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Abstract. We consider a basic nonconvex resource allocation game, where the players' strategy
spaces are subsets of \BbbR m and cost functions are parameterized by some common vector u \in \BbbR m

and, otherwise, only depend on their own strategy choice. A strategy of a player can be interpreted
as a vector of resource consumption and a joint strategy profile naturally leads to an aggregate
consumption vector. Resources can be priced, that is, the game is augmented by a price vector
\lambda \in \BbbR m

\geq 0 and players have quasi-linear overall costs, meaning that in addition to the original costs, a
player needs to pay the corresponding price per consumed unit. We investigate the following question:
for which aggregated consumption vectors u can we find prices \lambda that induce an equilibrium realizing
the targeted consumption profile? For answering this question, we revisit a duality-based framework
and derive a new characterization of the existence of such u and \lambda using convexification techniques.
Our characterization implies the following result: If strategy spaces of players are bounded linear
mixed-integer sets and the cost functions are linear or even concave, the equilibrium existence problem
reduces to solving a well-structured LP. We then consider aggregate formulations assuming that cost
functions are additive over resources and homogeneous among players. We derive a characterization
of enforceable consumption vectors u, showing that u is enforceable if and only if u is a minimizer of
a certain convex optimization problem with a linear functional. We demonstrate that this framework
can unify parts of four largely independent streams in the literature: tolls in transportation systems,
Walrasian equilibria, trading networks, and congestion control. Besides reproving existing results we
establish new enforceability results for these domains as well.

Key words. pricing, nonconvex games, resource allocation, Nash equilibrium, Lagrangean
duality, Wardrop equilibrium, Walras equilibrium
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1. Introduction. Distributed resource allocation problems can be found in sev-
eral application domains, including traffic and telecommunication networks. Here, a
finite (or infinite) number of players interact strategically, each optimizing their indi-
vidual objective function. The corresponding allocation of resources is then usually
determined by an equilibrium solution of the underlying strategic game. A central
question in all these areas concerns the problem of how to incentivize players in order
to use the (scarce) resources optimally. One key approach in all named application ar-
eas is the concept of pricing resources according to their usage. Every resource comes
with an anonymous price per unit of consumption and defining the ``right"" prices
thus offers the chance of inducing equilibria with optimal or efficient resource usage.
Prominent examples are toll pricing in transportation networks [2, 32, 50], congestion
pricing in telecommunication networks [27, 43], andmarket pricing in economics [4, 5].

In this paper, we will introduce a generic nonconvex model of pricing in resource
allocation games with quasi-linear costs that subsumes several of the above mentioned
applications as a special case. The term quasi-linear refers to the standard assumption
that the overall cost depends linearly on the prices. In the following, we first introduce
the model formally and then give an overview of the main results and related work.
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1224 TOBIAS HARKS AND JULIAN SCHWARZ

1.1. The model. A resource allocation model is compactly described by a tuple
I = (N,E,X,g,\pi ), where N = \{ 1, . . . , n\} describes a nonempty finite set of players
and E = \{ 1, . . . ,m\} denotes a nonempty finite set of resources. The set X :=\times i\in NXi

describes the combined strategy space of the players where Xi \subseteq \BbbR m is the nonempty
strategy space of player i \in N . The vector xi = (xij)j\in E \in Xi is a strategy profile of
player i\in N and the entry xij \in \BbbR can be interpreted as the level of resource usage of
player i for resource j. For every player i\in N , the function gi :\BbbR m \rightarrow \BbbR m, xi \mapsto \rightarrow gi(xi)
is mapping the strategy profile to a vector of the actual resource consumption of
player i. The function g = (gi)i\in N allows one to model player-specific characteristics
such as weights. For both xi and gi negative values are allowed. We call the vector
x= (xi)i\in N a strategy distribution. Given x \in X, we can define the load on resource
j \in E as \ell j(x) :=

\sum 
i\in N gij(xi), where gij is the jth component of gi. We denote the

set of feasible loads, or the load space, by the Minkowski sum \ell (X) :=
\sum 

i\in N gi(Xi)
with gi(Xi) := \{ gi(xi) | xi \in Xi\} .

In the following, we introduce properties of the players' cost functions needed for
our main results. We assume that cost functions are parameterized by an exogenously
given vector u \in \BbbR m and depend on the own strategy vector only. We will consider
cost minimization games, but all results carry over to utility maximization games by
reversing the sign of the objective function. For u\in \BbbR m, the cost of a player i\in N at
the strategy profile xi \in Xi is given by \pi i(u,xi) for some function \pi i : \BbbR m \times Xi \rightarrow \BbbR .
For a model I, a vector u \in \BbbR m leads to a special type of strategic game G(u) =
(N,X, (\pi i(u,xi))i\in N ) which we call decoupled as the players' cost functions solely
depend on their own strategy choice. For G(u), the vector u can be interpreted as
the induced load of an equilibrium x\ast , that is, u = \ell (x\ast ). In this regard, players are
assumed to be load taking in the sense that they assume not being able to influence
the global load vector u by their own strategy xi. We will later also consider models in
which a functional dependency of the strategy choice on the induced load is allowed.

1.2. Pricing in resource allocation games. Given a resource allocation
model I, we are concerned with the problem of defining prices \lambda j \geq 0, j \in E, on
the resources in order to incentivize an efficient usage of the resources. If player i
uses resource j at consumption level gij(xi), she needs to pay \lambda jgij(xi). For any
vector u \in \BbbR m, the quantities \pi i(u,xi) and \lambda \intercal gi(xi) are assumed to be normalized
to represent the same unit (say money in Euro) and we assume that the private cost
functions are quasi-linear: \pi i(u,xi)+\lambda \intercal gi(xi). We write G(u,\lambda ) = (N,X, (\pi i(u,xi)+
\lambda \intercal gi(xi))i\in N ) as the resulting decoupled game augmented with prices \lambda . If the param-
eter u= (uj)j\in E \in \BbbR m represents a targeted load vector, then the task is to find prices
\lambda \in \BbbR m

\geq 0 so that an equilibrium of the game G(u,\lambda ) realizes this load. Note that in
analogue to the load taking property, players are assumed to be price taking, that is,
they assume that their strategy has no influence on the prices \lambda (cf. [4, 27, 36]).

Definition 1.1 (enforceability). Let I be a resource allocation model.
1. A vector u \in \BbbR m is enforceable for I if there is a tuple (x\ast , \lambda \ast ) \in X \times \BbbR m

\geq 0

such that the following two conditions are satisfied:
(a) \ell j(x

\ast ) = uj for all j \in E.
(b) x\ast 

i \in argminxi\in Xi\{ \pi i(u,xi) + (\lambda \ast )\intercal gi(xi)\} for all i\in N.
2. A vector u \in \BbbR m is weakly enforceable for I if there is a tuple (x\ast , \lambda \ast ) that

satisfies (1b) but (1a) is replaced with \ell (x\ast ) \leq u and \lambda \ast satisfies \ell j(x
\ast ) <

uj \Rightarrow \lambda \ast 
j = 0 for all j \in E.

If the model I is clear from the context, we say that u\in \BbbR m is (weakly) enforceable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1225

Condition (1a) requires that x\ast realizes the targeted load \ell (x\ast ) = u while condition
(1b) implements x\ast as a pure Nash equilibrium of the game G(u,\lambda \ast ).

The concept of enforceability was first used by Fleischer, Jain, and Mahdian [15]
in the context of toll pricing in nonatomic congestion games (cf. section 6). The
definition of weakly enforceable load vectors is motivated by applications in market
games (see the example described in section 7.1), for which outcomes are interesting
that do not use the full targeted load at equilibrium and resources with slack have
zero price.

1.3. Overview of results and organization of this paper. In section 2, we
first revisit a duality-based framework based on a specific optimization problem which
we call master problem P(u). We show in Theorem 2.3 that u\in \BbbR m is enforceable by
(x\ast , \lambda \ast ) if and only if (x\ast , \lambda \ast ) yields zero duality gap for the master problem and x\ast 

satisfies \ell (x\ast ) = u. The if-direction of this characterization is well-known; see [3, 36,
43]. The only-if direction roughly corresponds to the first welfare theorem in econom-
ics saying that every pricing equilibrium maximizes social welfare; however, Theorem
2.3 asks for a stronger condition (strong duality) and the fact that an inequality must
be tight leading to a complete characterization of enforceability.

Convexification. While the above result holds for general nonconvex problems,
checking whether or not a nonconvex master problem exhibits zero duality gap may
be difficult. In this regard, in section 3 we introduce a convex relaxation Iconv of I,
where the strategy set and cost function of each player are convexified. In Theorem
3.2 we prove that u is enforceable for I via (x\ast , \lambda \ast ) if and only if (g(x\ast ), \lambda \ast ) enforces
u for the convexified model Iconv and the respective cost functions coincide.

LP-based characterizations of enforceability. We then turn to a special class of
models which allow for an LP-based characterization of enforceability. Theorem 4.2:
If every Lagrangian-dual function value of the master problem can be obtained by
minimizing the Lagrangian over a fixed and finite set of strategy distributions, then u
is enforceable if and only if a corresponding LP has the same optimal objective value
as P(u) and the latter admits optimal solutions x\ast with \ell (x\ast ) = u. We then show in
Corollary 4.5 that this theorem applies to the important special cases of finite and
concave models, that are, models with either finite strategy spaces or strategy spaces
with finitely generated convex hulls and concave costs. The dual of the above LP can
be solved in polynomial time via the ellipsoid method if there is an efficient separation
oracle. Thus, for several interesting game classes, one can efficiently decide whether or
not u is enforceable. The complexity of the separation oracle versus the master prob-
lem P(u) can then be used to establish impossibility results for the enforceability using
complexity-theoretic assumption (like P \not =NP ). This connection has been discovered
first by Roughgarden and Talgam-Cohen [41] in the context of pricing problems for
Walrasian equilibria. Our more general characterization allows one to translate this
approach to other domains (see, for instance, Proposition 7.9 below).

Aggregated games. We introduce in section 5 the class of aggregated games where
cost functions are additive over resources and homogeneous among players---an as-
sumption that is satisfied for most congestion games (cf. [40]). In Theorem 5.4, we
derive a complete characterization of enforceability: u is enforceable if and only if u
is a minimizer of a certain linear function over the convexified load space.

Application in congestion games. With these results and methods at hand, we first
apply the framework to congestion games; see section 6. We consider the problem of
defining tolls in order to enforce certain load vectors as equilibria. For nonatomic net-
work games, we reprove and generalize in Corollary 6.2 an LP-based characterization
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1226 TOBIAS HARKS AND JULIAN SCHWARZ

of enforceable load vectors by Yang and Huang [50], Fleischer, Jain, and Mahdian
[15], Karakostas and Kolliopoulos [26], and Marcotte and Zhu [32].

Then we turn to atomic congestion games where the strategy spaces of players
are integral. For weighted congestion games with nondecreasing homogeneous cost
functions, we apply Theorem 5.4 to show that any load vector that minimizes a strictly
increasing and concave function over the feasible load space is enforceable. To the best
of our knowledge, this is the first enforceability result for weighted congestion games
with arbitrary nondecreasing cost functions. As a further consequence of Theorem
5.4, we show that every u minimizing a strictly increasing function over the feasible
load space can be enforced if the convex hull of the feasible load space is sufficiently
``well-behaved"" (it must be box-integral and decomposable). It turns out that for
a wide class of unweighted congestion games (matroid games, single-source network
games, r-arborescences, matching games, and more) the convexified feasible load space
is indeed well behaved leading to existence results of enforcing tolls (Corollary 6.7).

Then, we study the more challenging case of atomic congestion games with non-
decreasing player-specific cost functions. We prove that for matroid congestion games,
one can obtain an existence result using the integrality of a polymatroid intersection
polytope (Corollary 6.8). To the best of our knowledge, this is the first existence
result of enforcing tolls for congestion games with player-specific cost functions.

Further applications. We finally give in section 7 further applications related to
the existence of prices supporting (Walrasian) equilibria in market games, trading
networks, and congestion control in communication networks. Let us remark that
for most of these application domains, except for trading networks, there already
exist prior results based on formulating an appropriate master problem and using
strong duality in order to generate corresponding prices. However, these approaches
were developed separately (even in different decades) and are tailored to their specific
setting. We give in this paper a unified view on these approaches which---apart from
being more general---provides a more systematic treatment leading to new results for
some of these application areas.

Besides the applications mentioned so far, our results also spurred some new in-
terest in the domain of electricity markets exhibiting nonconvexities due to integrality
conditions or nonconvex physical laws of the transmission network. Gr\"obel et al. [19]
used our framework to devise an algorithm that computes equilibrium prices for such
nonconvex models whenever such prices exist.

1.4. Related work. As outlined in the introduction, the topic of pricing re-
sources concerns different streams of literature and it seems impossible to give a com-
plete overview here. Lagrangian multipliers date back to the 18th century and their
use in terms of shadow prices measuring the change of the optimal value function for
marginal changes of the right-hand sides of constraints is well known---assuming some
constraint qualification conditions; see, for instance, Boyd and Vandenberghe [6].

