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ABSTRACT
We consider the problem of designing cost sharing protocols
to minimize the price of anarchy and stability for a class
of scheduling games. Here, we are given a set of players,
each associated with a job of certain non-negative weight.
Any job fits on any machine, and the cost of a machine is
a non-decreasing function of the total load on the machine.
We assume that the private cost of a player is determined
by a cost sharing protocol. We consider four natural design
restrictions for feasible protocols: stability, budget balance,
separability, and uniformity. While budget balance is self-
explanatory, the stability requirement asks for the existence
of pure-strategy Nash equilibria. Separability requires that
the resulting cost shares only depend on the set of players
on a machine. Uniformity additionally requires that the cost
shares on a machine are instance-independent, that is, they
remain the same even if new machines are added to or re-
moved from the instance. We call a cost sharing protocol
basic, if it satisfies only stability and budget balance. Sep-
arable and uniform cost sharing protocols additionally sat-
isfy separability and uniformity, respectively. For n-player
games we show that among all basic and separable cost shar-
ing protocols, there is an optimal protocol with price of an-
archy and stability of precisely Hn =

∑n
i=1 1/i. For uniform

protocols we present a strong lower bound showing that the
price of anarchy is unbounded. Moreover, we obtain several
results for special cases in which either the cost functions
are restricted, or the job sizes are restricted. As a byprod-
uct of our analysis, we obtain a complete characterization
of outcomes that can be enforced as a pure-strategy Nash
equilibrium by basic and separable cost sharing protocols.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Scheduling
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1. INTRODUCTION
Congestion games play a fundamental role for many appli-

cations, including traffic networks, telecommunication net-
works and economics. In a congestion game, there is a set of
resources and a pure strategy of a player consists of a sub-
set of resources. The cost of a resource depends only on the
number of players choosing the resource, and the private cost
of a player is the sum of the costs of the chosen resources.
Under these assumptions, Rosenthal proved the existence of
a pure Nash equilibrium (PNE for short) [20]. An impor-
tant question in congestion games is the degree of subop-
timality caused by selfish resource allocation. Koutsoupias
and Papadimitriou [17] introduced a measure to quantify
the inefficiency of Nash equilibria which they termed the
price of anarchy. The price of anarchy is defined as the
worst-case ratio of the cost of a Nash equilibrium over the
cost of a system optimum. In the past decade, considerable
progress has been made in exactly quantifying the price of
anarchy for many interesting classes of games. In the context
of nonatomic network routing games, the price of anarchy
for specific classes of cost functions is well understood, see
Roughgarden and Tardos [23], Roughgarden [21] and Cor-
rea, Schulz, and Stier-Moses [11]. (For an overview of these
results, we refer to the book by Roughgarden [22].) Awer-
buch et al. [4], Christodoulou and Koutsoupias [9], Aland et
al. [2] and Bhawalkar et al. [5] derived several tight bounds
on the price of anarchy for weighted and unweighted con-
gestion games with specific classes of latency functions. De-
spite these bounds, it is known that the price of anarchy
for general latency functions is unbounded even on simple
parallel-arc networks [5, 23].

Motivated by the fact that pure Nash equilibria may be
very inefficient even in parallel-arc networks, we focus in this
paper on the design of cost sharing methods as a means to
leverage the resulting price of anarchy. The concrete sce-
nario that we consider is the problem of scheduling jobs on
parallel machines. We are given a set of players, each asso-
ciated with a job of certain non-negative weight. Any job
fits on any machine, and the cost of a machine is a non-
decreasing function of the total load on the machine. We
assume that the private cost of a player is determined by
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a cost sharing method. For instance, a simple cost sharing
method that has been analyzed in the aforementioned liter-
ature is average cost sharing, see [5, 11, 23]. In almost all
settings in the theory and practice of mechanism or proto-
col design, a designer may only choose protocols out of a set
of feasible protocols. Therefore, we have to precisely define
the design space of feasible protocols. To this end, we define
the following four properties listed below which are defined
more formally in Section 2. These properties have been in-
troduced first by Chen et al. [8] in the context of the design
of cost sharing protocols for network design games (a formal
definition of these games will be given in Section 1.2).

1. Stability : There is at least one pure strategy Nash equi-
librium in each scheduling game induced by the cost
sharing protocol.

2. Budget-balance: For every outcome of a scheduling
game induced by the cost sharing protocol, the cost of
each resource is exactly covered by the collected cost
shares of the players using the resource.

3. Separability : In each scheduling game induced by the
cost sharing protocol, the cost shares of each resource
are completely determined by the set of players that
use it.

4. Uniformity : Across all scheduling games induced by
the cost sharing protocol, the cost shares of a resource
(for each potential set of users) depend only on the
resource cost, and not on the set of available resources.

A cost sharing method is called basic if it satisfies (1)-(2),
separable if it satisfies (1)-(3), and uniform if it satisfies (1)-
(4). We briefly discuss the above four properties and refer
to [8] for a more detailed treatment. The condition (2) is the
least controversial in the context of cost sharing protocols.
The stability condition (1) requires the existence of at least
one Nash equilibrium in pure strategies. While this require-
ment restricts the search space for cost sharing protocols,
it is certainly the solution concept of choice when mixed or
correlated strategies have no meaningful physical interpre-
tation in the game played; see also the discussion in Osborne
and Rubinstein [19, § 3.2] about critics of mixed Nash equi-
libria. While condition (3) seems restrictive, it is crucial for
practical applications in which cost sharing methods have
only local information about their own resource usage (see
for instance the TCP/IP protocol design, where routers drop
packets based on some function of the number of packets in
the queue, see [24]). Uniformity (4) is the strongest and
perhaps the most problematic design restriction. A uniform
protocol is not only separable but also strongly local in the
sense that the cost shares of a resource are independent of
the set of resources available to the game designer. This
property may be crucial for systems in which the resources
can be added or removed over time and a reconfiguration of
the system (changing the cost sharing protocol) is too costly.

The goal of this paper is twofold. On the one hand side,
we want to systematically analyze the achievable worst-case
efficiency of Nash equilibria by basic, separable and uniform
cost sharing protocols in the context of scheduling games.
Besides this worst-case perspective, we also ask a larger
question: Which outcomes can actually be enforced as pure
Nash equilibria? More precisely, we call an outcome of a

scheduling game weakly-enforceable if there is a basic proto-
col that induces the outcome as a pure Nash equilibrium. We
call an outcome of a scheduling game strongly-enforceable if
there is a basic protocol that induces the outcome as the
most expensive pure Nash equilibrium.

1.1 Our Results
We study protocol design problems in the context of sched-

uling games, where the goal is to minimize the induced price
of anarchy and the price of stability. Our results for these
problems can be summarized as follows.

