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We initiate the study of dynamic traffic assignment for electrical vehicles address-
ing the specific challenges such as range limitations and the possibility of battery
recharge at predefined charging locations. We pose the dynamic equilibrium prob-
lem within the deterministic queueing model of Vickrey and as our main result, we
establish the existence of an energy-feasible dynamic equilibrium. There are three
key modeling-ingredients for obtaining this existence result:
1. We introduce a walk-based definition of dynamic traffic flows which allows for

cyclic routing behavior as a result of recharging events en route.
2. We use abstract convex feasibility sets in an appropriate function space to model

the energy-feasibility of used walks.
3. We introduce the concept of capacitated dynamic equilibrium walk-flows which

generalize the former unrestricted dynamic equilibrium path-flows.
Viewed in this framework, we show the existence of an energy-feasible dynamic
equilibrium by applying an infinite dimensional variational inequality, which in turn
requires a careful analysis of continuity properties of the network loading as a result
of injecting flow into walks.
We complement our theoretical results by a computational study in which we de-

sign a fixed-point algorithm computing energy-feasible dynamic equilibria. We apply
the algorithm to standard real-world instances from the traffic assignment commu-
nity illustrating the complex interplay of resulting travel times, energy consumption
and prices paid at equilibrium.

1. Introduction
Electric vehicles (EVs) are a great promise for the coming decades in order to allow for mobility
but at the same time take measures against the climate change by reducing the emissions of
classical combustion engines. The wide-spread operation of EVs, however, is by far not fully
resolved as the battery technology comes with several complications, some of which listed below:

• The limited battery power implies a limited driving range of EVs resulting in complex
resource-constrained routing behavior taking the feasibility of routes w.r.t. the power
consumption into account (cf. [13, 47]).
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• Feasible routes may contain cycles if the possibility of recharging at predefined charging
stations is included (see [5, 48, 47]). The necessity of multiple recharging operations is
especially relevant for longer trips such as long-haul trucking or for the use of EVs in urban
logistics [13].

• The recharging strategy itself can be quite complex involving mode choices ranging from
relatively low-power supply modes (22 kW) up to high-power supply modes (350 kW)
(cf. [49]). Different modes may come with substantially different recharging times and
prices (cf. [1]).

• For a selected recharge mode, the duration of the recharge determines both, the resulting
battery state (and hence the subsequent reach of the vehicle), and the corresponding total
recharge price and, thus, adds a further strategic dimension.

While some of the above challenges have been partly addressed within the “battery-constrained
routing” community (cf. [5, 13, 18, 48, 41, 47] and references therein), the majority of these
works rely on a static and mostly decoupled view on traffic assignment: Each vehicle is routed
independently (subject to battery related side constraints) and the interaction of vehicles in
terms of congestion effects with increased travel times is not considered. Only a few works (such
as [55, 51, 56]) take congestion effects of routing EVs into account, yet, still relying on a static
routing model.
In a realistic traffic system, vehicles travel dynamically through the network and the route

choices of vehicles are mutually dependent as the propagation of traffic flow leads to congestion
at bottlenecks and in turn determines the route choices to avoid congestion. This complex
and self-referential dependency has been under scrutiny in the traffic assignment community
for a long time and it is usually resolved by dynamic traffic assignments (DTA) under which
– roughly speaking – at any point in time no driver can opt to a better route. As a result,
the actual equilibrium travel times do depend on the collective route choices of all vehicles and,
even more strikingly, the equilibrium routes determine the actual power consumption profile of
an EV leading to a complex coupled dynamic system. Note that emergent congestion effects
are even relevant for the pure recharging process of an EV, since with the rapid growth rates
of EVs compared to the relatively scarce recharging infrastructure, significant waiting times at
recharging stations are anticipated (cf. [49]).
DTA models have been studied in the transportation science community for more than 50

years with remarkable success in deriving a concise mathematical theory of dynamic equilibrium
distributions, yet there is no such theory for DTA models addressing the specific characteristics
of EVs. Let us quote a recent survey article by Wang, Szeto, Han and Friesz [52] that mentions
the lack of DTA models for the operation of EVs: “To our best knowledge, a DTA model with
path distance constraints for electric vehicles remains undeveloped; so do the corresponding
solution algorithms.”
This research gap might have good mathematical reasons: virtually all known existence results

in the DTA literature rely on the assumption that feasible paths must be acyclic in order to
obtain a well defined path-delay operator mapping the path-inflows to the experienced travel
time (cf. [10, 11, 16, 29, 58, 35, 40]). As explained above, the range-limitations of EVs requires
recharging stops and thus leads to cyclic routing behavior with path length restrictions requiring
a new approach to establish equilibrium existence.
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1.1. Our Contribution
In this paper, we study a dynamic traffic assignment problem that addresses the operation
of electrical vehicles including their range-limitations caused by limited battery energy and
necessary recharging stops. Our contributions can be summarized as follows:

1. We propose a DTA model tailored to the operation of EVs that combines the Vickrey
deterministic queueing model with graph-based gadgets modeling complex recharging pro-
cedures such as mode choices (low to high power supply) and recharge durations. A
combined routing and recharging strategy of an EV can be reduced to choosing a walk
within this extended network.

2. A feasible walk may contain cycles (due to several recharging stops) and the set of feasible
walks that respect the battery-constraints may be quite complex. After establishing some
fundamental properties of the resulting network loading when flow is injected into walks,
we introduce abstract convex, closed and bounded feasibility sets in an appropriate func-
tion space to describe the resulting feasible dynamic walk-flows. The set of such feasible
dynamic walk-flows are then used to set up the formal definition of a capacitated dynamic
equilibrium in which also the monetary effect of prices charged at recharging stations is
integrated in the utility function of agents.

3. With the formalism of the network loading and the notion of a dynamic capacitated equilib-
rium, we then proceed to the key question of equilibrium existence. We show that the walk-
delay operator that maps the walk-inflows to resulting travel times is sequentially weak-
strong continuous on the convex feasibility space (which corresponds to weakly-continuous
as previously used by Zhu and Marcotte [58] for paths under the strict FIFO-condition).
This allows us to apply a variational inequality formulation by Lions [33] to establish the
existence of dynamic equilibria. While the general variational inequality approach dates
back to Friesz et al. [16], our result generalizes previous works on side-constraint dynamic
equilibria (e.g. Zhong et al. [57]), because we do not assume a priori compactness of the
underlying convex restriction set, nor strict FIFO as in [58].

4. We finally develop a fixed-point algorithm for the concrete computation of energy-feasible
dynamic equilibrium and apply the algorithm to several real-world instances from the
literature. To the best of our knowledge, this work is among the first to compute dynamic
traffic equilibria for electric vehicles and it can serves as the basis for evaluating the
interplay between congestion, travel times and used energy in a dynamic traffic equilibrium.

1.2. Related Work
Our work touches upon several streams of the literature including the routing aspect of individual
EVs and the traffic assignment problem in the static and dynamic setting.

Routing Models and Algorithms for EVs. The algorithmic problem of computing opti-
mal routes for EVs taking the limited range of the battery into account has been addressed
by Storandt [46]. Baum et al. [3, 4] also considered several variants of constrained shortest path
problems and take additionally speed variations of EVs into account. Funke and Storandt [47]
studied routing problems taking possible stops at charging locations into account. Desaulniers
et al. [13] and Schneider et al. [41] considered EV routing problems with side-constraints such
as time windows and derive integer-programming methods for their solution. Froger et al. [18]
studied EV routing problems and explicitly model hard capacities at recharge stations. They

3



derive a centralized optimization model and apply an integer-programming method to solve it.
It is worth mentioning that Froger et al. [18] give an excellent survey on the state of the art for
“EV-routing problems” and we refer to this paper for further references. All these mentioned
works, however, do not integrate strategic route choices with coupled congestion effects in their
models.
Funke et al. [19, 20] further studied the location of charging stations. They reduced the

problem – assuming a static decoupled routing system – to the hitting set problem and derived
solution algorithms. Xiong et al. [55] and Zheng et al. [56] modeled the location of charging
stations as a bilevel optimization problem modeling the lower level as a static discrete and
continuous congestion game, respectively.

Static Traffic Assignment. The classical mathematical approaches used in the transporta-
tion science literature to predict traffic distributions rely on static traffic assignment models
based on aggregated static multi-commodity flow formulations some of which allow convex side-
constraints (cf. [30, 39, 45, 51, 53]). While static models have seen several decades of development
and practical use, they abstract away too many important details and, thus, become less at-
tractive. For the modeling of traffic assignment of EVs, static models seem not appropriate as
the time aspect is crucial for modeling the battery behavior and the corresponding routing of
an EV.

Dynamic Traffic Assignment. Flows over time are an important and more realistic general-
ization of classical static flows since they are capable to incorporate the critical time component
(cf. [15] and [50] for one of the earliest papers considering a game-theoretic perspective for flows
over time.) Since then flows over time have been a central topic in the transportation science
literature, cf. [16, 40, 9] for further references. Classical works in the area of DTA models such as
Friesz et al. [16] introduced a variational inequality approach to characterize dynamic equilibria.
After the work of Friesz et al., several works further analyzed the existence of dynamic equilib-
ria. Zhu and Marcotte [58] established the existence of dynamic equilibria under a strict FIFO
condition. This strict FIFO condition is not satisfied for the Vickrey queueing model as shown
by Cominetti et al. [10] and first existence results for the Vickrey model were shown by Koch
and Skutella [29] assuming single-commodity instances and piece-wise constant inflow rates.
Han, Friesz and Yao [25] then showed existence of dynamic equilibria for multiple commodities,
general inflow-rate functions and allowing for a simultaneous route and departure choice. They
formulated the problem (following [16]) as an infinite dimensional variational inequality problem
and then used an existence theorem of Browder [8]. Browder’s theorem requires continuity of the
path-delay operator (which was already shown by the same authors in Han et al. [26, 27]) and
compactness of the underlying path-flow space. The latter compactness property is in general
not fulfilled and Han et al. [25] used a discretization scheme (restricting to price-wise constant
path inflows which are compact) and showed that the resulting sequence of discretized dynamic
equilibrium flows converges to a dynamic equilibrium for the original model. Cominetti et al. [10]
also established an existence result for dynamic equilibria within the general multi-commodity
Vickrey model using also an infinite dimensional variational inequality formulation. They, how-
ever, used a theorem by Brézis [7], which does not rely on compactness of the underlying path
inflow space but requires a stronger form of continuity (sequential weak-strong continuity) of
the path-delay operator. Zhong et al. [57] studied the existence of dynamic equilibria for traffic
models with side-constraints. They also used a variational inequality formulation but assumed
a strong FIFO condition to hold and further assumed that the restriction set is compact.
For the computation of dynamic equilibria it is a priori not clear how to obtain convergence

of a discretization scheme for an arbitrary flow over time (disregarding equilibrium properties)
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within the Vickrey model unless some restrictive assumptions such as fixed paths are assumed,
see Sering et al. [43]. While a computational study by Ziemke et al. [59] shows some positive
results with regards to convergence, Otsubo and Rapoport [38] describe “significant discrepan-
cies” between the continuous and a discretized solution for the Vickrey model. To overcome
the discontinuity issue, Han et al. [26] reformulated the model using a PDE formulation. They
obtained a discretized model whose limit points correspond to dynamic equilibria of the contin-
uous model. The algorithm itself, however, is numerical in the sense that a precision is specified
and within that precision an approximate equilibrium is computed. The overall discretization
approach mentioned above stands in line with a class of numerical algorithms based on fixed
point iterations computing approximate equilibrium flows within a certain numerical precision,
see Friesz and Han [17] for a recent survey.
Iryo and Smith [28] and Cominetti et al. [10] independently showed uniqueness of equilibrium

travel times in the Vickrey model. Sering and Vargas-Koch [44] incorporated spillbacks in the
Vickrey model. The long term behavior of dynamic equilibria with infinitely lasting constant
inflow rate at a single source was studied by Cominetti, Correa and Olver [11]. They introduced
the concept of a steady state and showed that dynamic equilibria always reach a stable state
provided that the inflow rate is at most the capacity of a minimal s-t cut. Olver, Sering and
Koch [36] further characterized steady state properties of dynamic Nash equilibria under less
restrictive assumptions. For the instantaneous dynamic equilibrium concept in the Vickrey
model, Graf, Harks and Sering [23] proved equilibrium existence results and Graf and Harks [22]
gave the first finite time algorithm for dynamic equilibrium computation. For further recent
work w.r.t. price of anarchy in the Vickrey model, see [6, 12, 37].

