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We study a dynamic traffic assignment model, where agents base their
instantaneous routing decisions on real-time delay predictions. We formu-
late a mathematically concise model and derive properties of the predictors
that ensure a dynamic prediction equilibrium exists. We demonstrate the
versatility of our framework by showing that it subsumes the well-known full
information and instantaneous information models, in addition to admitting
further realistic predictors as special cases. We complement our theoreti-
cal analysis by an experimental study, in which we systematically compare
the induced average travel times of different predictors, including a machine-
learning model trained on data gained from previously computed equilibrium
flows, both on a synthetic and a real road network.

1. Introduction

Understanding and optimizing traffic networks is a significant effort that impacts billions
of people living in urban areas, with key challenges including managing congestion and
carbon emissions. These phenomena are heavily impacted by individual driver routing
decisions, which are often influenced by ML-based predictions for the delays of road seg-
ments (see, for instance, [17] for an overview of convolutional and graph neural network
based approaches). One key aspect that is not well understood, is that these routing
decisions, in turn, influence the forecasting models by changing the underlying signature
of traffic flows.

In this paper, we address this interplay focusing on the popular dynamic traffic assign-
ment (DTA) framework, on which there has been substantial work over the past decades
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(see the classical book of Ford and Fulkerson [6] or the more recent surveys of Friesz
et al. [8], Peeta and Ziliaskopoulos [30] and Skutella [33]). A fundamental base model
describing the dynamic flow propagation process is the so-called deterministic queuing
model due to Vickrey [36]. Here, a directed graph G = (V,E) is given, where edges
e ∈ E are associated with a queue with positive rate capacity νe ∈ R>0 and a physical
transit time τe ∈ R>0. If the total inflow into an edge e = vw ∈ E exceeds the rate
capacity νe, a queue builds up and agents need to wait in the queue before they are
forwarded along the edge. The total travel time along e is thus composed of the waiting
time spent in the queue plus the physical transit time τe. The Vickrey model is arguably
one of the most important traffic models (see Li, Huang and Yang [22] for an up to date
research overview of the past 50 years), and yet, it is mathematically quite challenging
to analyze (see Friesz et al. [14] for a discussion of the inherent complexities).

Given a physical flow propagation model, the routing and traffic prediction algorithms
are usually subsumed under a behavioral model of agents in order to solve a DTA model.
The behavior of agents is modelled based on their informational assumption which in
turn defines their respective utility function. Most works in the DTA literature on the
Vickrey model can roughly be classified into two main informational categories: the full
information model and the instantaneous information model. In the full information
model, an agent is able to exactly forecast future travel times along a chosen path
effectively anticipating the whole spatio-temporal flow evolution over the network. This
assumption has been justified by letting travelers learn good routes over several trips
and a dynamic equilibrium then corresponds to an attractor of an underlying learning
dynamic. Existence and computation of dynamic equilibria in the full information model
has been studied extensively in the transportation science literature, see [7, 13, 14, 15,
25, 43], whereas the works in [18, 5] allow a direct combinatorial characterization of
dynamic equilibria leading to existence and uniqueness results in the realm of the Vickrey
bottleneck model. While certainly relevant and key for the entire development of the
research in DTA, this concept may not accurately reflect the behavioral changes caused
by the wide-spread use of navigation devices and resulting real-time decisions by agents.

In the instantaneous route choice model, agents are informed in real-time about the
current traffic situations and, if beneficial, reroute instantaneously no matter how good
or bad that route was in hindsight, see Ran and Boyce [31, § VII-IX], Boyce, Ran and
LeBlanc [2, 32], Friesz et al. [9]. Indeed it seems more realistic that the information
available to a navigation device is rather instantaneous and certainly not complete, that
is, congestion information is available only as an aggregate (estimated waiting times
for road traversal) but the individual routes and/or source and destination of travelers
are usually unknown. For the Vickrey model, Graf, Harks and Sering [11] established
the existence of instantaneous dynamic equilibria and derived further structural prop-
erties. One key property that differentiates dynamic equilibria (in the full information
model) from instantaneous dynamic equilibria is the possibility of cyclic behavior of
agents in the latter. More specifically, [11] show that there are instances with only two
origin-destination pairs and a finite flow volume in which any instantaneous dynamic
equilibrium cycles forever. This can never happen in the full information model as an
agent plays a best-response given the collective decisions of all other agents, thus, any
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cycle only increases the travel time.