The first theorem, Theorem 2.3, relies on a decomposition property of the La-
grangian (for separable problems) and the use of Lagrange multipliers for pricing
the resources. This approach is by no means new and has been developed in sev-
eral facets before; see, for instance, Dantzig and Wolfe [12] and Bertsekas and
Gallagher [3]. Dantzig and Wolfe [12] used this principle for their celebrated decompo-
sition framework for solving certain linear (integer) programming problems. Bertsekas
and Gallagher [3], Palomar and Chiang [36], and Scutari et al. [43] described how
the Lagrangian of a general separable optimization problem can be decomposed into

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1227

independent problems. These works already describe the close connection between
strong duality and the existence of enforcing dual prices. In particular, Palomar and
Chiang [36] point out that a priori no convexity conditions are needed for such a
duality based characterization. In this paper, we contribute to this literature by de-
riving (computationally verifiable) conditions under which the master problem admits
solutions with zero duality gap.

One further subtle difference of the above model to our formulation is the explicit
parameterization of the cost functions \pi i(u,xi) with respect to the vector u. This de-
gree of freedom allows one to model dependencies of targeted load vectors with respect
to the intrinsic cost---a prime example appears in nonatomic congestion games, where
the cost function of an agent only depends on the aggregated load vector. Moreover,
this dependency allows one to model externalities with respect to allocations which
are not directly possible in the previous formulations.

Convexification of nonconvex models. The idea of convexifying a nonconvex eco-
nomic model dates back to the late sixties starting with the work of Shapley and
Shubik [46] and Starr [47]. Starr [47] considered a standard Arrow--Debreu exchange
economy without convexity assumptions on production or consumption sets nor on
the preference ordering. The analysis of the existence of competitive market equi-
libria is based on a convexified economy in which the convex hull of production or
consumption sets and the convex hull of the epigraph with respect to the prefer-
ence orderings are considered (see also later related works of Henry [23], Moore,
Whinston, and Wu [33], and Svensson [48]). By separation arguments, this convexified
economy permits a competitive equilibrium (called a synthetic convex equilibrium).
A quasi-equilibrium lives in the original nonconvex model and is defined as a closest
approximation within w.r.t. the synthetic equilibrium. With the Shapley--Folkman
theorem the approximation guarantee can be parameterized in terms of the number
of commodities or number of traders involved. The approach of convexifying a game
in this paper is qualitatively similar to that of Starr with the difference that we use
the separability of cost functions to define a master problem. This way, we obtain a
complete characterization of enforceable vectors u by resorting to Lagrangian duality
theory.

Motivated by applications in cognitive radio systems, Pang and Scutari [37, 38,
44] studied the existence, uniqueness, and computability of Nash equilibria for a class
of nonconvex games. In these works, the idea that any equilibrium must satisfy
first order optimality conditions is developed leading to a concept also termed quasi-
Nash equilibrium as a relaxation of Nash equilibrium. It is shown that any Nash
equilibrium must be a quasi-Nash equilibrium. Sufficient conditions for the existence
of quasi-Nash equilibria are derived using regularization techniques. By exploiting
the single-valuedness of the best response maps, the existence of Nash equilibria for
the original game follows. Very recently and independently, Chao [7] and H\"umbs,
Martin, and Schewe [25] studied pricing problems for nonconvex models in the realm
of electricity markets. Both models are less general than our model, because the
utility functions are assumed to be linear (or concave in [7]) and only the presence
of bounded linear mixed-integer sets leads to nonconvexity issues (see also the earlier
work of Ruiz, Conejo, and Gabriel [42]).

2. Connection to Lagrangean duality in optimization. In the following,
we prove our main results in the realm of cost minimization but it should be clear
that all arguments carry directly over to the maximization case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1228 TOBIAS HARKS AND JULIAN SCHWARZ

For a model I and u\in \BbbR m, we define the following minimization problem that we
call the master problem:

inf
x

\pi (u,x)(P(u))

s.t.: \ell (x)\leq u,(2.1)

x\in X,

where the objective function is defined as \pi (u,x) :=
\sum 

i\in N \pi i(u,xi). The Lagrangian
function for problem P(u) becomes L(x,\lambda ) := \pi (u,x) + \lambda \intercal (\ell (x)  - u), \lambda \in \BbbR m

\geq 0,
and we can define the Lagrangian-dual as \mu : \BbbR m

\geq 0 \rightarrow \BbbR , \mu (\lambda ) = infx\in X L(x,\lambda ) =
infx\in X\{ \pi (u,x)+\lambda \intercal (\ell (x) - u)\} . We assume that \mu (\lambda ) = - \infty if L(x,\lambda ) is not bounded
from below on X. The dual problem is defined as

sup
\lambda \geq 0

\mu (\lambda ).(2.2)

Definition 2.1. Problem P(u) has zero duality gap if there is \lambda \ast \in \BbbR m
\geq 0 and

x\ast \in X with \pi (u,x\ast ) = \mu (\lambda \ast ). In this case, we say that the pair (x\ast , \lambda \ast ) is primal-dual
optimal.

If problem P(u) has zero duality gap, the two solutions \lambda \ast \in \BbbR m
\geq 0 and x\ast \in X

are optimal for their respective problems (2.2) and P(u) and, thus, the appearing
infima/suprema become a minimum/maximum, respectively. For this situation, we
now recall a key structure, namely that minx\in X L(x,\lambda ) decomposes into independent
problems, one for each player. This decomposition step is classical for separable
optimization problems; see Bertsekas and Gallagher [3].

Lemma 2.2. Let \lambda \in \BbbR m
\geq 0. For a problem of type P(u), the following holds true:

(2.3) x\ast \in argmin
x\in X

L(x,\lambda )\leftrightarrow x\ast 
i \in arg min

xi\in Xi

\{ \pi i(u,xi) + \lambda \intercal gi(xi)\} for all i\in N.

We obtain the following result.

Theorem 2.3. The following equivalences hold for I:
1. A vector u \in \BbbR m is enforceable via (x\ast , \lambda \ast ) if and only if (x\ast , \lambda \ast ) has zero

duality gap for P(u) and x\ast satisfies (2.1) with equality.
2. A vector u \in \BbbR m is weakly enforceable via (x\ast , \lambda \ast ) if and only if (x\ast , \lambda \ast ) has

zero duality gap for P(u).

Proof. For the proof we only show 2., since 1. follows from 2. as the additional
condition \ell (x\ast ) = u holds true for both statements of 1.

For 2.: \Leftarrow : Assume there are \lambda \ast \in \BbbR m
\geq 0, x

\ast \in X with \ell (x\ast ) \leq u so that \mu (\lambda \ast ) =
\pi (u,x\ast ). We obtain

\mu (\lambda \ast ) = min
x\in X

\{ \pi (u,x) + (\lambda \ast )\intercal (\ell (x) - u)\} \leq \pi (u,x\ast ) + (\lambda \ast )\intercal (\ell (x\ast ) - u)

\leq \pi (u,x\ast ) = \mu (\lambda \ast ).

Hence, all inequalities must be tight leading to (\lambda \ast )\intercal (\ell (x\ast )  - u) = 0 as claimed. It
remains to prove condition (1b). With x\ast \in argminx\in X L(x,\lambda \ast ) we get

x\ast \in argmin
x\in X

L(x,\lambda \ast ) \leftrightarrow 
Lem. 2.2

x\ast 
i \in arg min

xi\in Xi

\{ \pi i(u,xi) + (\lambda \ast )\intercal gi(xi)\} for all i\in N.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1229

\Rightarrow : Let u \in \BbbR m be weakly enforceable via (x\ast , \lambda \ast ) \in X \times \BbbR m
\geq 0, that is, \ell (x\ast ) \leq 

u, (\lambda \ast )\intercal (\ell (x\ast )  - u) = 0 and x\ast 
i \in argminxi\in Xi\{ \pi i(u,xi) + (\lambda \ast )\intercal gi(xi)\} for all i \in N.

We calculate

\mu (\lambda \ast ) = inf
x\in X

\{ \pi (u,x) + (\lambda \ast )\intercal (\ell (x) - u)\} 

= \pi (u,x\ast ) + (\lambda \ast )\intercal (\ell (x\ast ) - u)(2.4)

= \pi (u,x\ast ),(2.5)

where (2.4) follows from Lemma 2.2 and (2.5) uses the condition (\lambda \ast )\intercal (\ell (x\ast ) - u) = 0.
Hence, strong duality holds for the pair (x\ast , \lambda \ast ).

As mentioned before, the if-direction of the above characterizations are well known
in the literature; see, e.g., [3, 27, 36, 43]. We remark here that the theorem does not
rely on any assumption on the feasible sets Xi nor on the functions \pi i(u,xi), i \in N ,
but only on the duality gap of P(u). In the optimization literature, several classes of
optimization problems are known to have zero duality gap even without convexity of
feasible sets and objective functions; see, for instance, Zheng et al. [51].

In cost minimization games, the feasible sets Xi usually contain some sort of
covering conditions on the resource consumption. For example, in network routing
one needs to send some prescribed amount of flow. In network design problems,
one is interested in installing just enough capacity on edges so as to support certain
connectivity restrictions among given source-destination pairs; see [11, 18, 31]. In this
regard, we introduce a natural candidate set of vectors u for which we know that any
feasible solution satisfying (2.1) does so with equality.

Definition 2.4 (Fleischer, Jain, and Mahdian [15]). A vector u \in \BbbR m is called
minimal w.r.t. \ell (X) if \{ \~u\in \BbbR m : \~u\leq u\} \cap \ell (X) = \{ u\} holds.

The above concept has been introduced by Fleischer, Jain, and Mahdian [15]
in the context of enforcing tolls for nonatomic congestion games. They used the
term minimally feasible. An equivalent characterization of minimality is given in the
following observation.

Remark 2.5. A vector u\in \BbbR m is minimal w.r.t. \ell (X) if and only if there exists a
strictly increasing1 function h :\BbbR m \rightarrow \BbbR such that u\in argmin\~u\in \ell (X) h(\~u).

The if-direction of the statement clearly holds. For the only-if direction, one may
simply define a function h as the sum of strictly increasing functions hj :\BbbR \rightarrow \BbbR , j \in E,
which are for each j \in E, respectively, sufficiently flat until the point uj and then jump
to a value large enough. The above characterization is, for instance, relevant for the
aforementioned network design problems, where the edge installation cost is usually
a strictly increasing cost function. Hence, an optimal vector minimizing the sum
of installation costs (subject to configuration constraints) is minimal in the sense of
Definition 2.4.

Corollary 2.6. Let u \in \BbbR m be minimal w.r.t. \ell (X). Then, the following two
statements are equivalent:

1. u is enforceable via price vector \lambda \ast \in \BbbR m
\geq 0 and x\ast \in X.

2. (x\ast , \lambda \ast ) satisfies \pi (u,x\ast ) = \mu (\lambda \ast ).

The only difference in Theorem 2.3 is that by minimality of u, we get \ell (x) = u for
any feasible solution of P(u); therefore, tightness of inequality (2.1) is already satisfied.

1We call a function h : \BbbR m \rightarrow \BbbR strictly increasing if for all u\ast , \~u \in \BbbR m with u\ast \leq \~u and u\ast 
j < \~uj

for at least one j \in \{ 1, . . . ,m\} the inequality h(u\ast )<h(\~u) holds.
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1230 TOBIAS HARKS AND JULIAN SCHWARZ

3. Convexified games. So far, the strategy spaces Xi, i \in N and the cost
functions \pi i(u, \cdot ), i \in N , of a model I were not restricted and are allowed to be
nonconvex. For example, integrality restrictions in Xi \subseteq \BbbZ m, i \in N , are allowed. In
what follows, we connect I with a related convexified resource allocation model Iconv.
With this convexification, it follows that the duals of the original master problem P(u)
and that of the convexified model are equal. With this insight, the characterization
of enforceable vectors u can (in some cases) be reduced to a more tractable convex
problem. The overall idea of convexifying a (nonconvex) optimization problem is
quite old and belongs to the broad field of global optimization. Let us refer here to
standard textbooks of the late seventies such as that of Horst and Tuy [24, section
4.3] or Shapiro [45, section 5]. For an overview on duality theory of general nonconvex
programs, we refer to the work of Lemar\'echal and Renaud [30].

For Z \subseteq \BbbR m, denote conv(Z) := \cap \{ K \subseteq \BbbR m| Z \subseteq K,K convex\} the convex hull
of Z.

Definition 3.1. For a resource allocation model I = (N,E,X,g,\pi ) and load u,
the associated convexified model Iconv is defined as

Iconv = (N,E,Xconv, gconv, (\phi i)i\in N ),

where Xconv :=\times i\in Nconv(gi(Xi)), g
conv(\=x) := \=x, and for all \~u\in \BbbR m

(3.1)

\phi i(\~u, \cdot ) : conv(gi(Xi))\rightarrow \BbbR \cup \{  - \infty \} 

\=xi \mapsto \rightarrow inf
\alpha ik,xk

i

\Biggl\{ 
m+1\sum 

k=1

\alpha ik\pi i(u,x
k
i )

\bigm| \bigm| \bigm| \bigm| \bigm| 

\sum m+1
k=1 \alpha ikgi(x

k
i ) = \=xi, \alpha i \in \Lambda ,

xk
i \in Xi,1\leq k\leq m+ 1

\Biggr\} 
,

in which \Lambda := \{ \alpha \in \BbbR m+1
\geq 0 | 1\intercal \alpha = 1\} . Note that \phi i is constant in \~u\in \BbbR m.