Among all basic and separable protocols, we provide an
optimal protocol minimizing the resulting price of anarchy
and price of stability simultaneously. For n-player schedul-
ing games, the optimal value of the price of anarchy and sta-
bility is precisely the n-th harmonic numberHn =

∑n
i=1 1/i.

Moreover, we obtain a complete characterization of weakly-
enforceable outcomes. This characterization can be used
for designing cost sharing protocols minimizing the price
of stability with respect to an arbitrary objective function.
We also derive sufficient conditions for an outcome to be
strongly-enforceable. Our proof of this result is constructive
by providing a cost sharing protocol that strongly enforces
an outcome satisfying the sufficient conditions. We then
show that this protocol gives rise to an optimal cost shar-
ing protocol minimizing the price of anarchy and stability as
mentioned above. For scheduling games with cost functions
that have non-decreasing per-unit costs, we derive an opti-
mal cost sharing protocol with price of anarchy equal to 1.
We remark that this assumption is quite weak insofar as non-
decreasing and convex cost functions satisfy non-decreasing
per-unit costs.

We also study the achievable price of anarchy of uni-
form cost sharing protocols. We show that there is no uni-
form cost sharing protocol with a bounded price of anarchy.
This bound even holds for a family of instances with only
3 players, at most 3 machines and cost functions with non-
decreasing costs per unit. Only for instances in which the
demands are integer multiples of each other, we present a
cost sharing protocol with a bounded price of anarchy of n.

1.2 Related Work
There is a large body of work on scheduling games (or

singleton congestion games) with unweighted and weighted
players [1, 12, 13, 14, 15, 18]. Most of these papers study
the existence and price of anarchy of pure Nash equilibria for
the uniform cost sharing protocol in which the private cost
of every player is equal to the cost on the resource. These
works, however, do not consider the design perspective of
cost sharing protocols. Christodoulou et al. [10] and follow-
up papers such as [6, 16] study coordination mechanisms and
their price of anarchy in scheduling games in which n players
assign a task to one of m machines. Rather than paying a
share of the resulting cost of a machine as in our scenario,
the players in these games consider the completion time of
their respective job as private cost. This completion time
depends on the sequence in which the jobs on a machine are
processed which in turn is given by the coordination mecha-
nism. The notion of private cost in these papers establishes
an entirely different set of Nash equilibria compared to our
work and hence their results concerning the price of anarchy
are unrelated to ours.

Our work is motivated by the paper by Chen et al. [8].
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In this paper, the authors study the design of cost sharing
protocols for network design games, see also Anshelevich et
al. [3] and Chen and Roughgarden [7] for earlier work on net-
work design games. In a network design game, each player i
has a unit demand that she wishes to send along a path
in a (directed or undirected) network connecting her source
node si to her terminal node ti. Every edge has a constant
non-negative cost and the problem is to design a separable
or uniform cost sharing protocol so as to minimize the price
of anarchy and stability in this setting. Our approach fol-
lows their lead in terms of the feasible protocol space, but
we apply cost sharing protocols to the structural different
class of scheduling models. On the one hand, such sched-
uling models are more general in the sense that we allow
arbitrary non-decreasing cost functions instead of constant
costs on the resources. Moreover, in contrast to [8], we allow
players to have different non-negative weights. On the other
hand, scheduling models are more restricted in the sense
that we consider a relatively simple strategy space for the
players, that is, a pure strategy for a player is simply a single
resource. Moreover, in contrast to [8], our games are sym-
metric, that is, every player has access to every resource.
These structural differences result in different approaches
and also the results of [8] are different to ours. For example,
while Chen et al. [8] proved bounds on the price of anar-
chy for uniform protocols of order Θ(log(n)),Θ(polylog(n)),
and n for undirected single-sink instances, undirected multi-
commodity instances, and directed single-sink instances, re-
spectively, we show that for scheduling games such results
are impossible. The price of anarchy for uniform protocols
inducing scheduling games is unbounded. Finally, it is worth
noting that, while [8] analyzed separable and uniform pro-
tocols, we additionally analyze the larger class of basic pro-
tocols.

2. MODEL AND PROBLEM STATEMENT
A scheduling model is represented by a tuple (N,M, d, c).

Here, N = {1, . . . , n} is a nonempty set of players and
M = {a1, . . . , am} is a nonempty set of machines. Ev-
ery player is associated with a task of weight di and d =
(d1, . . . , dn) is the combined weight vector. Every machine
a ∈ M has an associated non-negative and non-decreasing
cost function ca : R

+ → R
+. We assume ca(0) = 0 for

all a ∈ M . The vector of cost functions is denoted by
c = (c1, . . . , cm). Given a scheduling model (N,M, d, c), we
associate a strategic game represented by the tuple (N,X, ξ).
Here, it is assumed that every task fits on every machine,
thus, the set of pure strategies for player i ∈ N is Xi = M
and the overall strategy space is X = Mn. The outcomes
x = (x1, . . . , xn) ∈ Mn are vectors of machines where the
strategy played by player i is machine xi. The private cost
of player i ∈ N in such an outcome x is determined by the
cost sharing method ξi : X → R

+. A cost sharing proto-
col Ξ : (N,M, d, c) �→ ξ provides every scheduling model
with a vector ξ = (ξi)i∈N of such cost sharing methods. For
x ∈Mn, the set of players using some machine a ∈M is de-
noted by Sa(x) := {i ∈ N : xi = a} and for a ∈M , the load
on machine a is defined as �a(x) :=

∑
i∈Sa(x)

di. The cost of

an outcome is defined as C(x) :=
∑

a∈M ca(�a(x)). Abusing
notation, we will often write ca(x) instead of ca(�a(x)). We
consider cost minimization games, thus, when choosing her
strategy, each player strives to minimize her resulting private

cost ξi(x). We say that the game (N,X, ξ) on a scheduling
model (N,M, d, c) is induced by the protocol Ξ.

An important solution concept in non-cooperative game
theory for the analysis of strategic games are pure Nash
equilibria. Using standard notation in game theory, for an
outcome x ∈Mn we denote by

(a, x−i) := (x1, . . . , xi−1, a, xi+1, . . . , xn) ∈Mn

the outcome that arises if only player i deviates to strategy a.

Definition 2.1. (Pure Nash Equilibrium) Let (N,X, ξ) be
a scheduling game. The outcome x is a pure Nash equilib-
rium if no player i can strictly reduce her private cost by
unilaterally moving to a different machine, that is, for all
i ∈ N

ξi(x) ≤ ξi(a, x−i) for all a ∈M. (2.1)

Two well established concepts that quantify the efficiency
of Nash equilibria are the price of anarchy and the price of
stability. The price of anarchy measures the largest possible
ratio of the cost of a Nash equilibrium and the cost of an
optimal outcome. The price of stability measures the small-
est ratio of the cost of a Nash equilibrium and the cost of an
optimal outcome. For a cost sharing protocol Ξ, we define
by PoA(Ξ) and PoS(Ξ) the corresponding worst case price
of anarchy and price of stability across games induced by
protocol Ξ. The main goal of this paper is to design cost
sharing protocols that minimize the price of anarchy and
price of stability, respectively. Of course, the attainable ob-
jective values crucially depend on the design space that we
permit. The following properties have been first proposed
by Chen et al. [8] in the context of designing cost sharing
methods for network design games.