1.1. Our Contribution

We propose a new DTA formulation within the Vickrey model that is based on predicted
travel times. Since the physical transit times are known a priori, the only unknown is
the precise evolution of the queues over time. In our model, every agent is associated
with a queue prediction function that provides for any future point in time a prediction
of queues. This model includes as special cases the full information model and the
instantaneous information model but it allows to use predictions based on historical
data or the queueing evolution learned en route. Besides these special cases, our model
allows other queue prediction functions and even includes the case of finitely many classes
of agents that may use different predictors.

As our main theoretical contribution, we define this model formally and derive condi-
tions for the queue predictors leading to the existence of dynamic equilibria. The main
approach is based on an extension property of partial equilibrium flows, that is, we show
that any equilibrium flow up to some time θ ≥ 0 can be extended to time θ+α for some
α > 0 which leads to the existence on the whole R using Zorns’ lemma. The extension
step itself is based on a formulation using infinite dimensional variational inequalities in
the edge-flow space and whenever the predictor satisfies a natural continuity condition,
only depends on past information and the predicted arrival times are non-decreasing,
the extension is possible.

While this approach is in line with previous existence proofs using variational inequal-
ities as put forth in the seminal papers by Friesz et al. [7, 13, 14, 15], there are some
remarkable differences. The above works rely on the complete spatio-temporal unfolding
of the path-inflows over the network which is known as network loading. As shown in [11],
already the simple prediction function given by the constant current queues (which leads
to the instantaneous route choice model) leads to dynamic equilibria with cycling be-
havior (forever) and thus puts a path-based formulation over the entire time horizon out
of reach. Our extension approach follows the extension-methodology used in [11] for the
case of constant prediction functions. The more general model, however, comes with
several technical difficulties that we need to address. We demonstrate the applicability
of our main result by showing that it applies for instance to a natural linear regularized
predictor q̂RL

e . The idea here is to predict the queue growth linearly based on previously
observed data on the time interval [θ̄ − δ, θ̄]. The regularization is necessary to obtain
a continuous predictor since the purely linearized predictor q̂Le (θ; θ̄; q) := (θ − θ̄)∂−qe(θ̄)
may be discontinuous as a function in the variable q.

On the experimental side, we conduct a simulation on a small synthetic network, on
the commonly used Sioux Falls network from [20] and on a larger real road network of
Tokyo, Japan, obtained from Open Street Maps [27]. We study how the average travel
time of vehicles in the network is impacted by the application of various predictors. For
this purpose, we also train a linear regression model, for use as one of our predictors.
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1.2. Related Work

The idea of using real-time information and traffic predictions en route and subsequently
change the route is by no means new and has been proposed under varying names such as
ATIS (advanced traveller information systems), see [4, 37, 40] for an overview. Ben-Akiva
et al. [1] introduced DynaMIT, a simulation-based approach designed to predict future
traffic conditions. Other works that also rely on simulation-based models include [23].
Peeta and Mahmassani [29] introduced a rolling horizon framework addressing the real-
time traffic assignment problem. This approach concatenates for fixed consecutive time-
intervals static flow assignments and thus does not comply to our definition of dynamic
equilibrium in which at any time (also within stages) equilibrium conditions must hold.
Huang and Lam [16] allow for different user classes where each class may use a different
travel time prediction. Their model is formulated in discrete time and assumes an acyclic
path formulation.

A large body of research has been dedicated to the use of deep learning techniques, in
particular graph neural networks (GNNs), for predicting street segment delays in road
networks. It is impossible to list all relevant work in this section, we instead describe
some key papers and point the reader to [17] for a complete survey. The work in [21]
uses a random walk-based graph diffusion process to create a convolutional operator
that captures spatial relations. In [41], the authors propose a spatio-temporal graph
convolutional network which model the temporal dependency, whereas [39] models the
spatial dependency through an adaptive learnable dependency matrix and the temporal
dependency with dilated convolution [26]. Finally, graph attention networks (GATs) [35]
have also been used in the context of traffic predictions [42]. We note that our work
bridges the above areas of dynamic route updates based on real time information and of
applying ML models for predicting traffic delay.

