Nash equilibrium. To estimate &,.(Z), we need to examine three cases:
(i) $'(Z2)={i*} and S,(X) = {i*} for all a € X,.,
(ii) $'(Z)={i*} and |S,(X)| > 1 for some a € X;.,
(i) |SY(2)| > 1.
In Case (i), we have c,(Z) = c,(X) for all a € M\(Z,. U X,.) and S,(Z) = & for all a € X,.\Z;. and hence

with
C2)= )Y @+ Y c@D)+ ) c(2)

aeM\(ZxUX;x) aeX\Zx a€Zx

= X @+ ) &2 (62)
aeM\(ZyxUXx) aeZyx

S Z Ca(X) + Z ‘fi*,a(Xi*’ Z*i*) (63)
aeM\(ZyxUX;x) aeX;x

= X @+ X X)=CX) (64)
aeM\(ZxUX;x) aeXx

we are done. Equation (62) holds because ¢,(Z) =0 for all a € X.\Z,., inequality (63) holds because Z is a
pure Nash equilibrium and (64) because S,(X) = {i*} for all a € X,..

In Case (ii), because X is strongly decharged, we have &.(X) < §.(Z;, X_;.) = €.(Z). This contradicts that
Z is a pure Nash equilibrium.

In Case (iii), for resources that are used by players from S'(Z), we have

Y. @)= ) &2 (65a)
aeM ieS1(Z)
S,(Z)nSY(2)#2
= &+(2) (65b)
<& (X, Zy) (65¢)
= 3 co(Xi Z_12) (65d)
aeXpx
*=min S, (X)
S (2)NS' (X, Z_i)=2
= > c,(X), (65¢)
aeXx
*=min S, (X)

S (Z)NSY (X e, Z_ i )=2

where (65a) is given by the protocol, (65b) follows from (61), and (65c) holds because Z is a pure Nash
equilibrium. Because there are multiple foreign players (Case (iii)), only the second case from the definition of
the protocol applies for i* and (65d) follows. Finally, (65¢) holds because for resources a € X;. without foreign
players, i.e., S,(Z)NS"(X;., Z_;.) = @, we have £,(X;., Z_;) < £,(X).

We conclude,
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C@)= Y o@D+ X @

aeM aeM
S, (Z2)NSY (2)=w S, (Z2)NSY (2)#2
c,(Z2)>0
= X a0+ > €, (X) (66)
aeM aeXx
S,(2)nS' (2)=2 i*=min S, (X)
¢.(2)>0 SAZ)NSN (X, Z_p)=2
< > e, (X)=CX), (67)

aeM
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where the first part of (66) holds because for resources a € M with S,(Z) N S'(Z) = @ we have £,(Z) < €,(X)
and the second part follows from (65). The two summands in (66) are disjoint, as for all resources a € X;. with
i* =min S, (X) and i* ¢ S,(Z) we have c,(Z) =0, because §;(Z) < &,(Z;-,Z_;) =0 for all j € S,(Z). Hence,
(67) follows. O

THEOREM 4.4. For matroid games,

min POA(E) = min PoS(E) =%,
EeB, EeB,

PrOOF. When the anarchy eliminating protocol uses the strongly decharged profile generated by Algorithm 2
as input, it has PoS and PoA of #,. This matches the lower bound of #, from Lemma 3.4.

5. Summary and discussion. In this article we considered the design of cost sharing protocols for resource
selection games with singleton and matroid structure. For the design goal of minimizing the resulting price of
anarchy and price of stability, we obtained tight results for uniform, separable, and basic protocols.

5.1. Computational complexity. All protocols introduced in this paper rely on optimal profiles and
(strongly) decharged profiles. Hence, the complexity of computing such profiles is an essential question. For
unweighted scheduling models, i.e., singleton models with d, =--- =d,, our protocols are polynomial time
computable. Chakrabarty et al. [14] have shown that one can compute an optimal profile in polynomial time by
dynamic programming. Moreover, given an optimal profile, we can compute a (strongly) decharged profile in
polynomial time using Algorithm 2. To estimate the runtime of Algorithm 2, note that for unweighted models
the cost of a resource a depends only on the number of players using it. Using an idea of Ackermann et al. [1],
we can write a list of all possible values (c,(£,), £,) that has length m - n and sort it lexicographically in nonin-
creasing order. We set markers to the list entries that correspond to the optimal profile and update the markers
as the algorithm modifies the profile. In each cycle of Algorithm 2, a player is moved from the most expensive
resource to a less expensive resource and, consequently, the position of the top marker is on a lexicographically
lower list position. Considering the length of the list, there can be at most m - n cycles of the algorithm. It is
easy to show that the worst-case runtime of the algorithm remains unchanged even for matroid models. We do
not know, however, if one can compute the optimal profile in matroids in polynomial time. So far, tractability
of computing an optimal profile is only known for matroid models with nondecreasing or nonincreasing costs
per unit (cf. Ackermann et al. [1]).

For models with weighted demands the situation changes dramatically. Here, computing an optimal profile is
NP-complete and not even approximable by any constant factor even for singleton models (see Hochbaum and
Shmoys [34]). Even if an optimal profile is given, the runtime of Algorithm 2 appears to be superpolynomial.
This raises two important questions: can we compute decharged profiles that satisfy our cost bounds and can
we even directly compute the optimal decharged profile of a model in polynomial time?

5.2. Symmetry. Although our results hold for general nondecreasing cost functions, we restricted the play-
ers’ strategy sets to bases of a common matroid. Designing optimal protocols for more general strategy spaces
while allowing for weighted players and nonmonotonic cost per units remains an important and practically
relevant problem. We can give, however, a first insight showing that even basic cost sharing protocols perform
significantly weaker when going from symmetric games to asymmetric games even in singleton games with unit
demands.

REMARK 5.1. In asymmetric singleton games, each player i has an individual strategy set X; € M, opposed
to X; =M for all i € N in symmetric games. The optimal bound on the PoA (Theorem 3.3) of #, increases to at
least n for asymmetric games. Consider the model (N, M, d, c) with n players, resources M = {ay, a,, . . ., a,},
unit weights d; = 1, cost functions ¢,(¢) =1 for £ > 1, a € M, and strategy sets X; = {a,, a;}. The optimal
profile is y = (ay, . . . , ay) with C(y) =1, and x = (a,, . . ., a,) with C(x) = n is a pure Nash equilibrium under
every basic protocol.
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5.3. Protocol design space. Different applications allow for different means of cost sharing and, conse-
quently, there is no generic choice of a suitable protocol design space. For this paper, we followed and extended
the lead from Chen et al. [18] but other axioms defining the protocol space seem reasonable. For instance requir-
ing the protocols to guarantee convergence of best-response dynamics or to ensure stability against deviations
of coalitions of players seem equally natural.
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