2. The Model
We now introduce our model for electric vehicles in which we combine the Vickrey deterministic
queuing model with graph-based extensions in order to model the key characteristics of the
battery recharging technology for electric vehicles. The complex strategic decision of an EV
involves

1. the route choice possibly involving necessary recharging stops and cycles,

2. the mode choice of the battery-recharge (e.g., Level 1, 2, 3),

3. the actual duration of each battery-recharge en route, which determines the resulting
battery state and the recharge cost while also influencing the EV’s travel time.

We model this complex decision space by using several graph-based gadgets inside the Vickrey
network model leading to the battery-extended network. This construction is, in a sense, a local
version of time-extended networks. That is, instead of making copies of the whole network we
only have to duplicate the recharging nodes themselves such that essentially each copy corre-
sponds to some choice of recharging mode and duration at that node. This way, we can reduce
the complex strategy choice of an EV to selecting a feasible walk inside the battery-extended
network. In the following, we first start with the physical Vickrey flow model and then discuss
the battery-extended network.

2.1. The Physical Vickrey Network Model
The physical Vickrey network model is based on a finite directed graph G′ = (V ′, E′) with
positive rate capacities νe ∈ R+ and positive transit times τe ∈ R+ for every edge e ∈ E′. There
is a finite set of commodities I = [n] := {1, . . . , n}, each with a commodity-specific source node
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si ∈ V ′ and a commodity-specific sink node ti ∈ V ′. The (infinitesimally small) agents of every
commodity i ∈ I each represent a vehicle (electric or combustion engine) and they enter the
network according to a bounded and integrable network inflow rate function ui : R≥0 → R≥0
with bounded support. We denote by T := sup { θ ∈ R≥0 | ∃i ∈ I : ui(θ) > 0 } the last time a
vehicle enters the network. If the total inflow into an edge e = vw ∈ E′ exceeds the rate capacity

v w
τe

inflow

queue qe(θ)
f+
e (θ)

outflow
f−e (θ)

νe

Figure 1.: An edge e = vw with a nonempty queue of size qe(θ) at time θ. The terms f+
e (θ) and f+

e (θ)
denote the in- and outflow rates at time θ, respectively.

νe, a queue builds up and agents need to wait in the queue before they are forwarded along the
edge. The total travel time along e is thus composed of the waiting time spent in the queue
plus the physical transit time τe. A schematic illustration of the inflow and outflow mechanics
of an edge e is given in Figure 1. The Vickrey model is one of the corner stone models in DTA
and has been analyzed in the transportation science literature for decades, see Li, Huang and
Yang [32] for an up to date research overview of the past 50 years.

2.2. The Battery-Extended Network
For vehicles corresponding to a commodity i ∈ I, we assume that they all have an equal initial
battery state of level bi > 0, i ∈ I. This assumption is without loss of generality as we can
introduce copies of commodities with the same source-sink pair but different initial battery
states. If an agent of commodity i travels along an edge e ∈ E, this comes with a battery cost of
bi,e ∈ R which may be positive (energy consumption) or negative (recuperation). This battery
cost is a fixed value for every commodity-edge pair (i, e) and, in particular, independent of the
actual flow on the edge. The maximum battery capacity is denoted by bmax

i . Note that the
assumption that battery cost is independent of congestion is well justified, since the engine of
an EV completely turns off when a vehicle stands still leading to negligible power consumption
while queueing up. Yet, the chosen route does depend on the perceived travel time and, thus,
also the realized power consumption does (indirectly) depend on congestion.
Recharging may either take place at home before the trip actually starts (resulting in a high

initial battery state bi) or at public or commercial charging stations, e.g. at public parking
spots or at conventional gas stations. An important difference between recharging stations is
the offered mode and price charged for recharging. Modes of recharge may range from relatively
low power supply (up to 3.7 kilowatts (kW), Level 1) to medium supply (up to 22 kW, Level
2) up to high supply (operates at powers from 25 kW to more than 350 kW, Level 3) or even
complete battery swaps. Each mode may result in different recharging times for a fixed targeted
state of charging (SOC), and also the resulting prices may significantly vary not only among
modes but also among recharge locations. The statistics for 2021 for the recharging prices in
Germany show for instance a significant price span for the “cents per kWh tariff” ranging from
35 Euro cents at public stations to 79 cents at private stations (cf. [1]). Besides the recharge
location and mode choice, the planned duration for the recharge is an important decision as it
directly affects the journey time, the resulting SOC and the price paid. For an agent with a
high preference for fast travel times, it might payoff to take a detour to some recharging location
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v ⇒ v

v1
m1(v)

v2
m2(v)

v3
m3(v)

v̄

(τv1v̄, νv1v̄, bv1v̄, pv1v̄)
...

...

...

Figure 2.: Left: Initial vertex v with an EV using a walk (red edges) without recharging. Right: Expansion
of node v using a graph-based gadget modeling the recharging options. There are three recharging
modes, say a low, medium or high power supply (Level 1, Level 2, Level 3) leading to the first
three edges m1(v),m2(v),m3(v). The subsequent parallel edges model the different charging
times and resulting increase of the battery levels. The red edges describe one cycle inside the
gadget and represent a recharge using mode 1 for time τv1v̄ with resulting battery level increase
of |bv1v̄| at price pv1v̄.

offering an expensive Level 3 access resulting in a high battery SOC within a short time span.1
Summarizing, the selection of a recharging station, a recharge mode and the duration of the
actual recharge is an important strategic decision of EV drivers.
Given a tariff for recharging,2 we can model the set of possible combinations of recharge times,

battery states and recharge prices via tuples of the form (τ, bi, pi), i ∈ I, where τ ∈ N is the time
(in minutes) spent for recharging, bi ≡ bi(τ) is the resulting increase of the battery level and
pi ≡ pi(τ) ∈ R+ is the charged price for a vehicle of commodity i ∈ I. Note that the functions
bi(τ), pi(τ) can be directly derived from the SOC function and the resulting tariffs, respectively
(cf. Xiao et al [54]).
Formally, recharging stations are identified with subsets of nodes of V ′ denoted by Ci ⊆ V ′, i ∈

I, where we explicitly allow that Ci depends on i ∈ I to allow for different recharging technolo-
gies, that is, some vehicles may only recharge at stations that have the required technology. By
introducing copies of commodities it is again without loss of generality to assume that every
agent of commodity i uses the same technology. For a recharging location v ∈ Ci, i ∈ I, we
introduce a subgraph as depicted in Figure 2. The node v ∈ Ci represents the original charging
station viable for i ∈ I, the parallel edges leaving v correspond to the different recharging modes
available and the subsequent edges model the different recharging times with corresponding
recharge states and prices.3 At the end of this series-parallel graph-gadget, a backwards arc to-
wards v is introduced. We associate with every edge a tuple of the form (τe, νe, bi,e, pi,e), where τe
is the travel time (or recharge duration for a gadget edge), νe the inflow capacity, bi,e the battery
recharge and pi,e the price paid for the used recharge on edge e. Note that we have pi,e ≡ pi,e(τe)
and bi,e ≡ bi,e(τe) for corresponding pricing and SOC functions, respectively. Any cycle in such

1For instance, Tesla Model S, Renault Zoe, BMW i3 can be recharged at high voltage supplies to roughly 80%
battery capacity after a few minutes, whereas at houshold supplies, recharge to a comparable capacity takes
several hours. For more on the mathematical modelling of precise charging functions as functions mapping
recharge time (and current battery state) to resulting battery state, see [3].

2Pricing happens frequently on the basis of a per-minute tariff, other tariffs charge on a per kWh basis or on a
per-session basis, see [1] for an overview on pricing schemes in Germany.

3For the sake of a simple illustration we allow parallel arcs but by introducing further dummy nodes subdividing
an edge, one obtains a simple graph so that an edge can uniquely be represented by a tuple vw for v, w ∈ V .
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a gadget is in one-to-one correspondence to a mode (e), recharge duration (τe), battery recharge
(bi,e) and price decision (pi,e). If a mode is not compatible with the recharging technology used
by EVs of type i ∈ I, we can set bi,e = +∞ to close the corresponding recharge edge for i ∈ I.
For every i ∈ N , we denote the newly constructed vertices and edges by V (Ci), E(Ci), i ∈ I.

Definition 2.1. The battery-extended network is a tuple N = (G, ν, τ, b, p), where

• G = (V,E) is the battery-extended graph with V := V ′∪i∈IV (Ci) and E := E′∪i∈IE(Ci)),

• νe ∈ R+, e ∈ E denotes the inflow-capacities,

• τe ∈ R+, e ∈ E denotes the travel times or recharge durations,

• bi,e ∈ R, i ∈ I, e ∈ E denotes the battery-consumption values,

• pi,e ∈ R+, i ∈ I, e ∈ E denotes the recharge prices.

An si,ti-walk in the battery-extended graph G corresponds to a route choice in the original graph
G′ together with recharging decisions corresponding to cycles inside the gadgets, see Fig. 2 for
an example.

2.3. Feasible Walks in the Battery-Extended Network
Assume that we are given the battery-extended network N as described in Subsection 2.2. Let
W = (e1, . . . , ek) be a sequence of edges in the graph G. We call W a walk if ej = vj−1vj
for all j ∈ [k] for k ∈ N. We assume that all walks considered in this paper are finite and
just use the term walk to denote a finite walk. Note, that a walk is allowed to contain self-
loops and/or nontrivial cycles as required for a recharge operation. We denote by kW := k the
length of W and by eWj the j-th edge of walk W . W is an si,ti-walk, if v0 = si and vk = ti.
We denote by Wi the set of all si,ti-walks and assume that this set is always non-empty, i.e.
that every commodity has at least one walk from its source to its sink. Finally, we denote by
W := { (i,W ) | i ∈ I,W ∈ Wi } the set of all commodity-walk pairs. The set Wi represent the
set of strategies for a particle of commodity i ∈ I and, thus, a complete strategy profile is a
family of walk-flows for all commodities and all walks such that for every commodity the sum
of its walk-flows matches its network inflow rate. We denote the set of all such strategy profiles
by

K :=

 h ∈
(
L2
≥0([0, T ])

)W ∣∣∣∣∣∣ ∀i ∈ I :
∑

W∈Wi

hWi (θ) = ui(θ) for almost all θ ∈ R≥0

 ,
where L2

≥0([0, T ]) denotes the set of L2-integrable non-negative functions over the interval [0, T ]
and any h ∈ K is called a walk-flow. The crucial point when modeling electric vehicles is the
energy-feasibility of a walk, that is, the battery must not fully deplete while traversing a walk.
We capture this property in the following definition.

Definition 2.2. A walk W = (e1, . . . , ek) ∈ Wi is energy-feasible for commodity i ∈ I, if the
following condition is satisfied:

bW (vj) ∈ [0, bmax
i ] for all j = 1, . . . , k, (1)

where bW (vj) is defined inductively as

bW (v1) = bi and bW (vj+1) = min{bW (vj)− bi,ej+1 , b
max
i }. (2)
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si v1 v2

v3

ti

v4

v5

1

5

5
1

1

2

1

0

−4−2
0

si v1 v2

v3

ti

v4

v5

5

5
1 1

1

2

1

0

−4−2
0

Figure 3.: Example of an instance with start node si and sink node ti, bi = 3, bmax
i = 4. The green edges

represent the recharging gadget. The blue numbers at edges indicate the power consumption
values bi,e. The shortest energy-feasible walk (assuming positive travel times) is illustrated
with red edges on the right which contains two simple cycles C1 := {v3, v4, v5, v3} and C2 :=
{v1, v2, v3, v1}, where the first cycle is contained in the recharging gadget and represents a mode
and duration choice.

We assume that for every i ∈ I there is at least one energy-feasible walk and that their
collection is denoted by

Wi,b := {W ∈ Wi|W satisfies (1)}.