Gentile [10] considered a mathematical approach incorporating traffic predictions in
a dynamic traffic assignment (DTA) model. He derives the existence of equilibria using
a variational inequality approach for the considered DTA model under simplifying as-
sumptions such as an acyclic graph. The VI approach is arc and node-based and for its
correctness, the assumption on acyclic (finite) paths is necessary as he uses a telescopic
sum of edge travel times in order to arrive at a path-based VI formulation as used in [7].
Note that this approach fails in the general setting we consider in this paper. For further
references on adaptive route choice models we refer to [19, 24, 12, 34, 38].

2. The Flow Model

In the following, we describe the Vickrey fluid queuing model that we will use throughout
this paper. We consider a finite directed graph G = (V,E) with positive rate capacities
νe ∈ R>0 and positive transit times τe ∈ R>0 for every edge e ∈ E. There is a finite set
of commodities I = {1, . . . , n}, each with a commodity-specific source node si ∈ V and a
commodity-specific sink node ti ∈ V . We assume that there is at least one si-ti path for
each i ∈ I. The (infinitesimally small) agents of every commodity i ∈ I enter the network
according to a locally integrable, bounded network inflow rate function ui : R≥0 → R≥0.
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A flow over time is a tuple f = (f+, f−), where f+, f− : R≥0 × E × I → R≥0 are
locally integrable functions modeling the edge inflow rate f+i,e(θ) and edge outflow rate

f−i,e(θ) of commodity i of an edge e ∈ E at time θ ∈ R≥0. The queue length of edge e at
time θ is given by

qe(θ) :=
∑

i∈I

F+
i,e(θ)−

∑

i∈I

F−
i,e(θ + τe), (1)

for θ ∈ R≥0, where F+
i,e(θ) :=

∫ θ

0 f
+
i,e(z) dz and F−

i,e(θ) :=
∫ θ

0 f
−
i,e(z) dz denote the cu-

mulative (edge) inflow and cumulative (edge) outflow. We implicitly assume f−i,e(θ) = 0
for all θ ∈ [0, τe), which will ensure together with Constraint (4) (see below) that the
queue lengths are always non-negative. For the sake of simplicity, we denote the aggre-
gated in- and outflow rates for all commodities by f+e :=

∑

i∈I f
+
i,e and f−e :=

∑

i∈I f
−
i,e,

respectively.
A feasible flow over time satisfies the following conditions (2), (3), (4), and (5). The

flow conservation constraints are modeled for a commodity i ∈ I and all nodes v 6= ti as

∑

e∈δ+v

f+i,e(θ)−
∑

e∈δ−v

f−i,e(θ) =

{

ui(θ) if v = si,

0 if v 6= si,
(2)

for θ ∈ R≥0 where δ+v := { vu ∈ E } and δ−v := {uv ∈ E } are the sets of outgoing edges
from v and incoming edges into v, respectively. For the sink node ti of commodity i we
require

∑

e∈δ+ti

f+i,e(θ)−
∑

e∈δ−ti

f−i,e(θ) ≤ 0 for all θ ∈ R≥0. (3)

We assume that the queue operates at capacity which can be modeled by requiring

f−e (θ + τe) =

{

νe if qe(θ) > 0,

min { f+e (θ), νe } else,
(4)

for all e ∈ E, θ ∈ R≥0.
Finally, we want the flow to follow a strict FIFO principle on the queues, which can

be formalized by

f−i,e(θ) =







f−e (θ) ·
f+

i,e(ϑ)

f+
e (ϑ)

if f+e (ϑ) > 0,

0 else,
(5)

where ϑ := min {ϑ ≤ θ | ϑ+ τe + qe(ϑ)
νe

= θ } is the earliest point in time a particle can

enter edge e and leave at time θ and qe(ϑ)
νe

is the current waiting time to be spent in
the queue of edge e. Consequently, constraint (5) ensures that the share of commodity
i of the aggregated outflow rate at any time equals the share of commodity i of the
aggregated inflow rate at the time the particles entered the edge.
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2.1. Instantaneous Dynamic Equilibrium

In an instantaneous dynamic equilibrium (IDE) as defined in [11] we assume that, when-
ever an agent arrives at an intermediate node v at time θ, she is given the information
about the current queue length qe(θ) and transit time τe of all edges e ∈ E, and, based
on this information, she computes a shortest v-ti path and enters the first edge on this
path. We define the instantaneous travel time of an edge e at time θ as ce(θ) := τe+ qe(θ)

νe
.