Definition 2.2. (Properties of cost sharing protocols) A
cost sharing protocol Ξ is

1. stable if it induces only games that admit at least one
pure Nash equilibrium.

2. basic if it is stable and additionally budget balanced,
i.e. if it assigns all scheduling models (N,M, d, c) with
cost sharing methods (ξi)i∈N such that

ca(x) =
∑

i∈Sa(x)

ξi(x) for all a ∈M,x ∈Mn. (2.2)

This property requires ca(0) = 0 for unused machines,
which we will assume in the paper.

3. separable if it is basic and if it induces only games
(N,Mn, ξ) for which in any two outcomes x, x′ ∈Mn

Sa(x) = Sa(x
′)⇒ ξi(x) = ξi(x

′) ∀i ∈ Sa(x), a ∈M.

4. uniform if it is separable and if it assigns any two mod-
els (N,M, d, c), (N,M ′, d, c′) with cost sharing meth-
ods (ξi)i∈N and (ξ′i)i∈N such that the following condi-
tion holds. For all a ∈ M ∩M ′ with ca = c′a and all
outcomes x ∈Mn, x′ ∈M ′n

Sa(x) = Sa(x
′)⇒ ξi(x) = ξ′i(x

′) for all i ∈ Sa(x).

Informally, separability means that in an outcome x the
value ξi(x) depends only on the set Sxi(x) of players sharing
machine xi and disregards all other information contained in
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x. Still, separable protocols can assign cost sharing methods
that are specifically tailored to the given scheduling model,
for example based on an optimal outcome. Uniform proto-
cols are not allowed to do this, they even disregard the layout
of the model and assign the same cost sharing methods when
machines are added to or removed from the model.

We denote by Bn,Sn and Un the set of basic, separable and
uniform cost sharing protocols for scheduling games with n
players, respectively. We obtain the following optimization
problems that we address in this paper.

min
Ξ∈Bn

PoA(Ξ), min
Ξ∈Bn

PoS(Ξ), min
Ξ∈Sn

PoA(Ξ), min
Ξ∈Sn

PoS(Ξ),

min
Ξ∈Un

PoA(Ξ), min
Ξ∈Un

PoS(Ξ) .

3. BASIC AND SEPARABLE PROTOCOLS
We start with studying basic and separable cost sharing

protocols. While our goal is to find a cost sharing proto-
col minimizing the induced PoA and PoS, we first study the
issue of enforceability of pure Nash equilibria by basic and
separable cost sharing protocols. To be more precise, given
a scheduling model (N,M, d, c), we first ask which outcomes
x ∈Mn can be enforced as pure Nash equilibria by some ba-
sic or separable cost sharing protocol. We will differentiate
between weakly enforceable outcomes and strongly enforce-
able outcomes, see the definition below.

Definition 3.1. (Enforceable outcomes) Consider a sched-
uling model (N,M, d, c) and an outcome x ∈Mn.

i) x is weakly-enforceable if there exists a basic cost shar-
ing protocol Ξ such that x is a Nash equilibrium in the
game (N,Mn, ξ) induced by Ξ.

ii) x is separable weakly-enforceable if there exists a sep-
arable cost sharing protocol Ξ such that x is a Nash
equilibrium in the game (N,Mn, ξ) induced by Ξ.

iii) x is strongly-enforceable if there exists a separable cost
sharing protocol Ξ such that x is the most expensive
Nash equilibrium in the game (N,Mn, ξ) induced by
Ξ, i.e. C(x′) ≤ C(x) for all Nash equilibria x′ ∈Mn.

In the following section, we will give an exact characteriza-
tion of weakly-enforceable and separable weakly-enforceable
outcomes. This characterization provides a structural prop-
erty that can be used to design cost sharing protocols for
minimizing the price of stability for arbitrary objective func-
tions.

Throughout this section, the players are assumed to be
ordered by non-decreasing weights: d1 ≤ d2 ≤ · · · ≤ dn.

3.1 Weakly-Enforceable Outcomes
This section provides an exact characterization of weakly-

enforceable outcomes. Our characterization relies on the
notion of decharged outcomes defined below.

Definition 3.2. (Weakly decharged outcome) Consider a
scheduling model (N,M, d, c). A machine a ∈ M is weakly
decharged in an outcome x ∈Mn if

ca(x) ≤
∑

i∈Sa(x)

min
b∈M

cb(b, x−i). (3.1)

The outcome x itself is called weakly decharged if all ma-
chines are weakly decharged.

We further introduce the weak x-enforcing protocol.

Definition 3.3. (Weak x-enforcing protocol) The weak x-
enforcing protocol takes as input a weakly decharged out-
come x. We use x to define for any outcome z and ma-
chine a the sets S0

a(z) := {i ∈ Sa(z) ∩ Sa(x)} (home play-
ers on a) and S1

a(z) := {i ∈ Sa(z)\Sa(x)} (foreign players
on a). Then, the weak x-enforcing protocol assigns for all
i ∈ N, z ∈Mn the following cost sharing methods

ξi(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
b∈M

cb(b, x−i)∑
j∈Sxi

(x)

min
b∈M

cb(b, x−j)
· cxi(x),

if Szi(z) = Szi(x) and cxi(x) > 0,

czi(z), if S1
zi(z) 	= ∅ and i = minS1

zi(z),

czi(z), if S1
zi(z) = ∅, Szi(z) ⊂ Szi(x)

and i = minSzi(z),

0, else.

Informally, if Sa(z) = Sa(x), the players on machine a
share the cost proportional to their opportunity cost (cost
of change) in outcome x. Otherwise, the smallest foreign
player (deviating from outcome x) or, if there are none, the
smallest home player (not deviating) pays the entire cost of
the machine. Observe that in weakly decharged outcomes x
we have

∑
j∈Sa(x)

minb∈M cb(b, x−j) > 0 for all a ∈M with

ca(x) > 0 and thus the protocol is well defined. We are now
ready to state our first main result.

Theorem 3.4. For any scheduling model (N,M, d, c) and
outcome x, the following statements are equivalent.

(i) the outcome x is weakly decharged,

(ii) the outcome x is weakly-enforceable,

(iii) the outcome x is separable weakly-enforceable.

Observe that (iii) ⇒ (ii) holds because by definition separa-
ble protocols are a subclass of basic protocols. We prove (i)
⇒ (iii) and (ii) ⇒ (i) by two lemmas.

Lemma 3.5. For every weakly decharged outcome x, the
weak x-enforcing protocol is a separable cost sharing protocol
and weakly enforces x.