Theorem 3.2. Let x\ast \in X, \lambda \ast \in \BbbR m
\geq 0. The following statements are equivalent.

1. u is enforceable for I via (x\ast , \lambda \ast ).
2. \phi i, i \in N are real-valued functions, u is enforceable for Iconv via (g(x\ast ), \lambda \ast ),

and \phi (u, g(x\ast )) = \pi (u,x\ast ) holds.
The equivalence remains true by replacing the term ``enforceable"" with ``weakly en-
forceable"".

Proof. We first derive another description of the dual for the master problem
P(u) of I. We get for all \lambda \in \BbbR m

\geq 0

\mu (\lambda ) = inf
xi\in Xi,i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u)

=
\sum 

i\in N

inf
\alpha ik,xk

i

\Biggl\{ 
m+1\sum 

k=1

\alpha ik

\bigl[ 
\pi i(u,x

k
i ) + \lambda \intercal gi(xk

i )
\bigr] \bigm| \bigm| \alpha i \in \Lambda , xk

i \in Xi,
1\leq k\leq m+ 1

\Biggr\} 
 - \lambda \intercal u(3.2)

= inf
\=x\in X\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}

\sum 

i\in N

\phi i(u, \=xi) + \lambda \intercal (\ell (\=x) - u),(3.3)

where (3.2) follows by the linearity of \alpha i \mapsto \rightarrow 
\sum m+1

k=1 \alpha ik[\pi i(u,x
k
i )+\lambda \intercal gi(xk

i )]. Equation

(3.3) follows as
\sum m+1

k=1 \alpha ik\lambda 
\intercal gi(xk

i ) = \lambda \intercal \sum m+1
k=1 \alpha ikgi(x

k
i ) holds.

Now we are ready to prove 1.\leftrightarrow 2..
1.\Rightarrow 2.: By Theorem 2.3, we have \mu (\lambda \ast ) = \pi (u,x\ast ) >  - \infty , and thus, \phi i, i \in N ,

need to be real-valued by the above description of \mu . Subsequently, Iconv belongs
to the resource allocation model defined in section 1.1. The dual \mu conv(\lambda ) of the
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1231

master problem P(u) of Iconv is then given by the expression in (3.3). We get
\pi (u,x\ast ) = \mu (\lambda \ast ) = \mu conv(\lambda \ast ) \leq \phi (u, g(x\ast )), where the last inequality follows from
weak duality. Since \phi (u, g(x))\leq \pi (u,x) for all x \in X, we get \mu conv(\lambda \ast ) = \phi (u, g(x\ast ))
and \phi (u, g(x\ast )) = \pi (u,x\ast ). Thus the result follows by Theorem 2.3 and the fact that
the load of x\ast in I equals the load of g(x\ast ) in Iconv.

2.\Rightarrow 1.: As \phi i, i\in N are real-valued, Iconv belongs to the resource allocation model
defined in section 1.1. Thus, the result follows by Theorem 2.3 together with x\ast \in X,
\pi (u,x\ast ) = \phi (u, g(x\ast )), \mu conv(\lambda \ast ) = \mu (\lambda \ast ), and using that the respective induced loads
of x\ast in I and g(x\ast ) in Iconv coincide.

Remark 3.3. In the case of \phi i being real-valued, it follows that the function
gi(Xi) \rightarrow \BbbR , \=xi \rightarrow infxi\in Xi,gi(xi)=\=xi

\pi i(u,xi) is also real-valued and has \phi i(u, \cdot ) as its
convex envelope which, in turn, implies that \phi i(u, \cdot ) is convex on conv(gi(Xi)); see
Horst and Tuy [24, section 4.3] for the concept of convex envelopes.

4. LP-based characterizations of enforceability. We now discuss a special
class of models I, which allows for an LP-based characterization of enforceability. The
main property needed is a special structure of the Lagrangian-dual function of the
master problem P(u).

Assumption 4.1. For every i \in N , there exist \{ x1
i , . . . , x

ki
i \} \subseteq Xi for some ki \in \BbbN 

such that the dual of P(u) may be represented as follows:

\mu (\lambda ) = min
xi\in \{ x1

i ,...,x
ki
i \} ,i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u).

Clearly, this assumption is fulfilled in the important case of finite models, where the
strategy sets are finite point sets (see Figure 1 left). We will show in Corollary 4.5
that this assumption also holds for concave models, that is, models where the convex
hull of each Xi, i \in N is finitely generated and the functions gi, \pi i(u, \cdot ), i \in N are
concave on conv(Xi) (see Figure 1 right).

For a model I fulfilling Assumption 4.1, we define the following LP in the variable
\alpha = (\alpha i)i\in N :

min
\alpha 

\sum 

i\in N

\pi \intercal 
i \alpha i(LP(u))

s.t.: \ell (\alpha )\leq u,(4.1)

\alpha i \in \Lambda i, i\in N,

conv(Xi)

Xi

conv(Xi)

Xi

Fig. 1. Left is the scenario of Xi consisting of a finite point set. Right, Xi may consist of
connected components (in green) and isolated points but the convex hull is assumed to be finitely
generated and additionally gi, \pi i(u, \cdot ) is assumed to be concave on conv(Xi). (Figure in color online.)
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1232 TOBIAS HARKS AND JULIAN SCHWARZ

where \pi i := (\pi i(u,x
k
i ))k\in \{ 1,...,ki\} , \ell (\alpha ) :=

\sum 
i\in N

\sum 
k\in \{ 1,...,ki\} \alpha ikgi(x

k
i ), and \Lambda i := \{ \alpha i \in 

\BbbR ki

\geq 0| 1\intercal \alpha i = 1\} , i\in N.

Theorem 4.2. Let I be a model for which Assumptions 4.1 holds. Then, the
following statements are equivalent:

1. The vector u is enforceable for I.
2. There exists x\ast \in X with \ell (x\ast ) = u and an optimal solution \alpha \ast of LP(u) such

that \pi (u,x\ast ) =
\sum 

i\in N \pi \intercal 
i \alpha 

\ast 
i .

The equivalence remains true by replacing the term ``enforceable"" with ``weakly en-
forceable"" and replacing the condition \ell (x\ast ) = u in statement 2. by \ell (x\ast )\leq u.

Proof. We first show that the duals of LP(u) and P(u) coincide. We get

\mu LP(\lambda ) := min
\alpha i\in \Lambda i,i\in N

\sum 

i\in N

\pi \intercal 
i \alpha i + \lambda \intercal (\ell (\alpha ) - u)

= min
xi\in \{ x1

i ,...,x
ki
i \} ,i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u)(4.2)

= \mu (\lambda ),(4.3)

where (4.2) follows by the linearity of the objective function w.r.t. \alpha i, i \in N , and
(4.3) by Assumption 4.1.

Let us denote by \pi \ast , (\pi LP)\ast , \mu \ast , (\mu LP)\ast the respective optimal values of P(u),
LP(u), and their duals. By weak duality of P(u) and strong duality of LP(u), we get

\pi \ast \geq \mu \ast = (\mu LP)\ast = (\pi LP)\ast .

Now for 1.\Rightarrow 2., we have \pi \ast = \pi (u,x\ast ) = \mu (\lambda \ast ) = \mu \ast for a tuple (x\ast , \lambda \ast ) \in X \times \BbbR m
\geq 0

with \ell (x\ast ) = u by Theorem 2.3. Thus, \pi \ast = (\pi LP)\ast and there is an optimal
solution \alpha \ast of LP(u) such that \pi (u,x\ast ) =

\sum 
i\in N \pi \intercal 

i \alpha 
\ast 
i . For the converse 2.\Rightarrow 1., we

observe that by \pi (u,x\ast ) =
\sum 

i\in N \pi \intercal 
i \alpha 

\ast 
i = (\mu LP)\ast = \mu \ast , there exists a \lambda \ast \in \BbbR m

\geq 0 with
\pi (u,x\ast ) = \mu \ast = \mu (\lambda \ast ). Therefore, the statement follows by Theorem 2.3 and the
assumption that \ell (x\ast ) = u holds.

In the following, we describe the consequences of Theorem 4.2 for the important
cases of finite and concave models.

Definition 4.3. We call a model I
1. finite if Xi = \{ x1

i , . . . , x
ki
i \} for some ki \in \BbbN and all i\in N ;

2. concave if for all i \in N , there exist \{ x1
i , . . . , x

ki
i \} \subseteq Xi for some ki \in \BbbN such

that conv(Xi) = conv(\{ x1
i , . . . , x

ki
i \} ). Furthermore, the functions gi, i \in N

are concave on conv(Xi) and \pi i(u, \cdot ), i \in N , can be extended to the domain
conv(Xi) so that they are concave on conv(Xi).

Remark 4.4. If for all i \in N , we have Xi = \{ (yi, zi) \in \BbbZ mi \times \BbbR li | Aiyi +Bizi \leq bi\} 
with mi + li = m, with Xi bounded, then conv(Xi) is generated by finitely many
points. To see this, recall that the convex hull of the set Xi is a polytope (cf. Conforti,
Cornu\'ejols, and Zambelli [8]) and thus can be represented as the convex hull of its
vertices. Note that boundedness of Xi can also be relaxed in case that \pi i(u,xi) is
bounded and linear on Xi.

Corollary 4.5. For a finite model I, the following statements are equivalent:
1. The vector u is enforceable for I.
2. LP(u) admits an integral optimal solution \~\alpha for which (4.1) is tight.
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1233

For a concave model I, the following statements are equivalent:
3. The vector u is enforceable for I.
4. LP(u) admits an optimal solution \~\alpha with x\~\alpha 

i :=
\sum ki

j=1 \~\alpha ijx
j
i \in Xi, i \in N , so

that \ell (x\~\alpha ) = u and \pi (u,x\~\alpha ) =
\sum 

i\in N \pi \intercal 
i \~\alpha i.

The equivalences remain true by replacing the term ``enforceable"" with ``weakly en-
forceable"" and removing the condition that (4.1) needs to be tight in statement 2. and
replacing \ell (x\~\alpha ) = u in statement 4. by \ell (x\~\alpha )\leq u.

Proof. Finite models clearly fulfill Assumption 4.1. Thus, the statement for finite
models follows by the equivalence of the assertions Theorem 4.2 (2.) \leftrightarrow Corollary 4.5
(2.). To observe that \Rightarrow holds, note that x\ast 

i = xj
i for some j \in \{ 1, . . . , ki\} . By setting

\~\alpha ij = 1 and \~\alpha il = 0, l \not = j, we may observe that \pi (u,x\ast ) =
\sum 

i\in N \pi \intercal 
i \~\alpha i and \ell (\~\alpha ) = \ell (x\ast )

hold. Thus, Corollary 4.5 (2.) follows as \pi (u,x\ast ) =
\sum 

i\in N \pi \intercal 
i \alpha 

\ast 
i is assumed to be the

optimal value of LP(u). The converse follows immediately.
For concave models, we verify first that Assumption 4.1 is satisfied. We calculate

that

\mu (\lambda ) = inf
xi\in Xi,i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u)

= inf
xi\in conv(Xi),i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u)(4.4)

= inf
xi\in conv(\{ x1

i ,...,x
ki
i \} ),i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u)(4.5)

= inf
xi\in \{ x1

i ,...,x
ki
i \} ,i\in N

\sum 

i\in N

\pi i(u,xi) + \lambda \intercal (\ell (x) - u)(4.6)

Equations (4.4) and (4.6) follow as the function xi \mapsto \rightarrow \pi i(u,xi) + \lambda \intercal gi(xi) is concave
over the set conv(Xi) = conv(\{ x1

i , . . . , x
ki
i \} ). Equation (4.5) follows as conv(Xi) =

conv(\{ x1
i , . . . , x

ki
i \} ). Furthermore, the argumentation shows that all infima are, in

fact, minima as the last expression in (4.6) clearly attains the infimum.
It therefore suffices to show that the assertions Theorem 4.2 (2.) \leftrightarrow Corollary 4.5

(4.) are equivalent for concave models. Clearly, \Leftarrow holds. For the other direction,
we argue as follows: By conv(Xi) = conv(\{ x1

i , . . . , x
ki
i \} ), there exists an \~\alpha i \in \Lambda i with

x\ast 
i =

\sum ki

j=1 \~\alpha ijx
j
i for all i \in N . As \pi i(u, \cdot ), gi, i \in N are concave, we get \pi (u,x\ast ) \geq \sum 

i\in N \pi \intercal 
i \~\alpha i and u = \ell (x\ast ) \geq \ell (\~\alpha ) which implies that \~\alpha is optimal for LP(u) since

\pi (u,x\ast ) =
\sum 

i\in N \pi \intercal 
i \alpha 

\ast 
i is assumed to be the optimal value of LP(u).