With this we can define commodity-specific node labels ℓi,v(θ) corresponding to current
earliest arrival times when travelling from v to the sink ti at time θ by

ℓi,v(θ) :=

{

θ for v = ti,

mine=vw∈E ℓi,w(θ) + ce(θ) else.
(6)

We say that edge e = vw is active for i ∈ I at time θ, if ℓi,v(θ) = ℓi,w(θ) + ce(θ) and we
denote the set of active edges for commodity i by Ei(θ) ⊆ E.

Definition 1. A feasible flow over time f is an instantaneous dynamic equilibrium (IDE),
if for all i ∈ I, θ ∈ R≥0 and e ∈ E it satisfies

f+i,e(θ) > 0 =⇒ e ∈ Ei(θ). (7)

2.2. Dynamic Nash Equilibrium

In contrast, in the full information model we assume that agents have complete knowl-
edge of the entire (future) evolution of the dynamic flow. If an agent enters an edge

e = vw at time time θ, the travel time is ce(θ) := τe + qe(θ)
νe

and the exit time of edge e
is given by Te(θ) := θ + ce(θ). In this setting it is common (cf. [5]) to define the node
labels in such a way as to denote the earliest possible arrival time at each node (starting
from the commodity’s source node). Here, however, we will instead use an equivalent
definition more in line with the node labels for IDEs. So, for any i ∈ I, v ∈ V and
θ ∈ R≥0 we define a node label ℓi,v(θ) denoting the earliest possible arrival time at node
ti for a particle starting at time θ at node v by setting

ℓi,v(θ) :=

{

θ for v = ti,

mine=vw∈δ+v
ℓi,w(Te(θ)) else.

(8)

We, again, say that an edge e = vw is active for commodity i ∈ I at time θ, if it holds
that ℓi,v(θ) = ℓi,w(Te(θ)) and denote by Ei(θ) the set of active edges for commodity i at
time θ.

Definition 2. A feasible flow over time f is a dynamic equilibrium (DE), if for all
e ∈ E, i ∈ I and θ ≥ 0 it holds that

f+i,e(θ) > 0 =⇒ e ∈ Ei(θ). (9)
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3. Dynamic Prediction Equilibria

IDE is a short-sighted behavioral concept assuming that agents at time θ̄ predict the
future evolution of queue sizes according to the constant function qe(θ) = qe(θ̄) for all
θ ≥ θ̄. In the following we will relax this behavioral assumption by introducing a model
wherein every commodity i ∈ I maintains a predictor q̂i,e for every edge e ∈ E. For a
given flow over time and any two times θ ≥ θ̄ the value q̂i,e(θ; θ̄; q) is then the queue
length at time θ on edge e as predicted by commodity i at time θ̄. Formally, a predictor
q̂i,e has the following signature:

q̂i,e : R≥0 × R≥0 × C (R≥0,R≥0)
E → R≥0

In general such a predictor can depend in any arbitrary way on the entire input data
including, in particular, the future evolution of the queue lengths after the prediction
time θ̄. However, for our theoretical results we require the predictors to behave in a
slightly more restricted way. First we want the predictors to depend continuously on
query time, prediction time and the observed queue lengths.

Definition 3. We call a predictor q̂i,e continuous, if the mapping

q̂i,e : R≥0 × R≥0 × C(R≥0,R≥0)
E → R≥0

with respect to the product topology on the left side and the topology induced by the
uniform norm on all C(R≥0,R≥0) is continuous.

The second property, which is also important for implementing the predictors, is that
the predictors do not use (and, therefore, do not need) any information on the future
evolution of the queues.

Definition 4. A predictor q̂i,e is called oblivious, if the following condition holds

∀θ, θ̄, q, q′ : q≤θ̄ = q′
≤θ̄

=⇒ q̂i,e(θ; θ̄; q) = q̂i,e(θ; θ̄; q
′),

where q≤θ̄ denotes the restriction of the function q : R≥0 × E → R≥0 to [0, θ̄]× E.