In Figure 3, we give an example illustrating that walking along cycles might indeed be neces-
sary to reach the sink. The setWi,b represent the set of enery-feasible strategies for a particle of
commodity i ∈ I. We further define Wb = {(i,W )|i ∈ I,W ∈ Wi,b} to be the set of commodity
and battery-feasible walk pairs. Note that the set Wb need not be finite.
Now, a complete energy-feasible strategy profile is a family of walk-flows for all commodities

and all walks such that for every commodity the sum of its walk-flows matches its network inflow
rate.

3. Dynamic Equilibria with Convex Constraints
So far, we have reduced the strategy space of every agent involving the routing and recharging
decisions to the set of feasible walks inside the battery-extended graph G. What is still missing
to formally introduce the traffic assignment problem, or equivalently, the dynamic equilibrium
problem, is the precise form of the utility function for an agent. We assume that agents want to
travel from si to ti but have preferences over travel time and recharge prices. While the recharge
prices can be directly derived from the chosen walk W , the resulting travel time can only be
described, if the walk-choices of all agents have been unfolded over time giving the resulting
queueing times of a walk. This dynamic unfolding of the traffic inflow is usually termed as the
network loading which is discussed in the following subsections.

3.1. Edge-Walk-Based Flows over Time
Given a feasible walk-flow h ∈ K, we develop the theoretical basis for the resulting network
loading. This network loading provides then the basis for a travel time function µWi : R≥0 → R≥0
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which for every time θ provide us with the travel time for a particle entering walk W at time
θ. These functions will then be used for our dynamic equilibrium concept which takes energy-
feasibility of walks and their resulting travel time into account.
Let R := { (i,W, j) | i ∈ I,W ∈ Wi, j ∈ [kW ] } denote the set of triplets consisting of the

commodity identifier, walk and edge position in the walk, respectively. A flow over time is then
a tuple f = (f+, f−), where f+, f− ∈

(
L2
≥0(R≥0)

)R are vectors of L2-integrable, non-negative
functions modelling the inflow rate fW,+i,j (θ) and outflow rate fW,−i,j (θ) of commodity i on the
j-th edge of some walk W ∈ Wi. For any such flow over time we define the aggregated edge in-
and outflow rates of an edge e ∈ E as

f+
e (θ) :=

∑
(i,W,j)∈R:
eWj =e

fW,+i,j (θ) and f−e (θ) :=
∑

(i,W,j)∈R:
eWj =e

fW,−i,j (θ) (3)

and the cumulative edge in- and outflows by

FW,+i,j (θ) :=
∫ θ

0
fW,+i,j (z)dz and FW,−i,j (θ) :=

∫ θ

0
fW,−i,j (z)dz

as well as

F+
e (θ) :=

∫ θ

0
f+
e (z)dz and F−e (θ) :=

∫ θ

0
f−e (z)dz.

Note, that F+
e , F

−
e , F

W,+
i,j and FW,−i,j are non-decreasing, absolute continuous functions which

satisfy

F+
e (θ) =

∑
(i,W,j)∈R:
eWj =e

FW,+i,j (θ) and F−e (θ) =
∑

(i,W,j)∈R:
eWj =e

FW,−i,j (θ).

Furthermore, we define the queue length of an edge e at time θ by

qe(θ) := F+
e (θ)− F−e (θ + τe) for all θ ∈ R≥0. (4)

For any flow particle entering an edge e = vw at time time θ, its travel time on this edge is

ce(θ) := τe + qe(θ)
νe

and its exit time of edge e is given by

Te(θ) := θ + ce(θ). (5)

Now, given some walk-flow h ∈ K we call a flow over time f a feasible flow over time associated
with h if it satisfies the following constraints (6) to (10):
The walk-flows of h and f match, i.e. for every i ∈ I, W ∈ Wi we have

fW,+i,1 (θ) = hWi (θ) for almost all θ ∈ R≥0. (6)

The flow satisfies a balancing constraint at every node intermediate node, i.e. for every i ∈ I,
W ∈ Wi and any 1 ≤ j < kW we have

fW,−i,j (θ) = fW,+i,j+1(θ) for almost all θ ∈ R≥0. (7)

10



The aggregated outflow respects the edges capacity, i.e. for every edge e we have

f−e (θ + τe) ≤ νe for almost all θ ∈ R≥0, (8)

as well as weak flow conservation over edges, i.e. for every edge e we have

F−e (θ + τe) ≤ F+
e (θ) for all θ ∈ R≥0. (9)

And, finally, the flow has to satisfy the following link transfer equation for every i ∈ I, W ∈ Wi

and any 1 ≤ j ≤ kW :

FW,−i,j

(
TeWj

(θ)
)

= FW,+i,j (θ) for all θ ∈ R≥0. (10)

It turns out that every walk-flow h ∈ K has a unique associated feasible flow over time which
we can obtain by a natural network loading procedure.

Lemma 3.1. For any h ∈ K, there is a unique (up to changes on a subset of measure zero)
associated flow over time f .

Proof. The proof of this lemma mainly rests on the following two claims:

Claim 1. Given an aggregated edge inflow rate functions f+
e on some interval [0, θ̄] then there

exists a uniquely defined (up to changes on a set of measure zero) aggregated edge outflow rate
f−e on the interval [0, Te(θ̄)] satisfying (8), (9) and

F−e (Te(θ)) = F+
e (θ) (11)

for all θ ∈ [0, θ̄].

Proof. We first observe, that (11) is equivalent to

qe(θ)
νe

= min
{
w ≥ 0

∣∣∣∣∣
∫ θ+w

θ
f−e (ζ + τe) dζ = qe(θ)

}
. (12)

Indeed, if (12) holds, we get

F−e (Te(θ)) = F−e

(
θ + τe + qe(θ)

νe

)
= F−e (θ + τe) +

∫ θ+ qe(θ)
νe

θ
f−e (ζ + τe) dζ

(12)= F−e (θ + τe) + qe(θ) = F+
e (θ).

If, on the other hand, (11) holds, then we have

∫ θ+ qe(θ)
νe

θ
f−e (ζ + τe) dζ = F−e (Te(θ))− F−e (θ) = F−e (Te(θ))− F+

e (θ) + qe(θ)
(11)= qe(θ)

and, therefore, min {w ≥ 0 |
∫ θ+w
θ f−e (ζ + τe) dζ = qe(θ) } ≤ qe(θ)

νe
. At the same time, (8) clearly

implies min {w ≥ 0 |
∫ θ+w
θ f−e (ζ + τe) dζ = qe(θ) } ≥ qe(θ)

νe
and, thus, (12) holds.

Now we can use [10, Proposition 1] stating that satisfying (8), (9) and (12) is equivalent to
the queue operating at capacity, i.e.

f−e (θ + τe) =
{
νe, if qe(θ) > 0
min { f+

e (θ), νe } , else
for almost all θ ≤ θ̄.
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Now, the claim follows from [34, Lemma 3.4.5] or, alternatively, in the way mentioned in [10,
Section 2.2]. �

Claim 2. Given a family of edge inflow rates (f+
e,i) for some edge e on some interval [0, θ] then

there exist uniquely defined (up to changes on a set of measure zero) edge outflow rates (f−e,i) on
[0, Te(θ)] satisfying constraints (8) to (10).

Proof. First, note that any such family of outflow rates must, in particular, have a corresponding
aggregated outflow rate satisfying the properties of Claim 1. Since we already know that there
exists exactly one such outflow rate f−e : [0, Te(θ)] → R≥0, we can take this as given. Now,
the claim reduces to showing that there exist uniquely defined outflow rates (f−e,i) adding up to
the fixed aggregated edge outflow rate f−e and satisfying (10) for almost all θ ≤ θ̄. This is now
exactly the statement of [10, Lemma 2]. �

Using these two claims together with the flow conservation constraints (6) and (7) the (unique)
existence of associated flows over time can be shown by induction over time in the same way as
in the proof of [10, Proposition 3].

For any fixed network we then denote by F the set of all feasible flows over time associated
with some h ∈ K. Note, that Lemma 3.1 then provides us with a one-to-one mapping between
K and F .

3.2. Capacitated Dynamic Equilibria
For a given walk-based flow h ∈ K with associated feasible flow over time (f+, f−), we now
want to compute for every commodity type (i,W ) with W = (eW1 , . . . , eWkW ) a label function
giving at time θ for any node on that walk the arrival time at ti. Let Ŵ = (v0, . . . , vkW )
denote the representation of W as a sequence of nodes satisfying eWj = vj−1vj , j ∈ [kW ] with
v0 = si, vkW = ti. As a node can appear multiple times in W , we use the subindex j ∈ [kW ]
as a unique identifier of the position of that node in the walk. With this notation we can
unambiguously and recursively define the following label function:

`Wi,kW (θ) := θ, for all θ ≥ 0,
`Wi,j(θ) := `Wi,j+1(TeWj+1

(θ)), for j = [kW ]− 1, . . . , 0 and all θ ≥ 0
(13)

where `Wi,j is the label function of the (j + 1)-th node when traversing the walk Ŵ beginning
with the starting node at position 0. Recall that vkW = vti and v0 = si, thus, for a particle
enteringW at time θ, the value `Wi,0(θ) measures the arrival time at ti (assuming that the particle
follows W ). Note that `Wi,j is only defined for nodes contained in W and a node v in Ŵ may be
associated with several label functions whose number is equal to the number of occurrences of
v in Ŵ . We can easily compute the total travel time for a vehicle of commodity i ∈ I leaving si
at time θ as

µWi (θ) := `Wi,0(θ)− θ. (14)

Finally, we need to connect the total travel time with the total price paid for recharging. For
this, we introduce an aggregation function.

Definition 3.2. A function c : R × R → R is an aggregation function, if c is continuous and
non-decreasing in both arguments.
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We will assume that every commodity has a commodity-specific aggregation function ci and,
thus, given some fixed feasible flow f particles of commodity i starting their travel along some
walk W at time θ have a total cost of ci

(
µWi (θ),

∑
e∈W pi,e

)
.

Example 3.3. For i ∈ I, we can think of an aggregation function as

ci

(
µWi (θ),

∑
e∈W

pi,e

)
:= λiµ

W
i (θ) +

∑
e∈W

pi,e,

where λi > 0 is a parameter that translates the total travel time into disutility measured in
Euro.

Now, instead of letting particles choose any walk between their respective source and sink
node, we impose further restrictions to only use walk-flows from some closed, convex restriction
set S ⊆ L2([0, T ])W . Using such S we can, for example, not only model battery constraints
(making certain walks infeasible) but also temporary road closures or restrictions on the set of
feasible flows itself (as every h corresponds to a unique feasible flow) – though, in the latter case
it is in general not obvious to see whether the resulting set S satisfies convexity.
Now, we want to express that some h ∈ S is an equilibrium, if no particle can improve its

total cost (i.e. aggregate of travel time and total price) by deviating from its current path while
staying within S. However, since individual particles are infinitesimally small, the deviation
of a single particle does not influence the feasibility w.r.t. S. Instead, we have to consider
deviations of arbitrarily small but positive volumes of flow leading to the notion of saturated
and unsaturated walks as used in the static Wardropian model by Larsson and Patriksson [31].
To do that we first define for any given walk-flow h, commodity i, walks W,Q ∈ Wi, time θ̄ ≥ 0
and constants ε, δ > 0 the walk-flow obtained by shifting flow of commodity i from walk W to
walk Q at a rate of ε during the interval [θ̄, θ̄ + δ] by

HW→Q
i (h, θ̄, ε, δ) := (h′R)R∈W with

h′Wi = [hWi − ε1[θ̄,θ̄+δ]]+
h′Qi = hQi + hWi − [hWi − ε1[θ̄,θ̄+δ]]+
h′Ri′ = hRi′ f.a. (i′, R) ∈ W \ {(i, Q), (i,W )}

,

where

1[θ̄,θ̄+δ] : [0, T ]→ R, θ 7→
{

1, if θ ∈ [θ̄, θ̄ + δ]
0, else

is the indicator function of the interval [θ̄, θ̄+ δ] and for any function g : [0, T ]→ R the function
[g]+ is the non-negative part of g, i.e. the function

[g]+ : [0, T ]→ R, θ 7→ max{g(θ), 0}.