4.1. The LP complexity. LP(u) may, in general, involve (exponentially) many
variables \alpha i, i \in N , depending on the number k :=

\sum 
i\in N ki. A common approach is

to dualize LP(u) to yield an LP with less variables at the cost of obtaining (exponen-
tially) many constraints. In the following, we dualize the primal problem in the form
 - max\{  - \sum 

i\in N \pi \intercal 
i \alpha i| \ell (\alpha ) \leq u, \alpha i \in \Lambda i, i \in N\} . The following steps are reminiscent

to the standard dual LP of the Walrasian configuration LP (see, e.g., Bikchandani
and Mamer [4]):

min
\mu ,\lambda 

\sum 

i\in N

\mu i +
\sum 

j\in E

\lambda juj(DP(u))

s.t.:
\sum 

j\in E

gij(x
k
i )\lambda j + \mu i \geq  - \pi ik for all i\in N,k= 1, . . . , ki,

\mu i \in \BbbR , i\in N, \lambda j \geq 0, j \in E.
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1234 TOBIAS HARKS AND JULIAN SCHWARZ

Note that \mu i, i\in N is not sign-constrained as it is the dual variable to
\sum 

k \alpha ik = 1, i\in 
N . Moreover, recall that gij(x

k
i ) \in \BbbR are just parameters in DP(u). The dual has

n+m many variables but exponentially many constraints, but if we have a polynomial
time separation oracle, we can use the ellipsoid method to obtain a polynomial time
algorithm (cf. Groetschel, Lov\'asz, and Schrijver [20]). A standard way to obtain such
an oracle is to assume an efficient demand oracle.

Definition 4.6. For a model I fulfilling Assumption 4.1, a demand oracle for
player i\in N gets as input prices \lambda \in \BbbR m

\geq 0 and outputs

xi(\lambda )\in arg min
xi\in \{ x1

i ,...,x
ki
i \} 

\{ \pi i(u,xi) + \lambda \intercal gi(xi)\} .

We obtain the following result for polynomial time computable demand oracles.
Let us remark here that we assume that there is a succinct representation of the model
I and hence of LP(u).

Theorem 4.7. Let I be a model which fulfills Assumption 4.1. If for all \lambda \in \BbbR m
\geq 0

and i \in N the demand oracle xi(\lambda ) can be computed in polynomial time, then, the
optimal value of LP(u) can be computed in polynomial time.

Proof. In order to use the ellipsoid method, we need to check whether we get a
polynomial time separation oracle for the constraints:

\sum 

j\in E

gij(x
k
i )\lambda j + \mu i \geq  - \pi ik, i\in N, k= 1, . . . , ki.

With the demand oracle we can compute \pi \ast 
i (\lambda ) := \pi i(u,xi(\lambda )) + \lambda \intercal gi(xi(\lambda )). Now,

if \pi \ast 
i (\lambda ) \geq  - \mu i for all i \in N , the current point (\mu ,\lambda ) is feasible. Otherwise, suppose

\pi \ast 
i (\lambda )< - \mu i. As xi(\lambda ) = xk

i holds for some k \in \{ 1, . . . , ki\} , we get

\pi \ast 
i (\lambda ) = \pi i(u,x

k
i ) +

\sum 

j\in E

gij(x
k
i )\lambda j = \pi ik +

\sum 

j\in E

gij(x
k
i )\lambda j < - \mu i,

which represents a violated inequality.

4.2. Consequences and impossibility results. The characterization result
in Theorem 4.2 together with the assumption of a polynomial time demand oracle
can be used to establish nonexistence results based on complexity-theoretic assump-
tions like P \not = NP . If the optimal value of the master problem P(u) (which is also
called the welfare maximization problem in some applications) is NP-hard to compute
but there is a polynomial demand oracle, then, assuming P \not = NP , the guaranteed
(weak) enforceability of u is ruled out since otherwise, we can just compute the op-
timal solution value of LP(u) in polynomial time (by solving the dual DP(u)) which
corresponds to the optimal solution value of the master problem. The connection
between the complexity of the demand problem and that of the master problem has
been first observed by Talgam-Cohen and Roughgarden [41] for the case of pricing
equilibria for Walrasian market settings. Our characterization results allow one to
generalize this approach beyond market equilibria.

5. Aggregated formulations. Now we consider aggregated models I, where
the private cost function of every player is assumed to be quasi-separable over the
resources and of the following form: \pi i(u,xi) =

\sum 
j\in E \pi j(u) \cdot gij(xi), where \pi j :\BbbR m \rightarrow 

\BbbR \geq 0 denotes the per-unit cost on resource j mapping a vector u to the reals. For
ease of presentation, we will assume that the per-unit cost of a resource is strictly
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1235

positive. All results in this section can be extended to the case where the per-unit
cost of resources may be zero; see the discussion at the end of this section.

For an aggregated model, we can assume w.l.o.g. that the resource consumption
functions are the identity, i.e., gi(xi) = xi, i \in N . Indeed, using that the private
cost of a player solely depends on the resource consumption and not on the actual
strategy, for an aggregated model I = (N,E,X,g,\pi ), we can define an isomorphic
model I \prime = (N,E,X \prime , g\prime , \pi \prime ), where the strategy set of a player i is given by X \prime 

i =
gi(Xi), the resource consumption function equals g\prime i(xi) = xi and the private cost is
\pi \prime 
i(u,xi) =

\sum 
j\in E \pi j(u) \cdot xij .

With these observations, it follows that the objective of the master problem P(u)
of an aggregated model I does not depend on the specific decomposition of a strategy
distribution x \in X but only on its induced load \ell (x). The same holds true for
the corresponding convexified model Iconv as the latter also belongs to the class of
aggregated formulations, because \pi i(u,xi) = \phi i(u,xi), i \in N holds, since \pi i(u,xi) is
linear in xi. Note thatX

conv =\times i\in Nconv(Xi) as w.l.o.g. g(x) = x. These insights lead
to the following optimization problems which will allow for a complete characterization
of enforceability.

PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 13

cost of a player solely depend on the resource consumption and not on the actual
strategy, for an aggregated model I = (N,E,X, g, π), we can define an isomorphic
model I ′ = (N,E,X ′, g′, π′) where the strategy set of a player i is given by X ′

i =
gi(Xi), the resource consumption function equals g′i(xi) = xi and the private cost are
π′
i(u, xi) =

∑
j∈E πj(u) · xij .

With these observations, it follows that the objective of the master problem P(u)
of an aggregated model I does not depend on the specific decomposition of a strategy
distribution x ∈ X but only on its induced load ℓ(x). The same holds true for
the corresponding convexified model Iconv as the latter also belongs to the class of
aggregated formulations, because πi(u, xi) = ϕi(u, xi), i ∈ N holds, since πi(u, xi)
is linear in xi. Note that Xconv = ×i∈N conv(Xi) as w.l.o.g. g(x) = x. These
insights lead to the following optimization problems which will allow for a complete
characterization of enforceability.

inf
ũ

π(u)⊺ũ(P̃(u))

s.t.: ũ ≤ u,

ũ ∈ ℓ(X),

inf
ũ

π(u)⊺ũ(P̃conv(u))

s.t.: ũ ≤ u,

ũ ∈ ℓ(Xconv),

where π(u) := (πj(u))j∈E .
For the promised characterization (see Thm. 5.4), we need a lemma relating the

master problem P(u) of I and Iconv with the new problems P̃(u) and P̃conv(u), re-
spectively.

Lemma 5.1. For an aggregated model I, the following assertions are equivalent:
1. (x∗, λ∗) is primal-dual optimal for P(u).
2. (ℓ(x∗), λ∗) is primal-dual optimal for P̃(u).

The analogues statements also hold for Iconv and P̃conv(u).

Proof. As Iconv belongs to the class of aggregated models, it is sufficient to show
the statement for the original model I. To verify the stated equivalence, we first
observe that the following description of π(u, x) holds for any x ∈ X:

π(u, x) =
∑

i∈N

πi(u, xi) =
∑

i∈N

∑

j∈E

πj(u)xij =
∑

j∈E

πj(u)
∑

i∈N

xij = π(u)⊺ℓ(x).

Thus, it suffices to show that the duals coincide. We denote by µ(λ) the dual of P(u),
and by µ̃(λ) the dual of P̃(u), respectively, and observe:

µ(λ) = inf
x∈X

π(u, x) + λ⊺(ℓ(x)− u) = inf
x∈X

π(u)⊺ℓ(x) + λ⊺(ℓ(x)− u)

= inf
ũ∈ℓ(X)

π(u)⊺ũ+ λ⊺(ũ− u) = µ̃(λ).

In the following, we want to better understand which vectors u are enforceable. As an
immediate consequence of Lemma 5.1, we get by Theorem 2.3 that u is enforceable
if and only if P̃(u) has zero duality gap and u is itself an optimal solution for P̃(u).
Optimality of u for P̃(u) is fulfilled if and only if u is minimal w.r.t. ℓ(X) (cf. Defini-
tion 2.4). The only-if direction of the latter statement follows directly by the assump-
tion that π(u) ∈ Rm

>0, whereas the if direction follows because the feasible set of P̃(u)
is given by ℓ(X) ∩ {ũ | ũ ≤ u} = {u} provided u is minimal w.r.t. ℓ(X). Thus, so far
we can deduce that minimality of u is already necessary for enforceability. Similarly,
since Iconv also belongs to the class of aggregated models, the analogous statements
are true for Iconv. By using Theorem 3.2 (connecting I with Iconv) we end up with

where \pi (u) := (\pi j(u))j\in E .
For the promised characterization (see Theorem 5.4), we need a lemma relating

the master problem P(u) of I and Iconv with the new problems (\~P(u)) and (\~Pconv(u)),
respectively.

Lemma 5.1. For an aggregated model I, the following assertions are equivalent:
1. (x\ast , \lambda \ast ) is primal-dual optimal for P(u).
2. (\ell (x\ast ), \lambda \ast ) is primal-dual optimal for \~P(u).

The analogous statements also hold for Iconv and \~Pconv(u).

Proof. As Iconv belongs to the class of aggregated models, it is sufficient to show
the statement for the original model I. To verify the stated equivalence, we first
observe that the following description of \pi (u,x) holds for any x\in X:

\pi (u,x) =
\sum 

i\in N

\pi i(u,xi) =
\sum 

i\in N

\sum 

j\in E

\pi j(u)xij =
\sum 

j\in E

\pi j(u)
\sum 

i\in N

xij = \pi (u)\intercal \ell (x).

Thus, it suffices to show that the duals coincide. We denote by \mu (\lambda ) the dual of P(u),
and by \~\mu (\lambda ) the dual of \~P(u), respectively, and observe

\mu (\lambda ) = inf
x\in X

\pi (u,x) + \lambda \intercal (\ell (x) - u) = inf
x\in X

\pi (u)\intercal \ell (x) + \lambda \intercal (\ell (x) - u)

= inf
\~u\in \ell (X)

\pi (u)\intercal \~u+ \lambda \intercal (\~u - u) = \~\mu (\lambda ).

In the following, we want to better understand which vectors u are enforceable.
As an immediate consequence of Lemma 5.1, we get by Theorem 2.3 that u is
enforceable if and only if \~P(u) has zero duality gap and u is itself an optimal solution
for \~P(u). Optimality of u for \~P(u) is fulfilled if and only if u is minimal w.r.t. \ell (X)
(cf. Definition 2.4). The only-if direction of the latter statement follows directly by
the assumption that \pi (u)\in \BbbR m

>0, whereas the if direction follows because the feasible
set of \~P(u) is given by \ell (X) \cap \{ \~u | \~u \leq u\} = \{ u\} provided u is minimal w.r.t. \ell (X).
Thus, so far we can deduce that minimality of u is already necessary for enforceability.
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1236 TOBIAS HARKS AND JULIAN SCHWARZ

Similarly, since Iconv also belongs to the class of aggregated models, the analogous
statements are true for Iconv. By using Theorem 3.2 (connecting I with Iconv), we
end up with u being enforceable for I if and only if \~Pconv(u) has zero duality gap
and u is minimal w.r.t. \ell (Xconv). This last characterization seems promising as
problem \~Pconv(u) has a linear objective, a convex domain \ell (Xconv) = conv(\ell (X)),
and one linear constraint. Thus, for well-behaved sets conv(\ell (X)), e.g., polyhedral
sets, it follows that problem \~Pconv(u) always has zero duality gap. It turns out that
enforceability of u is in this case equivalent to the property that the minimality of
u w.r.t. \ell (X) carries over to conv(\ell (X)). This latter property leads to the following
refinement of minimal vectors u.

Definition 5.2 (concave and linear minimality).
1. The vector u is called concave-minimal w.r.t. \ell (X) if there exists a strictly

increasing, differentiable, and concave function h : \BbbR m \rightarrow \BbbR such that u \in 
argmin\~u\in \ell (X) h(\~u).

2. The vector u is called linearly-minimal w.r.t. \ell (X) if u is concave-minimal
for a linear function h(\~u) = a\intercal \~u with a\in \BbbR m

>0.