The final property ensures that at any point in time there are shortest paths with
respect to the predicted queue lengths that are cycle free. However, before we can for-
mally define this property, we need some additional notation. If an agent of commodity
i ∈ I enters an edge e = vw at time θ, the predicted travel time estimated at time θ̄ is

given by ĉi,e(θ; θ̄; q) := τe +
q̂i,e(θ;θ̄;q)

νe
and the predicted exit time of edge e is given by

T̂i,e(θ; θ̄; q) := θ + ĉi,e(θ; θ̄; q). We call these times θ̄-estimated to emphasize that these
values are predictions made at time θ̄.

Definition 5. A predictor q̂i,e respects FIFO if for any edge e, queue lengths functions
qe and prediction time θ̄ the predicted exit time T̂i,e( · ; θ̄; q) is a monotonically non-
decreasing function.
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This now allows us to describe how agents determine routes according to the predicted
queues. At time θ̄ an agent of commodity i ∈ I predicts that if she enters a path
P = (e1, . . . , ek) at time θ she will arrive at the endpoint of P at time

ℓ̂Pi ( · ; θ̄; q) := T̂i,ek( · ; θ̄; q) ◦ · · · ◦ T̂i,e1( · ; θ̄; q). (10)

Denoting the (finite) set of all simple v-ti paths by Pi,v, the earliest θ̄-estimated time
at which an agent starting at time θ from node v can reach ti is given by

ℓ̂i,v(θ; θ̄; q) := min
P∈Pi,v

ℓ̂Pi (θ; θ̄; q), (11)

where the minimum over an empty set is infinity. The label functions defined in (11)
satisfy the following equations:

ℓ̂i,v(θ; θ̄; q) =







θ if v = ti,

min
vw∈δ+v

ℓ̂i,w(T̂i,vw(θ; θ̄; q); θ̄; q) if v 6= ti.
(12)

We say that an edge e = vw is θ̄-estimated active for commodity i at time θ, if

ℓ̂i,v(θ; θ̄; q) = ℓ̂i,w

(

T̂i,e(θ; θ̄; q); θ̄; q
)

holds true. Furthermore, let us denote the set of

θ̄-estimated active edges for commodity i at time θ by Êi(θ; θ̄; q).

Definition 6. A pair (q̂, f) of a set of predictors q̂ = (q̂i,e)i∈I,e∈E and a flow over time
f is a dynamic prediction equilibrium (DPE), if for all e ∈ E, i ∈ I and θ ≥ 0 it holds
that

f+i,e(θ) > 0 =⇒ e ∈ Êi(θ; θ; q).

We then also call the flow f a dynamic prediction flow with respect to the predictor q̂.

4. Existence of Dynamic Prediction Equilibria

In this section we show that for oblivious and continuous predictors that respect FIFO
there always exist dynamic prediction equilibria. We will also give several examples of
such predictors, including one inducing IDEs as corresponding equilibria.

4.1. Existence of DPE Using a Variational Inequality

To show the existence of DPE we make use of a result by Brézis [3, Theorem 24] guar-
anteeing the existence of solutions to certain variational inequalities.

Theorem 7. Let [a, b) ⊆ R≥0 be some interval, d ∈ N, K ⊆ L2([a, b))d a nonempty,
closed, convex and bounded set and A : K → L2([a, b))d a weak-strong-continuous map-
ping. Then there exists a point g∗ ∈ K such that

〈A(g∗), g − g∗〉 ≥ 0 for all g ∈ K. (13)
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This theorem can be used to build up a dynamic predicted flow with respect to a given
set of predictors by iteratively extending so-called partial dynamic prediction flows which
fulfill the equilibrium property up to some time horizon. First, we formally introduce
these flows:

Definition 8. A partial flow up to time φ is a tuple f = (f+, f−) of locally integrable
functions f+, f− : R≥0 × E × I → R≥0 fulfilling conditions (2), (3) and (4) for θ ≤ φ.
We call f a partial dynamic prediction flow with respect to a set of oblivious predictors
q̂ up to time φ, if f+i,e(θ) > 0 implies e ∈ Êi(θ; θ; q) for all θ ≤ φ, e ∈ E, i ∈ I.