Using this notation, we can now define the set of unsaturated alternatives to some fixed walk
W of commodity i with respect to some h ∈ S at time θ̄ ≥ 0 as

DW
i (h, θ̄) :=

{
Q ∈ Wi

∣∣∣∀δ′ > 0 : ∃δ ∈ (0, δ′], ε > 0 : HW→Q
i (h, θ̄, ε, δ) ∈ S

}
. (15)

We can now formally define the concept of a dynamic equilibrium in our model.

Definition 3.4. Given a network N = (G, ν, τ, p), a set of commodities I, a restriction set S
and for every commodity i ∈ I an associated source-sink pair (si, ti) ∈ V × V as well as an
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aggregation function ci, a feasible walk-flow h ∈ S ∩K is a capacitated dynamic equilibrium, if
for all (i,W ) ∈ W and almost all θ̄ ≥ 0 it holds that

hWi (θ̄) > 0 =⇒ ci

(
µWi (θ̄),

∑
e∈W

pi,e

)
≤ ci

µQi (θ̄),
∑
e∈Q

pi,e

 for all Q ∈ DW
i (h, θ̄). (16)

A special case of particular interest are sets S defined by restricting the set of walks that
can be used by each commodity, i.e. S := {h ∈ K | hWi ≡ 0 for all W ∈ W \ W̃ } for some
subset W̃ ⊂ W of feasible walks. Then we have DW

i (h, θ̄) = {W ∈ Wi | (i,W ) ∈ W̃ } for any
i ∈ I,W ∈ Wi, h ∈ S, θ̄ ≥ 0 and the above definition just requires that whenever there is
positive inflow into a walk, this walk must have minimal total costs among all feasible paths of
the respective commodity at that time.
In particular, in the case where all walks are allowed (i.e. W̃ = W) the above definition is

equivalent to the classic definition of dynamic equilibria. For a battery-extended network we
can take W̃ = Wb and will call a capacitated dynamic equilibrium an energy-feasible dynamic
equilibrium.

4. Existence of Capacitated Dynamic Equilibria
In this section, we will show the existence of capacitated dynamic equilibria using an infinite
dimensional variational inequalities as pioneered by Friesz et al. [16] and also used by Cominetti
et. al. [10]. Since we use a more general equilibrium concept and allow for flow to use arbitrary
walks (from an a priori infinite set of possible walks) instead of just simple paths, we have to
adjust several of the technical steps of the proof.
The general structure of the proof will be as follows: First, we introduce the concept of

dominating sets of walks which will allow us to only consider some finite subset W ′ of the set
of all walks. We then define a mapping A : h 7→ ci

(
µWi (_),

∑
e∈W pi,e

)
mapping walk-flows to

costs of particles of commodity i using walk W . Using this mapping we can then formulate a
variational inequality for which we can show that any solution to it is a capacitated dynamic
equilibrium. Finally, a result by Lions [33] guarantees the existence of such solutions given that
the mapping A satisfies an appropriate continuity property which we will show to hold for our
model.

We start by giving the definition of dominating walks and sets to be able to formally state
our main theorem:

Definition 4.1. A walk (i, Q′) ∈ W is a dominating walk for another walk (i, Q) with respect
to S, if for any walk-flow h ∈ K ∩ S we have

ci

µQ′i (θ̄),
∑
e∈Q′

pi,e

 ≤ ci
µQi (θ̄),

∑
e∈Q

pi,e

 for all θ ∈ [0, T ],

and, additionally, Q ∈ DW
i (h, θ̄) always implies Q′ ∈ DW

i (h, θ̄).
A subsetW ′ ⊆ W is a dominating set with respect to S, if it contains for any walk (i, Q) ∈ W,

a dominating walk (i, Q′) ∈ W ′ with respect to S.

Theorem 4.2. Let N = (G, ν, τ, p) be any network and I a finite set of commodities each
associated with an aggregation function ci and a source-sink pair (si, ti). Let S ⊆ L2([0, T ])W be
a restriction set which is closed, convex and has non-empty intersection with K and there exists
some finite dominating set W ′ ⊆ W with respect to S. Then there exists a capacitated dynamic
equilibrium in N .
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In order to prove this theorem we first need some definitions from functional analysis: We will
make use of two function spaces, namely the space L2([a, b]) of L2-integrable functions from an
interval [a, b] to R and the space C([a, b]) of continuous functions from [a, b] to R. The former
is a Hilbert space with the natural pairing

〈., .〉 : L2([a, b])× L2([a, b])→ R, (g, h) 7→ 〈g, h〉 :=
∫ b

a
g(x)h(x) dx.

The latter is a normed space with the uniform norm ‖f‖∞ := supθ∈[a,b] |f(θ)|. Both, the natural
pairing and the norm, can be extended in a natural way to L2([a, b])d and C([a, b])d, respectively,
for any d ∈ N. In particular, all these spaces are topological vector spaces. We say that a
sequence hk of functions in L2([a, b])d converges weakly to some function h ∈ L2([a, b])d if for
any function g ∈ L2([a, b]) we have limk→∞〈hk, g〉 = 〈h, g〉. For any topological space X (in the
following this will be either L2([a, b])d or C([a, b])d) and any subset C ⊆ L2([a, b])d a mapping
A : C → X is called sequentially weak-strong-continuous if it maps any weakly converging
sequence of functions in C to a (strongly) convergent sequence in X.
With this, we can now describe the kind of variational inequality we will use to show the exis-

tence of capacitated dynamic equilibria. Namely, given an interval [a, b] ⊆ R≥0, a number d ∈ N,
a subset C ⊆ L2([a, b])d and a mapping A : C → L2([a, b])d, the variational inequality VI(C,A)
is the following:

Find h∗ ∈ C such that 〈A(h∗), h̄− h∗〉 ≥ 0 for all h̄ ∈ C. (VI(C,A))

Conditions to guarantee the existence of such an element h∗ are given by Lions in [33, Chapitre
2, Théorème 8.1] which, following Cominetti et. al. [10], can be restated as follows:

Theorem 4.3. Let C be a non-empty, closed, convex and bounded subset of L2([a, b])d. Let
A : C → L2([a, b])d be a sequentially weak-strong-continuous mapping. Then, the variational
inequality (VI(C,A)) has a solution h∗ ∈ C.

For our proof we choose C := π(S ∩ K ∩ ι(
(
L2([0, T ])

)W ′)), where ι :
(
L2([0, T ])

)W ′ →(
L2([0, T ])

)W is the canonical embedding (i.e. augmenting W ′-dimensional vectors with zero
functions to W-dimensional vectors) and π :

(
L2([0, T ])

)W → (
L2([0, T ])

)W ′ the canonical pro-
jection. For ease of notation we will usually omit these embeddings/projections from our no-
tation and assume that they are implicitly applied, whenever we change between elements of(
L2([0, T ])

)W ′ and (L2([0, T ])
)W . Next, we define a mapping A : C → L2([0, T ])W ′ by defining

for every walk-flow h ∈ C, commodity i ∈ I and walk W ∈ W ′i := {W ∈ Wi | (i,W ) ∈ W ′ } the
continuous function AWi (h) by

AWi (h) : θ 7→ ci

(
µWi (θ̄),

∑
e∈W

pi,e

)
− min
Q∈W ′i

ci

µQi (θ̄),
∑
e∈Q

pi,e

 .
Clearly, the assumptions on S and the fact that K is bounded, closed and convex imply that C

is a non-empty, closed, convex and bounded subset of L2([0, T ])W ′ . Thus, in order to be able to
apply Theorem 4.3 it only remains to show that A is sequentially weak-strong continuous. Since
taking differences and minima of sequentially weak-strong continuous mappings again results in
such a mapping, it suffices to show that the maps

h 7→ ci

(
µWi (_),

∑
e∈W

pi,e

)
for W ∈ W ′i, i ∈ I (17)
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are sequentially weak-strong continuous from C to L2([0, T ]). The first ingredient for this proof
is a result by Cominetti, Correa and Larré [10, Lemma 3] showing that the network loading for
any h ∈ C has compact support. One argument in [10] uses that walks are simple (paths) in
order to bound queues. We side-step this argument by using another Lemma from Graf and
Harks [21].

Lemma 4.4. There is a constant M ≥ 0 such that for any h ∈ C all edge flows of the network
loading corresponding to h are supported on [0,M ].

Proof. Let h ∈ K and let f ∈ F be the associated unique network loading which itself is a
feasible flow over time. For any feasible flow f ∈ F and every edge e ∈ E we define the edge load
function F∆

e that gives us for any time θ the total amount of flow currently on edge e (either
waiting in its queue or traveling along the edge):

F∆
e : R≥0 → R≥0, θ 7→ F+

e (θ)− F−e (θ).

The function F∆(θ) :=
∑
e∈E F

∆
e (θ) then gives the total amount of flow in the network at time

θ. Furthermore, we define a function Z indicating the amount of flow that already reached the
sinks ti, i ∈ I by time θ:

Z : R≥0 → R≥0, θ 7→
∑
i∈I

∑
e∈δ−ti

F−i,e(θ)−
∑
e∈δ+

ti

F+
i,e(θ) (18)

and for any node si 6= ti, i ∈ I the cummulative network inflow at si as

Ui : R≥0 → R≥0, θ 7→
∫ θ

0
ui(ζ)dζ.

We will make use of the following connection between these functions:

Lemma 4.5 (Graf and Harks [21, Lemma 2.1]). Let f ∈ F be a feasible flow. Then for any
time θ we have

F∆(θ) =
∑
i∈I

Ui(θ)− Z(θ).

From the above lemma, we immediately get:

qe(θ) ≤ F∆(θ) ≤ q̄ :=
∑
i∈I

∫
R
ui(z)dz.

The remaining proof is similar to that in [10]. Let δ := maxe∈E{ q̄νe +τe} and m be the maximum
number of edges of any of the (finitely many!) walks in W ′. Hence by setting M := T + δm we
get `i,0(θ) ≤ M for all θ ∈ [0, T ]. With (7) and (10) we get that all appearing edge flows are
supported on [0,M ].

Now we discuss the continuity of the mapping from walk-flows h to label functions `Wi,j following
along the same lines as [10, Lemmas 4-7].

Lemma 4.6. LetM ≥ 0 be a constant such that all edge flows of network loadings corresponding
to any h ∈ C have their support in [0,M ] (cf. Lemma 4.4). Then for any fixed edge e ∈ E the
map

C → C([0,M ]), h 7→ Te
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is sequentially weak-strong continuous. Here, the map h 7→ Te is defined by first finding the
unique network loading for the given h (see Lemma 3.1) and then deriving the resulting exit
time function Te.

Proof. We show the desired sequential continuity by decomposing the map into three maps
according to the following commutative diagram:

C

h

C([0,M ])
Te

F ⊆
(
L2([0,M ])

)Rf (
C([0,M ])

)2(F+
e , F

−
e )

weak-strong

w
eak-w

eak

weak-strong

st
ro

ng
-s

tr
on

g

Claim 3. The map F →
(
C([0,M ],R≥0)

)2
, f 7→ (F+

e , F
−
e ) is well defined and sequentially

weak-strong continuous.

Proof. Since θ 7→
∫ θ

0 g(ζ) dζ is an (absolute) continuous function for any integrable function g
the map given in the claim is clearly well defined. For the proof of the continuity we mostly
follow the proof of [42, Lemma 2.7]. Let (fk)k be a sequence in F converging weakly to some
f ∈ F and let F+

e
(k)
, F+

e , F
−
e

(k) and F−e be the corresponding cumulative flows on edge e. As
first step we want to show that F+

e
(k) converges point-wise F+

e . So, fix some time θ ∈ [0,M ]
and define g ∈

(
L2([0,M ])

)R by

gW,+i,j :=
{
1[0,θ], if eWj = e

0, else
and gW,−i,j := 0 for all (i,W, j) ∈ R.

Then we have
F+
e (θ) = 〈f, g〉 = lim

k
〈fk, g〉 = F+

e
(k)(θ).