Proof. Budget balance and separability of the cost shar-
ing methods are clear from the definition of the protocol,
thus, we prove only that x is a Nash equilibrium. For all
machines a ∈ M with ca(x) > 0 we are in the first case of
the definition of the protocol, thus, we obtain

ξi(x) =
min
b∈M

cb(b, x−i)∑
j∈Sa(x)

min
b∈M

cb(b, x−j)
· ca(x)

≤ min
b∈M

cb(b, x−i) ≤ min
b∈M\{a}

ξi(b, x−i) for all i ∈ Sa(x),

where the first inequality holds because outcome x is weakly
decharged. For all other machines a ∈ M , we have ξi(x) =
ca(x) = 0 for all i ∈ Sa(x) and thus x is a pure Nash equi-
librium.

Lemma 3.6. Consider the scheduling model (N,M, d, c).
Then, any weakly-enforceable outcome x is weakly decharged.
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Proof. Say x is a Nash equilibrium under the basic pro-
tocol Ξ that assigns cost sharing methods ξ. Then ξi(x) ≤
minb∈M ξi(b, x−i) for all i ∈ N and hence due to budget
balance of Ξ,

ca(x) =
∑

i∈Sa(x)

ξi(x) ≤
∑

i∈Sa(x)

min
b∈M

ξi(b, x−i)

≤
∑

i∈Sa(x)

min
b∈M

cb(b, x−i)

for all machines a ∈M . Thus, x is weakly decharged.

The above characterization has a direct consequence for the
design of cost sharing protocols so as to minimize the price
of stability with respect to an arbitrary objective function
over the strategy space. As formalized below, by Theo-
rem 3.4 this problem reduces to solving a well-structured
finite-dimensional optimization problem.

Corollary 3.7. Let (N,M, d, c) be a scheduling model
and let F : Mn :→ R be a social welfare function. Then,
minξ∈Bn PoS(ξ;F ) and minξ∈Sn PoS(ξ;F ) can be reduced
to solving the optimization problem

min
x∈Mn

F (x) s.t. ca(x) ≤
∑

i∈Sa(x)

min
b∈M

cb(b, x−i) ∀ a ∈M.

3.2 Strongly-Enforceable Outcomes
In this section, we turn to strongly-enforceable outcomes.

We present a slightly extended protocol that we term the
the strong x-enforcing protocol. We will show that outcomes
that are strongly decharged (a definition will follow shortly)
are strongly-enforceable by this protocol.

Definition 3.8. (Strongly Decharged Outcome) Consider a
scheduling model (N,M, d, c). A machine a ∈M is strongly
decharged if it is weakly decharged and additionally

ca(x) <
∑

i∈Sa(x)

min
b∈M

cb(b, x−i), if |Sa(x)| > 1 and ca(x) > 0.

(3.2)
Machines that are not strongly decharged are called charged.
The outcome x is called strongly decharged if all machines
are strongly decharged.

We now introduce the strong x-enforcing protocol.

Definition 3.9. (Strong x-enforcing protocol) The strong
x-enforcing protocol takes as input a strongly decharged out-
come x. As before, we use x to define for any outcome z and
machine a the sets S0

a(z) and S1
a(z). Additionally, we de-

fine the set S2
a(z) := {i ∈ Sa(z)\Sa(x) : cxi(x) = 0} that

we term strong foreign players on a. Then, the strong x-
enforcing protocol assigns for all i ∈ N, z ∈Mn, the follow-
ing cost sharing methods:

ξi(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
b∈M

cb(b, x−i)∑
j∈Sxi

(x)

min
b∈M

cb(b, x−j)
· cxi(x),

if Szi(z) = Szi(x) and cxi(x) > 0,

czi(z), if S2
zi(z) 	= ∅ and i = minS2

zi(z),

czi(z), if S2
zi(z) = ∅, S1

zi(z) 	= ∅, i = minS1
zi(z),

czi(z), if S1
zi(z) = ∅, Szi(z) ⊂ Szi(x), i = minSzi(z)

0, else.

The protocol works almost the same as the weak x-enforcing
protocol, it only accounts differently for strong foreign play-
ers.

Theorem 3.10. If an outcome x is strongly decharged,
then the strong x-enforcing protocol is separable and strongly
enforces x.

Proof. Separability follows from the definition of the
strong x-enforcing protocol. We only show that for any Nash
equilibrium z 	= x we have C(z) ≤ C(x). To this end, fix
such a z and let

i := min {j ∈ N : zj 	= xj} (3.3)

be the smallest player who deviates from x. First, note that
for all j > i,

ξj(z) ≤
{
ξj(zi, z−j) = 0 , if cxj (x) > 0

ξj(xj , z−j) = 0 , if cxj (x) = 0,
(3.4)

because z is a Nash equilibrium. Hence,

ca(z) = 0 for all a 	= zi with foreign players S1
a(z) 	= ∅.

(3.5)
Also, ca(z) ≤ ca(x) for all machines a 	= zi that only have
home players S0

a(z) = Sa(z), because for these machines
�a(z) ≤ �a(x). Thus, we already have

ca(z) ≤ ca(x) for all machines a 	= zi. (3.6)

If there is a strong foreign player on zi, then even czi(z) =
0 and we are done. Thus, from now on we assume that
there are no strong foreign players on zi. We can bound
czi(z) from above using the Nash inequality czi(z) = ξi(z) ≤
ξi(xi, z−i). The remaining proof focuses on bounding the
value ξi(xi, z−i) from above.

The value of ξi(xi, z−i) assigned by the x-enforcing proto-
col depends on Sxi(xi, z−i) and cxi(x), for which there are
three possibilities, according to the definition of the strong
x-enforcing protocol.These cases are

1. Sxi(xi, z−i) = Sxi(x) and cxi(x) > 0, where the pro-
tocol returns ξi(xi, z−i) = ξi(x).

2. Sxi(xi, z−i) ⊂ Sxi(x) and i = minSxi(xi, z−i), where
the protocol returns ξi(xi, z−i) = cxi(xi, z−i).

3. All cases in which the protocol returns ξi(xi, z−i) = 0.

In each case we will find cxi(z) + czi(z) ≤ cxi(x) + czi(x)
and thus with (3.6) we have C(z) ≤ C(x), which proves the
Theorem. Note that (3.6) already implies cxi(z) ≤ cxi(x).