We will now show that such a partial dynamic prediction flow can always be extended
for some additional time interval. We will employ a similar proof-technique to the one
used in [11, Lemma 5.6] for the proof of the extension property of IDEs flows. However,
the analysis is more involved as we allow for a more general functional dependence of
the predicted queue lengths on the past flow evolution. This stands in contrast to IDEs
where each prediction only depends on the queue lengths of one edge at a single point
in time.

Lemma 9. Let I be a finite set of commodities with locally integrable, bounded network
inflow functions ui and let q̂ = (q̂i,e)i∈I,e∈E be a set of continuous and oblivious predictors
that respect FIFO. We can extend any partial dynamic prediction flow f with respect to
q̂ up to time φ to a dynamic prediction flow up to time φ+α for any 0 < α < mine∈E τe.

We will only give a brief proof sketch here – the full proof can be found in the appendix.
The main idea is to first define a set K of all possible extensions of the given partial flow.
We then define a mapping A : K → L2(D)I×E associating with each possible extension
a function which for every commodity i, edge e and time θ is zero if and only if this edge
is active for this commodity at this time. Using the continuity of the predictors we then
show that this mapping is weak-strong continuous such that we can apply Theorem 7
to get a solution to the variational inequality (13). Finally, we show that this solution
is indeed an extension which also satisfies the properties of a dynamic prediction flow.

With this key-lemma we can now show the existence of dynamic prediction flows for
all oblivious and continuous predictors that respect FIFO. Starting with the zero-flow
up to time 0 and iteratively applying Lemma 9 gives us a partial dynamic prediction
flow up to any finite time horizon. Zorn’s lemma then shows the existence of a dynamic
prediction flow for all times, thus, proving our main theorem (the detailed proof can
again be found in the appendix):

Theorem 10. For any network with finite set of commodities, each associated with a
locally integrable, bounded network inflow rate and oblivious and continuous predictors
q̂i,e that respect FIFO, there exists a dynamic prediction flow with respect to q̂.

Example 11. To see why we require the predictors to be continuous, consider the
non-continuous predictor

q̂e(θ; θ̄; q) :=

{

qe(θ̄), if qe(θ̄) < 1

2, else.

9



s t

(1, 1)

(2, 2)

Figure 1: A network where the use of a non-continuous predictor can result in a situa-
tion where no dynamic prediction equilibrium exists. Edges are labeled with
(τe, νe).

Using this predictor in a network consisting of only a single source-sink pair connected
by two parallel edges e1 and e2 (see Figure 1) can already lead to a situation where no
equilibrium flow exists. Let νe1 = 1, τe1 = 1, νe2 = 2, τe2 = 2 and assume a constant
inflow rate of 2 at the source. Then, clearly, during the time interval [0, 1) agents using
the above predictor may only enter edge e1 (as the predicted travel time along edge e1
is strictly smaller than 2). Beginning with time θ = 1, however, every possible flow split
will violate the equilibrium condition, since at that time edge e1 has a queue length of
1 and, thus, a predicted queue length of 2. On the one hand, sending agents into edge
e1 at a rate of less than 1 for any period of time after θ = 1, leads to an immediate
decrease of its queue lengths and, thus, edge e2 becomes inactive again. If, on the other
hand, agents enter edge e1 at a rate of 1 or more its queue length will remain at least 1
and, therefor, edge e1 will be inactive.

4.2. Application Predictors

We now discuss several predictors and analyze whether the theorem above can be applied.
We begin with simple predictors and make them more sophisticated step-by-step.

The Zero-Predictor predicts no queues for all times, i.e.

q̂Zi,e(θ; θ̄; q) = 0.

This predictor is trivially continuous and oblivious and respects FIFO. The resulting
dynamic prediction flow is a flow, where particles just always follow physically shortest
paths.

The constant predictor predicts in a continuous way that all queues will stay constant:

q̂Ci,e(θ; θ̄; q) = qe(θ̄).

This leads to the mentioned special case of IDE flows. Since the constant predictor
clearly is continuous and oblivious and respects FIFO we can apply Theorem 10 and,
thus, reprove the existence of IDE flows shown in [11].

