
ar
X

iv
:2

11
2.

07
43

5v
1

 [
cs

.G
T

]
 1

4
D

ec
 2

02
1

Multi-Leader Congestion Games with an Adversary

Tobias Harks1, Mona Henle2, Max Klimm3, Jannik Matuschke4, Anja Schedel1

1 University of Augsburg, 86159 Augsburg, Germany
2 University of Applied Sciences Augsburg, 86161 Augsburg, Germany

3 TU Berlin, 10623 Berlin, Germany
4 KU Leuven, 3000 Leuven, Belgium

tobias.harks@math.uni-augsburg.de, mona.henle@hs-augsburg.de, klimm@math.tu-berlin.de,
jannik.matuschke@kuleuven.be, anja.schedel@math.uni-augsburg.de

Abstract

We study a multi-leader single-follower congestion game
where multiple users (leaders) choose one resource out of a
set of resources and, after observing the realized loads, an
adversary (single-follower) attacks the resources with maxi-
mum loads, causing additional costs for the leaders. For the
resulting strategic game among the leaders, we show that pure
Nash equilibria may fail to exist and therefore, we consider
approximate equilibria instead. As our first main result, we
show that the existence of a K-approximate equilibrium can
always be guaranteed, where K ≈ 1.1974 is the unique so-
lution of a cubic polynomial equation. To this end, we give a
polynomial time combinatorial algorithm which computes a
K-approximate equilibrium. The factor K is tight, meaning
that there is an instance that does not admit an α-approximate
equilibrium for any α < K. Thus α = K is the smallest pos-
sible value of α such that the existence of an α-approximate
equilibrium can be guaranteed for any instance of the consid-
ered game. Secondly, we focus on approximate equilibria of
a given fixed instance. We show how to compute efficiently a
best approximate equilibrium, that is, with smallest possible
α among all α-approximate equilibria of the given instance.

1 Introduction

Hierarchical leader-follower games have received con-
siderable attention in the artificial intelligence com-
munity, especially, because several real-world applica-
tions related to the protection of vulnerable systems
can be modeled within this framework. Applications
include the security domain (Kiekintveld et al. 2009;
Marchesi, Castiglioni, and Gatti 2019; Sinha et al. 2018;
Gan, Elkind, and Wooldridge 2018), where a leader aims at
protecting a set of valuable targets and moves first by ap-
plying a defender strategy such as controls or fortification of
resources. The adversary acts as a follower and, after observ-
ing the leader’s defensive strategy, chooses a strategy incur-
ring maximum damage. The leader anticipates the follow-
ers’ strategy. Thus, the computation of the defender strategy
takes the follower reaction into account.

While most works in this literature consider the case
of a single leader, the case of multiple leaders playing a
simultaneous-move strategic game subject to one or more
followers has received much less attention and only very few
results with respect to the existence and computational com-
plexity of equilibria are known. Note that the multi-leader

case applies to several scenarios, for example, in the anal-
ysis of deregulated electricity markets in which some of
the large energy producers are the leaders and the smaller
energy producers and independent system operator are the
followers; see Leyffer and Munson (2010) and references
therein. Also in the security domain related to transport and
communication networks, there are usually multiple leaders
that compete over the network resources subject to a fol-
lowers’ response; see Kulkarni and Shanbhag (2015). One
well-known obstacle in the analysis of multi-leader games—
even in the realm of continuous formulations with convex
action spaces for the leaders and single-valuedness of the
followers’ response—is the inherent non-convexity of the
best-response correspondence that results in non-existence
of pure Nash equilibria; see Kulkarni and Shanbhag (2015).

In this paper, we consider a class of multi-leader single-
follower games on discrete strategy spaces that are moti-
vated by security applications with congestion effects. Con-
sider a standard singleton congestion game where multiple
users (leaders) choose one resource out of a set of resources.
After observing the realized loads, an adversary (single-
follower) attacks the resources with maximum loads, caus-
ing additional disutilities for the users on the attacked re-
sources. The adversary may be thought of as either being a
malicious player attacking the resources in order to maxi-
mize the caused damage or as controls by a central authority
to counter tax or fare evasion; see Correa et al. (2017) for a
related mathematical model of fare evasion without any con-
gestion or load balancing effects. In both applications it is
sensible to assume that the adversary has limited resources,
modeled by a fixed budget for his interventions that can be
distributed freely on the resources, and that he acts ratio-
nally, investing the budget only on resources with maximum
load. The users anticipate this strategy. From their perspec-
tive, every maximum-load resource is equally likely under
attack, that is, they assume the budget to be spent evenly
among the resources with maximum load (this can be in-
terpreted as a randomized strategy of the adversary choos-
ing the uniform distribution over maximum-load resources).
For the users, the additional cost term corresponds to the ex-
pected additional damage cost due to an attack.

This fundamental model has, to the best of our knowl-
edge, not been analyzed before and we investigate the exis-
tence and computation of (approximate) pure Nash equilib-

1

http://arxiv.org/abs/2112.07435v1

ria of this multi-leader single-follower game.

1.1 Our Results and Proof Techniques

We first observe that pure Nash equilibria do not always ex-
ist in the introduced game, not even for linear congestion
costs. This motivates the analysis of approximate pure Nash
equilibria, where any unilateral deviation cannot improve
the cost of the deviating leader by more than a factor α, for
some α ≥ 1. (Note that the adversary is still assumed to
act optimally.) We analyze existence and efficient computa-
tion of approximate equilibria for the introduced game with
linear congestion costs.

As our first main result, we show that α = K ≈ 1.1974
is the smallest possible value of α such that the existence
of an α-approximate pure Nash equilibrium can always be
guaranteed (K is the unique solution of some cubic polyno-
mial equation). For the proof, we give an efficient algorithm
which computes a K-approximate equilibrium. The basic
approach is to start with an empty game, and add the players
one after another, always placing them on a best-response
resource. If the addition of a new player makes some of the
already added players “unhappy”, meaning that there is a
unilateral deviation decreasing their cost by more than a fac-
tor α, we let the unhappy players deviate one after another
until all players are happy again, that is, an α-approximate
pure Nash equilibrium is reached for the subset of players
already added. Only then the next player is added. By choos-
ing the possible deviations carefully, we can show that this
procedure terminates after a polynomial number of steps for
α = K , showing existence of K-approximate pure Nash
equilibria and giving an efficient way of computing them.
A similar approach has been used before to compute exact
pure Nash equilibria in the context of weighted congestion
games (Milchtaich 1996; Ackermann, Röglin, and Vöcking
2009), but we are not aware of any results regarding approx-
imate equilibria applying this technique. We furthermore
provide an instance which does not admit an α-approximate
pure Nash equilibrium for any α < K . This shows that
α = K is tight in the sense that it is the smallest possible
value such that the existence of an α-approximate equilib-
rium can be guaranteed for all instances of the introduced
game.

However, for a single given instance, better approximate
equilibria might exist, that is, there may be α-approximate
equilibria with α < K . We show how to compute efficiently,
for a given instance, a best approximate equilibrium, that is,
an α-approximate equilibrium for the smallest value of α for
which such an equilibrium exists. Note that this in particular
implies that we can decide efficiently whether a given in-
stance admits an exact pure Nash equilibrium, and in case
of existence, we can also compute such an equilibrium. Our
algorithm is based on a careful analysis of the structure of
optimal approximate equilibria, which allows us to enumer-
ate a polynomially-sized set of possible resource-load con-
figurations, from which an optimal approximate equilibrium
can then be found using a simple linear program.

1.2 Related Work

The game that we analyze in this paper constitutes a Stack-
elberg game with multiple leaders and a single follower. The
leaders’ game is a singleton congestion game and we assume
symmetric strategies, meaning that all leaders have the same
strategy space. Stackelberg games with an underlying con-
gestion game for (a subset of) the players have received con-
siderable attention in the literature. Castiglioni et al. (2019)
and Marchesi, Castiglioni, and Gatti (2019) consider a game
with a single leader and multiple followers where all play-
ers participate in a congestion game (but the leader’s con-
gestion cost functions may be different from the follow-
ers’). Depending on the structure of strategy spaces and
congestion cost functions, they analyze the computational
complexity of computing exact equilibria. In particular, they
find that efficient algorithms are only possible for singleton
strategy spaces (unless P = NP), and derive such algo-
rithms for singleton strategy spaces where either all follow-
ers have the same strategies (Castiglioni et al. 2019), or the
followers can be divided in “classes” having the same strate-
gies (Marchesi, Castiglioni, and Gatti 2019).

There are several works analyzing hierarchical sit-
uations with a subsequent nonatomic network routing
game, where a set of infinitesimally small players chooses
paths in a network, and each player aims to minimize the
(load-dependent) length of her chosen path leading to a
Wardrop equilibrium (Wardrop 1952). For works analyzing
situations where a single leader determines capacities
or prices in order to reduce the total congestion (plus
investments for the case of capacities) of the Wardrop
equilibria in a subsequent network routing game, we refer
to Marcotte (1986); Gairing, Harks, and Klimm (2017) for
setting capacities, and Beckmann, McGuire, and Winsten
(1956) and Yang and Huang (2004) for setting prices.
Labbé, Marcotte, and Savard (1998) study a model where
a single leader sets prices in order to maximize her profit
in a subsequent network routing game (but without con-
gestion effects). Harks, Schröder, and Vermeulen (2019)
and Correa et al. (2018) consider a game where multiple
leaders set prices in order to maximize their own profits
achieved in a network routing game. The prices that the
leaders are allowed to choose are upper-bounded by price
caps (leader-specific in Correa et al. (2018), equal for all
leaders in Harks, Schröder, and Vermeulen (2019)), and the
two papers consider the (three-level) problem of a system
designer who chooses the cap(s) in order to minimize
total congestion. Finally, models where multiple leaders
choose prices and capacities to maximize their individual
profits achieved in a network routing game are for exam-
ple analyzed by Johari, Weintraub, and Van Roy (2010),
Liu, Chen, and Huang (2011), and Harks and Schedel
(2019).

Regarding the computation of approximate equilibria in
atomic congestion games, we refer to Caragiannis et al.
(2011, 2015). Finally, we also mention here congestion
games with an adversarial structure such as agent or resource
failures, see Bilò, Moscardelli, and Vinci (2018); Meir et al.
(2012); Li et al. (2017) or games with malicious play-
ers (Babaioff, Kleinberg, and Papadimitriou 2009).

2

load profile deviation (of some player using r to r′, notation r → r′) resulting cost improvement

(5, 0, 0) r1 → r2 5ar1 +B = 6 > 2 = ar2
(4, 1, 0) r1 → r2 4ar1 +B = 6 > 4 = 2ar2
(3, 2, 0) r1 → r3 3ar1 +B = 6 > 5 = ar3
(3, 1, 1) r3 → r2 ar3 = 5 > 4 = 2ar2
(2, 2, 1) r2 → r1 2ar2 +B/2 = 7 > 6 = 3ar1 +B

Table 1: Improving deviations for the candidate profiles for the game in Example 1.

2 The Model

For an integer k ∈ Z≥0, let [k] := {1, . . . , k}. Let N = [n]
be a finite set of players (leaders) and R = {r1, . . . , rm}
be a finite set of m resources. For each player i, the set of
strategies available to player i is Xi = R. We call x =
(x1, . . . , xn) with xi ∈ Xi for all i ∈ N a strategy profile,
and X = X1 × · · · ×Xn the strategy space.

We use standard game theory notation; for a strategy pro-
file x ∈ X , we write x = (xi, x−i) meaning that xi is
the strategy that player i plays in x and x−i is the par-
tial strategy of all players except i. Every strategy profile
x = (x1, . . . , xn) ∈ X induces a load or congestion on the
resources given by ℓr(x) := |{i ∈ N | xi = r}|, r ∈ R.
We are further given linear cost functions arℓr(x), r ∈ R
with nonnegative coefficients ar ≥ 0. In classical conges-
tion games, the private cost of player i under strategy profile
x ∈ X is defined as πi(x) = axi

ℓxi
(x). Now we model

the actions of an adversary (follower) after the leaders have
chosen their joint strategy profile x ∈ X . Formally, given
x ∈ X the adversary solves

max
∑

r∈R

ℓr(x)κr s.t.:
∑

r∈R

κr ≤ B, κ ≥ 0. (LP)

The linear program (LP) has the interpretation that the ad-
versary has a budget of B > 0 that can be freely distributed
among the resources. For each unit of budget spent on a re-
source, the adversary receives a utility equal to the number
of players on that resource since any interaction with a leader
on a resource is equally beneficial for the follower. Thus,
the adversary strategically selects those resources that are
used by the maximum number of players in order to max-
imize the caused damage. It is not hard to see that these
are precisely the optimal solutions to (LP). While (LP)
may have multiple optimal solutions, a reasonable selec-
tion among the optimal solutions is the following, where we
use the notation M(x) := maxr∈R{ℓr(x)} together with
M−1(x) := argmaxr∈R{ℓr(x)}:

κ∗
r(x) =

{

B
|M−1(x)| , if r ∈M−1(x),

0, else.
(1)

Clearly, κ∗
r(x) is an optimal solution to (LP) and has the

intuitive interpretation that, assuming that every maximum-
load resource is equally likely to be under attack by the ad-
versary, from the perspective of the players it represents the
expected additional resource cost due to an attack.