Remark 5.3. Obviously we have the following relationship among the different
notions of minimality of u w.r.t. \ell (X):

linearly-minimal \subseteq concave-minimal \subseteq minimal.

Now we give a complete characterization of enforceability of u for I.

Theorem 5.4. Let u\in \ell (X) be a feasible load vector for the aggregated model I.
Then the following statements are equivalent:

1. u is enforceable for I.
2. u is enforceable for Iconv.
3. \~P(u) has zero duality gap and u is minimal w.r.t. \ell (X).
4. \~Pconv(u) has zero duality gap and u is minimal w.r.t. conv(\ell (X)).
5. u is linearly-minimal w.r.t. \ell (X).
6. u is concave-minimal w.r.t. \ell (X).

Proof. The equivalence 1.\leftrightarrow 2. follows immediately by Theorem 3.2, the fact that
u\in \ell (X) and \phi (u,x) = \pi (u,x)= \pi (u)\intercal \ell (x) holds for any x\in X.

Next, we show 1.\leftrightarrow 3. which also shows 2.\leftrightarrow 4. since Iconv belongs to the class of
aggregated models and \ell (Xconv) = conv(\ell (X)) holds.

1.\leftrightarrow 3.: By Theorem 2.3, a vector u is enforceable if and only if there exists
(x\ast , \lambda \ast )\in X \times \BbbR \geq 0 primal-dual optimal for P(u) of I with \ell (x\ast ) = u. By Lemma 5.1,
this is again equivalent to the existence of \lambda \ast \in \BbbR m

\geq 0 such that (u,\lambda \ast ) is primal-dual

optimal for (\~P(u)). Since \pi (u) \in \BbbR m
>0, the optimality of u for (\~P(u)) is equivalent to

u being minimal w.r.t. \ell (X). Thus the existence of a primal-dual optimal (u,\lambda \ast ) \in 
\ell (X) \times \BbbR \geq 0 for (\~P(u)) is equivalent to (\~P(u)) having zero duality gap and u being
minimal w.r.t. \ell (X). It remains to show 1.\leftrightarrow 5. and 6.\leftrightarrow 5.. For 1.\leftrightarrow 5. we start with
the following observation: By 1.\leftrightarrow 3., u is enforceable for I if and only if there exists
\lambda \ast \in \BbbR m

\geq 0 such that (u,\lambda \ast ) is primal-dual optimal for (\~P(u)), i.e.

min
\~u\in \ell (X)

\pi (u)\intercal \~u+ (\lambda \ast )\intercal (\~u - u) = \pi (u)\intercal u.

By adding to both sides the term (\lambda \ast )\intercal u, this is again equivalent to

min
\~u\in \ell (X)

(\pi (u) + \lambda \ast )\intercal \~u= (\pi (u) + \lambda \ast )\intercal u.(5.1)
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1237

1.\Rightarrow 5.: With the above argumentation, if u is enforceable for I, (5.1) holds for a
\lambda \ast \in \BbbR m

\geq 0 and we can define a := (\pi (u) + \lambda \ast ) \in \BbbR m
>0, since \pi (u) \in \BbbR m

>0. Thus the
so-defined vector a meets the requirements of Definition 5.2.

5.\Rightarrow 1.: Let u be linearly-minimal w.r.t. \ell (X). Then, there exists a vector a\in \BbbR m
>0

which meets the requirements of Definition 5.2. We can assume w.l.o.g. that \pi (u)\leq a
since we can just scale a sufficiently otherwise. By setting \lambda \ast := a - \pi (u) \in \BbbR m

\geq 0 we
obtain a nonnegative vector for which (5.1) holds.

6.\Rightarrow 5.: Let u \in argmin\~u\in \ell (X) h(\~u) be given. With the concavity of h, we get u \in 
argmin\~u\in conv(\ell (X)) h(\~u). As conv(\ell (X)) is obviously convex, for any \~u \in conv(\ell (X)),
the direction vector (u - \~u) belongs to the tangent cone of conv(\ell (X)) at u. With the
differentiability of h, we get as a first order necessary optimality condition

\nabla h(u)(u - \~u)\leq 0 for all \~u\in conv(\ell (X)).

Thus, as h is strictly increasing and concave in \~u, we have a :=\nabla h(u)\in \BbbR m
>0 and the

requirements of Definition 5.2 are fulfilled.
5.\Rightarrow 6.: By Remark 5.3.

From the latter proof follows directly another insight.

Corollary 5.5. If \lambda \ast enforces u for I, then every \~\lambda on the half-ray
\Bigl\{ 
\~\lambda \in \BbbR m

\geq 0 | \~\lambda = d \cdot (\pi (u) + \lambda \ast ) - \pi (u), d\in \BbbR \geq 0

\Bigr\} 

also enforces u for I. In particular, if u is enforceable, then there exists a price-vector
\~\lambda which enforces u and \~\lambda j = 0 holds for at least one j \in E.

We conclude the section with an example showing that not every minimal u is
also linearly-minimal/enforceable even for a two player model with Xi, i= 1,2 equal
to strategy sets with three vectors each.

Proposition 5.6. There is an aggregated model I with minimal load u w.r.t.
\ell (X) that is not enforceable for I and thus not concave-/linearly-minimal w.r.t. \ell (X).

Proof. Consider the model constructed in Figure 2 involving two players N =
\{ 1,2\} with eight resources E = \{ r1, . . . , r8\} . The strategy spaces are given as X1 =
\{ x1, y1, z1\} with x1 = 1\{ r1,r2,r3,r4\} , y1 = 1\{ r2,r4,r6\} , and z1 = 1\{ r1,r3,r7\} , where for a
subset S \subseteq E, 1S denotes the indicator vector of set S in \BbbR m. For player 2, we have
X2 = \{ x2, y2, z2\} with x2 = 1\{ r5,r6,r7,r8\} , y2 = 1\{ r3,r4,r8\} , and z2 = 1\{ r1,r2,r5\} . Now, we
argue that the vector u= 1 is minimal w.r.t. \ell (X). To see this, observe that we have
x1+x2 = u= 1 but for every other strategy combination s\in X, there is at least one r \in 
\{ r1, . . . , r8\} with \ell r(s) = 2. For w := 1/3(x1+y1+z1)+1/3(x2+y2+z2)\in conv(\ell (X))
we get w \leq 1 and wr = 2/3 for all r \in \{ r5, . . . , r8\} . Hence u is not minimal w.r.t.
conv(\ell (X)) and by Theorem 5.4 (4.-6.) neither enforceable nor concave-/linearly-
minimal w.r.t. \ell (X).

Remark 5.7. In the case where the original costs \pi j(u) of some resources are zero,
it follows directly that the properties described in Theorem 5.4 are still sufficient
for enforceability of a load. But, in fact, the properties 3.--6. are not necessary
anymore. That is due to the fact that the minimality of a load with respect to a
zero-cost resource is not necessary anymore for enforceability. To conserve a full
characterization of enforceability, one can relax the definition of minimality used in
Theorem 5.4 by taking into account the cost-vector \pi (u). More precisely one defines
the following.
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1238 TOBIAS HARKS AND JULIAN SCHWARZ

x1

x2

y1

y2

z1

z2

r1

r5 r6 r7 r8

r2

r5 r6 r7 r8

r3

r5 r6 r7 r8

r4

r5 r6 r7 r8

Fig. 2. Representation of the strategy space of the game constructed in the proof of Proposition
5.6.

Definition 5.8 (relaxed minimality).
1. The vector u is called minimal with respect to \ell (X) and \pi (u) if for all \~u \in 

\{ \=u \in \BbbR m : \=u\leq u\} \cap \ell (X), the equalities \~uj = uj for all j \in E(\pi (u)) := \{ e \in E | 
\pi e(u)> 0\} hold.

2. u is called concave-minimal w.r.t. \ell (X) and \pi (u) if there exists a
nondecreasing,2 differentiable, and concave function h : \BbbR m \rightarrow \BbbR such that
u\in argmin\~u\in \ell (X) h(\~u) and

\partial 
\partial uj

h(u) = 0 implies \pi j(u) = 0 for all j \in E.

3. u is called linearly-minimal w.r.t. \ell (X) and \pi (u) if u is concave-minimal for
a linear function h(\~u) = a\intercal \~u with a\in \BbbR m

\geq 0.

Clearly, the respective relaxed definitions coincide with the original definition
in the case of \pi (u) \in \BbbR m

>0, i.e., E(\pi (u)) = E. By using the above relaxed version
of minimality, one gets a full characterization for the general case of arbitrary per
unit-costs \pi (u) \in \BbbR m

\geq 0. The proof is conceptually exactly the same as the proof of
Theorem 5.4.

6. Applications in congestion games. We now demonstrate the applicability
of our framework by deriving new existence results of tolls enforcing certain load
vectors in congestion games. Moreover, we show how several known results in the
literature follow directly.

6.1. Nonatomic congestion games. We first present results for the case that
the strategy spaces of players are convex subsets of \BbbR m

\geq 0. We are given a directed
graph G = (V,E) and a set of populations N := \{ 1, . . . , n\} , where each population
i\in N has a demand di > 0 that has to be routed from a source si \in V to a destination
ti \in V . In the nonatomic model, the demand interval [0, di] represents a continuum
of infinitesimally small agents each acting independently choosing a cost minimal
si,ti path. There are continuous cost functions cij : \BbbR m \rightarrow \BbbR \geq 0, i \in N,j \in E which
may depend on the population identity and also on the aggregate load vector---thus
allowing for modeling nonseparable latency functions. A flow for population i\in N is
a nonnegative vector xi \in \BbbR | E| 

\geq 0 that lives in the flow polytope:

Xi =

\Biggl\{ 
xi \in \BbbR m

\geq 0 | 
\sum 

j\in \delta +(v)

xij  - 
\sum 

j\in \delta  - (v)

xij = \gamma i(v) for all v \in V

\Biggr\} 
,

2We call a function h : \BbbR m \rightarrow \BbbR nondecreasing if for all u\ast , \~u \in \BbbR m with u\ast \leq \~u the inequality
h(u\ast )\leq h(\~u) holds.
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1239

where \delta +(v) and \delta  - (v) are the arcs leaving and entering v, and \gamma i(v) = di if v = si,
\gamma i(v) = - di, if v = ti, and \gamma i(v) = 0, otherwise. We assume that every ti is reachable
in G from si for all i\in N , thus, Xi \not = \emptyset for all i\in N . Given a combined flow x\in X, the
cost of a path P \in \scrP i, where \scrP i denotes the set of simple si, ti paths in G, is defined
as ci,P (\ell (x)) :=

\sum 
j\in P cij(\ell (x)). A Wardrop equilibrium x\ast with path-decomposition

(x\ast 
i,P )i\in N,P\in \scrP i

is defined as follows:

ci,P (\ell (x
\ast ))\leq ci,Q(\ell (x

\ast )) for all P,Q\in \scrP i with x\ast 
i,P > 0.

The interpretation here is that all agents are traveling along shortest paths given the
overall load vector \ell (x\ast ). One can reformulate the Wardrop equilibrium conditions
using load vectors u stating that---given the load vector of a Wardrop equilibrium
---every agent is traveling along a shortest path.

Lemma 6.1 (Dafermos [10]). Let x\ast \in X and fix u := \ell (x\ast ). Then, x\ast is a
Wardrop equilibrium if and only if

x\ast 
i \in arg min

xi\in Xi

\Biggl\{ \sum 

j\in E

cij(u)xij

\Biggr\} 
for all i\in N.

With this characterization, the model fits in our framework and we can apply our
general existence result Theorem 2.3 and its direct consequences for minimal vectors
as stated in Corollary 2.6.

Corollary 6.2 (Yang and Huang [50], Fleischer, Jain, and Mahdian [15],
Karakostas and Kolliopoulos [26], Marcotte and Zhu [32]). Every minimal vector
u is enforceable.

Proof. Define I with N,E,X as described above and \pi i(\~u,xi) :=
\sum 

j\in E cij(\~u)xij ,
\~u \in \BbbR m, and gi(xi) := xi for every i \in N . With Lemma 6.1, the model fits into the
framework and by the linearity of the objective in P(u), the master problem is an
LP and thus satisfies strong duality. With the minimality of u, the result follows by
Corollary 2.6.

Note that the above result is more general than those of [15, 26, 50] as we allow for
arbitrary player-specific cost functions cij , i\in N,j \in E. These previous works assumed
less general heterogeneous cost functions of the form ci,P (x) =

\sum 
j\in P \alpha icj(\ell j(x)) +

\lambda j , where \alpha i > 0 represents a tradeoff parameter weighting the impact of money
versus travel time. Fleischer, Jain, and Mahdian [15, sect. 6] also mention that their
existence result holds for the more general case of nonseparable latency functions.
Only Marcotte and Zhu [32] presented a formulation with general nonseparable latency
functions and even extended the linear programming formulation (using a variational
inequality formulation) to include the more general setting of infinitely many different
user classes.