In exactly the same way, one can also show that F−e
(k) converges point-wise to F−e . Now,

we observe that any aggregated edge inflow rate into edge e = vw for any feasible flow over
time is clearly bounded almost everywhere by L :=

∑
e′∈δ−v νe

′ + supθ∈[0,M ]
∑
i∈I ui(θ) and any

aggregated edge outflow rate is bounded almost everywhere by νe (using constraints (6) to (8)).
Thus, all F+

e
(k) are Lipschitz-continuous with Lipschitz constant L while all F−e

(k) are Lipschitz-
continuous with Lipschitz constant νe. Also, both F+

e and F−e are continuous. Thus, we can
apply Lemma A.2 to obtain uniform convergence. �

Claim 4. The map
(
C([0,M ])

)
→ C([0,M ]), (F+

e , F
−
e ) 7→ Te is sequentially strong-strong con-

tinuous.

Proof. This follows directly from the definition of Te(θ) := θ + τe + F+
e (θ)−F−e (θ+τe)

νe
. �

Claim 5. The network loading map C → F , h 7→ f is sequentially weak-weak continuous.

Proof. Let (hk)k ⊆ K be a sequence of walk-flows converging weakly to some h ∈ C. Let fk
and f be the associated network loadings. We want to show that then fk converges weakly to
f . By way of contradiction we assume that this is not the case. In particular, that means that
there exists some ε > 0 and a subsequence fkj as well as an element g ∈ L2([0,M ])d such that
〈g, fkj 〉 > ε for all j ∈ N.
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By Lemma 4.4, the sequence (fkj )j is bounded. Since L2([0,M ])d is a reflexive Banach space,
this implies that it contains a weakly convergent subsequence (see [2, Satz 6.10]). By some abuse
of notation we will denote this subsequence by (fk) and its weak convergence point by f ′. We
will now show that f ′ ∈ F and it is a network loading for h, i.e. we want to show that f ′ satisfies
constraints (6) to (10). We will do that by showing that all these constraints are stable under
weak limits, i.e. if they hold for all fk and hk, they also holds for the weak limit points f ′ and
h.

Constraints (6) to (8) are all linear constraints and, thus, it is easy to see that they are stable
under weak limits. We show this explicitly for constraint (6) and note that the proofs for the
other two constraints are completely analogous. So, assume for contradiction that constraint (6)
does not hold for f ′ and h, i.e. assume that there is (wlog) some i ∈ I,W ∈ W ′i, ε > 0 and a set
A ⊆ [0,M ] of positive measure such that for all θ ∈ A we have f ′W,+i,1 (θ) − hWi (θ) > ε. Then,
we clearly have 1A ∈ L2([0,M ]) and (because constraint (6) holds for all fk and hk and they
converge weakly to f ′ and h, respectively):

0 = lim
k
〈1A, f ′k,W,+i,1 (θ)− hk,Wi (θ)〉 = 〈1A, f ′W,+i,1 (θ)− hWi (θ)〉 ≥ εµ(A) > 0,

which is a contradiction.
Next, constraint (9) is stable under weak limits by Claim 3. Finally, to show that con-

straint (10) is stable under weak limit we follow the proof of [10, Lemma 5]. From Claims 3
and 4 we know that the sequences F k,W,+i,j , F k,W,−i,j and T ke converge uniformly to F ′W,−i,j , F ′W,−i,j

and T ′e, respectively. From this, we directly get that

F ′W,−i,j (T ′eWj (θ)) Lemma A.1= lim
k
F k,W,−i,j (T keWj (θ)) (10)= lim

k
F k,W,+i,j (θ) = F ′W,+i,j (θ)

for any θ ∈ R≥0.
From this we can now conclude that f ′ is a network loading for h. However, by Lemma 3.1,

network loadings are unique and thus we have f ′ = f almost everywhere. This, in turn, is now
a contradiction to our initial assumption that 〈g, fk〉 > ε for all j ∈ N since we just showed,
that fkj has a subsequence which weakly converges to f ′ = f . �

Combining the three claims above implies the lemma.

Lemma 4.7. For each W ∈ W ′i, i ∈ I, the map

C 7→ L2([0, T ]), h 7→
(

[0, T ]→ R, θ 7→ ci
(
µWi (θ),

∑
e∈W

pi,e
))

is sequentially weak-strong continuous.
Proof. From Lemma 4.6 we can deduce that C 7→ C([0, T ]), h 7→ `Wi,0 is sequentially weak-strong
continuous since it maps weakly convergent sequences to compositions of uniformly convergent
sequences which, therefore, also converge uniformly. Furthermore, it is easy to see that a con-
stant mapping like C 7→ C([0, T ]), h 7→ (θ 7→ θ) is also sequentially weak-strong continuous.
Thus, C 7→ C([0, T ]), h 7→ µWi is sequentially weak-strong continuous as difference of two such
mappings.
Together with the continuity of ci this directly implies the lemma as follows: Let hk w→ h be

any weakly convergent sequence in C. We now have to show strong convergence of the image
sequence in L2([0, T ]) (i.e. L2-convergence).
We start by showing uniform convergence in C([0, T ]). So, let ε > 0. As ci is uniformly

continuous on [0,M ], there exists some δ > 0 such that |ci(x)− ci(y)| ≤ ε whenever |x− y| ≤ δ.
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Furthermore, there exists some K ∈ N such that for any k ≥ K we have
∥∥∥µWi (k) − µWi

∥∥∥
∞
≤ δ

since the µWi
(k) converge strongly to µWi in C([0, T ],R≥0) (i.e. uniformly). This then implies

that for every k ≥ K we have∥∥∥∥∥
(
ci
(
µWi

(k)(_),
∑
e∈W

pi,e
)
− ci

(
µWi (_),

∑
e∈W

pi,e
))∥∥∥∥∥

∞

= sup
θ∈[0,T ]

(
ci
(
µWi

(k)(θ),
∑
e∈W

pi,e
)
− ci

(
µWi (θ),

∑
e∈W

pi,e
))
≤ ε.

Thus, C 7→ L2([0, T ]), h 7→
(
[0, T ]→ R, θ 7→ ci

(
µWi (θ),

∑
e∈W pi,e

))
maps weakly convergent se-

quences to uniformly convergent sequences. Since C([0, T ]) ⊆ L2([0, T ]) and uniform convergence
implies L2-convergence, this concludes the proof of this lemma.

Using this lemma we can now finally show the existence of capacitated dynamic equilibria:

Proof of Theorem 4.2. With Lemma 4.7 we have that for each W ∈ W ′i, i ∈ I, the map
h 7→ ci

(
µWi (_),

∑
e∈W pi,e

)
is weak-strong continuous from C to L2([0, T ]). Taking the min-

imum of finitely many weak-strong continuous mappings results in a weak-strong continuous
mapping and, finally, the difference of two weak-strong continuous mappings is also weak-strong
continuous. Thus, A is sequentially weak-strong-continuous from C to L2([0, T ])W ′ . Applying
Theorem 4.3 provides a solution h∗ for VI(C,A). It remains to show that this is, in fact, a
capacitated dynamic equilibrium. We will do this by contradiction, i.e. we assume that h∗ is
not a capacitated dynamic equilibrium and show that in this case we get a new walk-flow h̄
which contradicts (VI(C,A)).

Claim 6. If h∗ is not a capacitated dynamic equilibrium, then there exists a time θ̄ ≥ 0, a
commodity i, two walks W,Q ∈ W ′i and three positive numbers ε, δ, γ > 0 such that

• HW→Q
i (h∗, θ̄, ε, δ) ∈ S,

• ci
(
µWi (θ),

∑
e∈W pi,e

)
− ci

(
µQi (θ),

∑
e∈Q pi,e

)
≥ γ for all θ ∈ [θ̄, θ̄ + δ] and

•
∫ θ̄+δ
θ̄

min {h∗Wi (θ), ε } dθ > 0.

Proof. If h∗ is not a capacitated dynamic equilibrium then, by definition, there exists some
commodity i, a walk W ∈ W ′i and a subset J ⊆ [0, T ] of positive measure such that for all θ̄ ∈ J
we have h∗Wi (θ̄) > 0 and there exists some Qθ̄ ∈ DW

i (h∗, θ̄) with

ci

(
µWi (θ̄),

∑
e∈W

pi,e

)
> ci

µQθ̄i (θ̄),
∑
e∈Qθ̄

pi,e

 (19)

From the definition of DW
i (h∗, θ̄) we get for every such θ̄ some constants δθ̄, εθ̄ > 0 such that

H
W→Qθ̄
i (h∗, θ̄, εθ̄, δθ̄) ∈ S. Since W ′ is a dominating set with respect to S we can, wlog, assume

that all Qθ̄ ∈ W ′. Furthermore, since W ′ is finite, there must be some Q ∈ W ′ such that we
can restrict J to only those θ̄ where we can choose Qθ̄ = Q and still have that J has positive
measure. Finally, because ci

(
µWi (θ),

∑
e∈W pi,e

)
is continuous in θ we can wlog assume that

each δθ̄ is small enough such that (19) holds for all θ ∈ [θ̄, θ̄ + δθ̄].
Then, by Lemma A.3, there exists some θ̄ ∈ J such that J ∩ [θ̄, θ̄ + δθ̄] still has positive

measure. Consequently, the fact that we have min {h∗Wi (θ), εθ̄ } > 0 for all θ ∈ J ∩ [θ̄, θ̄ +
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δθ̄] implies
∫ θ̄+δθ̄
θ̄

min {h∗Wi (θ), εθ̄ } dθ > 0. Thus, setting ε := εθ̄, δ := δθ̄ and, finally, γ :=
min { ci

(
µWi (θ),

∑
e∈W pi,e

)
− ci

(
µQi (θ),

∑
e∈Q pi,e

)
| θ ∈ [θ̄, θ̄ + δ] } gives us the desired objects.

�

Now, assume that a solution h∗ to (VI(C,A)) is not a capacitated dynamic equilibrium. Then,
using θ̄, i,W,Q, ε, δ, γ and h′ from Claim 6 and setting h̄ := HW→Q

i (h∗, θ̄, ε, δ) we clearly have
h̄ ∈ K. Furthermore, h̄ only uses walks that are already used in h∗ and additionally walk Q.
Therefore all walks used by h̄ are in W ′. Thus, we can conclude that h̄ ∈ C. But at the same
time we also have

〈A(h∗), h̄− h∗〉 =
∫ T

0
〈A(h∗(θ)), h̄(θ)− h∗(θ)〉 dθ

=
∫ θ̄+δ

θ̄
A(h∗)W (θ) ·

(
h̄Wi (θ)− h∗Wi (θ)

)
+A(h∗)Q(θ) ·

(
h̄Qi (θ)− h∗Qi (θ)

)
dθ

=
∫ θ̄+δ

θ̄
(A(h∗)Q(θ)−A(h∗)W (θ)) ·min {h∗Wi (θ), ε } dθ

=
∫ θ̄+δ

θ̄

ci
µQi (θ̄),

∑
e∈Q

pi,e

− ci
(
µWi (θ̄),

∑
e∈W

pi,e

) ·min {h∗Wi (θ), ε } dθ

≤ −γ
∫ θ̄+δ

θ̄
min {h∗Wi (θ), ε } dθ < 0,

which is a contradiction to h∗ being a solution to (VI(C,A)). Therefore, any solution h∗ ∈ C
to (VI(C,A)) is also a capacitated dynamic equilibrium and, in particular there always exists a
capacitated dynamic equilibrium.

4.1. Special Cases
We discuss two special cases for which our existence theorem can be applied by suitable choices
of the abstract restriction set S: dynamic equilibria and energy-feasible dynamic equilibria.

4.1.1. Dynamic Equilibria

If we choose S = L2([0, T ])W , then capacitated dynamic equilibria are exactly the dynamic
equilibria as defined in [10, 16, 29, 58, 35]. To see this, note, that in this case we always have
DW
i (h, θ̄) = Wi. Thus, (16) translates to the constraint that whenever there is positive inflow

into some walk W , this walk has to be a shortest walk at that time. Since dynamic flows in
the Vickrey-model satisfy FIFO, the set of simple paths is a dominating set for the set of all
walks with respect to S = L2([0, T ])W (i.e. removing a cycle from a walk can never increase its
aggregated cost). As the set of simple paths is clearly finite, one can use Theorem 4.2 to show
existence of dynamic equilibria. Note that the classical existence proofs for dynamic equilibria
(e.g. by Han et. al. [25] or Cominetti et. al. [10]) usually have the restriction to simple paths
as part of the model itself, i.e. they only allow walk-flows from L2([0, T ])W ′ where W ′ is the set
of simple source-sink paths.