The multi-leader congestion game with an adversary can
be defined as the game G = (N,X,B, π) in strategic form,

where
πi(x) := axi

ℓxi
(x) + κ∗

xi
(x). (2)

We furthermore define

cr(x) := arℓr(x) + κ∗
r(x) (3)

for all r ∈ R (this is useful in case we do not want to con-
sider a specific player using r).

A strategy profile x ∈ X is called a pure Nash equilibrium
(PNE) of G if for all i ∈ N :

πi(x) ≤ πi(yi, x−i) for all yi ∈ Xi.

Let us give an example of a multi-leader congestion game
with an adversary showing that pure Nash equilibria need
not exist in general.

Example 1. Consider the game with m = 3 resources, n =
5 players, budget B = 6 and resource cost coefficients

ar1 = 0, ar2 = 2, and ar3 = 5.

We proceed to show that this game has no pure Nash equi-
librium. To this end, we show for each strategy profile x that
there exists a player who can decrease her cost by a unilat-
eral deviation from x. Since the players are symmetric, it suf-
fices to analyze all “load” profiles (ℓr1(x), ℓr2(x), ℓr3(x)),
that is, all vectors (ℓr1 , ℓr2 , ℓr3) ∈ N

3 with ℓr1 +ℓr2 +ℓr3 =
n = 5. Since ar1 < ar2 < ar3 , the only candidates for a
PNE are those strategy profiles x with ℓr1(x) ≥ ℓr2(x) ≥
ℓr3(x). Thus, it suffices to show that there is no PNE among
the five load profiles (5, 0, 0), (4, 1, 0), (3, 2, 0), (3, 1, 1) and
(2, 2, 1). Table 1 provides an improving deviation for each of
these candidate profiles, showing that the game has no PNE.

This example motivates the analysis of approximate equi-
libria defined as follows.

Definition 2. A strategy profile x ∈ X is an α-approximate
pure Nash equilibrium (α-PNE) of G for some α ≥ 1, if for
all i ∈ N :

πi(x) ≤ α · πi(yi, x−i) for all yi ∈ Xi.

A unilateral deviation which decreases the cost of the devi-
ating player more than a factor α is called an α-improving
deviation, or an α-improving move.

For α = 1, we obtain the standard PNE. For general
α ≥ 1, the interpretation is that no player can improve
her cost by a unilateral deviation gaining more than a fac-
tor α. We remark that, while one can similarly define ad-
ditively approximate equilibria, no existence guarantees can
be given for such equilibria for any additive constant due to
the scale-invariance of the games studied in this article (see
Appendix F for details).

3

Algorithm 1: Computation of an α-approximate PNE.

Input: Player set N = [n], resource set R = {r1, . . . , rm}, resource cost coefficients 0 ≤ a1 ≤ · · · ≤ am, and α ≥ 1.
Output: α-approximate pure Nash equilibrium x.

1 x← (0, 0, . . . , 0);
2 for k = 1, 2, . . . , n do
3 k′ ← min{i ∈ [m] : cri(x−k, ri) ≤ cr(x−k, r) ∀r ∈ R};
4 xk ← rk′ ;
5 while Wα(x) 6= ∅ do
6 Rα(x)← {r ∈ R : xi = r for some i ∈ Wα(x)};
7 i− ← max{j ∈ [m] : rj ∈ Rα(x) and crj (x) ≥ cr(x) ∀r ∈ Rα(x)};
8 i← some player with xi = ri− ;

9 i+ ← min{j ∈ [m] : crj (x−i, rj) ≤ cr(x−i, r) ∀r ∈ R};
10 xi ← ri+ ;

3 Computing K-approximate PNE

In this section, we analyze approximate PNE of the intro-
duced multi-leader congestion games with an adversary. As
Example 1 shows, existence of (exact) PNE can not be guar-
anteed for these games. We show that α = K ≈ 1.1974 is
the smallest possible α such that the existence of an α-PNE
can be guaranteed for any instance, where

K :=
1

6

(

1 +
3

√

109− 6
√
330 +

3

√

109 + 6
√
330

)

(4)

is the unique solution of the equation −x3 + x2/2 + 1 = 0.
To this end, we provide Algorithm 1 which efficiently com-
putes a K-approximate PNE (see Theorem 3). This result is
complemented by an instance where no α-approximate PNE
with α < K exists (see Theorem 6). As an easy consequence
of the proof, we also get that exact PNE are guaranteed to
exist if n ≤ 4 or m ≤ 2 (see Corollary 5).

3.1 An Algorithm for Computing α-Approximate
Equilibria

For computing an α-approximate PNE, we use the follow-
ing basic approach. Starting with an empty game, we add the
players one after another to the game, where a newly added
player is always placed on a best response. If the addition of
a new player makes some of the earlier added players “un-
happy”, meaning that they now have an α-improving move,
we let unhappy players deviate one after another to a best
response until all players are happy again. Only then we add
the next player, etc.

Note that this approach has been used before to com-
pute exact PNE, for example for player-specific costs or
weighted congestion games on matroids (Milchtaich 1996;
Ackermann, Röglin, and Vöcking 2009). However, to the
best of our knowledge, it has not been utilized in the con-
text of approximate PNE. We believe that this technique will
be useful for showing existence and computing approximate
equilibria beyond the class of games that we analyze here.

For the formal description of our algorithm see Algo-
rithm 1. We assume that the resource set R = {r1, . . . , rm}
is ordered such that a1 ≤ · · · ≤ am (where aj := arj).
Since we need to consider strategy profiles for subsets of

the players, let us extend the notion of a strategy profile to
the set of vectors x ∈ (R ∪ {0})n, where xi = 0 means
that player i has not yet been added to the game. Given such
a vector x 6= 0, the cost cxi

(x) incurred to player i with
xi 6= 0 is defined as the cost which is experienced by her in
the game where only the players j with xj 6= 0 are present.
Now define, for a strategy profile x ∈ (R ∪ {0})n, the fol-
lowing set of players Wα(x) who are “unhappy” with their
strategy, meaning that they have an α-improving move:

Wα(x) := {i ∈ N : xi 6= 0 and cxi
(x) > α · cr(x−i, r)

for a resource r ∈ R}.
In each iteration of the for-loop in line 2 of Algorithm 1,
a new player k is added to the game. We place k on a
best response (with respect to the strategies of the players
{1, . . . , k − 1} already added to the game). If there is more
than one best response, we choose the one with smallest in-
dex, see lines 3 and 4. After having added player k, it may
be the case that some players are not happy with their strat-
egy, that is, Wα(x) 6= ∅, where x denotes the current strat-
egy profile. In the while-loop starting in line 5, we itera-
tively choose a player who is “maximally unhappy”, mean-
ing that she experiences maximum cost among all unhappy
players, and let her deviate to a best response, until all play-
ers in {1, . . . , k} are happy. If there is more than one re-
source with maximum cost among the resources used by un-
happy players, we choose a player on the maximum cost
resource with largest index, and if there is more than one
best response, we choose the one with smallest index (see
lines 7, 8 and 9). After this, we return to line 2 where the
next player k + 1 is added to the game.

It is clear that if Algorithm 1 terminates, the computed
strategy profile is an α-PNE. In the next subsection, we show
that Algorithm 1 terminates forα = K . Note that the special
choices made by the algorithm in case of non-unique best
responses or non-unique most expensive resources, together
with the fact that resources are ordered such that a1 ≤ a2 ≤
· · · ≤ am, ensure that the loads are always decreasing along
the resources, that is, ℓr1(x) ≥ ℓr2(x) ≥ · · · ≥ ℓrm(x)
always holds during the algorithm.

Appendix A contains an illustrating example for the ap-
plication of Algorithm 1.

4

3.2 Termination of Algorithm 1 for α = K

In this subsection, we show that Algorithm 1 terminates for
α = K , and thus computes a K-approximate PNE. We also
show that the running time of Algorithm 1 can be bounded
by min{O(n2m), O(nm2)}.

We need to prove that the while-loop terminates in each
iteration k ∈ {1, . . . , n} of the for-loop. For k = 1, the
while-loop obviously terminates since we only have one
player, and she is placed on the best response r1. Therefore,
WK(x) = WK(r1, 0, . . . , 0) = ∅ and the while-loop ter-
minates without changing anything. For k = 2, the second
player is placed on r1 if 2a1+B ≤ a2+B/2, and is placed
on r2 otherwise. It is easy to see that in both cases, both play-
ers are happy and the while-loop immediately terminates.

For iteration k ≥ 3, it may be the case that some players
change their strategy during the while-loop. We show induc-
tively that the while-loop also terminates in iteration k ≥ 3.
Note that since the while-loop terminated in iteration k − 1,
the players in {1, . . . , k − 1} were happy before the next
player k was added to the game. That is, with respect to
the profile x directly before player k is added, no player
i ∈ {1, . . . , k − 1} has a K-improving deviation, i.e., an
alternative resource r with cxi

(x) > K · cr(x−i, r). But
it may be the case that some players are unhappy after the
addition of player k. Additionally, the deviation of one of
these players may cause further players to be unhappy. For
the termination of the while-loop, we need to show that after
finitely many deviations, all players in {1, . . . , k} are happy
again. We thus need to keep track of the set of unhappy play-
ers during the course of the while-loop. To this end, we de-
rive necessary properties for players who either become un-
happy due to the addition of player k, or due to the subse-
quent deviation of some other player during the while-loop
(see Lemma B.5 and Lemma B.6 in the appendix). The de-
rived properties are mostly in terms of loads, e.g., conditions
on the load of an unhappy player i’s current strategy xi, and
on the load of a corresponding K-improving deviation r.
Using these two lemmas, as well as some further structural
insights (see Appendix B), we then proceed by a careful case
distinction regarding the sequence of deviating players in it-
eration k, and show that this sequence terminates in all cases.
Let us now briefly sketch the mentioned case distinction (the
complete proof of Theorem 3 can be found in Appendix C).

Let x and x′ denote the profiles directly before and af-
ter the new player k is added. If all players are happy with
their strategy in x′, the statement follows; thus assume that
player i changes from x′

i = xi to r in the while-loop. Using
Lemma B.5, we know that there are three possible cases re-
garding the load of player k’s current strategy x′

k. Namely,
the load ℓx′

k
(x) of x′

k (before player k is added) needs to

be in {M − 2,M − 1,M}, where M := M(x) denotes
the maximum load with respect to x. We then analyze all
three cases. As it turns out, the cases ℓx′

k
(x) = M − 2 and

ℓx′

k
(x) = M − 1 are very simple, whereas ℓx′

k
(x) = M is

more complicated and requires further subcases. However,
by repeated use of the lemmas contained in Appendix B,
in particular Lemma B.6, we can show termination of the
while-loop also for this case.

r1 r2 r3

2.

1.

3.

Figure 1: A cycling sequence of deviations which might oc-
cur during the while-loop of Algorithm 1: First, some player
moves from r3 to r2, then another player changes her strat-
egy from r1 to r3, and finally, a player using r2 moves to r1.

At the end of this proof sketch, we want to briefly indicate
the role of the constant K . To this end, consider Figure 1
which shows a simplified version of a subcase occurring in
the proof. In particular, the displayed sequence of deviations
might occur during the while-loop of the algorithm, and this
implies that the following three inequalities need to hold:

a3 > α · 2a2
3a1 +B > α · a3

2a2 ·+B/2 > α · (3a1 +B)

From this, one can derive (1+α2/2−α3)B > (α3−1)3a1,
which yields a contradiction for α = K and any a1 > 0, as
the left-hand side is equal to 0, whereas the right-hand side is
non-negative. Thus, cycles of this form cannot occur during
the algorithm.

For a complete proof of Theorem 3, see Appendix C.

Theorem 3. For α = K , where K = 1/6 · (1 +
3
√

109− 6
√
330+

3
√

109 + 6
√
330) ≈ 1.1974 is the unique

solution of the equation −x3 + x2/2 + 1 = 0, Algorithm 1
computes a K-approximate PNE.

The proof of Theorem 3 also yields the following upper
bound on the running time of Algorithm 1.