We begin with Case 1. The condition cxi(x) > 0 implies
that if there is some strong foreign player j > i (with zj 	= xj

and cxj (x) = 0), then czi(z) = ξi(z) ≤ ξi(zj , z−i) = 0 and
we are done. Thus, we will in the following assume that
there are no strong foreign players at all. If ξi(x) = 0, we
obtain 0 = ξi(x) = ξi(xi, z−i) ≥ ξi(z) = czi(z), because we
are in Case 1. Thus, we will also assume

ξi(x) > 0. (3.7)

We now compare the allocation of load in the outcomes z
and x, respectively. First, we consider machines a 	= zi,
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which host foreign players j ∈ Sa(z)\Sa(x). For these for-
eign players we obtain

min
b∈M

cb(b, x−j) ≥ min
b∈M

cb(b, x−i) (3.8a)

≥ ξi(x) (3.8b)

> 0. (3.8c)

Observe that (3.3) implies j > i and hence (weights are or-
dered non-decreasingly) dj ≥ di. As the cost functions are
non-decreasing, the first inequality (3.8a) follows. Inequal-
ity (3.8b) holds since x is decharged. The last inequality
(3.8c) follows from (3.7). We conclude for machine a

ca(a, x−j) ≥ ξj(a, x−j) ≥ ξj(x) (3.9)

=
cxj (x)∑

k∈Sxj
(x)

min
b∈M

cb(b, x−k)
·min
b∈M

cb(b, x−j) (3.10)

> 0 = ca(z), (3.11)

where (3.9) holds because x is a Nash equilibrium and (3.10)
stems from the definition of the protocol because there are
no strong foreign players and hence cxj (x) > 0. The in-
equality (3.11) holds because of (3.8) and the equality holds
because of (3.5). Hence, there must be a non-empty set of
players Sa(x)\Sa(z). These players cannot be strong for-
eign players, thus ca(x) > 0. With ca(z) = 0 and ca(x) > 0
we have �a(x) > �a(z) for all machines a 	= zi with foreign
players. For all machines a without foreign players we know
�a(x) ≥ �a(z) and for machine xi even �xi(x) = �xi(z) + di
because we are in Case 1. Since the total load is the same
in x and z, we have for machine zi

�zi(zi, x−i) = �zi(x) + di ≤ �zi(z). (3.12)

Consequently,

ξi(z) = czi(z) ≥ czi(zi, x−i) (3.13)

≥ cxi(x)∑
j∈Sxi

(x)

min
b∈M

cb(b, x−j)
·min
b∈M

cb(b, x−i) (3.14)

= ξi(x) = ξi(xi, z−i), (3.15)

where the first inequality (3.13) holds because of (3.12) and
the second inequality (3.14) because x is decharged and
czi(zi, x−i) ≥ minb∈M cb(b, x−i). Equality (3.15) holds by
the definition of the strong x-enforcing protocol for Case 1
and the last equation holds because we assume Case 1. If
|Sxi(x)| > 1, then inequality (3.14) is strict, because x is
strongly decharged (i.e., (3.2) holds) which implies ξi(z) >
ξi(xi, z−i). This contradicts the fact that z is a Nash equilib-
rium. Thus, Sxi(x) = {i} and czi(z) = ξi(z) ≤ ξi(xi, z−i) =
cxi(xi, z−i) = cxi(x). Moreover, using cxi(z) = 0, because
�xi(z) = 0, we obtain cxi(z) + czi(z) ≤ cxi(x) + czi(x) as
desired.

Case 2 is Sxi(xi, z−i) ⊂ Sxi(x) and i = minSxi(xi, z−i).
Here, we obtain

czi(z) = ξi(z) ≤ ξi(xi, z−i) = cxi(xi, z−i) ≤ cxi(x),

where the first inequality holds because z is a Nash equilib-
rium. The second inequality holds because Case 2 implies
�xi(xi, z−j) ≤ �xi(x). We also get

cxi(z) =
∑

j∈Sxi
(z)

ξj(z) ≤
∑

j∈Sxi
(z)

ξj(zi, z−j) = 0.

This inequality is a result of (3.4), because in this case all
players j ∈ Sxi(z) have a higher index j > i. Consequently,
we have again cxi(z) + czi(z) ≤ cxi(x) + czi(x).

Finally, we examine Case 3 where the protocol returns
ξi(xi, z−i) = 0 and thus for the Nash equilibrium z we have
czi(z) = ξi(z) ≤ ξi(xi, z−i) = 0. Again, cxi(z) + czi(z) ≤
cxi(x) + czi(x).

3.3 An Optimal Protocol
Using the insights gained in the previous sections, we show

that among all basic and separable protocols, the strong
x-enforcing protocol gives rise to an optimal protocol si-
multaneously minimizing the price of anarchy and stabil-
ity. Our main result involves the n-th harmonic number
Hn =

∑n
i=1

1
i
.

Theorem 3.11.

min
Ξ∈Bn

PoA(Ξ) = min
Ξ∈Bn

PoS(Ξ) = min
Ξ∈Sn

PoA(Ξ)

= min
Ξ∈Sn

PoS(Ξ) = Hn.

We will prove the theorem by two subsequent lemmas. In
the first lemma, we prove that Hn is a lower bound on the
price of stability for every basic cost sharing protocol. We
then continue by presenting an algorithm that returns for
any scheduling model a strongly decharged outcome of cost
at most Hn times the cost of an optimal outcome. Together
with the strong x-enforcing protocol we conclude that the
price of anarchy of the thus defined protocol is precisely Hn.

Lemma 3.12. For basic cost sharing protocols on schedul-
ing models with n players and non-decreasing cost functions,
the price of stability is at least Hn. This lower bounds holds
even for models with unit demands.

Proof. Consider the scheduling model (N,M, d, c) with
n players that have unit demand di = 1 for all i ∈ N and n
machines with cost functions as in Table 1.

Table 1: Cost functions for machines used in the
proof of Lemma 3.12

� ca1(�) ca2(�) . . . cai(�) . . . can(�)
0 0 0 . . . 0 . . . 0
1 1 + ε 1

2
. . . 1

i
. . . 1

n
> 1 1 + ε n . . . n . . . n

for some small ε > 0.

The only optimal outcome is clearly y = (a1, . . . , a1) with
C(y) = 1+ ε. An outcome z can only be a Nash equilibrium
if it is weakly decharged (Lemma 3.6). We show that the
cheapest weakly decharged outcomes are those in which each
machine is used by exactly one player, which all have the
same cost as x = (a1, . . . , an). It is easy to see that outcome
x is decharged and with C(x) =

∑n
i=1

1
i
= Hn this proves

the lemma.
If in an outcome z some machine other than a1 is used

by multiple players, then C(z) ≥ n, thus such outcomes are
more expensive than x. If in outcome z multiple players
use machine a1, say k players, then there are at least k − 1
unused machines and for the cheapest of these, say machine
â, we have câ(1) ≤ 1

k
. Thus, z is not weakly decharged as

ca1(z) = 1 + ε > 1 =
∑

i∈Sa1
(z)

1

k
≥

∑
i∈Sa1

(z)

min
b∈M

cb(b, z−i).
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Algorithm 1 Find strongly decharged outcome x