6.2. Atomic congestion games. Now we turn to atomic (resource-weighted)
congestion games, a generalization of the model of Rosenthal [40]. An atomic conges-
tion game is a strategic game Gcg = (N,X, (costi(x))i\in N ), where the set of strategies
available to player i \in N is given by Xi \subseteq \times j\in E\{ 0, dij\} for dij > 0, i \in N,j \in E.
Note that by assuming xi \in \{ 0,1\} m for all i \in N , that is, dij \in \{ 0,1\} , we obtain the
standard congestion game model of Rosenthal.

The cost functions on resources are given by player-specific functions cij(\ell j(x))\in 
\BbbR , j \in E, i \in N , where \ell (x) =

\sum 
i\in N xi. If the cost functions only depend on the

resource identity, that is, cj(\ell j(x)), j \in E, we speak of homogeneous cost functions.
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1240 TOBIAS HARKS AND JULIAN SCHWARZ

The private cost of a player i \in N for strategy distribution x \in X is defined by
costi(x) := \pi i(\ell (x), xi) for a function \pi i :\BbbR m \times Xi \rightarrow \BbbR defined as

(6.1) \pi i(\ell (x), xi) :=
\sum 

j\in E

cij(\ell j(x))xij .

The definition in (6.1) shows that costi(x) depends not only on the own strategy xi

but also on the aggregated load vector \ell (x) which, in turn, depends on the strategies
of all players. Thus, the class of atomic congestion games does not fit into the model
considered so far. However, also in atomic congestion games, the question of whether
or not the players can be incentivized by prices in order to realize a targeted load
vector u is of particular interest; see, e.g., papers on toll pricing [15, 17, 50]. This
leads to the following definition of enforceability for atomic congestion games.

Definition 6.3 (enforceability for atomic congestion games). Consider an
atomic congestion game Gcg = (N,X, (costi(x))i\in N ). The vector u\in \BbbR m is enforceable
for Gcg if there is a tuple (x\ast , \lambda \ast ) \in X \times \BbbR m

\geq 0 such that the following two conditions
are satisfied:

1. \ell j(x
\ast ) = uj for all j \in E.

2. x\ast 
i \in argminxi\in Xi\{ \pi i(\ell (xi, x

\ast 
 - i), xi) + (\lambda \ast )\intercal xi\} for all i\in N.

As stated previously, condition 1. requires that x\ast realizes the targeted load
\ell (x\ast ) = u while condition 2. implements x\ast as a pure Nash equilibrium of the atomic
congestion game Gcg(\lambda \ast ) := (N,X, (costi(x) + (\lambda \ast )\intercal xi)).

In order to apply the framework to the current setting, we define the model
I := (N,E,X,g,\pi ) with N,X,E,\pi as described above and g(x) = x. In the case
of nondecreasing cost functions cij , j \in E, i \in N , the following lemma shows that
whenever u is enforceable for I via (x\ast , \lambda \ast ), then u is also enforceable for Gcg via
(x\ast , \lambda \ast ).

Lemma 6.4. Assume that cost functions cij , i \in N,j \in E are nondecreasing. Let
x\ast \in X and fix u := \ell (x\ast ). Then x\ast is a pure Nash equilibrium of the atomic congestion
game Gcg(\lambda \ast ) for \lambda \ast \in \BbbR m

\geq 0 if

(6.2) x\ast 
i \in arg min

xi\in Xi

\Biggl\{ \sum 

j\in E

cij(uj)xij + (\lambda \ast )\intercal xi

\Biggr\} 
for all i\in N.

Proof. Let i \in N and xi \in Xi. For xi denote E(xi) := \{ j \in E| xij = dij\} the
support of xi. We calculate

\pi i(\ell (x
\ast ), x\ast 

i ) + (\lambda \ast )\intercal x\ast 
i =

\sum 

j\in E(x\ast 
i )

(cij(uj) + \lambda \ast 
j )x

\ast 
ij

\leq 
\sum 

j\in E(xi)

(cij(uj) + \lambda \ast 
j )xij(6.3)

\leq 
\sum 

j\in E(xi)\setminus E(x\ast 
i )

(cij(uj + dij) + \lambda \ast 
j )xij +

\sum 

j\in E(xi)\cap E(x\ast 
i )

(cij(uj) + \lambda \ast 
j )xij(6.4)

= \pi i(\ell (xi, x
\ast 
 - i), xi) + (\lambda \ast )\intercal xi,

where (6.3) follows from the optimality of x\ast 
i for problem (6.2) and (6.4) follows from

the monotonicity of the cost functions cij , i\in N,j \in E.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

7/
23

 to
 1

32
.2

31
.1

41
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1241

Clearly, the condition (6.2) is only sufficient for enforcing u and not necessary.
Fotakis and Spirakis [17] termed prices \lambda \ast that induce equilibria x\ast with the property
stated in (6.2) cost-balancing .

Homogeneous cost functions. We now assume that cost functions are homoge-
neous, thus, the private cost of player i\in N has the form

\pi i(\ell (x), xi) :=
\sum 

j\in E

cj(\ell j(x))xij .

In order to state enforceability results for u, we can exploit the characterizations
derived in section 5. Again we assume for the sake of simplicity that the per-unit
cost of a resource is positive, i.e., cj(u) > 0, and refer to Remark 5.7 for the more
general case of nonnegative costs. Since the set of feasible load vectors \ell (X) is finite,
conv(\ell (X)) is a polytope and, hence, (\~Pconv(u)) has zero duality gap. Thus, Theorem
5.4 together with Lemma 6.4 yields the following result.

Corollary 6.5. For u\in \BbbR m the following are equivalent:
1. u is concave-minimal w.r.t. \ell (X).
2. u is minimal w.r.t. conv(\ell (X)).

Moreover, u is enforceable for the atomic congestion game Gcg with homogeneous non-
decreasing cost functions by cost-balancing prices if and only if u is concave-minimal
w.r.t. \ell (X).

This enforceability result holds, in particular, for weighted congestion games and
arbitrary positive nondecreasing homogeneous cost functions cj , j \in E and arbitrary
strategy spaces X. This is interesting as weighted congestion games without tolls may
fail to admit pure Nash equilibria if cost functions are neither affine nor exponential
[21]. Another interesting consequence of Corollary 6.5 is the fact that it is sufficient
for enforceability of u to check whether or not the minimality w.r.t. \ell (X) carries over
to conv(\ell (X)). In this regard, Proposition 5.6 implies the first example of a minimal
u w.r.t. \ell (X) that is not enforceable for an asymmetric congestion game with two
players.

Corollary 6.6. Not every minimal u w.r.t. \ell (X) is enforceable for congestion
games, even for games with only two players.

Proof. We use the construction of the proof of Proposition 5.6 to define a con-
gestion game with two players. We assign cost functions cj that are nondecreasing
and satisfy cj(z) = cj(uj) > 0 for all z \geq uj . Then any \lambda \in \BbbR m

\geq 0 enforcing u is also
cost-balancing and thus Corollary 6.5 together with Proposition 5.6 imply the wanted
counterexample.

For several interesting unweighted congestion games (e.g., single-source routing
games), the property of minimality w.r.t. \ell (X) carrying over to conv(\ell (X)) follows
by polyhedral theory arguments. More precisely, the main idea is to check whether
or not the polytope conv(\ell (X)) \cap \{ \~u \in \BbbR m| \~u \leq u\} is integral and has the integer
decomposition property (IDP), that is, every integral load vector contained in the
polytope can be decomposed into a feasible strategy distribution. A powerful tool to
recognize integrality of polyhedra is the notion of total-dual-integrality (TDI) of linear
systems (see Edmonds and Giles [14]). A rational system of the form Az \geq b with
A\in \BbbQ r\times m and b\in \BbbQ r is TDI if for every integral c\in \BbbZ m, the dual of minz\{ c\intercal z| Az \geq b\} 
given by maxz\{ z\intercal b| A\intercal z = c, z \geq 0\} has an integral optimal solution (if the problem
admits a finite optimal solution). It is known that for TDI systems with integral
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1242 TOBIAS HARKS AND JULIAN SCHWARZ

b \in \BbbZ r, the corresponding polyhedron is integral. A system Az \geq b is box-TDI if the
system Az \geq b,w\leq z \leq u is TDI for all integral w,u. We obtain the following result.

Corollary 6.7. Let Gcg be an atomic congestion game with homogeneous, pos-
itive, and nondecreasing cost functions. Let u be minimal w.r.t. \ell (X). If the set
conv(\ell (X)) satisfies IDP and can be described by a box-TDI system Az \geq b with
b\in \BbbZ r, then u is enforceable.

Proof. As argued above it is sufficient to show that the minimality of u w.r.t. \ell (X)
carries over to conv(\ell (X)). By the assumed box-TDI property of the latter set, the
polytope conv(\ell (X))\cap \{ \~u\in \BbbR m| \~u\leq u\} has only integral vertices. Thanks to the IDP
property these vertices can each be decomposed into a feasible strategy distribution.
Therefore, the vertices lie in \ell (X). Thus by the minimality of u w.r.t. \ell (X), it follows
that the vertices need to be equal to u and thus conv(\ell (X)) \cap \{ \~u \in \BbbR m| \~u\leq u\} = \{ u\} 
which shows that u is minimal w.r.t. conv(\ell (X)); cf. Definition 2.4.

In particular, IDP and the above box-TDI property hold for the following un-
weighted congestion games:

1. Network games with a common source and multiple sinks.
2. r-arborescence congestion games.
3. Intersection of strongly base-orderable matroids.
4. Symmetric totally-unimodular games including matching games.
5. Asymmetric matroid games.

We would like to emphasize that Del Pia, Ferris, and Michini [39] and Kleer and
Sch\"afer [28, 29] were the first to use the concept of polyhedral theory, especially the
notions of TDI and unimodularity in the context of congestion games, e.g., for effi-
ciently computing pure Nash equilibria [28, 29, 39] and bounding the price of stability
[28, 29]. To the best of our knowledge, the only previous results for the existence of
enforcing tolls are due to Fotakis and Spirakis [17] and Fotakis, Karakostas, and
Kolliopoulos [16]. Fotakis and Spirakis [17] proved that any acyclic integral flow in
an s,t digraph can be enforced. It is not hard to see that the notion of minimality of
u w.r.t. \ell (X) exactly corresponds to the set of acyclic integral s,t flows. Paccagnan
et al. [35] investigated the price of anarchy of tolls for unweighted congestion games.

Matroid congestion games with player-specific cost functions. Now we turn to
matroid congestion games with player-specific, nondecreasing, and separable cost
functions cij(\ell j(x)), i \in N,j \in E. It will be convenient to represent the set of inci-
dence vectors of the bases of a player-specific matroid via an integral base polyhedron
\scrB fi \subseteq \{ 0,1\} m of an integral polymatroid , that is,

Xi =\scrB fi =
\Bigl\{ 
xi \in \{ 0,1\} m | xi(U)\leq fi(U) for all U \subseteq E, xi(E) = fi(E)

\Bigr\} 
,

where, for a set U \subseteq E, we write xi(U) =
\sum 

j\in U xij . The integral set function

fi : 2
E \rightarrow \BbbZ is assumed to be submodular, monotone, and normalized. An integral

set function f : 2E \rightarrow \BbbZ is submodular if f(U) + f(V ) \geq f(U \cup V ) + f(U \cap V ) for all
U,V \in 2E ; f is monotone if f(U) \leq f(V ) for all U \subseteq V \subseteq E; and f is normalized if
f(\emptyset ) = 0.

Corollary 6.8. Consider a matroid congestion game with nondecreasing player-
specific and separable cost functions. Any u\in \ell (X) is enforceable.

Proof. With Lemma 6.4 and Theorem 2.3, it suffices to show that the master
problem P(u) of I = (N,E,X,g,\pi ) with \pi i(\~u,xi) :=

\sum 
j\in E cij(\~u)xij , \~u \in \BbbR m satisfies
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1243

strong duality and admits an optimal solution x\ast with \ell (x\ast ) = u. The latter follows
directly as Xi, i \in N , are matroid bases and with u \in \ell (X) any x \in X with \ell (x) \leq 
u already fulfills \ell (x) = u. Concerning the strong duality of P(u), the fractional
relaxation of P(u) is an LP, and therefore, it suffices to show that the relaxation admits
integral optimal solutions. To see this, we first lift all integral base polyhedra \scrB fi \subset \BbbZ m

to the higher dimensional space \=\scrB fi \subset \BbbZ n\cdot m by introducing n copies Ei, i \in N , of the
elements E leading to \=E := \.\cup i\in NEi with Ei = \{ ei1, . . . eim\} , i \in N . The domain of
the integral polymatroid function fi is extended to \=E as follows: \=fi(S) := fi(Ei \cap 
S) for all S \subseteq \=E. This way \=fi(S) remains an integral polymatroid rank function on
the lifted space \BbbZ n\cdot m. Note that for \=xi \in \=\scrB fi , we have \=xi \in \BbbZ n\cdot m and with fi(\{ \emptyset \} ) = 0,
we get \=xij = 0 for all j \in \=E \setminus Ei. By this construction, we get xi \in \scrB fi \leftrightarrow \=xi \in \=\scrB fi .
Now we define the Minkowski sum \=\scrB 1 :=

\sum 
i\in N

\=\scrB fi \subset \BbbZ n\cdot m, which is again an integral
polymatroid base polyhedron. By this construction we can represent all collections of
integral base vectors by a single integral polymatroid base polyhedron.