Corollary 4. For α = K , the running time of Algorithm 1
can be bounded by min{O(n2m), O(nm2)}.
Proof. First note that each iteration of the while-loop can
be implemented in O(m) (note that although the cost of de-
viating to a resource r is in general player-specific, since
it depends on the load of the deviating player’s current re-
source, it can in fact only be different for two players if one
of these players is using a resource with maximum load, and
the other not, cf. Lemma B.1). Furthermore, in the kth it-
eration of the for-loop, we can bound the number of itera-
tions of the while-loop either by O(m), or alternatively by
2k since no player moves more than twice, see the proof of
Theorem 3 in Appendix C. Since there are n iterations of the
for-loop, we get min{O(n2), O(nm)} as an upper bound
for the total number of iterations of the while-loop and this
yields the given bound on the total running time.

The proof of Theorem 3 also reveals that n ≥ 5 and
m ≥ 3 need to hold for any instance which has no exact
PNE. This follows from the fact that the case displayed in
Figure 1 essentially is the only situation where the while-
loop might not terminate for α = 1, and this case requires at

5

load profile α-improving deviation (of some player
using r to r′, notation r→ r′)

conditions on α

(5, 0, 0) r1 → r2 5a1 + B > αa2 ⇔ α < 1/a2 =
2

K−1/2 ≈ 2.86

(4, 1, 0) r1 → r2 4a1 +B > α2a2 ⇔ α < 1/(2a2) =
1

K−1/2 ≈ 1.43

(3, 2, 0) r1 → r3 3a1 +B > αa3 ⇔ α < 1/a3 = K
(3, 1, 1) r3 → r2 a3 > α2a2 ⇔ α < 1

K(K−1/2) = K

(2, 2, 1) r2 → r1 2a2 +B/2 > α(3a1 +B) ⇔ α < 2a2 + 1/2 = K

Table 2: α-improving deviations for the candidate profiles.

least five players and at least three resources (for a complete
proof, see Appendix C). Thus we get the following corollary.

Corollary 5. Exact PNE are guaranteed to exist if n ≤ 4 or
m ≤ 2.

3.3 Tightness of α = K

In this subsection, we provide an instance where no α-
approximate PNE with α < K exists, showing that α = K
is the smallest possible value such that the existence of an
α-approximate equilibrium can be guaranteed.

Theorem 6. There exists an instance with three resources
and five players such that there is no α-approximate PNE
for any α < K , where K ≈ 1.1974 is as specified in (4).

Proof. Consider the instance with m = 3 resources, n = 5
players, budget B = 1, and resource cost coefficients

a1 := ar1 = 0, a2 := ar2 = K/2− 1/4 ≈ 0.3487, and

a3 := ar3 = 1/K ≈ 0.8351.

We proceed to show that there is no α-approximate PNE
for α < K . To this end, note that it suffices to show
that there is no α-approximate PNE among the five load
profiles (5, 0, 0), (4, 1, 0), (3, 2, 0), (3, 1, 1), (2, 2, 1) (since
a1 < a2 < a3; if there exists an α-approximate PNE,
there is also one with corresponding load profile among the
five listed load profiles, see Lemma E.1). Let α < K . We
show that for any of the five load profiles, there exists an
α-improving deviation, showing the claim. To this end, con-
sider Table 2, where we provide a deviation for each candi-
date profile which is α-improving if the given conditions on
α are satisfied. It is easy to check that these conditions are
indeed fulfilled for α < K .

4 Computing Optimal Approximate

Equilibria

In the last section, we showed that α = K is the small-
est possible value for α such that the existence of an α-
approximate PNE can be guaranteed for any instance of a
multi-leader congestion game with an adversary. However,
there are clearly instances where α-PNE with α < K ex-
ist (in particular, all instances exhibiting an exact PNE). We
show in this section how to compute efficiently a best ap-
proximate PNE for a given instance, that is, with smallest
possible α such that an α-PNE exists for this instance.

To this end, consider a multi-leader congestion game with
an adversary with resource set R = [m] and a1 ≤ · · · ≤ am.
We can restrict our attention to strategy profiles x with de-
creasing loads, that is, with ℓ1(x) ≥ · · · ≥ ℓm(x), since if
an α-PNE exists, there also exists one with decreasing loads
(see Lemma E.1 and note that we can assume α ∈ [1,K]
since we want to find the smallest possible α). Thus let
x be a strategy profile with ℓ1(x) ≥ · · · ≥ ℓm(x). Note
that, clearly, M(x) = max{ℓr(x) : r ∈ R} ≥ ⌈ nm⌉
holds. Furthermore, if M(x)m = n (which is equivalent
to ℓr(x) = M(x) for all r ∈ R), x is an α-PNE if and
only if am · M(x) + B/m ≤ α(a1 · (M(x) + 1) + B)
holds. Thus we can assume in the following that there are
resources with load < M(x). We denote by k = k(x) < m
the largest resource having maximum load M = M(x).
Similarly, k′ = k′(x) denotes the smallest resource with
load strictly smaller than M − 1, and k′′ = k′′(x) de-
notes the smallest resource with load strictly smaller than
M − 2. In other words, ℓr(x) = M for all r ∈ {1, . . . , k},
ℓr(x) = M−1 for all r ∈ {k+1, . . . , k′−1}, ℓr(x) = M−2
for all r ∈ {k′, . . . , k′′ − 1}, and ℓr(x) ≤ M − 3 for all
r ∈ {k′′, . . . ,m}, see Figure 2 for illustration. Note that
k′ = k + 1 or k′ = k′′ are possible, in which case there are
no resources with load M − 1 or M − 2, respectively.

We now define the following values c̄M = c̄M (x) and
c̄<M = c̄<M (x), which essentially describe the cost of a
best alternative resource for a player using a resource with
load M , and load smaller than M , respectively:

c̄M =

min{ak+1 ·M +B/k if k′ ≥ k + 2,

ak′ · (M − 1) +B/k′ if k′ < k′′,

ar · (ℓr(x) + 1) ∀ r ≥ k′′}, if k = 1,

min{a1 · (M + 1) +B,

ak+1 ·M +B/k if k′ ≥ k + 2,

ak′ · (M − 1) if k′ < k′′,

ar · (ℓr(x) + 1) ∀ r ≥ k′′}, if k ≥ 2,

and

c̄<M = min{a1 · (M + 1) +B,

ak+1 ·M +B/(k + 1) if k′ ≥ k + 2,

ak′ · (M − 1) if k′ < k′′,

ar · (ℓr(x) + 1) ∀ r ≥ k′′}.

6

R = [m]: 1

. . .

. . . k

load M

k + 1

. . .

. . . k′ − 1

load M − 1

k′

. . .

. . . k′′ − 1

load M − 2

k′′

. . .

. . . m

load ≤M − 3

Figure 2: Illustration for the definition of k, k′ and k′′.

Using these definitions, x is an α-approximate PNE iff

ar · ℓr(x) ≤ α · c̄<M for all r > k, and (5)

ak ·M +B/k ≤ α · c̄M . (6)

Regarding this, note that there are some cases in which c̄M
or c̄<M do not denote the cost of a best alternative for some
players, but only provide a lower bound. This happens in two
cases. Firstly, if k ≥ 2 and the minimum in the definition of
c̄M is uniquely attained at a1 · (M + 1) + B, then c̄M is in
general not the cost of a best alternative for players currently
using resource r = 1. However, it is then also clear that these
players are satisfied with their strategies anyways. Similarly,
if the minimum in the definition of c̄<M is uniquely attained
for some resource r > k, then c̄<M does not denote the cost
of a best alternative for the players using r. But it is again
clear that these players do not want to deviate.

Also note that the minimum properties of c̄M and c̄<M , as
well as the Nash condition (5), yield upper and lower bounds
for the loads ℓr(x) of all resources r ≥ k′′ (for r < k′′,
the load ℓr(x) is uniquely determined by the definitions of
M,k, k′ and k′′). By using this, as well as the fact that for
given values of M,k, k′ and k′′, there are only polynomially
many possible values for c̄M and c̄<M , we can show the
following result (for a complete proof, see Appendix D):

Lemma 7. Given M ∈ {⌈ nm⌉, . . . , n}, k ∈ {1, . . . ,m −
1}, k′ ∈ {k + 1, . . . ,m} and k′′ ∈ {k′, . . . ,m}, as well
as α ∈ [1,K], we can decide efficiently if there exists an
α-approximate PNE x such that M(x) = M , k(x) = k,
k′(x) = k′ and k′′(x) = k′′ holds.

In case of existence, we can furthermore compute a cor-
responding load vector efficiently.

Using Lemma 7, we get the main result of this section:

Theorem 8. We can efficiently compute the smallest possi-
ble α such that an α-approximate PNE exists, as well as a
corresponding load vector.

Proof. First note that if x is an α-PNE corresponding to the
best possible α, there need to be resources r, r′ ∈ R (as well
as a player i with xi = r) such that arℓr(x) + κ∗

r(x) =
α · (ar′ℓr′(r′, x−i) + κ∗

r′(r
′, x−i)) (otherwise α cannot be

smallest possible), or, equivalently,

α =
arℓr(x) + κ∗

r(x)

ar′ℓr′(r′, x−i) + κ∗
r′(r

′, x−i)
.

Since there are only O(nm2) many possible values for
arℓr(x)+κ∗

r(x), as well as for ar′ℓr′(r
′, x−i)+κ∗

r′(r
′, x−i),

there are only O(n2m4) many possible values for α.
The result then follows by applying the underlying pro-

cedure of Lemma 7 for all M ∈ {⌈ nm⌉, . . . , n}, k ∈
{1, . . . ,m−1}, k′ ∈ {k+1, . . . ,m} and k′′ ∈ {k′, . . . ,m},
as well as the O(n2m4) many possible values for α (thus in
total O(n3m7) many times).

5 Conclusion

We introduced a multi-leader congestion game with an ad-
versary which is motivated by security applications with
congestion effects. Since PNE do not exist in general, we
studied approximate equilibria. Our first main result shows
that a K-approximate PNE always exists, where K ≈
1.1974 is the unique solution of a cubic polynomial equa-
tion. To this end, we presented an efficient algorithm which
computes a K-approximate PNE. Furthermore, we showed
that the factor K is tight by providing an instance where no
α-approximate PNE with α < K exists. However, for a spe-
cific instance there might be a better α-approximate PNE,
i.e., with α < K . We presented an efficient procedure that
computes a best approximate PNE of a given instance.

Our work also suggests several interesting directions for
further research regarding multi-leader congestion games
with an adversary. For example, one could analyze whether
the results from Section 3 continue to hold if one allows
more general strategy spaces in the leaders’ congestion
game. A first natural generalization in this regard would be
to consider asymmetric strategies, and/or bases of matroids.
It would furthermore be interesting to analyze the quality of
approximate PNE. For example, one could measure the so-
cial cost of a strategy profile by the total cost of all players,
and then compare a (best or worse) approximate PNE to a
social optimum.

7

Acknowledgements We thank the anonymous referees
for their comments that helped to improve the presenta-
tion of the paper. This work was supported by Deutsche
Forschungsgemeinschaft (DFG – German Research Foun-
dation) under grants HA 8041/4-1, MA 8439/1-1, and un-
der Germany’s Excellence Strategy – The Berlin Mathe-
matics Research Center MATH+ (EXC-2046/1, project ID:
390685689).

References

Ackermann, H.; Röglin, H.; and Vöcking, B. 2009. Pure
Nash equilibria in player-specific and weighted congestion
games. Theoret. Comput. Sci., 410(17): 1552–1563.

Babaioff, M.; Kleinberg, R.; and Papadimitriou, C. H. 2009.
Congestion games with malicious players. Games Econ. Be-
hav., 67(1): 22–35.

Beckmann, M.; McGuire, C.; and Winsten, C. 1956. Stud-
ies in the Economics and Transportation. New Haven, CT,
USA: Yale University Press.

Bilò, V.; Moscardelli, L.; and Vinci, C. 2018. Uniform
Mixed Equilibria in Network Congestion Games with Link
Failures. In Chatzigiannakis, I.; Kaklamanis, C.; Marx, D.;
and Sannella, D., eds., 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,
146:1–146:14. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik.

Caragiannis, I.; Fanelli, A.; Gravin, N.; and Skopalik, A.
2011. Efficient Computation of Approximate Pure Nash
Equilibria in Congestion Games. In Ostrovsky, R., ed., IEEE
52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, 532–541. IEEE Computer Society.

Caragiannis, I.; Fanelli, A.; Gravin, N.; and Skopalik, A.
2015. Approximate Pure Nash Equilibria in Weighted
Congestion Games: Existence, Efficient Computation, and
Structure. ACM Trans. Economics and Comput., 3(1): 2:1–
2:32.

Castiglioni, M.; Marchesi, A.; Gatti, N.; and Coniglio, S.
2019. Leadership in singleton congestion games: What is
hard and what is easy. Artif. Intell., 277: 103177.

Correa, J. R.; Guzmán, C.; Lianeas, T.; Nikolova, E.; and
Schröder, M. 2018. Network Pricing: How to Induce Op-
timal Flows Under Strategic Link Operators. In Proc. 19th
ACM Conf. Electronic Commerce (EC), 375–392.