1: k ← 1 {stepnumber}
2: x1 ← y {starts with optimal outcome y}
3: ti ← 0 for all i ∈ N {stores when a player was last

moved}
4: while there are charged machines do
5: ak ← argmax {ca(xk) : a ∈M is charged} {select the

most expensive charged machine}
6: if min {cb(b, xk

−i) : b ∈M} = 0 for i = minSak (xk)
then

7: {i can move to cost-free machine, called Zero-move}
8: ik ← minSak (xk) {select smallest player}
9: else if max {ti : i ∈ Sak (xk)} > 0 then
10: {a player on ak was moved before, called Shuffle}
11: ik ← argmax {ti : i ∈ Sak (xk)} {select last moved

player}
12: else
13: {no foreign players on ak, called Kick-off }
14: ik ← minSak (xk) {select smallest player}
15: end if
16: bk ← argmin {cb(b, xk

−ik ) : b ∈M} {select cheapest
available machine}

17: xk+1 ← (bk, xk
−ik ) {move player}

18: tik ← k {store stepnumber}
19: k ← k + 1 {iterate}
20: end while
21: return x← xk

Altogether, only such outcomes in which all machines are
used by exactly one player are cheap weakly-enforceable out-
comes.

While the previous Lemma showed that there sometimes
are no weakly-enforceable outcomes cheaper than Hn times
the cost of an optimal outcome, the following lemma shows
that we always find strongly decharged outcomes of at most
Hn times the cost of an optimal outcome.

Lemma 3.13. Any scheduling model (N,M, d, c) with an
optimal outcome y has a strongly decharged outcome x with
C(x) ≤ Hn · C(y) =

∑n
k=1

1
k
· C(y).

Proof. The desired outcome x is found by Algorithm 1.
The algorithm takes as input an optimal outcome y. In each
cycle k of the algorithm’s main loop (lines 4 - 20), a player ik

on the most expensive charged machine ak is selected (line
5) and moved to the cheapest available machine bk (lines 16,
17). If possible, the algorithm selects a player who can be
moved to a cost-free machine, this is called Zero-move (line
6). Otherwise, it selects a player that has been moved before
in a last-in/first-out scheme which is maintained through the
variables ti that store the cycle in which each player was last
moved. Such moves are called Shuffles (line 9). If neither
a Zero-move nor a Shuffle is possible, the smallest player
on the machine is selected, which is called Kick-off (line
12). The algorithm terminates when no charged machines
are left.

First, we show that the algorithm terminates. To this end,
observe that Shuffles are only performed when Zero-moves
are not possible. Hence, if in cycle k a Shuffle is performed,
the following inequalities hold.

min
b∈M

cb(b, x
k
−j) > 0 for all j ∈ Sak (x

k). (3.16)

We now consider two cases. For |Sak (xk)| = 1, we obtain

cak (x
k) > min

b∈M
cb(b, x

k
−ik ) (3.17)

= cbk (b
k, xk

−ik ) = cbk (x
k+1), (3.18)

where (3.17) follows because ak is charged in xk. Equal-
ity (3.18) follows since Algorithm 1 moves ik to the cheapest
available machine.

If |Sak (xk)| > 1, then we obtain

cak (x
k) ≥

∑
j∈Sak

(xk)

min
b∈M

cb(b, x
k
−j) (3.19)

> min
b∈M

cb(b, x
k
−ik ) (3.20)

= cbk (b
k, xk

−ik ) = cbk (x
k+1),

where (3.19) is valid because ak is charged in xk. The sec-
ond inequality (3.20) holds because of (3.16) and the equal-
ities follow as above. In both cases, a Shuffle moves the
player to a strictly cheaper machine. To see that the al-
gorithm terminates, we will now follow some player i over
the course of the algorithm. Each Zero-move and each Shuf-
fle take her to a strictly cheaper machine. If the player is
moved in cycle k and is next moved by a Shuffle in cycle
l, the cost of her machine xk+1

i = xl
i may increase in the

meantime as other players arrive on that machine. The al-
gorithm assures by its last-in/first-out mechanism that these
other players have been moved again before the Shuffle in
cycle l and consequently the cost has decreased to the orig-
inal level c

xk+1
i

(xk+1) ≥ cxl
i
(xl). Since only machines with

positive costs can be charged, this implies that after a Zero-
move, the player will never again be considered for Shuffles.
Hence, a player can be moved by at most one Kick-off, after-
wards a sequence of Shuffles and thereafter only Zero-moves.
The sequence of Shuffles is finite because each Shuffle takes
the player to a strictly cheaper machine. Once the player
has has been moved by a Zero-move, further Zero-moves are
only possible if in between some other player arrives on the
player’s machine via a Kick-off or a Shuffle, but again this is
only finitely often possible. Altogether, each player can only
be moved finitely often and thus the algorithm terminates
after a finite number of cycles.

To complete the proof, we show that the final outcome x
has cost C(x) ≤ Hn ·C(y). The concept of this final part of
the proof is that in outcome x the cost of every used machine
is determined by the player who has last moved there or, if
there are no such players, the home players. For this, some
new notation is needed. Let pi, i ∈ N , correspond to the
position (by index) of player i on her optimal machine yi, i.e.,
on any machine a we have pj = 1 for player j = maxSa(y),
pj′ = 2 for j′ = max (Sa(y)\{j}) and so on. Consequently,
when some player i performs her Kick-off in cycle k, there
are pi players sharing her machine ak = yi at that moment
and she is the smallest of them. We obtain for machine bk
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that she is moved to

cbk (x
k+1) = cbk (b

k, xk
−i) = min

b∈M
cb(b, x

k
−i)

≤ 1

pi
·

∑
j∈S

ak (xk)

min
b∈M

cb(b, x
k
−j) (3.21)

≤ 1

pi
· cak (x

k) (3.22)

≤ 1

pi
· cyi(y), (3.23)

where the first inequality (3.21) is valid because i is the
smallest of the pi players on machine ak in step k, the sec-
ond inequality (3.22) holds because ak is charged in xk and
the last inequality (3.23) holds because there are no foreign
players on ak = yi and hence �ak (xk) ≤ �ak (y) = �yi(y).
Since Shuffles and Zero-moves assign player i to cheaper

machines, after her last move in cycle k′, she is on machine

bk
′
at cost cbk′ (xk′

) ≤ 1
pi
· cyi(y). Altogether, in the final

outcome x, the cost of a machine a ∈ M to which players
have been moved is determined by the last player who was
moved there, that is, ia := argmax {ti : i ∈ Sa(x)}. We thus
obtain ca(x) ≤ 1

pia
· cyia (y). For machines a ∈ M that are

used in x but where no player has been moved, the player
ia := maxSa(y) with pia = 1 is still on machine a. In this
case, the cost is bounded from above by ca(x) ≤ ca(y) =
1

pia
· cyia (y). Unused machines a ∈ M have cost ca(x) = 0.