4.1.2. Energy-Feasible Dynamic Equilibria

Now let us turn to the case of energy-feasible dynamic equilibria, i.e. equilibria of flows in
battery-extended networks. We show that Theorem 4.2 implies the existence of energy-feasible
dynamic equilibria.
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Theorem 4.8. Let N be any battery-extended network network and S := ι(L2([0, T ])Wb) ⊆
L2([0, T ])W . Then, there exists an energy-feasible dynamic equilibrium in N , i.e. a capacitated
dynamic equilibrium with respect to S.

Proof. First, it is quite obvious that S is closed and convex and has non-empty intersection with
K (using our assumption that every commodity has at least one energy-feasible source-sink
walk). For the existence of a finite dominating walk set, we will show that due to the FIFO
condition in the Vickrey model, there exists a constant κi such that for every agent playing
against any walk choices of all other agents there exists an optimal strategy which enters any
(recharging) node at most κi times. To see this let us define the following quantities

κi := max
{
bmax
i

αi

}
, where αi := min

E′⊆E

∑
e∈E′

bi,e|
∑
e∈E′

bi,e > 0

 .
The quantity αi is a lower bound on the minimum positive increment for i ∈ I along any
simple cycle. Suppose there is some node v, which is visited k ∈ N times by a walk W of
commodity i. By renaming indices, we can assume that v appears in W in the order v1, . . . , vk
with vj = v, j ∈ [k]. Clearly, whenever we have bW (v`) ≥ bW (vj) for some ` < j, we can delete
the cycles between v` and vj to obtain another energy-feasible walk W ′ of the same commodity.
Due to FIFO and the fact that the aggregation function ci is non-decreasing, the new walk W ′
then has at most the same aggregated cost as W . Thus, commodity i always has an optimal
walk where the sequence bW (v1) < · · · < bW (vk) is monotonically increasing with increments of
at least αi > 0. With bW (vk) ≤ bmax

i , we get k ≤ κi as wanted. To explicitly construct a finite
dominating set W ′, for a walk W ∈ Wi, we define ψW (v) := |{vj ∈ Ŵ |vj = v, j ∈ [kW ]}|. Recall
that Ŵ is the node-multiset representation of W . Then, a finite dominating set is given as

W ′ := {(i,W )|W ∈ W ′i, i ∈ I} with W ′i := {W ∈ Wi|ψW (v) ≤ κi for all v ∈ Ŵ}, i ∈ I.

Thus, all conditions of Theorem 4.2 are satisfied and we obtain the existence of an energy-feasible
dynamic equilibrium.

5. Computational Study
In this section, we focus on computing energy-feasible dynamic equilibria on a set of moderate
sized networks. We discretize the continuous time scale and then use a fixed point algorithm
similar to the one used by Han et al. in [24] to compute walk-flows in which agents only use
walks which are close to the least expensive (with regards to total costs) energy-feasible walks.

5.1. A Fixed Point Algorithm
The main steps of our algorithm are as follows: First we compute the set of energy-feasible
walks Wb as well as one initial walk-flow h ∈ K using only those walks (e.g. by sending the
whole flow volume of any commodity i along a physically shortest walk in Wi,b). Next, we use
the network loading procedure from the proof of Lemma 3.1 to determine the feasible flow f
associated with h and derive from this the total travel times µWi for all walks and commodities.
Finally, we update the walk-flow h by shifting flow from walks with high total cost to walks
with lower total cost, whereby the amount of flow shifted is proportional to the difference in
cost between the two walks, and again compute the network loading for the updated walk-flow.
We then repeat this update process until we reach a walk-flow h that changes only very little
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during the update-step or, equivalently, where the walks used in h all have costs very close to
the minimal cost under the current walk-flow h.

More formally, the update is computed as follows: Given a walk-flow hk we denote the costs
determined by the associated feasible flow by chW,i(θ) := ci

(
µWi (θ),

∑
e∈W pi,e

)
for all commodi-

ties i ∈ I, energy-feasible walks W ∈ Wi,b and times θ ∈ [0, T ]. We then want to compute
functions vi : R≥0 → R for each i ∈ I such that∑

W∈Wi,b

[
hk,Wi (θ)− αk · chW,i(θ) + vi(θ)

]
+

= ui(θ), for all θ ∈ [0, T ], (FP-Update)

where αk > 0 is the current step size, and obtain the new walk-flow hk+1 by setting

hk+1,W
i (θ) :=

[
hk,Wi (θ)− αk · chW,i(θ) + vi(θ)

]
+
.

We observe that fixed points of this update procedure are exactly the energy-feasible dynamic
equilibria:

Lemma 5.1. hk corresponds to a energy-feasible dynamic equilibrium if and only if hk+1 = hk

almost everywhere.

Proof. First note, that as explained after Definition 3.4 a walk-flow hk corresponds to an energy-
feasible dynamic equilibrium if and only if for all i ∈ I and almost all θ ∈ [0, T ]

hk,Wi (θ) > 0 =⇒ chW,i(θ) = min{chW ′,i(θ) |W ′ ∈ Wi,b}.

Now assume that hk+1 = hk, i.e. hk,Wi (θ) :=
[
hk,Wi (θ)− αk · chW,i(θ) + vi(θ)

]
+

for all com-
modities i, walks W ∈ Wi,b and times θ. This is equivalent to

max
{
vi(θ)− αkchW,i(θ),−h

k,W
i (θ)

}
= 0.

From this, a direct computation shows that chW,i(θ) ≥
vi(θ)
αk

for all walksW ∈ Wi,b with hk,Wi (θ) >
0 implies chW,i(θ) = vi(θ)

αk
. Thus, hk corresponds to a energy-feasible dynamic equilibrium. The

other direction of the proof is completely analogous.

Now, in order to be able to compute the network loading, the travel cost functions and updates
we will use discretized time instead of the continuous time of our formal model. Therefore, we
split the time interval [0, T ] into N parts using equally spaced breakpoints a0, a1, . . . , aN and
then only consider walk-flows which are constant on each of the intervals [aj−1, aj ], leading in
turn to an associated feasible flow with piecewise constant flow rates as well (though, possibly,
over smaller intervals). This allows us to exactly compute the network loading. For the update
step we then also approximate the network inflow rates ui for each interval by a single value
ūji :=

∫ aj
aj−1

ui(θ)dθ and the cost function chW,i(θ) by the value attained in the middle of each
interval, i.e. by c̄h,jW,i := chW,i((aj+aj−1)/2). Finally, we denote by h̄k,W,ji the value of hk,Wi within
the interval [aj−1, aj ]. This then results in the following discretized version of (FP-Update): Find
values vji satisfying∑

W∈Wi,b

[
h̄k,W,ji − αk · c̄h,jW,i + vji

]
+

= uji for all i ∈ I, j ∈ 1, . . . , N. (FP-Update)
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Algorithm 1: A Fixed-point algorithm for computing energy-feasible dynamic equilib-
rium flows
Input: A battery-expanded network N , constants N ∈ N, α0 > 0

1 Compute the set of energy-feasible walks Wi,b for each commodity i ∈ I
2 Pick some initial walk-flow h0 and set the iteration count k ← 0.
3 repeat
4 Calculate the network loading for hk and determine the values ch,jW,i.
5 Find values vji satisfying∑

W∈Wi,b

[
h̄k,W,ji − αk · c̄h,jW,i + vji

]
+

= uji for all i ∈ I, j ∈ 1, . . . , N (FP-Update)

Set hk,W,j+1
i :=

[
h̄k,W,ji − αk · c̄h,jW,i + vji

]
+
, αk+1 := s(αk, hk, hk+1) and increment k.

6 until ‖h
k+1−hk‖
‖hk‖ ≤ ε;

The new walk-flow hk+1 is then defined by setting

h̄k+1,W,j
i :=

[
h̄k,W,ji − αk · c̄h,jW,i + vji

]
+

for all i ∈ I, j ∈ 1, . . . , N.

To solve (FP-Update) for vji , standard root finding algorithms can be used. We use the Newton’s
method (available in the Scipy package of Python).
Our complete fixed point algorithm, thus, has the form depicted in Algorithm 1. Here,

s(.) represents a function that updates the step size α at the end of each iteration. In our
preliminary experiments, we observed that it helps the algorithm to convergence faster if α
is updated dynamically based on the values of αk, hk+1 and hk. We compute a parameter
γk+1 := 1− (||hk+1 − hk||)/(||hk+1 + hk||) and set αk+1 = γk+1(γk+1αk) + (1− γk+1)αk.

5.2. Data sets
We illustrate the performance of Algorithm 1 first on a small example and then on two bench-
marking instances from the literature (cf. e.g. [25]), namely the Nguyen network and the Sioux
Falls network. Table 1 describes the characteristics of these networks. The edge travel times and

Table 1.: Description of test instances used for the computational study. The variant A has no energy
feasibility constraints while the variant B involves energy constraints. The variant C includes
recharging stations/edges (indicated separately in the ‘# edges’ row on the right side of the +
sign) in addition to energy constraints.

Network Example1 Nguyen Sioux Falls

A B C A B C A B C

# nodes 4 4 4 13 13 13 24 24 24
# edges 5 5 5+2 19 19 19+3 76 76 76+1
# commodities 1 1 1 4-20 4-20 4-20 4 4 4
Inflow rate (u) 3 3 3 3 3 3 3 3 3
Time horizon [0,10] [0,10] [0,10] [0, 300] [0, 300] [0, 300] [0, 480] [0, 480] [0, 480]
Total inflow 30 30 30 3600-18000 3600-18000 3600-18000 5760 5760 5760
Energy cons.? No Yes Yes No Yes Yes No Yes Yes
Energy values – 0-4 0-4 – 0.5-4 0.5-4 – 1-6 1-6
# r/c stations – 0 1 – 0 3 – 0 1
Price for r/c – – 0 – – 0-60 – – 0
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edge capacities for the illustrative example are shown in Figure 4. The corresponding values for
the Nguyen and the Sioux Falls network have been taken from [14]. We have chosen the energy
consumption values for edges based on their travel time and involvement in different walks from
the range shown in Table 1 in the row ‘Energy values’. The price for non-recharging edges is set
to 0 for all networks.

4

5.3. Performance Measures
We assess the performance of Algorithm 1 based on the following measures: In order to quantify
how well a walk-flow at an iteration k satisfies the dynamic equilibrium conditions (3.4), we use
the following measure

QoPIk :=
∑
i


∑

W∈Wi,b

∫ T

0
hk,Wi (θ)

(
chW,i(θ)−minW ′∈Wi,b{c

h
W ′,i(θ)}

minW ′∈Wi,b{c
h
W ′,i(θ)}

)
dθ

∫ T

0
ui(θ) dθ

 . (20)

If we calculate this value without dividing by the total inflow volume, we call the resulting
value QoPI (absolute). It is easy to verify that a walk-flow h is an energy-feasible dynamic
equilibrium flow if and only if QoPI is zero. A value close to zero means that agents are using
walks whose costs are quite close to the minimum costs at any given time θ. The integral value
in the numerator of Equation (20) is approximated by the area under a piecewise linear function
obtained by connecting the corresponding values at the discrete time points (aj−1 + aj)/2. We
also measure the absolute change in the L1-norm of walk-flows (∆hk+1 :=

∥∥∥hk+1 − hk
∥∥∥) and the

relative change (∆hk+1/
∥∥∥hk∥∥∥).

Furthermore, we show the energy consumption profile for a walk-flow as a time-plot of the
measure

η(θ) :=
∑
i

∑
W

hWi (θ)bW
ui(θ)

, (21)

where bW =
∑
e∈W be represents the energy consumption corresponding to a walk W . The value

η(θ), thus, indicate the average energy consumed by all particles starting their travel at time θ.
We also use the following measures of energy consumption for each commodity for each time θ.

• Minimum energy consumption := minW :hWi (θ)>0 bW

• Maximum energy consumption := maxW :hWi (θ)>0 bW

• Mean energy consumption :=
∑
W

hWi (θ)bW
ui(θ)

For multicommodity networks, we use the following measures of walk travel times consolidated
over the commodities.