Correa, J. R.; Harks, T.; Kreuzen, V. J. C.; and Matuschke, J.
2017. Fare Evasion in Transit Networks. Oper. Res., 65(1):
165–183.

Gairing, M.; Harks, T.; and Klimm, M. 2017. Complex-
ity and Approximation of the Continuous Network Design
Problem. SIAM J. Optim., 27(3): 1554–1582.

Gan, J.; Elkind, E.; and Wooldridge, M. J. 2018. Stackelberg
Security Games with Multiple Uncoordinated Defenders. In
André, E.; Koenig, S.; Dastani, M.; and Sukthankar, G., eds.,
Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2018,

Stockholm, Sweden, 703–711. International Foundation for
Autonomous Agents and Multiagent Systems Richland, SC,
USA / ACM.

Harks, T.; and Schedel, A. 2019. Capacity and Price Com-
petition in Markets with Congestion Effects. In Proc. 15th
Internat. Conference on Web and Internet Econom., 341.

Harks, T.; Schröder, M.; and Vermeulen, D. 2019. Toll caps
in privatized road networks. Eur. J. Oper. Res., 276(3): 947
– 956.

Johari, R.; Weintraub, G. Y.; and Van Roy, B. 2010. Invest-
ment and Market Structure in Industries with Congestion.
Oper. Res., 58(5): 1303–1317.

Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing Optimal Randomized Re-
source Allocations for Massive Security Games. In Proceed-
ings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS ’09,
689–696. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.

Kulkarni, A. A.; and Shanbhag, U. V. 2015. An Existence
Result for Hierarchical Stackelberg v/s Stackelberg Games.
IEEE Transactions on Automatic Control, 60(12): 3379–
3384.

Labbé, M.; Marcotte, P.; and Savard, G. 1998. A Bilevel
Model of Taxation and Its Application to Optimal Highway
Pricing. Management Science, 44(12): 1608–1622.

Leyffer, S.; and Munson, T. 2010. Solving multi-leader-
common-follower games. Optim. Methods Softw., 25(4):
601–623.

Li, Y.; Jia, Y.; Tan, H.; Wang, R.; Han, Z.; and Lau, F. C. M.
2017. Congestion Game With Agent and Resource Failures.
IEEE Journal on Selected Areas in Communications, 35(3):
764–778.

Liu, T.-L.; Chen, J.; and Huang, H.-J. 2011. Existence and
efficiency of oligopoly equilibrium under toll and capacity
competition. Transportation Research Part E: Logistics and
Transportation Review, 47(6): 908 – 919.

Marchesi, A.; Castiglioni, M.; and Gatti, N. 2019. Leader-
ship in Congestion Games: Multiple User Classes and Non-
Singleton Actions. In Kraus, S., ed., Proc. 28th Internat.
Joint Conf. Artif. Intell. (IJCAI), 485–491.

Marcotte, P. 1986. Network Design Problem with Conges-
tion Effects: A Case of Bilevel Programming. Math. Pro-
gram., Ser. A, 34: 142–162.

Meir, R.; Tennenholtz, M.; Bachrach, Y.; and Key, P. B.
2012. Congestion Games with Agent Failures. In Hoff-
mann, J.; and Selman, B., eds., Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada. AAAI Press.

Milchtaich, I. 1996. Congestion Games with Player-Specific
Payoff Functions. Games Econom. Behav., 13(1): 111–124.

Sinha, A.; Fang, F.; An, B.; Kiekintveld, C.; and Tambe,
M. 2018. Stackelberg Security Games: Looking Beyond a
Decade of Success. In Lang, J., ed., Proc. 27th Internat.
Joint Conf. Artif. Intell. (IJCAI), 5494–5501.

8

Wardrop, J. 1952. Some theoretical aspects of road traffic
research. Proc. Inst. Civil Engineers, 1(Part II): 325–378.

Yang, H.; and Huang, H.-J. 2004. The multi-class, multi-
criteria traffic network equilibrium and systems optimum
problem. Transportation Res., 38(B): 1–15.

9

A An Illustrating Example for Algorithm 1

Example A.1. Consider a game with seven players and five
resources with a1 = 1, a2 = 4, a3 = 4, a4 = 10, and
a5 = 10. Let B = 9 and α = K ≈ 1.1974 as specified
in (4). We now describe the steps performed by Algorithm 1,
see also Figure 3. Note that in the first six iterations of the
for-loop, no players change during the while-loop. Only af-
ter player 7 is added, the players 5 and 6 become unhappy.
Since the players 5 and 6 currently experience the same cost
and player 6 uses the resource with a larger index, player 6
changes from r5 to r2 due to the tie-breaking rule of the al-
gorithm. Note that the resources r2 and r3 both constitute a
best response but r2 has the smaller index. The deviation of
player 6 causes the players on r1 to be unhappy since they
can improve their cost from 12 to 10 (more than a factor K)
by deviating to r3. Furthermore player 5 can improve her
cost from 10 to 8. Since 12 > 10 a player on r1 changes
due to the tie-breaking rule of the algorithm. The resulting
strategy profile if one of these players, say player 7, deviates
to r3, is a K-approximate PNE since no player has a K-
improving deviation anymore. (In fact, the profile even is a
12.5/12 = 25/24-PNE.)

Note that if some player now deviates from r2 to r1 (which
is a best response), the resulting strategy profile is not a K-
approximate PNE anymore—the situation is essentially as in
Figure 3 (a). This also shows that, starting from a K-PNE,
a sequence of best responses does not necessarily yield a
K-PNE.

1

4

7

r1

2

r2

3

r3

5

r4

6

r5

(a) Situation after player 7 is added. In the
while-loop, player 6 wants to deviate to r2

since 10 > K · 8 ≈ 9.58.

1

4

7

r1

2

6

r2

3

r3

5

r4 r5

(b) Situation after player 6 deviated to r2.
Player 7 now wants to deviate to r5 since
12 > K · 10 ≈ 11.97.

1

4

r1

2

6

r2

3

r3

5

r4

7

r5

(c) Situation after player 7 deviated to r5. The
while-loop terminates since no player has a
K-improving deviation.

Figure 3: Example for Algorithm 1 with n = 7 players, and
five resources r1, . . . , r5. Player i ∈ [n] is represented by a
square containing number i.

B Omitted Lemmas from Section 3

This section contains various lemmas which are used to
prove Theorem 3. Before we state the Lemmas B.5 and B.6
which are the basis of the case distinction used in the proof
of Theorem 3, we introduce the following notation, and pro-
vide some simple lemmas.

Notation. Given a strategy profile x, a player i with xi 6= 0
and a resource r 6= xi, we write dev(i, r, x) := cr(x−i, r)
for the cost experienced by player i if she unilaterally devi-
ates from her current strategy xi to a different resource r.
We also call dev(i, r, x) the deviation cost of player i for r
(with respect to x).

Lemma B.1. Let x be a strategy profile, i and j two players
with strategies xi, xj ∈ R, and r a resource different from
xi and xj . Furthermore assume that ℓxi

(x) ≥ ℓxj
(x), and

define M := M(x) = max{ℓr′(x) : r′ ∈ R}. Then:

dev(i, r, x) 6= dev(j, r, x)

⇔
One of the following two cases holds:

ℓr(x) = M − 1, ℓxi
(x) = M, and ℓxj

(x) < M, or

ℓr(x) = M − 2 and xi the only resource with load M in x.

Proof. If a player i with ℓxi
(x) = M changes from her cur-

rent strategy xi to r 6= xi with ℓr(x) = M−1, she has to pay

dev(i, r, x) = ar(ℓr(x)+1)+ B
p , where p := |M−1(x)| de-

notes the number of resources with load M in x. If a player j
with ℓxj

(x) < M changes from her current strategy xj to
r 6= xj with ℓr(x) = M − 1, she has to pay dev(j, r, x) =

ar(ℓr(x)+1)+ B
p+1 . Thus, dev(i, r, x) 6= dev(j, r, x). If xi

is the only resource with load M in x and player i changes
from her current strategy xi to r 6= xi with ℓr(x) = M − 2,

she has to pay dev(i, r, x) = ar(ℓr(x) + 1) + B
p̃+1 , where p̃

is the number of resources with load M−1 in x. If a player j
changes from her current strategy xj 6= xi to r 6= xj with
ℓr(x) = M−2, she has to pay dev(j, r, x) = ar(ℓr(x)+1).
Thus, dev(i, r, x) 6= dev(j, r, x).

Now we will show that if dev(i, r, x) 6= dev(j, r, x), then
either ℓr(x) = M − 1, ℓxi

(x) = M and ℓxj
(x) < M or

ℓr(x) = M − 2 and xi is the only resource with load M in
x. We consider a deviation to r 6= xi, xj for player i and j
in x, respectively. It is clear that the congestion part of the
deviation cost of player i or j for r, which is ar(ℓr(x) + 1),
is the same. Since we assume dev(i, r, x) 6= dev(j, r, x), the
adversary part, which is κ∗

r(x−i, r) and κ∗
r(x−j , r), must be

different. In particular, the adversary parts cannot be 0 for
both. We write Mi,r := max{ℓr′(x−i, r) : r′ ∈ R} for
the maximum load after player i deviated from her current
strategy xi to r. We now distinguish between the possible
values for Mi,r ∈ {M − 1,M,M + 1}.

Case Mi,r = M + 1: This case implies ℓr(x) = M and
ℓr(x−i, r) = ℓr(x−j , r) = M + 1. Thus, both players have
to pay the whole adversary budget B after changing to r in
x. Remark that the other resources have load at most M after
player i or j deviates. This contradicts our assumption that
the adversary parts must be different for the two players.

10

Case Mi,r = M − 1: This case implies that xi is the
only resource with load M in x and ℓr(x) ≤ M − 2. If
player j changes from her current strategy xj 6= xi to r
the adversary part is 0 (the resource xi has still load M).
Since the adversary part should be different after the devia-
tions to the resource r, we conclude that the adversary part
of the deviation cost of player i must be positive. Therefore,
ℓr(x) + 1 = M − 1 which is equivalent to ℓr(x) = M − 2.

Case Mi,r = M : This case implies ℓr(x) ≤ M − 1 (if
ℓr(x) = M we would get Mi,r = M+1). If ℓr(x) ≤M−2
and player i changes to r the adversary part of player i’s
cost is 0. Note that xi can not be the only resource with
load M which would imply Mi,r = M − 1. Since the ad-
versary part should be different after the deviations to the
resource r, we conclude that the adversary part of the devi-
ation cost of player j must be positive. Therefore, xj must
be the only resource with load M in x and ℓr(x) = M − 2.
Thus, ℓxj

(x) > ℓxi
(x) which contradicts the assumption

that ℓxj
(x) ≤ ℓxi

(x). Hence the case ℓr(x) ≤ M − 2
can not occur and we know ℓr(x) = M − 1. This implies
ℓr(x−i, r) = ℓr(x−j , r) = M and both adversary parts of
the deviation costs of player i and j for the resource r must
be positive. Since the adversary part must be different the
number of resources with maximal load must be different
after the respective deviations to r. Let p := |M−1(x)| be
the number of resources with load M in x, and pi and pj the
number of resources with load M in (x−i, r) and (x−j , r),
respectively. As mentioned above the adversary part must
be different, that is, pi 6= pj . If ℓxi

(x) = M we get pi = p
(note that ℓr(x) = M−1). If, additionally, ℓxj

(x) = M , we
get pj = p = pi which is a contradiction to our assumption.
Since ℓxj

(x) ≤ ℓxi
(x) we can conclude ℓxj

(x) ≤ M − 1.
Finally, we exclude the case ℓxi

(x) ≤ M − 1. Since we as-
sume ℓxj

(x) ≤ ℓxi
(x) ≤ M − 1, we get pi = p + 1 = pj

(note that ℓr(x) = M − 1), which is a contradiction to our
assumption.

Lemma B.2. Let x be a strategy profile occurring in Algo-
rithm 1, i ∈ N a player with strategy xi ∈ R, and r ∈ R a
resource with load ℓr(x) = ℓxi

(x) − 1. Then player i does
not want to deviate to r.

Proof. We show that a deviation to r can only increase
player i’s cost. Clearly, the adversary part of the cost re-
mains unchanged. Furthermore, the congestion part can only
be larger, since axi

≤ ar holds: Recall that loads are
always decreasing along the resources, that is, ℓr1(x) ≥
ℓr2(x) ≥ · · · ≥ ℓrm(x) holds, and furthermore ar1 ≤ ar2 ≤
· · · ≤ arm . Altogether, the deviation is not beneficial for
player i.