Altogether, we obtain ca(x) = 1
pia
· cyia (y) for all a ∈ M

with �a(x) > 0, and ca(x) = 0 for all a ∈M with �a(x) = 0.
This yields the desired bound for the cost of outcome x,
because now every used machine a ∈M has a unique player
ia that determines the machine’s cost. We obtain

C(x) =
∑
a∈M

ca(x) ≤
∑
a∈M

�a(x)>0

1

pia
· cyia (y) ≤

∑
i∈N

1

pi
· cyi(y)

≤
∑
a∈M

Hpmax · ca(y) = Hpmax · C(y) ≤ Hn · C(y),

where pmax := max {|Sa(y)| : a ∈M}.
Observe that the bound for the price of anarchy obtained

here can be much lower than Hn for scheduling models that
have optimal outcomes, where the players are scattered over
the machines and where therefore pmax is smaller than n.

Remark 3.14. While Lemma 3.13 shows that an optimal
outcome can be turned into a strongly decharged outcome of
cost at most Hn times the cost of an optimal outcome, this
holds true more generally: Algorithm 1 turns every outcome
into a strongly decharged outcome with a cost increase of a
factor at most Hn. This may be useful if the computation
of an optimal outcome is not possible in polynomial time.
Still, Algorithm 1 does not run in polynomial time and this
issue deserves further attention.

3.4 Non-Decreasing Cost per Unit
In this section we require that the cost functions are non-

negative, non-decreasing and the per-unit costs c(x)
�(x)

are non-

decreasing with respect to the load �(x). Such functions are
still quite rich as they contain non-negative, non-decreasing
and convex functions.

We introduce the opt-enforcing protocol for which we prove
a price of anarchy of 1. The intuition behind this protocol is

similar to the x-enforcing protocols: make all undesired out-
comes unstable by charging some player a very high price.

Definition 3.15. (opt-enforcing protocol) Given a sched-
uling model (N,M, d, c) the opt-enforcing protocol takes as
input an optimal outcome y. We again denote for any out-
come z and machine a the set of foreign players on a by
S1
a(z) = {i ∈ Sa(z)\Sa(y)}. Then, the opt-enforcing proto-

col assigns the cost sharing methods

ξi(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di · czi(z)
�zi(z)

, if S1
zi = ∅

czi(z), if S1
zi 	= ∅ and i = minS1

zi(z)

0, else.

(3.24a)

(3.24b)

(3.24c)

Under the opt-enforcing protocol, the players share the cost
proportional to their job weights on all machines without
foreign players. On machines with foreign players, the for-
eign player with the smallest index pays the entire cost of
the machine.

Theorem 3.16. The opt-enforcing protocol is separable
and has a price of anarchy of 1.

Proof. Budget balance and separability are clear from
the definition of the private cost functions. For stability it
can easily be verified that for an instance (N,M, d, c) the
optimal outcome y is a Nash equilibrium. We only proof
the bound on the price of anarchy, showing that all Nash
equilibria x are optimal outcomes using the Nash inequalities
ξi(x) ≤ ξi(yi, x−i) for any i ∈ N . Two cases are to be
considered for such a machine yi: either it hosts foreign
players S1

yi(x) or S
1
yi(x) = ∅. If there are foreign players on

yi, then one of them will pay for the entire cost there and
hence (3.24c) gives ξi(x) ≤ ξi(yi, x−i) = 0. If there are no
foreign players on yi, then di ≤ �yi(yi, x−i) ≤ �yi(y) yields

cyi(yi, x−i)

�yi(yi, x−i)
≤ cyi(y)

�yi(y)
,

because the cost per unit is non-decreasing. Plugging this
into (3.24a) we have ξi(x) ≤ ξi(yi, x−i) ≤ ξi(y). In both
cases ξi(x) ≤ ξi(y) for all i ∈ N and thus

C(x) =
∑
i∈N

ξi(x) ≤
∑
i∈N

ξi(y) = C(y)

which implies that every Nash equilibrium x is also an op-
timal outcome.

4. UNIFORM PROTOCOLS
The separable protocols that we introduced so far were al-

ways tailored to some desirable outcome, either an enforce-
able outcome or even an optimal outcome. Since uniform
protocols need to assign cost sharing methods independent
of the set M , they cannot be based on specific outcomes. We
show in this section that uniformity leads in general to an
unbounded price of anarchy. Only for games in which the
demands are integer multiples of each other we introduce
the semi-ordered protocol that gives a price of anarchy of n.
The question of minξ∈Un PoS(ξ) remains open.

4.1 Lower Bound

Theorem 4.1. There is no uniform protocol for which
the price of anarchy has an upper bound. This holds even
for models with at most 3 players, 3 machines and non-
decreasing costs per unit.
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Proof. The essence of uniform protocols is that adding
machines to or removing them from the model does not
change the cost shares of players using a certain machine,
as long as the player set and the weight vector remain the
same. This motivates the definition of cost share functions
ξ̂i that return the private cost ξi of player i as a function of
the machine a that she uses and the set of players S ⊆ N
sharing the machine.

ξ̂i(a, S) := ξi(x) ∀ a ∈M,S ⊆ N, i ∈ S, x ∈Mn : Sa(x) = S.
(4.1)

Nash equilibria can be expressed via cost share functions as
follows. For all i ∈ N, a ∈M it holds that

ξ̂i(xi, Sxi(x)) ≤ ξ̂i(a, Sa(x) ∪ {i}). (4.2)

For the proof of the theorem, we propose a number of sched-
uling models and show that for any uniform cost sharing
protocol at least one of these models has a Nash equilibrium
of more than q times the cost of an optimal outcome for
arbitrary q ≥ 2. Throughout the entire proof, the player
set will always be N = {1, 2, 3} with weights d = (4, 3, 2).
The machines will be a subset of M = {a1, . . . , a7} with cost
functions as outlined in Table 2.

Table 2: Cost functions used in proof of Theorem 4.1
� ca1(�) ca2(�) ca3(�) ca4(�) ca5(�) ca6(�) ca7(�)
0 0 0 0 0 0 0 0
2 0 0 0 0 0 q2 0
3 0 0 0 q3 0 q4 0
4 1 q 1 2q3 q3 2q4 q4

5 2 q3 q5 2q3

6 q3 q5

7 q4

First, consider the model with machines M1 = {a1, a2}
and their respective cost functions. The optimal outcome
y1 = (a2, a1, a1) has cost C(y1) = q + 2, while the outcome
x1 = (a1, a2, a2) has cost C(x1) = q3+1. Either x1 is a Nash
equilibrium and hence the protocol has a price of anarchy
greater than q or or one of the three players can reduce her
private cost by choosing a different machine, which results
by (4.2) in the following three cases.

a) ξ̂1(a2, {1, 2, 3}) < ξ̂1(a1, {1}) = 1. In this case, con-
sider the model with machines M2 = {a2, a3}. The
optimal outcome y2 = (a3, a2, a2) with C(y2) = q3 +1
is not a Nash equilibrium and due to stability some
other outcome x with cost C(x) ≥ q5 has to be a Nash
equilibrium.