It remains to also handle the capacity constraint \ell (x) \leq u (note that this is not
a box constraint for polymatroid \=\scrB 1). For S \subseteq \=E, we define SE := \{ j \in E| \exists i \in 
N with eij \in S\} as the union of those original element indices (in E) for which S
contains at least one copy. With this definition, we define a second polymatroid
\=\scrB 2 := \{ \=x \in \BbbZ n\cdot m| \=x(S) \leq h(S) for all S \subseteq \=E, \=x( \=E) = h( \=E)\} , where for S \subseteq \=E
h(S) :=

\sum 
j\in SE

uj . One can easily verify that h is an integral polymatroid function.

Now observe that for the sets \{ ej1, . . . , ejn\} , j \in E, we exactly get the capacity con-
straint \=x(\{ ej1, . . . , ejn\} )\leq uj , j \in E. Altogether, with the feasibility of u, the fractional
relaxation of problem P(u) can be reduced to the problem of minimizing the linear
objective

\sum 
i\in N

\sum 
j\in E cij(u)\=xij over the fractional relaxation of the intersection of \=\scrB 1

and \=\scrB 2. By the fundamental result of Edmonds [13, Thm. (35)], this fractional relax-
ation is an integral polytope. Note that there are strongly polynomial time algorithms
for the polymatroid intersection problem (see Cunningham and Frank [9]).

To the best of our knowledge, this is the first existence result of enforceable tolls
in congestion games with player-specific cost functions.

7. Further applications. We now discuss further applications mentioned in
the introduction and show that they all fit into the framework.

7.1. Market equilibria. Suppose there are items E = \{ 1, . . . ,m\} for sale and
there is a set N = \{ 1, . . . , n\} of buyers interested in buying some of the items. For
every subset S \subseteq E of items, player i experiences value wi(S) \in \BbbR giving rise to a
valuation function wi : 2

m \rightarrow \BbbR , i\in N, where 2m represents the set of all subsets of E.
The market manager wants to determine a price vector \lambda \ast \in \BbbR m

\geq 0 for selling the items
such that every player receives a subset S\ast 

i \subseteq E maximizing her quasi-linear utility
S\ast 
i \in argmaxSi\subseteq E\{ wi(Si) - 

\sum 
j\in Si

\lambda \ast 
j\} and unsold items have prices equal zero. The

tuple ((S\ast 
i )i\in N , \lambda \ast ) is known as a Walrasian or competitive equilibrium.

To show that this example fits into our framework, we construct the following
resource allocation model I = (N,E,X,g,\pi ). Let Xi = \{ 0,1\} m, i \in N , be the set of
incidence vectors of the set E. The cost function \pi i :=  - vi is given by the negative
valuation function vi : \BbbR m \times Xi \rightarrow \BbbR , (\~u,xi) \mapsto \rightarrow wi(E(xi)) for all \~u \in \BbbR m, where
E(xi) := \{ j \in E : xij = 1\} . The resource consumption function are linear gi(xi) =
xi, i\in N . We get the following characterization.

Lemma 7.1. The tuple ((S\ast 
i )i\in N , \lambda \ast ) is a Walrasian equilibrium if and only if the

tuple (x\ast , \lambda \ast ) with E(x\ast 
i ) = S\ast 

i , i\in N , weakly enforces 1\in \BbbR m for I.
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1244 TOBIAS HARKS AND JULIAN SCHWARZ

Proof. Note that the condition \ell (x\ast )\leq 1 ensures that every item goes to at most
one player. Thus, we get

x\ast 
i \in arg max

xi\in Xi

\{ vi(1, xi) - (\lambda \ast )\intercal xi\} 

\leftrightarrow x\ast 
i \in arg max

xi\in Xi

\{ wi(E(xi)) - (\lambda \ast )\intercal xi\} (by definition of vi)

\leftrightarrow S\ast 
i \in arg max

Si\subseteq E

\Biggl\{ 
wi(Si) - 

\sum 

j\in Si

\lambda \ast 
j

\Biggr\} 
.

With this analogy to I we can analyze problem P(u) for u= 1 (for the maximiza-
tion variant) in more detail:

22 TOBIAS HARKS AND JULIAN SCHWARZ

With this analogy to I we can analyze Problem P(u) for u = 1 (for the maximization
variant) in more detail:

max
x

∑

i∈N

vi(1, xi)(P(1))

s.t.: ℓ(x) ≤ 1,

xi ∈ {0, 1}m, i ∈ N,

max
α

∑

i∈N

v⊺i αi(LP(1))

s.t.: ℓ(α) ≤ 1,

αi ∈ Λi, i ∈ N,

where vi := (vi(1, xi))xi∈Xi
and ℓ(α) :=

∑
i∈N

∑
k∈{1,...,ki} αikx

k
i .

Clearly, Xi, i ∈ N consists of finitely many (ki = 2m) points and thus we can apply
Corollary 4.5 to obtain a full characterization of the existence of Walras market equi-
libria (which leads precisely to the characterization of Bikchandani and Mamer [4]).

Corollary 7.2 (Bikchandani and Mamer [4]). Competitive Walrasian equilib-
ria exist if and only if LP(1) admits integral optimal solutions.

Multiple items and valuations with externalities. Now we introduce a multi-item
model that allows for several items of the same type and some degree of externalities
of allocations. There is a finite set E = {1, . . . ,m} of item types where each item
is available multiple times. The strategy xi ∈ Xi ⊆ Rm describes the amount of
each item that player i ∈ N buys. Suppose that valuations of players are additive
over items, that is, vi(ℓ(x), xi) :=

∑
j∈E vij(ℓj(x))xij , where vij : R → R≥0 is the

nonnegative value player i gets from receiving an item of type j assuming that item j
is sold ℓj(x) many times. A pair (x∗, λ∗) is a Walrasian equilibrium, if for all i ∈ N , we
have x∗

i ∈ argmaxxi∈Xi
{vi(ℓ(xi, x

∗
−i), xi)− (λ∗)⊺xi}. This formulation is not directly

comparable to the one before. On the one hand side, additivity of valuations over
items is less general. On the other hand, several items of the same type can be sold
and we allow for a functional dependency of the valuations with respect to the load
ℓj(x). Such dependency may be interesting for situations, where the value vij(·) of
receiving item type j drops as other players also receive the same type – this is referred
to as a setting with negative externalities.

Assumption 7.3. The function vij : R → R≥0 is nonincreasing for all i ∈ N, j ∈ E.

Under this assumption, we want to determine in the following whether or not a load
u may be realized by a Walrasian equilibrium (x∗, λ∗), that is, ℓ(x∗) = u. It follows
by the same argumentation as for atomic congestion games (Lemma 6.4) that it is
sufficient to show that u ∈ Rm is enforceable for I = (N,E,X, g, π) with gi(xi) = xi

and πi(ũ, xi) := −vi(ũ, xi) for all ũ ∈ Rm. This insight allows us to deduce the
following statements:

Corollary 7.4. Any u ∈ ℓ(X) can be realized by a Walrasian equilibrium if
1. Xi ⊆ {0, 1}m corresponds to the independence set of a matroid for any i ∈ N .
2. Xi ⊆ {0, 1}m corresponds to the set of bases of a matroid for any i ∈ N .
3. The valuations are homogeneous vij = vj , i ∈ N, j ∈ E.

For the first case, the same construction as used in the proof of Corollary 6.8 adjusted
to independence sets instead of bases shows that P(u) admits strong duality. Thus, the
statement follows by Theorem 2.3 since the nonnegativity of the valuations vij(u) ≥
0 and the fact that Xi, i ∈ N are independence sets of matroids imply that P(u)
also admits optimal solutions x∗ ∈ X with ℓ(x∗) = u. The second case is a direct
consequence of Corollary 6.8. Regarding the third case, one may immediately verify
that any (x∗, λ∗) with λ∗ = (vj(u))j∈E and ℓ(x∗) = u is primal-dual optimal for P(u),
and thus, the statement follows again by Theorem 2.3.

where vi := (vi(1, xi))xi\in Xi
and \ell (\alpha ) :=

\sum 
i\in N

\sum 
k\in \{ 1,...,ki\} \alpha ikx

k
i .

Clearly, Xi, i\in N consists of finitely many (ki = 2m) points and thus we can apply
Corollary 4.5 to obtain a full characterization of the existence of Walrasian equilibria
(which leads precisely to the characterization of Bikchandani and Mamer [4]).

Corollary 7.2 (Bikchandani and Mamer [4]). Walrasian equilibria exist if and
only if LP(1) admits integral optimal solutions.

Multiple items and valuations with externalities. Now we introduce a multi-item
model that allows for several items of the same type and some degree of externalities
of allocations. There is a finite set E = \{ 1, . . . ,m\} of item types where each item
is available multiple times. The strategy xi \in Xi \subseteq \BbbR m describes the amount of
each item that player i \in N buys. Suppose that valuations of players are additive
over items, that is, vi(\ell (x), xi) :=

\sum 
j\in E vij(\ell j(x))xij , where vij : \BbbR \rightarrow \BbbR \geq 0 is the

nonnegative value player i gets from receiving an item of type j assuming that item j
is sold \ell j(x) many times. A pair (x\ast , \lambda \ast ) is a Walrasian equilibrium if for all i\in N , we
have x\ast 

i \in argmaxxi\in Xi
\{ vi(\ell (xi, x

\ast 
 - i), xi) - (\lambda \ast )\intercal xi\} . This formulation is not directly

comparable to the one before. On the one hand, additivity of valuations over items
is less general. On the other hand, several items of the same type can be sold and
we allow for a functional dependency of the valuations with respect to the load \ell j(x).
Such dependency may be interesting for situations, where the value vij(\cdot ) of receiving
item type j drops as other players also receive the same type---this is referred to as a
setting with negative externalities.

Assumption 7.3. The function vij :\BbbR \rightarrow \BbbR \geq 0 is nonincreasing for all i\in N,j \in E.

Under this assumption, we want to determine in the following whether or not
a load u may be realized by a Walrasian equilibrium (x\ast , \lambda \ast ), that is, \ell (x\ast ) = u.
It follows by the same argumentation as for atomic congestion games (Lemma 6.4)
that it is sufficient to show that u \in \BbbR m is enforceable for I = (N,E,X,g,\pi ) with
gi(xi) = xi and \pi i(\~u,xi) := - vi(\~u,xi) for all \~u\in \BbbR m. This insight allows us to deduce
the following statements.
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PRICING IN NONCONVEX RESOURCE ALLOCATION GAMES 1245

Corollary 7.4. Any u\in \ell (X) can be realized by a Walrasian equilibrium if
1. Xi \subseteq \{ 0,1\} m corresponds to the independence set of a matroid for any i\in N ;
2. Xi \subseteq \{ 0,1\} m corresponds to the set of bases of a matroid for any i\in N ;
3. the valuations are homogeneous vij = vj , i\in N,j \in E.

For the first case, the same construction as used in the proof of Corollary 6.8
adjusted to independence sets instead of bases shows that P(u) admits strong duality.
Thus, the statement follows by Theorem 2.3 since the nonnegativity of the valuations
vij(u) \geq 0 and the fact that Xi, i \in N are independence sets of matroids imply that
P(u) also admits optimal solutions x\ast \in X with \ell (x\ast ) = u. The second case is a direct
consequence of Corollary 6.8. Regarding the third case, one may immediately verify
that any (x\ast , \lambda \ast ) with \lambda \ast = (vj(u))j\in E and \ell (x\ast ) = u is primal-dual optimal for P(u),
and thus, the statement follows again by Theorem 2.3.