Lemma B.3. Let x and x′ be two strategy profiles occurring
in Algorithm 1, where x′ results from x by a deviation in the
while-loop of player i from xi to x′

i. Then, if a player j ∈ N
wants to deviate to a resource r ∈ R with ℓr(x

′) = ℓxi
(x′),

she prefers xi.

Proof. Note that since player i deviates from xi, we know
that ℓxi

(x) > ℓxi
(x′) = ℓr(x

′) ≥ ℓr(x) for r 6= xi. Thus,
since the loads are decreasing along the resources, axi

≤

ar holds. Consequently, dev(j, xi, x
′) ≤ dev(j, r, x′) for

r ∈ R with ℓxi
(x′) = ℓr(x

′). Furthermore, the resource
xi has a smaller index than the resource r since the loads
are decreasing. Thus, by construction, player j prefers the
resource xi.

Lemma B.4. Let x and x′ be two strategy profiles occurring
in Algorithm 1, where x′ results from x either due to the ad-
dition of some new player, or by a deviation of a player in the
while-loop. Denote the new or deviating player by i. Then
any player j with ℓx′

j
(x′) = ℓx′

i
(x′) is happy with respect to

x′.

Proof. Note that since the loads are decreasing along the re-
sources, ax′

j
≤ ax′

i
holds. Therefore, if x′

j 6= x′
i, player j

does not want to deviate to x′
i (her cost can only increase).

Now let r 6= x′
j be some possible alternative for player j.

We show cx′

j
(x′) ≤ dev(j, r, x′), that is, player j does not

want to deviate to r. Due to the above, we may assume that
r 6= x′

i. First note that cx′

j
(x′) ≤ cx′

i
(x′) holds since ax′

j
≤

ax′

i
. Secondly, cx′

i
(x′) ≤ dev(i, r, x′) since x′

i was a best

response for player i. Finally, dev(i, r, x′) = dev(j, r, x′)
holds since the deviation cost can only be different for
two players if they have different load (see Lemma B.1).
Altogether, we conclude cx′

j
(x′) ≤ dev(j, r, x′) and thus

player j does not want to deviate to r.

We can now state and prove the Lemmas B.5 and B.6
which are the basis of the case distinction used in the proof
of Theorem 3.

Lemma B.5. Assume that i ∈ {1, . . . , k−1} is a player who
becomes unhappy due to the addition of the new player k,
that is, player i has a K-improving deviation r with re-
spect to the strategy profile x′ := (x′

k, x−k) which results
from x due to the addition of the new player k. Then, re-
garding the loads of the resources x′

k, x
′
i = xi, and r,

one of the cases shown in Table 3 needs to hold, where
M := M(x) = max{ℓr′(x) : r′ ∈ R} denotes the maxi-
mum load with respect to x, that is, before player k is added.
Also note that xi 6= x′

k holds since all players using x′
k are

happy with respect to x′.

Proof. Let i ∈ {1, . . . , k} be a player who wants to change
from her current strategy xi to a resource r 6= xi.

We first show that cxi
(x′) ≤ cxi

(x), that is, the addition
of player k to the game did not increase the cost experienced
by player i. Clearly, ℓxi

(x′) = ℓxi
(x), since the load on re-

sources different from x′
k has not changed. Therefore, the

congestion-part of the cost experienced by player i has not
changed. We now turn to the adversary part and show that
it can only be smaller than before player k was added: As-
sume, by contradiction, that the adversary part has increased.
In particular, the adversary part with respect to x′ has to be
positive. This implies that M := M(x) = max{ℓr′(x) :
r′ ∈ R} ≥ ℓxi

(x) = ℓxi
(x′) = max{ℓr′(x′) : r′ ∈ R} ≥

M holds. Thus xi is a maximum load resource both before
and after player k was added, and clearly the number of re-
sources with load M can not decrease by the addition of

11

ℓx′

k
(x) ℓxi

(x′) = ℓxi
(x) ℓr(x

′) further conditions

M − 2 M M − 2 xi is the only resource with load M in x (also in x′)

M − 1 ≤M − 1 M − 1

M ≤M M

≤M − 1 M − 1

Table 3: Cases for the loads of the resources x′
k, xi and r, where r is a K-improving deviation for player i who becomes

unhappy due to the addition of new player k on x′
k (each row corresponds to one possible case).

player k. This contradicts our assumption that the adversary
part experienced by player i has increased, and altogether
shows that the total cost of player i can only be smaller than
before player k was added.

Before player k was added, player i was happy with her
strategy xi, thus she in particular did not want to change
to resource r then. Furthermore, as we already showed,
player i’s own cost has not increased due to the addition of
player k. Since we assume that player i now wants to change
to r, we conclude that the deviation cost of player i for r has
decreased, that is, dev(i, r, x′) < dev(i, r, x) holds. Clearly,
the congestion part of the deviation cost did not decrease,
since ℓr(x

′) ≥ ℓr(x) holds. Therefore, the adversary part
needs to be smaller than before, and this is only possible if it
was positive with respect to x. We thus get ℓr(x) ≥M − 2,
where ℓr(x) = M − 2 is only possible if xi is the only re-
source with load M in x. Furthermore, the adversary part
of the deviation cost with respect to x′ needs to be smaller
than B. Moreover r = x′

k is not possible since the adver-
sary part of the deviation cost needs to decrease. Therefore,
we can assume in the following that r 6= x′

k and conse-
quently ℓr(x) = ℓr(x

′). We now distinguish between the
three possible values for ℓr(x) ∈ {M − 2,M − 1,M}. If
ℓr(x) = M , then the adversary part of the deviation cost
with respect to x′ can only be smaller thanB if ℓx′

k
(x) = M .

If ℓr(x) = M − 1, we get that ℓx′

k
(x) ∈ {M − 1,M} needs

to hold. Finally if ℓr(x) = M−2 and xi is the only resource
with load M in x, we conclude ℓx′

k
(x) = M − 2 (note that

xi 6= x′
k, and players having load ℓx′

k
(x) + 1 are happy

according to Lemma B.4). Using that ℓr(x) 6= ℓxi
(x) − 1

(see Lemma B.2), this yields the conditions stated in Table 3,
completing the proof.

Lemma B.6. Assume that player i ∈ {1, . . . , k} devi-
ates in some iteration of the while-loop of Algorithm 1,
and denote the strategy profiles before and after this devi-
ation by x and x′ := (x−i, x

′
i), respectively. Assume further

that player j ∈ {1, . . . , k} \ {i} becomes unhappy due to
player i’s deviation, that is, j was happy with respect to x,
but she has a K-improving deviation r 6= x′

j = xj with

respect to x′. Then, regarding the loads of the resources
xi, x

′
i, xj and r, one of the cases given in Table 4 has to

hold, where M := M(x) = max{ℓr′(x) : r′ ∈ R} denotes
the maximum load with respect to x, that is, before player i
deviated. Also note that xj /∈ {xi, x

′
i}, since all players us-

ing xi are already unhappy with respect to x, and all players

using x′
i are happy with respect to x′.

Proof. Assume that player i is unhappy with her strategy xi

in x and changes to x′
i. Denote the resulting strategy pro-

file by x′ := (x−i, x
′
i). Assume that player j is happy with

her strategy xj in x and wants deviate now, with respect to
x′, to r 6= xj . Note that xj 6= xi since player j is happy
with her strategy in x. Furthermore xj = x′

j since only

player i 6= j deviates in x. Additionally x′
j 6= x′

i because

player i is happy in x′. If player j is happy with respect to
the profile x and wants to deviate now in x′ from xj = x′

j
to a resource r 6= xi, then either her cost must be increase,
that is cxj

(x′) > cxj
(x) or her deviation cost for r must de-

crease, that is dev(j, r, x′) < dev(j, r, x). These two cases
are discussed in Claim 1 and Claim 2. The situations where a
player j wants to deviate to xi in x′ are analyzed in Claim 3.

Claim 1. cxj
(x′) > cxj

(x) ⇔ One of the two cases dis-
played in Table 5 needs to hold, where M := M(x) =
max{ℓr′(x) : r′ ∈ R} denotes the maximum load with re-
spect to x.

Proof of Claim 1. Assume that player i changes from the
only resource with load M in x to x′

i with ℓx′

i
(x) ≤ M − 2

and player j is on a resource x′
j = xj with ℓxj

(x) = M − 1.

Since xj 6= xi, xj 6= x′
i (see above) we know ℓxj

(x′) =
M − 1. Then, player j’s cost increases from cxj

(x) =

axj
ℓxj

(x) to cxj
(x′) = axj

ℓxj
(x) + B

p̃ , where p̃ ≥ 2 is

the number of resources with load M − 1 in x′. Assume
now, player i changes from a resource xi 6= xj with load M
to x′

i with ℓx′

i
(x) ≤ M − 2 and player j is on a resource

xj with ℓxj
(x) = M . Then, player j’s cost increases from

cxj
(x) = axj

ℓxj
(x) + B

p to cxj
(x′) = axj

ℓxj
(x) + B

p−1 ,

where p := |M−1(x)| ≥ 2 is the number of resources with
load M in x.

Now, we will show that if cxj
(x′) > cxj

(x), one of the
two cases displayed in Table 5 needs to hold. Since xj = x′

j ,

xj 6= xi and xj 6= x′
i the congestion-part of the cost experi-

enced by player j does not change, comparing the profile x′

with x. Thus, if cxj
(x′) > cxj

(x) holds, the adversary-part
must be increase. Therefore, the adversary-part with respect
to x′ can not be 0, which implies xj has maximum load in
x′.

If xj has not maximum load in x, then xi was the only
resource with maximum load in x, which is M and deviates
to x′

i with ℓx′

i
(x) ≤M − 2, ℓxj

(x) = M − 1.

12

ℓxi
(x) ℓx′

i
(x) ℓxj

(x′) = ℓxj
(x) ℓr(x

′) further conditions

M M ≤M − 1 M − 1 (xi)

≤M M

≤M − 2 M M xi is not the only resource with load M in x

M ≤M − 2 xi is not the only resource with load M in x

≤M − 3 M − 1 M − 1 (xi) xi is the only resource with load M in x

M − 1 ≤M − 3 xi is the only resource with load M in x

≤M − 1 M ≤M M

≤M − 1 M − 1

M − 1 ≤M − 1 M − 1

≤M − 2 M − 2 M ≤M − 3 (xi) xj is the only resource with load M in x

M M − 2 xj is the only resource with load M in x

Table 4: Cases for the loads of the resources xi, x
′
i, xj and r, where r is a K-improving deviation for player j who becomes

unhappy due to player i’s deviation from xi to x′
i. Each row corresponds to one possible case. In some cases, we derive that if

player j is chosen as the next deviating player in the while-loop, she deviates to xi; and whenever this is the case, xi is added
in brackets.

ℓxi
(x) ℓx′

i
(x) ℓxj

(x) further conditions

M ≤M − 2 M

M − 1 xi is the only resource with load M in x

Table 5: Conditions for a player j who is happy with his strategy in x and wants to change from xj to r considering the profile
x′, which results from x after player i moved from xi to x′

i (each row corresponds to one possible case).

If xj has maximum load in x, which is M , the number
of resources with maximum load must be decrease since the
adversary-part must be increase. This implies that player i
deviates from xi with ℓxi

(x) = M to x′
i with ℓx′

i
(x) ≤

M − 2. �

Claim 2. dev(j, r, x′) < dev(j, r, x) for r 6= xi ⇔ r 6= x′
i

and one of the four cases displayed in Table 6 needs to hold,
where M := M(x) = max{ℓr′(x) : r′ ∈ R} denotes the
maximum load with respect to x.

Proof of Claim 2. Assume that player i changes from xi

with ℓxi
(x) ≤ M to x′

i with ℓx′

i
(x) = M . Then, with re-

spect to the profile x′, a deviation to a resource r 6= xi, x
′
i

with ℓr(x) = M would now be better for player j. That is

dev(j, r, x′) = ar(ℓr(x) + 1) + B
2 < ar(ℓr(x) + 1) +B =

dev(j, r, x). Let us consider now the situation where player i
changes from a resource xi with load ≤ M to x′

i with
ℓx′

i
(x) = M , or from a resource xi with load ≤ M − 1

to x′
i with ℓx′

i
(x) = M − 1 and r 6= xi, x

′
i is a resource with

load M − 1. Then, player j’s deviation cost for r decreases
from dev(j, r, x) = ar(ℓr(x) + 1) + B

p+1 to dev(j, r, x′) =

ar(ℓr(x) + 1), or from dev(j, r, x) = ar(ℓr(x) + 1) + B
p+1

to dev(j, r, x′) = ar(ℓr(x) + 1) + B
p+2 respectively, where

p := |M−1(x)| is the number of resources with load M in

x. If player i changes from xi with load ≤M − 1 to x′
i with

load M − 1, or from xi with load ≤ M − 2 to x′
i with load

M − 2 and player j is on the only resource with load M in
x, then a deviation to r 6= xi, x

′
i with ℓr(x) = M − 2 is

now better than before. In the first mentioned case we have
dev(j, r, x′) = ar(ℓr(x) + 1) < ar(ℓr(x) + 1) + B

p̃+2 =

dev(j, r, x); in the second case we have dev(j, r, x′) =
ar(ℓr(x)+1)+ B

p̃+3 < ar(ℓr(x)+1)+ B
p̃+2 = dev(j, r, x),

where p̃ is the number of resources with load M − 1 in x.