• Minimum walk travel times := mini∈I µWi (θ)

• Maximum walk travel times := maxi∈I µWi (θ)

4The source code of our implementation as well as the used input files can be found at https://github.com/
ArbeitsgruppeTobiasHarks/electric-vehicles
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• Mean walk travel times :=
∑
i∈I

∑
W :hW

i
(θ)>0 µ

W
i (θ)

|{W :hWi (θ)>0}|

• Mean of minimum walk travel times :=
∑

i∈I min
W :hW

i
(θ)>0 µ

W
i (θ)

|I|

• Mean of maximum walk travel times :=
∑

i∈I max
W :hW

i
(θ)>0 µ

W
i (θ)

|I|

5.4. Computational Results
For simplicity, we assume in our computational study that the batteries are recharged fully up
to bmaxi at all recharging stations. For experiments with a positive price of recharging, we use
an alternate aggregation function defined as

ci

(
µWi (θ),

∑
e∈W

pi,e

)
:= µWi (θ) + λ̃i

∑
e∈W

pi,e, (22)

to avoid numerical instabilities in our algorithm. Here, the parameter λ̃i ≥ 0 (used instead of
the parameter λi as defined in Example 3.3) converts the recharging price to travel time. Also,
we terminate the algorithm based on the criterion ∆h < ε which is typically more strict than
the one mentioned in Algorithm 1, however, we use it for the computational study along with a
soft maximum time limit and a maximum iteration limit to obtain the best possible walk-flows.
The computations have been carried out on a 64-bit Intel(R) Xeon(R) E5-2670 v2, 2.50GHz
CPU with 128GB RAM. The source code has been written in Python 3.5.
We will now describe the results of our tests on our three test networks: The small toy network,

the Nguyen network and the Sioux Falls network.

5.4.1. Results for a Toy Instance

First, we analyze the performance of Algorithm 1 on variants of the toy instance Example1
depicted in Figure 4. Example1-A is without energy constraints, Example1-B is with energy
constraints but without recharging stations and Example1-C incorporates energy constraints
and recharging stations. There are four s, t-walks for Example1-A. When energy constraints are
introduced (resulting in Example1-B), the walkW0 := (e1, e3, e4) becomes infeasible. Example1-
C includes a recharging station at the node v with two different modes of recharge, m1 and m2,
represented using green coloured self-loops, each with a single time-duration and a single price
for recharging. pmax denotes the price-budget of an agent. As shown, a value 6 for pmax rules
out recharging at v via mode m2. This results in seven energy-feasible walks for this network:
W0 with recharging at v, three walks from Example1-B, and the same three walks but with
recharging at v. However, an agent will not travel via these latter walks with recharging due to
a positive travel time of recharging edges.

Convergence measures. Table 2 shows the corresponding QoPI values upon termination of
Algorithm 1 for all three instances. As these values are quite small, this indicates that the
eventual flow largely uses walks with the least possible cost. The last column of Table 2 indicates
the walks with a positive flow at termination. Figure 5 provides a more detailed picture of
the flow determined in the final iteration of Algorithm 1 for Example1-A, Example1-B and
Example1-C, respectively. The first row shows the inflow rates in the different walks while the
second row shows the total travel costs along each walk (i.e. the value of the aggregation function
gi). Note that for these instances the the total costs equal the travel time since the costs at the
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Figure 4.: Pictorial depiction of variants of Example1-A (top), -B (middle) and -C (bottom) and the
corresponding travel time (τ), capacity (ν), and energy consumption values (b) for different
edges.

only used recharging station are zero (via mode m1) here. Comparing the plots in the first and
second row shows that whenever there is positive inflow into a walk, this walk has minimal total
cost among all feasible walks in accordance to the definition of capacitated dynamic equilibrium.
The QoPI values for each walk presented in the third row confirm this as they are also quite
close to zero at all times.

Table 2.: Number of feasible walks (|W|), QoPI attained at dynamic equilibrium, change in norm of walk
inflows at termination (∆h) and walks with positive inflow rates at dynamic equilibrium on
variants of Example1. The following parameter settings are used: ε = 0.01, α0 = 0.5.

Network |W| QoPI ∆h Walks with h+
W > 0 at termination

Example1-A 4 1.2e−4 0.001 W0 := (e1, e3, e4), W2 := (e2, e3, e4)
Example1-B 3 2.4e−4 0.001 W1 := (e1, e3, e5), W2
Example1-C 7 3.7e−4 0.001 W1, W2, W4 := (e1, e3,m1, e4)

Energy profiles. Next, we can compare the energy profiles of the approximate equilibrium flow
computed for the instance with and without recharging. These are depicted in Figure 6. We
observe that the introduction of recharging stations increases the average energy consumption
– at times even above the maximum battery consumption, meaning that particles starting at
these times on average use more than one complete battery charge for their travel.

Comparison with exact equilibria. As the instance considered here is quite small, we can also
deduce some properties of exact equilibria in this network and compare those to the approximate
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Figure 5.: Walk inflow rates (top), total costs (middle) and QoPI (bottom) for each energy-feasible walk
on the network shown in (a) Figure 4 (top) (b) Figure 4 (middle) with energy constraints (c)
Figure 4 (bottom) with energy constraints and a recharging station.

equilibria computed by our algorithm. Namely, the flow computed for Example1-A (without
energy constraints) is very close to a flow which sends everything into walk W0 until time θ = 2
and splits the flow in a 2 : 1 ratio between walks W0 and W2 after that. It is easy to verify
that such flow is indeed an exact dynamic equilibrium for this network. For Example1-B (with
energy consumption) we see that after around time θ = 2 the flow again is close to a stable split
in 2 : 1 ratio between two walks: This time between W1 and W2. One can again verify that this
is an energy-feasible equilibrium. For the time before θ = 2, however, a simple constant split
like in the case of Example1-A would not be an equilibrium. Instead a more gradual change
from the initial flow split towards the one after time 2 is necessary here, in order to also satisfy
the equilibrium condition during this transition phase. We can also see this in the plot for the
walk-flows of Example1-B.

Overtaking in energy feasible equilibria. Finally, we want to point out the following effect
taking place during the constant flow split after time θ = 2 in the (approximate) energy-feasible
equilibrium computed for Example1-B which is not possible for dynamic equilibria in single-
commodity networks: Namely, that simultaneous starting particles may overtake each other
at intermediate nodes while still arriving at the sink at the same time. This effect can lead
to much more involved structures of energy-feasible equilibria compared to dynamic equilib-
ria. In particular, it seems unlikely that energy-feasible dynamic equilibria can be constructed
by repeatedly extending a given partial equilibrium as it is possible for dynamic equilibria in
single-commodity networks (cf. [29]). Since if one were to extend a given partial equilibrium
flow, particles starting within the new extension period might overtake particles of a previous
phase and then form a queue, hereby increasing the travel time of those earlier particles and
possibly leading to violations of the equilibrium condition in the previously calculated part of
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Figure 6.: Energy consumption profiles for the networks Example1-B and 1-C.

the flow. Consequently, to directly compute an energy-feasible dynamic equilibrium the whole
time-horizon [0, T ] has to be taken into account at once.

5.4.2. Results for the Nguyen Network

1 12

5

9

4 6 7 8

10 11 2

13 3

Figure 7.: Pictorial depiction of the Nguyen-C network with recharging stations (with only one mode of
recharging) at nodes labeled 6, 8 and 9.

Next, we report on the performance of our algorithm on variants of the Nguyen network.
These are, again, without energy constraints (-A), with energy constraints (-B) and with energy
constraints and recharging stations (-C) at nodes labeled 6, 8, and 9 as shown in Figure 7
(considering only one recharging mode per charging station).

Convergence measures. Table 3 presents the performance measures of Algorithm 1 on these
three variants of Nguyen network with different number of commodities. All the instances
except Nguyen-B with twelve commodities converge to flows with QoPI values very close to
zero. Figure 8 shows the plots for ∆h and QoPI per iteration for the Nguyen network with
four commodities demonstrating how the walk-flows converge to an approximate energy-feasible
dynamic equilibrium. Note here the logarithmic scale of the x-axis. Both plots show a very fast
decrease for both ∆h and QoPI in the early iterations reaching a QoPI of less than 0.1 after
only about 10 iterations. On the other hand the extended tail of these plots indicate that a
large number of iterations are spent in a finer adjustment of flows among walks. It might be
possible to improve this behaviour in later iterations by using a different setting of algorithmic
parameters in future experiments.
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Table 3.: Performance of Algorithm 1 on variants of Nguyen network with different number of commodi-
ties. The following parameters are used: ε = 0.01, bmax = 5, α0 = 0.005, wall clock time limit
= 7200s, iteration limit = 40000. ‘TimeLim’ indicates that the run was terminated because the
soft time limit was exceeded.

# Commodities 4 8 12

Total inflow 3600 7200 10800

Variant A B C A B C A B C

Total # walks 25 17 25 35 27 35 44 36 44
Wall clock time taken 2634.712 275.452 1891.441 21.762 418.538 1163.050 TimeLim TimeLim 3902.077
Mean time/DNL 0.061 0.042 0.060 0.190 0.125 0.236 0.246 0.156 0.349
Mean time/FP-Update 0.008 0.007 0.010 0.015 0.010 0.014 0.019 0.018 0.019
# iterations 34349 5072 24376 100 2923 4468 26042 39048 10246
# walks with h > 0 18 17 21 29 24 28 27 25 31
∆h 0.010 0.010 0.011 0.012 0.011 0.012 0.060 8315.566 0.010
∆h (relative) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
QoPI (absolute) 11.242 19.854 44.903 2386.938 268.378 863.509 1153.254 251934.439 2698.931
QoPI 0.000 0.000 0.001 0.059 0.003 0.012 0.008 5.070 0.040
# Commodities 16 20

Total inflow 14400 18000

Variant A B C A B C

Total # walks 58 49 58 67 58 67
Wall clock time taken TimeLim TimeLim 462.7341 TimeLim TimeLim TimeLim
Mean time/DNL 0.362 0.449 0.462 0.346 0.451 0.456
Mean time/FP-update 0.024 0.022 0.026 0.028 0.025 0.030
# iterations 17880 14749 917 18368 14582 14284
# walks with h > 0 36 42 34 36 49 36
∆h 0.093 0.166 0.010 0.105 0.102 0.091
∆h (relative) 0.000 0.000 0.000 0.000 0.000 0.000
QoPI (absolute) 368.589 910.713 2372.727 407.333 455.671 477.226
QoPI 0.002 0.006 0.017 0.002 0.002 0.003
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Figure 8.: Change in the norm of walk-flows (∆h) and QoPI over iterations for the networks Nguyen-A
(left) and Nguyen-C (right) for four commodities.

Travel times and energy profile. For the Nguyen network with four commodities we give some
more details on the computed approximate equilibria in Figures 9 to 11. Figure 9 shows the travel
times of the four commodities. We can see here that the introduction of energy-constraints in
Nguyen-B leads to higher travel times compared to Nguyen-A for three of the four commodities
(as some of the shorter walks become infeasible) The addition of charging stations in Nguyen-C
then reduces the minimum walk travel times for all these commodities again. Compared to
the respective travel time profiles in Nguyen-A network (the case without energy-constraints),
the commodity denoted ‘comm0’ still incurs a higher travel time while the other commodities
exhibit very similar profiles.
Figure 11 shows the corresponding minimum, maximum and mean energy consumption pro-

files, respectively, for Nguyen-B (top row) and Nguyen-C (bottom row). Figure 9 shows the
energy profiles aggregated over all four commodities. We observe that in particular for commod-
ity ‘comm3’ the decrease in travel times from Nguyen-B to Nguyen-C comes with a significant
increase in the energy consumption (especially evident from the plots for mean energy consump-
tion). At the same time ‘comm2’ also profits from the introduction of recharging stations in
terms of travel time while incurring only a very modest increase in energy consumption: The
maximum energy consumption increases significantly, but the average energy consumption stays
almost the same, suggesting that while new (more energy intensive) walks become available,
only a small percentage of this commodity’s particles actually take these less energy efficient
walks. Altogether this shows that the effects of adding recharging stations on travel time and
energy consumption can vary significantly between different agents.

Figure 9.: Minimum walk travel times for (four) different commodities for the Nguyen-A (left), Nguyen-B
(centre) and Nguyen-C networks (right).