7.2. Trading networks. A bilateral trading network is represented by a di-
rected multigraph G= (N,E), where N is the set of vertices and E = \{ e1, . . . , em\} the
set of edges. Each vertex corresponds to a player and each edge e= (s, b) represents
a bilateral trade that can take place between s and b. For each e = (s, b) \in E, the
source vertex s corresponds to the seller and the sink vertex b corresponds to the
buyer in the trade. For i\in N , let \delta +(i) and \delta  - (i) be the set of outgoing and incoming
edges of vertex i \in N and as usual we denote the set of all edges incident to i by
\delta (i) = \delta +(i) \cup \delta  - (i). For a set of edge prices \lambda e \geq 0, e \in E, we can associate with
each possible trade e = (s, b) \in E a price \lambda e \geq 0 with the understanding that the
buyer b pays \lambda e to the seller s. Given prices \lambda \in \BbbR m

\geq 0, an outcome of the game is
a set of realized trades S \subseteq E. The quasi-linear utility of a player i \in N is defined
as the value gained from trades plus the monetary income from sells minus the cost
of bought trades. The value of realized trades is given by a function \=wi : 2

\delta (i) \rightarrow \BbbR .
We can extend \=wi to 2m by taking wi : 2

m \rightarrow \BbbR , S \mapsto \rightarrow \=wi(S \cap \delta (i)). The overall utility
for S \subseteq E and \lambda \in \BbbR m

\geq 0 is defined as wi(S) +
\sum 

e\in \delta +(i)\cap S \lambda e  - 
\sum 

e\in \delta  - (i)\cap S \lambda e. A price
vector \lambda \ast \in \BbbR m

\geq 0 and a set of realized trades S\ast \subseteq E with

S\ast \in argmax
S\subseteq E

\Biggl\{ 
wi(S) +

\sum 

e\in \delta +(i)\cap S

\lambda \ast 
e  - 

\sum 

e\in \delta  - (i)\cap S

\lambda \ast 
e

\Biggr\} 
for all i\in N

constitutes a competitive equilibrium. The main difference to the Walrasian equilib-
rium model is that players can simultaneously act as buyers and sellers in different
trades. We will cast this problem in the framework by constructing an equivalent
model I = (N,E,X,g,\pi ). For each player i, we have a vector xi \in \{  - 1,0,1\} m with
the understanding that xie = - 1 if e \in \delta +(i) and trade e is realized as seller, xie = 1
if e \in \delta  - (i) and trade e is realized as buyer and xie = 0 if e /\in \delta (i) or e is not real-
ized. We thus define Xi = \{ xi \in \{  - 1,0,1\} m| xie = 0, e /\in \delta (i)\} , i \in N . To complete
the description of I, we assume that the resource consumption functions are given as
gi(xi) = xi for all i \in N and we define the cost function \pi i :=  - vi by the negative
utility function of player i\in N on Xi for all \~u\in \BbbR m:

(7.1) vi(\~u,xi) :=wi(\{ e\in \delta (i) : | xie| = 1\} ).
With this construction, we have a one-to-one correspondence between xi \in Xi and sets
Si \subseteq \delta (i) via E(xi) := \{ e\in \delta (i) : | xie| = 1\} . We obtain the following characterizations
on the existence of competitive equilibria using the notation E(x) :=\cup i\in NE(xi).

Lemma 7.5. Consider a bilateral trading network. Let I be the associated resource
allocation model and x\ast \in X. Then, the following statements are equivalent:
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1. (E(x\ast ), \lambda \ast ) \in E \times \BbbR m
\geq 0 is a competitive equilibrium for the bilateral trading

network.
2. The vector u= 0 is enforceable via (x\ast , \lambda \ast )\in X \times \BbbR m

\geq 0 for I.

The proof is similar to that of Lemma 7.1. With this characterization, we can
again analyze problem P(u) for u= 0 (for the maximization variant) in more detail:
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7.2. Trading networks. A bilateral trading network is represented by a di-
rected multigraph G = (N,E), where N is the set of vertices and E = {e1, . . . , em}
the set of edges. Each vertex corresponds to a player and each edge e = (s, b) repre-
sents a bilateral trade that can take place between s and b. For each e = (s, b) ∈ E,
the source vertex s corresponds to the seller and the sink vertex b corresponds to the
buyer in the trade. For i ∈ N , let δ+(i) and δ−(i) be the set of outgoing and incoming
edges of vertex i ∈ N and as usual we denote the set of all edges incident to i by
δ(i) = δ+(i) ∪ δ−(i). For a set of edge prices λe ≥ 0, e ∈ E, we can associate with
each possible trade e = (s, b) ∈ E a price λe ≥ 0 with the understanding that the
buyer b pays λe to the seller s. Given prices λ ∈ Rm

≥0, an outcome of the game is a
set of realized trades S ⊆ E. The quasi-linear utility of a player i ∈ N is defined as
the value gained from trades plus the monetary income from sells minus the cost of
bought trades. The value of realized trades is given by a function w̄i : 2

δ(i) → R. We
can extend w̄i to 2m by taking wi : 2m → R, S 7→ w̄i(S ∩ δ(i)). The overall utility
for S ⊆ E and λ ∈ Rm

≥0 is defined as wi(S) +
∑

e∈δ+(i)∩S λe −
∑

e∈δ−(i)∩S λe. A price
vector λ∗ ∈ Rm

≥0 and a set of realized trades S∗ ⊆ E with

S∗ ∈ argmax
S⊆E

{
wi(S) +

∑

e∈δ+(i)∩S

λ∗
e −

∑

e∈δ−(i)∩S

λ∗
e

}
for all i ∈ N

constitutes a competitive equilibrium. The main difference to the Walrasian mar-
ket equilibrium model is that players can simultaneously act as buyers and sellers in
different trades. We will cast this problem in the framework by constructing an equiv-
alent model I = (N,E,X, g, π). For each player i, we have a vector xi ∈ {−1, 0, 1}m
with the understanding that xie = −1, if e ∈ δ+(i) and trade e is realized as seller,
xie = 1, if e ∈ δ−(i) and trade e is realized as buyer and xie = 0, if e /∈ δ(i) or e is
not realized. We thus define Xi = {xi ∈ {−1, 0, 1}m|xie = 0, e /∈ δ(i)}, i ∈ N . To
complete the description of I, we assume that the resource consumption functions are
given as gi(xi) = xi for all i ∈ N and we define the cost function πi := −vi by the
negative utility function of player i ∈ N on Xi for all ũ ∈ Rm:

(7.1) vi(ũ, xi) := wi({e ∈ δ(i) : |xie| = 1}).

With this construction, we have a one-to-one correspondence between xi ∈ Xi and sets
Si ⊆ δ(i) via E(xi) := {e ∈ δ(i) : |xie| = 1}. We obtain the following characteriza-
tions on the existence of competitive equilibria using the notation E(x) := ∪i∈NE(xi).

Lemma 7.5. Consider a bilateral trading network. Let I be the associated resource
allocation model and x∗ ∈ X. Then, the following statements are equivalent.

1. (E(x∗), λ∗) ∈ E × Rm
≥0 is a competitive equilibrium for the bilateral trading

network.
2. The vector u = 0 is enforceable via (x∗, λ∗) ∈ X × Rm

≥0 for I.

The proof is similar to that of Lemma 7.1. With this characterization, we can
again analyze Problem P(u) for u = 0 (for the maximization variant) in more detail:

max
x

∑

i∈N

vi(0, xi)(P(0))

s.t.: ℓ(x) ≤ 0,

xi ∈ Xi, i ∈ N,

max
α

∑

i∈N

v⊺i αi(LP(0))

s.t.: ℓ(α) ≤ 0,

αi ∈ Λi, i ∈ N,

where vi := (vi(0, xi))xi∈Xi
and ℓ(α) :=

∑
i∈N

∑
k∈{1,...,ki} αikx

k
i .where vi := (vi(0, xi))xi\in Xi

and \ell (\alpha ) :=
\sum 

i\in N

\sum 
k\in \{ 1,...,ki\} \alpha ikx

k
i .

Note that every Xi, i \in N consists of finitely many points (ki := 3| \delta (i)| ). Thus,
Corollary 4.5 gives a complete characterization of competitive equilibria.

Corollary 7.6. Competitive equilibria for bilateral trading networks exist if and
only if LP(0) admits integral optimal solutions \alpha with \ell (\alpha ) = 0.

7.3. Congestion control in communication networks. We consider a model
of Kelly, Maulloo, and Tan [27] in the domain of TCP-based congestion control. We
are given a directed capacitated graph G= (V,E,u), where V are the nodes, E with
| E| = m is the edge set, and u \in \BbbR m

\geq 0 denote the edge capacities. There is a set
of players N = \{ 1, . . . , n\} and every i \in N is associated with an end-to-end pair
(si, ti) \in V \times V and a bandwidth utility function Ui : \BbbR \geq 0 \rightarrow \BbbR \geq 0 measuring the
received benefit from sending net flow from si to ti. As in congestion games, a flow
for i\in N is a nonnegative vector xi \in \BbbR | E| 

\geq 0 that lives in the flow polyhedron:

Xi =

\Biggl\{ 
xi \in \BbbR m

\geq 0| 
\sum 

j\in \delta +(v)

xij  - 
\sum 

j\in \delta  - (v)

xij = 0 for all v \in V \setminus \{ si, ti\} 
\Biggr\} 
,

where \delta +(v) and \delta  - (v) are the arcs leaving and entering v. We assume Xi \not = \emptyset 
for all i \in N and we denote the net flow reaching ti by val(xi) :=

\sum 
j\in \delta +(si)

xij  - \sum 
j\in \delta  - (si)

xij , i \in N . The goal in price-based congestion control is to determine edge
prices \lambda \ast 

j , j \in E so that a strategy distribution x\ast is induced as an equilibrium re-
specting the network capacities u and, hence, avoiding congestion. Assuming that
resource consumption is linear, that is, gi(xi) = xi, i \in N , the equilibrium condition
amounts to x\ast 

i \in argmaxxi\in Xi
\{ Ui(val(xi)) - (\lambda \ast )\intercal xi\} for all i\in N . By considering the

corresponding model I = (N,E,X,g,\pi ) with \pi i(\~u,xi) := - Ui(val(xi)) for all \~u \in \BbbR m,
we obtain the following result for concave bandwidth utility functions.

Theorem 7.7 (Kelly, Maulloo, and Tan [27]). For concave bandwidth utility
functions Ui, i\in N , every capacity vector u\in \BbbR m

\geq 0 is weakly enforceable.

Proof. With the concavity of Ui, i \in N , problem P(u) is a convex optimization
problem over a polytope and hence satisfies Slater's constraint qualification conditions
for strong duality. Thus, Theorem 2.3 implies the result.

Let us turn to models, where the flow polyhedron Xi is intersected with \BbbZ m
\geq 0.

Most of the previous works in the area of congestion control assume either that there
is only a single path per (si, ti) pair or as in Kelly, Maulloo, and Tan [27], the flow is
allowed to be fractional. Allowing a fully fractional distribution of the flow, however,
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is not possible in some applications---the notion of data packets as indivisible units
seems more realistic. The issue of completely fractional routing versus integrality
requirements has been explicitly addressed by Orda, Rom, and Shimkin [34], Harks
and Klimm [22] and Wang et al. [49]. We obtain the following result for single source
flow models.

Corollary 7.8. Let the bandwidth utility functions Ui, i \in N be nondecreasing,
identical, and linear and assume that all players share the same source si = s, i \in N .
Then, for integral routing models with strategy spaces X \prime 

i =Xi \cap \BbbZ m
\geq 0, every capacity

vector u\in \BbbZ m
\geq 0 is weakly enforceable.

Proof. For problem P(u), we can w.l.o.g. change the instance by introducing a
supersink and connect all ti's to the sink with large enough integral capacity. This
way, we obtain an ordinary s-t max-flow problem for which the LP-formulation LP(u)
is known to be integral. Thus, the result follows from Corollary 4.5.

While the above result seems to require restrictive assumptions (linear identical
bandwidth utilities and a common source), we show in the following that already for
two source-sink pairs with identical linear capped bandwidth utilities, enforceability
is not guaranteed, unless P =NP . A capped linear function f : \BbbR \rightarrow \BbbR has the form
f(x) = ax for x\leq xmax and f(x) = axmax for x\geq xmax.

Proposition 7.9. Unless P = NP , there is an instance with only two players
with different source sink pairs (si, ti), i \in \{ 1,2\} , and nondecreasing, identical, and
linear capped bandwidth utilities Ui, i\in \{ 1,2\} , for which there is a vector u\in \BbbZ m

\geq 0 that
is not weakly enforceable.

Proof. Having capped bandwidth utilities implies that there are only finitely many
strategies per player. Thus, we can use the LP complexity result of Theorem 4.7: It re-
mains to prove that the master problem P(u) is NP-hard and that the demand problem
is polynomial time solvable. The demand problem becomes maxxi\in Xi

\{ val(xi) - \lambda \intercal xi\} ,
which is just a max flow problem. For the master problem, it is not hard to see that
we can reduce from the two-directed disjoint path problem. For an instance of two-
directed disjoint path, we associate the given two source-sink pairs naturally with
those of two players \{ 1,2\} and assume u= 1 and U(val(xi)) = val(xi), i \in \{ 1,2\} with
a cap at any value larger equal 1. This way, due to the integrality of the flows, there is
a solution to the disjoint path problem if and only if the objective value of the master
problem is 2.

8. Conclusions. We introduced a generic resource allocation problem and stud-
ied the question of enforceability of certain load vectors u via (anonymous) pricing
of resources. We derived a characterization of enforceable load vectors via studying
the duality gap of an associated optimization problem. We further derived a charac-
terization of enforceability connecting a general nonconvex setting with a convexified
model. Understanding duality gaps of optimization problems is an active research
area; see, for instance, the progress on duality for nonlinear mixed-integer program-
ming (cf. Baes, Oertel, and Weismantel [1]). Thus, our general characterization yields
the opportunity to translate progress in this field to economic situations mentioned
in the applications.

The characterization of enforceable load vectors for models, where the players'
private cost function depends on the induced load of all players, deserves further
research. While the characterizations based on the u-parameterized form of cost func-
tions did partially carry over to specialized congestion games (see section 6.2), for a
more general formulation new approaches are required.
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