Now we will show that if dev(j, r, x′) < dev(j, r, x),
one of the two cases displayed in Table 6 needs to hold and
r 6= x′

i. First, we discuss the case r = x′
i. Since player i

changes from xi to x′
i in x resulting the profile x′, we thus

get ℓr(x)+1 = ℓr(x
′). This implies that the congestion part

of the deviation cost to r = x′
i does not decrease. The same

holds for the adversary part since the load from x′
i increases

while the load of the other resources do not increase. This
implies dev(j, x′

i, x
′) ≥ dev(j, x′

i, x) which is a contraction
to our assumption.

Assume now that r 6= x′
i. Since r 6= xi we get ℓr(x) =

ℓr(x
′) which implies that the congestion part of the devia-

tion cost to r is the same in x and x′. Thus, the adversary part
must decrease comparing x to x′ to achieve dev(j, r, x′) <
dev(j, r, x). Therefore, the adversary part of the deviation
cost needs to be positive with respect to x. Consequently,

13

ℓxi
(x) ℓx′

i
(x) ℓr(x) further conditions

≤M M M

M − 1

≤M − 1 M − 1 M − 1

M − 2 xj is the only resource with load M in x

≤M − 2 M − 2 M − 2 xj is the only resource with load M in x

Table 6: Conditions for a player j who is happy with his strategy in x and wants to change from xj to r considering the profile
x′, which results from x after player i moved from xi to x′

i (each row corresponds to one possible case).

ℓr(x) + 1 = M(x−j , r) =: Mj,r ∈ {M − 1,M,M + 1}
needs to hold. We now distinguish between the three possi-
ble values for Mj,r.

Case Mj,r = M +1: This implies ℓr(x) = M . If player j
changes to r in x she has to pay the whole adversary budget
B (since r is the only resource with load M + 1 after this
deviation). Now, with respect to x′, the adversary part of
the deviation cost must decrease. Therefore, there must be
another resource with load M + 1 in x′. This implies that
player i’s move must be from a resource with load ≤ M to
a resource with load M .

Case Mj,r = M : This implies ℓr(x) = M − 1 since we
assume ℓr(x) + 1 = Mj,r = M (see above). The adversary

part of the deviation cost to r with respect to x is either B
p or

B
p+1 , where p := |M−1(x)| is the number of resources with

load M in x. The first mentioned case occurs if ℓxj
(x) =

M , the second if ℓxj
(x) < M . Now, with respect to x′,

the adversary part needs to be smaller. Thus, there are two
possible situations. Either the adversary part gets 0 or B

p̄ ,

where p̄ is the number of resources with load Mj,r = M
in (x′

−j , r). If the the adversary part gets 0 we know with

ℓr(x
′) + 1 = ℓr(x) + 1 = M that the maximum load in

x′ is > M . Thus, player i’s move must be from a resource
with load ≤ M to a resource with load M . If the adversary
part gets B

p̄ we know with the assumption that the adversary

part needs to decrease, that player i’s move must be from a
resource with load ≤M − 1 to a resource with load M − 1.

Case Mj,r = M−1: This implies that xj must be the only
resource with load M in x and ℓr(x) ≤M −2. Since we as-
sumed that ℓr(x)+1 = Mj,r = M−1 (see above), we know
ℓr(x) = M−2. The adversary part of the deviation cost for r
with respect to x is B

p̃+2 , where p̃ is the number of resources

with load M − 1 in x. Note that xj and r have load M − 1
after the change. Now, with respect to x′, the adversary part
needs to be smaller. Thus there are two possible situations.
Either the adversary part gets 0 or B

p̂ , where p̂ is the number

of resources with load Mj,r = M − 1 in (x′
−j , r). If the the

adversary part gets 0 we know with ℓr(x
′)+1 = M −1 that

the maximum load in x′ is > M − 1. Thus, player i’s move
must be from a resource with load ≤ M − 1 to a resource
with load M − 1. Note that xi and x′

i have maximum load
M − 1 because xj 6= xi, x

′
i (see above) is the only resource

with load M in x. If the adversary part gets B
p̂ we know with

the assumption that the adversary part needs to decrease, that
player i’s move must be from a resource with load ≤M − 2
to a resource with load M − 2. �

Claim 3. Assume player i changed in x from xi to x′
i result-

ing the profile x′. Then, with respect to x′, a player j might
want to deviate to xi in x′ if one of the six cases displayed in
Table 7 holds, where M := M(x) = max{ℓr′(x) : r′ ∈ R}
denotes the maximum load with respect to x.

Proof of Claim 3. Obviously, player j wants to change from
her current strategy xj to xi in x′ if and only if

cxj
(x′) > K dev(j, xi, x

′). (7)

Moreover, player i wants to change from xi to x′
i with re-

spect to x if and only if

cxi
(x) > K dev(i, x′

i, x). (8)

We first show by contradiction that it is not possible
that all of the three following inequalities are fulfilled:
dev(j, xi, x

′) ≥ cxi
(x), dev(i, x′

i, x) ≥ dev(j, x′
i, x), and

cxj
(x) ≥ cxj

(x′). Assume that these three inequalities are
fulfilled. Together with inequality (7) and inequality (8), we
thus get:

cxj
(x) ≥ cxj

(x′) > K dev(j, xi, x
′) ≥ Kcxi

(x)

> K2 dev(i, x′
i, x) ≥ K2 dev(j, x′

i, x).

With K2 dev(j, x′
i, x) > K dev(j, x′

i, x) we can conclude
that player j wants to deviate to x′

i with respect to x and
cxj

(x) > Kcxi
(x) > cxi

(x). This contradicts our assump-
tion that in the algorithm player i deviates in x and not
player j. Thus, at least one of these three mentioned inequal-
ities is not fulfilled. We now distinguish between which of
these inequalities does not hold.

Case dev(j, xi, x
′) < cxi

(x): We will show that in
this situation one of the two following cases holds. Either
ℓxj

(x) ≤ M and player i deviates from xi with load M to
x′
i with load M in x, or ℓxj

(x) ≤ M − 1 and player i de-
viates from xi with load M to x′

i with load M − 1 in x.
Obviously, the congestion part of the cost experienced by
player i on xi in x and the congestion part of the devia-
tion cost experienced by player j by changing to xi in x′

is the same since ℓxi
(x) = ℓxi

(x′
−j , xi). Thus, to achieve

dev(j, xi, x
′) < cxi

(x), the adversary part needs to be

14

ℓxi
(x) ℓx′

i
(x) ℓxj

(x) further conditions

M M ≤M

M − 1 ≤M − 1

≤M − 2 M

M − 1 xi is the only resource with load M in x

≤M − 1 M − 1 M

M − 2 M xj is the only resource with load M in x

Table 7: Conditions for a player j who wants to change to xi considering the profile x′, which results from x after player i
moved from xi to x′

i (each row corresponds to one possible case).

smaller. This implies that the adversary part of the cost ex-
perienced by player i on xi in x needs to be positive. There-
fore, ℓxi

(x) = M and the adversary part of the cost is B
p ,

where p := |M−1(x)| is the number of resources with load
M in x. Since the adversary part of the deviation cost expe-
rienced by player j by changing to xi in x′ must be smaller,
it can be 0 or B

p̃ , where p̃ is the number of resources with

load M in (x′
−j , xi), and p̃ > p. If the adversary part is 0,

we know with ℓxi
(x) = ℓxi

(x′
−j , xi) = M that the maxi-

mum load is M + 1 in (x′
−j , xi). This implies that player i

changes from xi with load M to x′
i with load M in x. Now

we discuss the case that the adversary part is B
p̃ . In this situ-

ation player i changes from xi with load M to x′
i with load

≤ M − 1 in x. Let p′ be the number of resources with load
M in x′. If ℓxj

(x) = M we get p̃ = p′ ≤ p which contra-
dicts p̃ > p. Thus, ℓxj

(x) ≤ M − 1. If ℓx′

i
(x) ≤ M − 2 we

get p = p′+1, and with ℓxj
(x) ≤M − 1 we get p̃ = p′+1.

Together we get p = p′ + 1 = p̃ which contradicts p̃ > p.
Thus, ℓx′

i
(x) = M − 1.

Case dev(i, x′
i, x) < dev(j, x′

i, x): We show that in
this situation one of the two following cases holds. Ei-
ther ℓxj

(x) = M and player i deviates from xi with load
≤M−1 to x′

i with loadM−1 in x, or xj is the only resource
with load M in x and player i deviates from xi with load ≤
M −1 to x′

i with load M −2 in x. According to Lemma B.1
we know that either ℓx′

i
(x) = M − 1 and one of the two

resources xj , xi has load M while the other has load < M
in x, or ℓx′

i
(x) = M − 2 and one of the two resources xj ,

xi is the only resource with load M in x. To make that more
precise, we have to know the relation between the load of xj

and xi in x. We prove by contradiction that ℓxj
(x) ≥ ℓxi

(x).
Assume that ℓxj

(x) < ℓxi
(x). This implies ℓxi

(x) = M and
ℓxj

(x) ≤ M − 1 with Lemma B.1. Furthermore, we know
ℓx′

i
(x) ∈ {M − 1,M − 2} according to Lemma B.1. If

ℓx′

i
(x) = M − 1 we get dev(i, x′

i, x) = ax′

i
M + B

p >

ax′

i
M + B

p+1 = dev(j, x′
i, x), where p := |M−1(x)| is

the number of resources with load M in x. This contra-
dicts our assumption that dev(i, x′

i, x) < dev(j, x′
i, x). If

ℓx′

i
(x) = M − 2 and xi is the only resource with load

M in x, we get dev(i, x′
i, x) = ax′

i
(M − 1) + B

p̃+2 >

ax′

i
(M − 1) = dev(j, x′

i, x), where p̃ is the number of

resources with load M − 1 in x. This contradicts our as-
sumption, too. Thus, ℓxj

(x) ≥ ℓxi
(x) needs to hold and

with Lemma B.1 we know that either ℓx′

i
(x) = M − 1,

ℓxj
(x) = M and ℓxi

(x) ≤ M − 1, or ℓx′

i
(x) = M − 2

and xj is the only resource with load M in x.

Case cxj
(x) < cxj

(x′): We show that in this situation one
of the following two cases holds. Either ℓxj

(x) = M − 1
and player i deviates from xi which is the only resource with
load M in x to x′

i with load ≤ M − 2 in x, or ℓxj
(x) = M

and player i deviates from xi with load M to x′
i with load

≤M−2 in x. Clearly, the congestion part of the cost experi-
enced by player j in x and x′ does not change since ℓxj

(x) =
ℓxj

(x′). Note that xj 6= xi and xj 6= x′
i (see above). Thus,

the adversary part of player j’s cost must increase comparing
x′ to x. This implies that the adversary part of player j’s cost
is positive with respect to x′. Therefore, the maximum load
in x′ must be ≤M , since ℓxj

(x′) = ℓxj
(x) ≤M . In partic-

ular, ℓx′

i
(x′) ≤ M and thus ℓx′

i
(x) ≤ M − 1 needs to hold.

Moreover ℓxj
(x′) ∈ {M − 1,M} is the maximum load in

x′. We now distinguish between the possible values for the
maximum load in x′. Assume first that ℓxj

(x′) = M − 1.
This implies that player i changes from xi which is the only
resource with load M in x to x′

i with load ≤ M − 2 in x.
Thus, the adversary part of player j’s cost is 0 with respect
to x and B

p̃ with respect to x′, where p̃ ≥ 2 is the number

of resources with load M − 1 in x′. This shows an increase
of the adversary part. Assume now that ℓxj

(x′) = M . Thus,

the adversary part of player j’s cost is B
p with respect to x

and B
p′

with respect to x′, where p and p′ denote the numbers

of resources with load M in x and x′, respectively. Since the
adversary part needs to increase we know p > p′. There-
fore, player i deviates from xi with load M to x′

i with load
≤M − 2 in x. �

Altogether, we can conclude the conditions for a player j
who is happy with her strategy in x and wants to change
from x′

j = xj to r considering the profile x′, which results

from x after player i moved from xi to x′
i. These conditions

are displayed in Table 8.

Using Lemma B.4, Lemma B.2 and Lemma B.3 we
can reduce Table 8 to Table 4, completing the proof of
Lemma B.6.