Effects of recharging prices. Figure 12 (left) shows the effect of different prices for recharging
for the Nguyen-C network on the energy consumption profiles via use of different values of the
parameter λ̃i. The energy consumption is initially higher when the recharging prices are low
(corresponding to smaller values of λ̃i), but eventually, higher prices discourage the agents to
use walks that require recharging, and the respective energy profiles converge to the one with
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Figure 10.: Energy consumption profiles for the networks Nguyen-B and Nguyen-C four commodities.

Figure 11.: Minimum, maximum and the mean energy consumption profiles for (four) different commodi-
ties for the Nguyen-B (top) and Nguyen-C (bottom) networks.

no recharging. The effect of prices on the mean (Figure 12, right), minimum (Figure 13, left),
and the maximum (Figure 13, right) travel times taken for walks with a positive flow at times
θ ∈ [0, T ] over all commodities is also shown. The maximum travel times are the lowest when
there is no price for recharging and increase with prices. For very high prices, the plots for
maximum travel time converge to the one with no recharging. The effect on the minimum travel
times is not as stark, however, the prices corresponding to values λ̃i = 10 and 20 seem to benefit
the agents that start after specific time-points. The plots in Figure 14 for the mean of the
minimum (left) and the mean of the maximum travel times (right) exhibit an effect similar to
that on the minimum and the maximum travel times.

Effects of recharging station placement. To see the impact of different number and location
of recharging stations, we used recharging stations at nodes 6, 8 and 9 (with a zero price for
recharging) for the Nguyen-C network as shown in Figure 7. We use the notation shown in
Table 4 to indicate a particular combination of the operating recharging stations. Figure 15 (left)

Table 4.: Notation indicating the number and location of recharging stations for the Nguyen-C network.

# r/c stations 1 2 3

r/c station(s) at node(s) {6} {8} {9} {6, 8} {6, 9} {8, 9} {6, 8, 9}
Notation R1s1 R1s2 R1s3 R2s1 R2s2 R2s3 R3
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Figure 12.: Variation in the energy consumption profiles with different values of the parameter λ̃i for
recharing (left) and the mean travel times taken for Nguyen-C (right) network with four com-
modities. α0 = 0.001 has been used for these experiments.

Figure 13.: The minimum (left) and the maximum (right) travel times taken over four commodities for
walks with a positive flow for the Nguyen-C network with different values of the parameter λ̃i.

shows the energy consumption profiles with the corresponding mean travel times in Figure 15
(right). The highest energy consumption corresponds to combinations R2s3, R3, and R1s3
(in the mentioned order) that include the recharging station at node 9. Figure 16 shows the
minimum and maximum travel times. For clarity, the mean times taken using 1, 2 and 3
recharging stations are shown in Figure 17 which highlight that the mentioned combinations
corresponding to high energy use involving the recharging station at node 9 lead to shorter
travel times on average. Similar patterns are observed for the means of the minimum and the
maximum travel times as shown in Figure 18. When using eight commodities for the Nguyen-C
network, we observe patterns similar to the case of four commodities in the energy profiles and
the mean travel times as shown in Figure 19.
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Figure 14.: The mean of minimum (left) and the mean of the maximum (right) travel times over all four
commodities for walks with a positive flow for the Nguyen-C network with different values of
the parameter λ̃i.

Figure 15.: The energy consumption profiles (left) and the mean travel times (right) taken over all four
commodities for walks with a positive flow for the Nguyen-C network with different different
combinations of recharging stations at nodes 6, 8 and/or 9.

Figure 16.: The minimum (left) and the maximum (right) travel times over all four commodities for
walks with a positive flow for the Nguyen-C network with different combinations of recharging
stations at nodes 6, 8 and/or 9.

Figure 17.: The mean travel times for walks with a positive flow for Nguyen-C network with one (left),
two (centre) and three recharging stations (right).
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Figure 18.: The mean of minimum (left) and the mean of the maximum (right) travel times over all four
commodities for walks with a positive flow for the Nguyen-C network with different combina-
tions of recharging stations at nodes 6, 8 and/or 9.

Figure 19.: The energy consumption profiles (left) and the mean travel times (right) over eight commodi-
ties for walks with a positive flow for the Nguyen-C network with different combinations of
recharging stations at nodes 6, 8 and/or 9.
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5.4.3. Results for the Sioux Falls Network

For the Sioux Falls network, the number of walks to be evaluated increases drastically with
the number of recharging stations. Thus, we only include a single recharging station for this
network. Figure 20 (left) depicts the Sioux Falls-C network with a recharging station at node 8.
Table 5 then describes the parameters used in the algorithm and the results for two different

battery capacities bmax. For one of the variants (with energy consumption but without recharg-
ing and a battery capacity of bmax = 10) the algorithm terminated because it reached the desired
precision. For three other variants the algorithm terminated after between 10 and 16 iteration as
it reached the time limit of the runs. This is due to a large fraction of computational time spent
in the network loading and the fixed-point update step (this is in turn due to the large number
of feasible walks in the network). However, even for those instances the achieved precision was
quite small. For one variant (with energy consumption but without recharging and a battery
capacity of bmax = 6) no flow could be computed as there was one commodity without an energy
feasible walk between source and sink. Figure 20 (right) shows the convergence trend (in terms
of ∆h and QoPI) for the Sioux Falls network with recharging and bmax = 10 on a logarithmic
scale for the first 10 iterations. Here, we can again see that most of the progress already happens
in the first few iterations after which further progress happens much more slowly.

Table 5.: Performance of Algorithm 1 on variants of Sioux network with four commodities. The following
parameters are used: ε = 0.01, wall clock time limit = 7200s, iteration limit = 5000. The abbre-
viation ‘NF’ indicates that no feasible walk could be found for at least one of the commodities.

bmax = 6 bmax = 10

Variant A B C B C

Total # walks 14843 NF 27920 90 68674
Wall clock time TimeLim – TimeLim 584.771 TimeLim
Mean time/DNL 85.074 – 257.964 0.339 621.421
Mean time/FP-Update 8.695 – 20.764 0.034 58.764
# iterations 71 – 25 1457 10
# walks with h > 0 10 – 12 11 16
∆h 10.745 – 27.236 0.100 258.073
∆h (relative) 0.002 – 0.005 0.000 0.045
QoPI (absolute) 355.168 – 364.975 40.345 1579.097
QoPI 0.007 – 0.003 0.001 0.027
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Figure 20.: Pictorial depiction of the Sioux Falls network with a recharging station at node 8 (left) and
the change in the norm of walk-flows (∆h) and QoPI over iterations for this network with
four commodities.
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6. Conclusions
In this paper, we introduced and analyzed a DTA model for the operation of electrical vehicles.
The model combines the Vickrey deterministic queueing model with graph-based gadgets model-
ing recharging operations: a combined routing and recharging strategy of an EV can be reduced
to choosing a walk (possibly containing cycles) within this gadget-extended network. As our
main theoretical result, we proved the existence of dynamic equilibria in this DTA model. We
further discretized the model in order to apply a fixed-point algorithm computing approximate
dynamic equilibria. The fixed-point algorithm is designed to balance the resulting effective cost
among all battery-feasible walks. We applied this algorithm to instances from the literature
demonstrating the effect of battery-constraints and recharging options to the resulting equilib-
rium travel times and energy consumption profiles, respectively. As the placement and operation
of recharging infrastructure is a key challenge for the whole development of EV-mobility, we be-
lieve that our model and algorithmic approach can serve as the basis for predicting the resulting
effects of such infrastructure designs.
There are several open problems and challenges that are still widely open. Our approach

is inherently walk-based and therefore it has limitations when it comes to computing dynamic
equilibria for larger instances. For the Sioux Falls network, for bmax = 10 and two recharging
stations, the number of walks to be evaluated exceeds 108 which leads to unreasonably high
computational times for the network loading routine. We observed, however, that at termination
of the fixed-point algorithm, the number of walks with a positive flow is a small fraction of the
total number of walks. We believe that further insights are required for designing a better
algorithm to compute approximate capacitated dynamic equilibria for larger instances.
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A. Technical Lemmas
Lemma A.1. Let A,B ⊆ R be two subset of real numbers, Gk : A→ B a sequence of functions
converging uniformly to some function G : A → B and F k : B → R another sequence of
functions converging uniformly to some continuous function F : B → R.
Then F k ◦Gk : A→ B is a sequence of functions converging point-wise to F ◦G : A→ B.

Proof. Take any θ ∈ A and ε > 0. Since F is continuous, there exists some δ > 0 such that
for every θ′ ∈ A with |θ − θ′| ≤ δ we have |F (θ)− F (θ′)| ≤ ε/2. Furthermore, from the uniform
convergence of Gk and F k we get the existence of some K ∈ N such that for every k ≥ K we
have

∥∥∥G−Gk∥∥∥
∞
≤ δ and

∥∥∥F − F k∥∥∥
∞
≤ ε/2. Together this gives us

∣∣∣F ◦G(θ)− F k ◦Gk(θ)
∣∣∣ ≤ ∣∣∣F ◦G(θ)− F ◦Gk(θ)

∣∣∣+ ∣∣∣F ◦Gk(θ)− F k ◦Gk(θ)∣∣∣
≤ ε/2 + ε/2 = ε.

Lemma A.2. Let fk be a sequence of functions from some compact interval [a, b] to R that
converges point-wise to some function f . If all fk are Lipschitz-continuous with some common
Lipschitz constant L and f is continuous then fk converges uniformly to f .

Proof. Let ε > 0. Since f is continuous on a compact set, it is uniformly continuous. Thus,
there exists some δ > 0 such that for any two points x, y ∈ [a, b] with |x− y| ≤ δ we have
|f(x)− f(y)| ≤ ε/3. Now, fix some partition of [a, b] into intervals [x0, x1), [x1, x2), . . . , [xN−1, xN ]
with length at most min { ε/3L, δ } each. Then choose K ∈ N such that for all k ≥ K and all
i ∈ {0, 1, . . . , N} we have

∣∣∣fk(xi)− f(xi)
∣∣∣ ≤ ε/3. Then we have for every k ≥ K and any x ∈ [a, b]

that there exists some i with |xi − x| ≤ min { ε/3L, δ } and, thus, we have∣∣∣fk(x)− f(x)
∣∣∣ ≤ ∣∣∣fk(x)− fk(xi)

∣∣∣+ ∣∣∣fk(xi)− f(xi)
∣∣∣+ |f(xi)− f(x)|

≤ L · |x− xi|+
ε

3 + ε

3 ≤
3ε
3 = ε.

As this holds for all x ∈ [a, b] (with the same K), we have shown that fk converges uniformly
to f .

Lemma A.3. Given a finite interval [a, b] ⊆ R, a subset J ⊆ [a, b] of positive measure and for
every θ ∈ J some positive number δθ > 0. Then there exists some θ ∈ J such that J ∩ [θ, θ+ δθ]
has positive measure.

Proof. For any n ∈ N we define the set of all points in J which are the border of some interval
of size at least 1/n but not in the interior of any interval by

∂Jn :=
{
θ̄ ∈ J

∣∣∣∣ ∃θ ∈ J : δθ ≥
1
n
, θ̄ ∈ { θ, θ + δθ } and ∀θ ∈ J : θ̄ /∈ (θ, θ + δθ)

}
and claim that there is at most a countable number of such points. Indeed, note that any point
in ∂Jn must be the border point of an interval of size at least 1/n not containing any other
such point. Thus, for any point in ∂Jn there can be at most one other point from ∂Jn within a
distance of less than 1/n. This implies that there are only countably many such points.

But then the set

∂J :=
{
θ̄ ∈ J

∣∣∣ ∀θ ∈ J : θ̄ /∈ (θ, θ + δθ)
}

=
⋃
n∈N

∂Jn
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is also countable and, thus, has measure zero. This, in turn, implies that J \∂J still has positive
measure.
Now, since the Lebesgue measure is inner regular, J \ ∂J contains a compact subset C of

positive measure. As the family of open intervals { (θ, θ + δθ) | θ ∈ J } is an open covering of
J \ ∂J , it is also a covering of C and, thus, contains a finite subcover. Consequently, at least
one of the open intervals (θ, θ+ δθ) of this subcover must have a intersection of positive measure
with C. This θ then also satisfies the desired property of the lemma.
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