b) ξ̂2(a1, {1, 2}) < ξ̂2(a2, {2, 3}) ≤ q3. In this case, con-
sider M3 = {a1, a2, a4}. The optimal outcome y3 =
(a1, a2, a4) has cost C(y3) = 1, while the outcome
x3 = (a2, a1, a4) has cost C(x3) = q. Either x3 is a
Nash equilibrium or, again, one of the players can re-
duce her private cost by choosing a different machine,
which leads to the following cases.

b.1) ξ̂1(a1, {1, 2}) < ξ̂1(a2, {1}) = q. This contra-

dicts b), that is ξ̂1(a1, {1, 2}) = c1(d1 + d2) −
ξ̂2(a1, {1, 2}) > q4 − q3 > q.

b.2) ξ̂1(a4, {1, 3}) < ξ̂1(a1, {1}) = q. In this case, con-
sider M4 = {a2, a4, a5}. The optimal outcome

y4 = (a2, a5, a4) with C(y4) = q is not a Nash
equilibrium and due to stability some other out-
come x with cost C(x) ≥ q3 has to be a Nash
equilibrium.

b.3) Players 2 and 3 cannot reduce their private cost as
ξ2(x3) = ca1(x3) = 0 and ξ3(x3) = ca4(x3) = 0.

c) ξ̂3(a1, {1, 3}) < ξ̂3(a2, {2, 3}) ≤ q3. In this case, con-
sider M5 = {a1, a2, a6}. The optimal outcome y5 =
(a2, a1, a1) has cost C(y5) = q + 1, while the outcome
x5 = (a1, a2, a6) has cost C(x5) = q2 + 1. Either x5 is
a Nash equilibrium or, again, one of the players can re-
duce her private cost by choosing a different machine.

c.1) ξ̂1(a2, {1, 2}) < ξ̂1(a1, {1}) = 1. In this case, con-
sider again M3 = {a1, a2, a4}. The optimal out-
come y3 = (a1, a2, a4) with C(y3) = 1 is not a
Nash equilibrium and due to stability some other
outcome x with cost C(x) ≥ q has to be a Nash
equilibrium.

c.2) ξ̂1(a6, {1, 3}) < ξ̂1(a1, {1}) = 1. In this case, con-
sider M6 = {a3, a5, a6}. The optimal outcome
y6 = (a3, a5, a6) with C(y6) = q2 + 1 is not a
Nash equilibrium and due to stability some other
outcome x with cost C(x) ≥ q3 has to be a Nash
equilibrium.

c.3) Player 2 cannot reduce her private cost because
ξ2(x5) = ca2(x5) = 0.

c.4) ξ̂3(a1, {1, 3}) < ξ̂3(a6, {3}) = q2. In this case,
consider M7 = {a1, a6, a7}. The optimal outcome
y7 = (a1, a7, a6) with C(y7) = q2 + 1 is not a
Nash equilibrium and due to stability some other
outcome x with cost C(x) ≥ q3 has to be a Nash
equilibrium.

c.5) ξ̂3(a2, {2, 3}) < ξ̂3(a6, {3}) = q2. This extends

the original assumption from c) ξ̂3(a1, {1, 3}) <

ξ̂3(a2, {2, 3}) < q2 and therefore implies c.4).

Altogether, every uniform cost sharing protocol allows in at
least one of the analyzed cases a Nash equilibrium of at least
q times the cost of an optimal outcome for an arbitrary q ≥
2. Consequently, the price of anarchy is not bounded.

4.2 Models with Restricted Weights
Although uniform protocols in general do not allow a

bound on the price of anarchy, the following class of games
permits uniform cost sharing protocols with a bounded price
of anarchy. We assume that the player’s weights are either
uniform, i.e. d1 = . . . = dn, or they are multiples of each
other. In the following, we propose a semi-ordered protocol
that a has a price of anarchy of at most n for such games.
In this section, we assume that the players are indexed with
their weights in non-increasing order: d1 ≥ d2 ≥ . . . ≥ dn.
The semi-ordered protocol lets the players one after the
other choose a machine and lets them pay only for the ad-
ditional cost they cause on that machine, thus making the
choice of a player i independent of the choices of all players
j > i.

Definition 4.2. (Semi-ordered Protocol) The semi-ordered
protocol assigns for all i ∈ N

ξi(x) := cxi

( ∑
j∈Sxi

(x):j≤i

dj

)
− cxi

( ∑
j∈Sxi

(x):j<i

dj

)
. (4.3)
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Theorem 4.3. The semi-ordered protocol is uniform and
its price of anarchy is at most n for instances, where the
players’ weights are multiples of each other, i.e. di = qi ·di+i

for all i < n and some qi ∈ N.

Proof. Budget balance, separability and uniformity of
the cost sharing methods are clear. A Nash equilibrium can
be found by asking the players in the order of their index to
choose a machine that minimizes their private cost consider-
ing the choice of all previous players. For proving the bound
on the price of anarchy, consider a model (N,M, d, c) which
fulfills the restriction on the players’ weights. Suppose y is
an optimal outcome and x a Nash equilibrium. First, we
show that ξi(x) ≤ maxj≤i ξj(y) holds for all i ∈ N , which
is motivated by the idea that a player can always choose a
machine that she or one of the larger players had chosen in
the optimal outcome. To this end, fix player i ∈ N . On
some machine a ∈ {y1, . . . , yi−1} there is in outcome x less
load from the first i−1 players than in the optimal outcome
y from the first i players. Due to the restriction on the play-
ers’ weights this difference in load on machine a has to be
at least di yielding∑

j∈Sa(x):j<i

dj + di ≤
∑

j∈Sa(y):j≤i

dj .

Also, there is a player k ≤ i (hence dk ≥ di), k ∈ Sa(y)
who in outcome y uses machine a and for whom due to the
weight restrictions∑
j∈Sa(y):j<k

dj ≤
∑

j∈Sa(x):j<i

dj <
∑

j∈Sa(x):j<i

dj + di ≤
∑

j∈Sa(y):j≤k

dj .

Combining the above inequalities with (4.3) yields

ξi(x) ≤ ξi(a, x−i)

= ca
( ∑
j∈Sa(x):j<i

dj + di
)− ca

( ∑
j∈Sa(x):j<i

dj

)

≤ ca
( ∑
j∈Sa(y):j≤k

dj
)− ca

( ∑
j∈Sa(y):j<k

dj
)

= ξk(y) ≤ max
j≤i

ξj(y).

This implies:

C(x) =
∑
i∈N

ξi(x) ≤
∑
i∈N

max
j≤i

ξj(y) ≤ n ·max
j∈N

ξj(y) ≤ n ·C(y)

proving the claim.
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