15

ℓxi
(x) ℓx′

i
(x) ℓxj

(x′) = ℓxj
(x) ℓr(x

′) further conditions

M M ≤M M

≤M M − 1

≤M M − 1 (xi)

M − 1 ≤M − 1 M − 1 (xi)

M − 2 M ≤M xi is not the only resource with load M in x

M ≤M − 1 (xi) xi is not the only resource with load M in x

M − 1 M − 1 (xi) xi is the only resource with load M in x

M − 1 ≤M − 1 xi is the only resource with load M in x

≤M − 3 M ≤M xi is not the only resource with load M in x

M M − 1 (xi) xi is not the only resource with load M in x

M − 1 M − 1 (xi) xi is the only resource with load M in x

M − 1 ≤M − 1 xi is the only resource with load M in x

≤M − 1 M ≤M M

≤M M − 1

M − 1 M M − 2 xj is the only resource with load M in x

M ≤M − 2 (xi)

≤M M − 1

M − 2 M ≤M − 2 (xi) xj is the only resource with load M in x

≤M − 2 M − 2 M M − 2 xj is the only resource with load M in x

M ≤M − 3 (xi) xj is the only resource with load M in x

Table 8: Conditions for a player j who is happy with her strategy in x and wants to change from x′
j = xj to r considering the

profile x′, which results from x after player i moved from xi to x′
i (each row corresponds to one possible case). Whenever there

is an explicit resource r where player i wants to deviate to, we add this resource in brackets.

C Omitted Proofs for the Main Results from

Section 3

In this section, we provide complete proofs for Theorem 3
and Corollary 5.

Proof of Theorem 3. It suffices to show that in iteration k ≥
3 of the for-loop, the while-loop terminates. Let x and x′ de-
note the profiles directly before and after the new player k is
added. If all players are happy with their strategy in x′, the
statement follows; thus assume that player i changes from
x′
i = xi to r in the while-loop. Due to Lemma B.5, we

know that one of the three cases displayed in Table 3 needs
to hold. We now analyze each of these cases, and make re-
peated use of Lemma B.6. To this end, let M := M(x) =
max{ℓr′(x) : r′ ∈ R} be the maximum load in x, that is,
before player k is added, and recall that x′

k denotes the re-
source to which player k is added, thus ℓx′

k
(x) denotes the

corresponding load before player k is added. Figure 4 illus-
trates the complete case distinction that we carry out in the
proof, and we start with the analysis of the three different
cases regarding ℓx′

k
(x).

Case M − 2 :
If ℓx′

k
(x) = M − 2, then M(x′) = M and xi = x′

i is

the only resource with load M in x′ and ℓr(x
′) = M − 2

holds. Using Lemma B.6, we conclude that there are no
players who become unhappy due to player i’s change,
and the players on x′

i = xi (the only unhappy players w.r.t.
x′) are now happy due to Lemma B.4. Therefore, after
player i deviated, all players are happy with their strategy
and the while-loop terminates after one iteration.

Case M − 1:

If ℓx′

k
(x) = M − 1, then M(x′) = M , ℓxi

(x′) ≤ M − 1

and ℓr(x
′) = M − 1 hold. Lemma B.6 yields that after

this deviation, the only players who might be unhappy are
players using resources with load≤M−1, and they want
to change to resources with load M−1. But since there are
at most m−2 resources with loadM−1 in x′, we conclude
that the while-loop terminates after O(m) iterations.
Case M :

Now turn to the case that ℓx′

k
(x) = M . Note that x′

k = r1
and M(x′) = M +1 hold, and that r1 is the only resource
with load M + 1 in x′. We have to consider the different
possibilities regarding the loads of xi and r as given in

16

ℓx′

k
(x)

M − 2 M − 1 M

players on r1
never deviate

player j deviates
from r1 to r′

ℓr′(x
t+1) = M − 1 r′ = rt

next dev.:
≤M − 1→M − 1

next dev.:
r̄t → r1

next dev.:
r̄t → rt−1

Figure 4: Illustration for the case distinction in the proof of Theorem 3.

Table 3, namely that player i changes from load ≤ M to
load M or from ≤ M − 1 to M − 1. First note that if
ℓr(x

′) = M , the only players who might want to change
in x′′ := (x′

−i, r) are using resources with load ≤ M and
want to change to load M , or want to change from load ≤
M − 1 to load M − 1. This follows from Lemma B.6,
where one should note that the maximum load in x′ is M+
1. For the case that ℓr(x

′) = M − 1 (and consequently,
ℓxi

(x′) ≤M −1), the only new unhappy players could be
players using x′

k = r1, and they might want to change to
a resource with load M − 1, or to x′

i (see Lemma B.6).

Using the above, we can argue that if the players on r1
never deviate during the while-loop, then the only changes
are from resources having load ≤ M to M , or from ≤
M−1 to M−1. But this terminates after O(m) deviations
(there can be at most m− 1 deviations to a resource with
load M , and at most 2m− 2 deviations to a resource with
load M − 1).

Thus we can now assume that in some iteration of the
while-loop, a player j deviates from r1 to a resource r′.
Consider the first such change, that is, all changes before
have been from load ≤ M to M or from ≤ M − 1 to
M − 1. More exactly, note that the changes before cannot
include a change to load M , because after such a change,
all players having load M +1 are happy (see Lemma B.4)
and never become unhappy afterwards (see Lemma B.6
and note that r1 is not the only resource with load M + 1
anymore). Therefore, all changes before were moves from
load ≤ M − 1 to M − 1 (and there was at least one such
change). Let i1, . . . , it be the corresponding sequence of
deviating players, where i1 = i is the first, and it the
last player deviating before player j. Let rs and r̄s de-
note player is’s resources before and after her change, for
s = 1, . . . , t, and let xs+1 be the strategy profile resulting
from is’s change. Finally, let xt+2 := (xt+1

−j , r′) be the

strategy profile resulting from xt+1 due to player j’s devi-
ation from r1 to r′. Figure 5 shows an illustration for the

situation before player j deviates.

r1

load
M + 1

j

r̄1 r̄2 r̄t

load M

rt

i1

r2

i2

r1

it

load ≤M − 1

Figure 5: Situation before player j deviates (with t = 3).

Note that r1 is the only resource with load M +1 in xt+1.
Furthermore, all players having load M are happy in xt+1

(see Lemma B.4), thus the only unhappy players in xt+1

(except from the players using r1) might want to change
from load ≤ M − 1 to load M − 1 or to load M . Now
consider the situation after player j deviated. Recall that
player j either deviated to a resource with load M − 1, or
to rt (smallest resulting cost and smallest index among all
resources where the players i1, . . . , it deviated from).
Subcase ℓr′(x

t+1) = M − 1:
If player j deviates to a resource with load M − 1, then
all players having load M are happy in xt+2. Further-
more, there are no new unhappy players in xt+2 (see
Lemma B.6). Therefore, after player j’s change, the only
possible further changes are from load ≤ M − 1 to load

17

M−1 or load M . Even more, we can also exclude changes
from≤M−1 to M , since the cost for deviating to r1 (the
best resource with load M) would be the same as it was
before the new player k was added to the game, and in x
no one wanted to change to r1. Furthermore, the cost on
a resource with load ≤ M − 1 can now only be smaller
than it was in x. Altogether, the only further changes can
be from load ≤M − 1 to M − 1, and this terminates after
O(m) iterations.
Subcase r′ = rt:
It remains to analyze the case that player j deviates from
r1 to rt (the resource where player it deviated from). New
unhappy players might want to change from load M to r1
or to a resource with load ≤ M − 2 (see Lemma B.6).
Among these players, a player on r̄t moves first (biggest
index among the resources with load M). Former unhappy
players who are not included above want to change from
≤ M − 1 to M − 1 or to M . More exactly, we can again
exclude changes from ≤ M − 1 to M , since the cost for
deviating to r1 (the best resource with load M) would be
the same as player j had to pay before her change, and if
this is strictly smaller than the current cost of some un-
happy player with load ≤ M − 1, we get a contradiction
to the fact that player j moved first (the other player could
improve ’more’ by deviating to rt). Therefore, the next
deviation may be from r̄t to r1, from r̄t to ≤ M − 2, or
from ≤M − 1 to M − 1.
In the last case, all players with load M are happy after
the change, and the only further moves can be from load
≤ M − 1 to load M − 1. This terminates after O(m)
iterations.
The case r̄t → r1 (see Figure 6 for an illustration) can be
excluded since it leads to the following contradiction. Let
ℓrt denote the load of resource rt directly before player it
deviated from it. Furthermore note that there are at least
two resources with load M in xt+2 (namely r1 and r̄1).
Then, the following three inequalities hold.

art · ℓrt > K · ar̄t ·M (9)

a1 · (M + 1) +B > K · art · ℓrt (10)

ar̄t ·M +B/2 > K · (a1 · (M + 1) +B) (11)

Using that (11) is equivalent to Kar̄t ·M > K2a1 · (M +
1) + (K2 −K/2)B and combining this with (9) and (10)
yields

K2a1 · (M + 1) + (K2 −K/2)B < art · ℓrt

<
a1 · (M + 1) +B

K
.

From this we conclude the contradiction

0 ≤ (K3− 1)a1 · (M +1) < (−K3 +K2/2+ 1)B = 0,

where we additionally used that K3 > 1 and −K3 +
K2/2 + 1 = 0 by definition of K .
Therefore, the only remaining case is that a player on r̄t

changes to a resource r′′ with load ≤ M − 2. We will
first show that r′′ = rt−1 holds. Note that the cost for
deviating to r′′ is strictly smaller than the cost for devi-
ating to r1 (otherwise, one would change to r1). There-
fore, r′′ needs to have strictly smaller load now than

r1

j

r̄1 r̄2 r̄t rt

i1

r2

i2

r1

it

Figure 6: Illustration for the case r̄t → r1 (with t = 3).

it had before player k was added (otherwise, player k
would be placed on r′′ rather than on r1). This shows that
r′′ ∈ {r1, . . . , rt−1} needs to hold, and since deviating to
rt−1 is cheapest and rt−1 has the smallest index among
the cheapest deviations, the assertion follows. Consider
the situation after the change from r̄t to rt−1 (of some
player j′). It may be that a player on r̄t−1 (biggest in-
dex among the resources with load M) wants to change to
r1 (the best resource with load M) or to a resource with
load ≤ M − 2. Players with load ≤ M − 1 do not want
to change, since a deviation to r̄t (the best resource with
load M − 1) cannot be beneficial (player j′ moved first).
Furthermore, the case r̄t−1 → r1 leads to a contradiction
(note that in this case, (9)-(11) hold since ar̄t ≥ ar̄t−1).
Thus we are in the situation that a player on r̄t−1 changes
to a resource with load ≤ M − 2. By repeating the ar-
gumentation of the last paragraph, we conclude that there
can be no more than t− 3 further deviations.

Proof of Corollary 5. Note that the only case where the
proof of Theorem 3 fails if we consider α = 1 instead of
α = K is the case corresponding to Figure 6. Since r1, r̄

t

and rt are three different resources, and with respect to x′

there are at least 3 players using r1, at least 1 player using
r̄t and at least 1 player using rt, the statement follows.

D Omitted Proofs from Section 4

Proof of Lemma 7. Given c̄M ≥ 0 and c̄<M ≥ 0, the
following procedure determines a vector ℓ = ℓ(x) corre-
sponding to an α-PNE x with M(x) = M , k(x) = k,
k′(x) = k′ and k′′(x) = k′′, as well as c̄M (x) ≥ c̄M and
c̄<M (x) ≥ c̄<M , if such a strategy profile x with the ad-
ditional property that c̄M (x) = c̄M and c̄<M (x) = c̄<M

exists.

1. Test first whether all of the following inequalities are sat-
isfied (if at least one inequality is not satisfied, there is no

18

α-PNE with the desired properties and we can stop):

ak ·M +B/k ≤ α · c̄M
if k′ ≥ k + 2: ak′−1 · (M − 1) ≤ α · c̄<M

if k′ < k′′: ak′′−1 · (M − 2) ≤ α · c̄<M

if k ≥ 2: a1 · (M + 1) +B ≥ c̄M

if k′ ≥ k + 2: ak+1 ·M +
B

k
≥ c̄M

if k = 1 and k′ < k′′: ak′ · (M − 1) +
B

k′
≥ c̄M

if k ≥ 2 and k′ < k′′: ak′ · (M − 1) ≥ c̄M

a1 · (M + 1) +B ≥ c̄<M

if k′ ≥ k + 2: ak+1 ·M +
B

k + 1
≥ c̄<M

if k′ < k′′: ak′ · (M − 1) ≥ c̄<M

Note that the first three inequalities come from the Nash
conditions (players using resources with load M,M − 1
or M−2 do not want to deviate). The remaining inequal-
ities are due to the minimum properties of c̄M and c̄<M .

2. Set ℓr := M ∀ r ∈ {1, . . . , k}, ℓr := M − 1 ∀ r ∈
{k+1, . . . , k′−1}, ℓr := M−2 ∀ r ∈ {k′, . . . , k′′−1}.
If ℓr < 0 for some of the above assigned values, we can
stop since there is no α-PNE with the desired properties.

3. Let n′ := n−k ·M − (k′−k−1) · (M −1)− (k′′−k′) ·
(M−2) be the number of players which are not assigned
yet.

4. Test for all r ≥ k′′ whether the following inequalities
lead to a contradiction (if this is the case, there is no α-
PNE with the desired properties and we can stop):

ℓr ≥ 0

ℓr ≤M − 3

ℓr ≤ ⌊
α · c̄<M

ar
⌋

ℓr ≥ ⌈
c̄<M

ar
⌉ − 1

ℓr ≥ ⌈
c̄M
ar
⌉ − 1

Note that the third inequality ensures that no player on re-
source r wants to deviate. The fourth and fifth inequality
are due to the minimum properties of c̄M and c̄<M .

5. For all r ≥ k′′, let br and b′r be the lower and upper
bounds on ℓr which are induced by the inequalities in
4., that is, br := max{0, ⌈ c̄<M

ar
⌉ − 1, ⌈ c̄Mar

⌉ − 1} and

b′r := min{M − 3, ⌊α·c̄<M

ar
⌋}.

6. If n′ /∈ [
∑

r≥k′′ br,
∑

r≥k′′ b′r], there is no α-PNE with

the desired properties and we can stop.

7. Else set ℓr := br for all r ≥ k′′ and update n′ ← n′ −
∑

r≥k′′ br.

8. If n′ > 0, then consider the resources r ≥ k′′ from k′′

to m and update ℓr ← min{b′r, br + n′} and n′ ← n′ −
(ℓr − br), until n′ = 0.

It is clear that if an α-PNE x with M(x) = M , k(x) = k,
k′(x) = k′ and k′′(x) = k′′, as well as c̄M (x) = c̄M and
c̄<M (x) = c̄<M exists, the above procedure terminates with
a vector ℓ. We now show that ℓ has the desired properties.
Clearly, ℓr ≥ 0 for all r ∈ R and

∑

r∈R ℓr = n. Thus

there is a strategy profile x with load vector ℓ(x) = ℓ. We
now argue that x is an α-approximate PNE with the desired
properties. Clearly, M(x) = M , k(x) = k, k′(x) = k′

and k′′(x) = k′′. Furthermore, c̄M ≤ c̄M (x) and c̄<M ≤
c̄<M (x). Finally, ak ·M + B/k ≤ αc̄M and ar(ℓr(x)) ≤
αc̄<M for all r > k. Thus x is in fact an α-PNE.

Note that for a strategy profile x with M(x) = M , k(x) =
k, k′(x) = k′ and k′′(x) = k′′, there are at most 3 + (m −
k′′ + 1) · (M − 2)+ = O(mn) many possible values for
c̄<M (x), and also at most 3 + (m− k′′ + 1) · (M − 2)+ =
O(mn) many possible values for c̄M (x). Thus if we apply
the above procedure for all possible choices of c̄M (x) and
c̄<M (x), we get an α-PNE x with M(x) = M , k(x) =
k, k′(x) = k′ and k′′(x) = k′′, if such an α-PNE exists.
Since the number of times that we need to apply the above
procedure (for given M,k, k′, k′′) is bounded by O(n2m2),
and the procedure itself is efficient, the overall algorithm is
efficient, too.

E Existence of an approximate PNE with

decreasing load profile

Lemma E.1. For a multi-leader congestion game with an
adversary where the resource set R = [m] is ordered such
that a1 ≤ · · · ≤ am, the following holds for any α ∈ [1, 2]:
If there exists an α-approximate PNE, then there also exists
anα-approximate PNE x with decreasing loads, that is, with
ℓ1(x) ≥ · · · ≥ ℓm(x).

Proof. Assume there is a α-approximate Nash equilibrium
y with ar ≥ ar′ and ℓr(y) > ℓr′(y) for some r, r′ ∈ R.
Then, we show that the profile x with ℓr(x) = ℓr′(y),
ℓr′(x) = ℓr(y) and ℓr̄(x) = ℓr̄(y) for all r̄ ∈ R \ {r, r′} is
a α-approximate Nash equilibrium too. The profile x results
from y by exchanging all players from r and r′. Denote zu,v
for the profile which results from a profile z ∈ X by moving
one player from a resource u ∈ R to a resource v ∈ R. Since
y is a α-approximate Nash equilibrium we have:

arℓr(y) + κ∗
r(y) ≤ α(ar̃(ℓr̃(y) + 1) + κ∗

r̃(yr,r̃)) (12)

for all r̃ ∈ R \ {r}. First, we show, that a player on the re-
source r is satisfied with his strategy considering the pro-
file x. Let M := M(y) = max{ℓr̃(y) : r̃ ∈ R} de-
notes the maximum load with respect to y. If ℓr(y) = M ,
ℓr′(y) ≤ M − 1 and ℓr̄(y) = M − 1 for a resource
r̄ ∈ R \ {r, r′} or ℓr(y) = M , ℓr′(y) ≤ M − 1 and
ℓr̄(y) = M − 2 for a resource r̄ ∈ R \ {r, r′} and r is
the only resource with load M regarding y we know with
Lemma B.1 that the cost of a deviation from r to r̄ must be
not the same than the costs of a deviation from r′ to r̄. In all
the other cases the cost are equal and with inequality (12)

19

we get:

cr(x) = arℓr(x) + κ∗
r(x)

≤ arℓr(y)

≤ α(ar̄(ℓr̄(y) + 1) + κ∗
r̄(yr,r̄))

= α(ar̄(ℓr̄(x) + 1) + κ∗
r̄(xr,r̄)),

for all r̄ ∈ R \ {r′, r}. Note that ℓr(x) = ℓr′(y) < ℓr(y) =
ℓr′(x) and κ∗

r(x) = 0 since r has not maximal load re-
garding x. Now, let us discuss the other two cases. First let
ℓr(y) = M , ℓr′(y) ≤ M − 1 and ℓr̄(y) = M − 1 for a
resource r̄ ∈ R \ {r, r′}. We prove by contradiction, that
in this situation a player on r does not want to deviate to r̄
considering the profile x. Let us assume that a player on r
wants to deviate to r̄ considering the profile x, that means:

cr(x) = arℓr(x) > α(ar̄M +
B

q
), (13)

where q := |M−1(y)| ≥ 1 denotes the number of resources
with load M in y. Since y is a Nash equilibrium we know:

cr(y) = arM +
B

q
≤ α(ar̄M +

B

q + 1
, (14)

where, again, q := |M−1(y)| ≥ 1 denotes the number of
resources with load M in y. With inequality (13) and (14)
we get:

arM + B
q

α
− B

q
<

ar(M − 1) + B
q

α
− B

q + 1
.

Thus, we have

B(q + 1− α) < −arq(q + 1) ≤ 0.

But with B > 0 and q + 1 − α ≥ 1 + 1 − 2 = 0 we
get a contradiction. If ℓr(y) = M , ℓr′(y) ≤ M − 1 and
ℓr̄(y) = M − 2 for a resource r̄ ∈ R \ {r, r′} and r is the
only resource with load M regarding y we also can show
by contradiction, that in this situation a player on r does not
want to deviate to r̄ considering the profile x. Let us assume
that a player on r wants to deviate to r̄ considering the profile
x, that means:

cr(x) = arℓr(x) > α(ar̄(M − 1)). (15)

Since y is a Nash equilibrium we know:

cr(y) = arM +B ≤ α(ar̄(M − 1) +
B

p+ 2
), (16)

where p denotes the denotes the number of resources with
load M − 1 in y. With inequality (15) and (16) we get:

arM +B

α
− B

p+ 2
+ ar̄ <

ar(M − 1)

α
+ ar̄,

where it follows

B(1 − α

p+ 2
) < −ar ≤ 0.

But with B > 0 and 1− α
p+2 ≥ 1− 2

2 = 0 we get a contra-

diction. Altogether, we know that a player on the resource r

does not want to change to a resource r̄ ∈ R \ {r, r′} con-
sidering the profile x. It remains to show that no player on r
wants to deviate to r′. With inequality (12) we get:

cr(x) = arℓr(x) + κ∗
r(x)

≤ arℓr(y)

≤ α(ar′(ℓr′(y) + 1) + κ∗
r′(yr,r′))

≤ α(ar′(ℓr′(x) + 1) + κ∗
r′(xr,r′)).

Thus, the players on r are satisfied with their strategy con-
sidering x. Now, let us prove the same for the players on r′.
Since ar ≥ ar′ we have:

cr′(x) = ar′ℓr′(x) + κ∗
r′(x)

≤ arℓr(y) + κ∗
r(y)

≤ α(ar̄(ℓr̄(y) + 1) + κ∗
r̄(yr,r̄))

≤ α(ar̄(ℓr̄(x) + 1) + κ∗
r̄(xr′,r̄),

for all r̄ ∈ R \ {r′, r}. The second inequality holds due to
inequality (12). Furthermore with inequality (12) and ar ≥
ar′ a player on r′ does not want to change to r:

cr′(x) = ar′ℓr′(x) + κ∗
r′(x)

≤ arℓr(y) + κ∗
r(y)

≤ α(ar′(ℓr′(y) + 1) + κ∗
r′(yr,r′))

≤ α(ar(ℓr(x) + 1) + κ∗
r(xr′,r)).

Thus, the players on r′ do not want to deviate consider-
ing the profile x. Finally, let us show that the players on
r̄ ∈ R \ {r′, r} are satisfied with their strategy regarding
x. Clearly, they do not want to deviate to a resource which
is not r, r′ since they have the same costs regarding x and
y. Furthermore we know, that y is a α-approximate Nash
equilibrium and a deviation to an resource which is not r, r′

would provide the same cost considering x and y. Thus, it
remains to show that a player on r̄ does not want to change
to r and r′. First, let us consider a deviation from r̄ to r.
Since ar ≥ ar′ and y is a α-approximate Nash equilibrium
we have:

cr̄(x) = ar̄ℓr̄(x) + κ∗
r̄(x)

= ar̄ℓr̄(y) + κ∗
r̄(y)

≤ α(ar′(ℓr′(y) + 1) + κ∗
r′(yr̄,r′))

≤ α(ar(ℓr(x) + 1) + κ∗
r(xr̄,r)).

To complete the proof let us consider a deviation from r̄ to
r′. Since ar ≥ ar′ and y is a α-approximate Nash equilib-
rium we get:

cr̄(x) = ar̄ℓr̄(x) + κ∗
r̄(x)

= ar̄ℓr̄(y) + κ∗
r̄(y)

≤ α(ar′(ℓr′(y) + 1) + κ∗
r′(yr̄,r′))

≤ α(ar′(ℓr′(x) + 1) + κ∗
r′(xr̄,r′)).

Altogether, we can conclude that x is a α-approximate Nash
equilibrium.

F Additively Approximate PNE

In addition to multiplicatively approximate equilibria, as
studied in this paper, it also possible to define additively

20

approximate equilibria. A ε-additive approximate PNE is a
strategy profile x ∈ X such that

πi(x) ≤ πi(yi, x−i) + ε for all yi ∈ Xi.

Contrasting the case of K-multiplicative approximate PNE,
however, the existence of ε-additive approximate PNE for
the class of games studied in this paper cannot be guaranteed
for any constant ε > 0.

To see this, note that the considered multi-leader conges-
tion games are invariant under scaling in the sense that mul-
tiplying all cost coefficients ar and the adversary’s budget
B with the same factor λ ≥ 0 results in a game in which
each player’s private cost for any given strategy profile is
scaled by the same factor λ. As a result, given any constant
ε > 0, any instance of a game that does not have an exact
PNE (such as, e.g., the one described in Section 3.3) can be
scaled in such a way that it does not allow for a ε-additive
approximate PNE.

We remark that, while the existence of approximate PNE
with a small additive constant cannot be guaranteed, the ap-
proach in Section 4 can easily be adjusted to compute ε-
additive approximate PNE with the smallest possible ε for a
given instance.

21

	1 Introduction
	1.1 Our Results and Proof Techniques
	1.2 Related Work

	2 The Model
	3 Computing K-approximate PNE
	3.1 An Algorithm for Computing -Approximate Equilibria
	3.2 Termination of Algorithm 1 for =K
	3.3 Tightness of =K

	4 Computing Optimal Approximate Equilibria
	5 Conclusion
	A An Illustrating Example for Algorithm 1
	B Omitted Lemmas from Section 3
	C Omitted Proofs for the Main Results from Section 3
	D Omitted Proofs from Section 4
	E Existence of an approximate PNE with decreasing load profile
	F Additively Approximate PNE