The linear predictor takes the derivative of the queues and extends them linearly up
to some fixed time horizon H ∈ R≥0 ∪ {∞}. Formally it is defined as

q̂Li,e(θ; θ̄; q) :=
(

qe(θ̄) + ∂−qe(θ̄) ·min{θ − θ̄,H}
)+
,
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where (x)+ := max{x, 0} denotes the positive part of x ∈ R. The linear predictor is not
in general continuous since the partial derivative ∂−qe(θ̄) might be discontinuous.

The regularized linear predictor solves this by taking a rolling average of the past
gradient (with rolling horizon δ > 0) and extend the prediction queues according to this:

q̂RL
i,e (θ; θ̄; q) :=

(

qe(θ̄) +
qe(θ̄)− qe(θ̄ − δ)

δ
·min{θ − θ̄,H}

)+

Proposition 12. The regularized linear predictor is oblivious and continuous and re-
spects FIFO. It, thus, induces the existence of a dynamic prediction equilibrium.

The proof is a direct computation (see the appendix for the detailed proof). A different
way of understanding the regularized predictor is that it takes two samples from the past
queue lengths (at time θ̄ and θ̄ − δ) and uses this information to predict future queue
lengths up to the prediction horizon by a linear function. We can generalize this idea by
taking more samples of the past queue (possibly also of queues of neighbouring edges) and
use these values to find a piecewise linear prediction of the queue length for the future.
More precisely, given some sample number k, some step size δ, and a neighbourhood
edge set N(e) ⊆ E we choose real numbers ae

′

i,j for i = 1, . . . , k, j = 1, . . . ,H/δ and
e′ ∈ N(e). Our predictor is then the piecewise linear function interpolating between the
points (θ̄ + jδ, (

∑

e′∈N(e)

∑k
i=1 a

e′

i,j · qe′(θ̄ − iδ))
+) for j = 1, . . . ,H/δ.

By the same arguments as for the regularized linear predictor, this always results in an
oblivious and continuous predictor and, by choosing the parameters ae

′

i,j appropriately, we
can also ensure that it respects FIFO. Thus, such a predictor is also guaranteed to induce
a dynamic prediction equilibrium. This then immediately raises the question of how to
choose the parameters ae

′

i,j in order to achieve a good predictor. In our experimental
section below, we will use machine learning to learn these parameters by evaluating past
data. We will then denote the resulting predictor by q̂ML and call it a linear regression
predictor. We provide more details on the features and data used to train the predictor
in the following section.

Finally, the perfect predictor predicts the queues exactly as they will evolve, i.e. it
satisfies

q̂Pi,e(θ; θ̄; q) := qe(θ).

This predictor clearly is not oblivious and, thus, we can not apply our existence result
here. However, dynamic predicted flows with respect to this predictor do exist as those
are just dynamic equilibria for which existence has been proven in [5].

5. Computational Study

In the following computational study, we want to compare the different predictors that we
introduced in the last section with a machine-learning based alternative. To compare the
predictors, we introduce an extension based algorithm which builds an approximation
of dynamic flow prediction equilibria for a given set of predictors. We also use this
algorithm to generate training data for the machine learning system using the constant
predictors, which results in an approximation of IDEs.

11



As a metric for the performance of different predictors, we monitor their average travel
times in an extension with multiple predictors used side by side: Let i be a commodity
with net inflow rate ui(θ) := ūi for θ ≤ h and ui(θ) := 0 for θ > h, where ūi ∈ R>0 is the
constant inflow rate up to some time h. Let oi(θ) :=

∑

e∈δ−t
f−i,e(θ)−

∑

e∈δ+t
f+i,e(θ) denote

the outflow rate of commodity i out of the network. Taking the integral of ui(ψ)− oi(ψ)
over [0, φ] yields the flow of commodity i that is inside the network at time φ. If we
integrate the flow inside the network over some time period [0,H] with H ≥ h, we obtain
the total travel time of particles of commodity i up to time H:

T total
i :=

∫ H

0

∫ φ

0
ui(ψ)− oi(ψ) dψ dφ

The average travel time is defined as T avg
i := T total

i /(h · ūi).

5.1. Extension based simulation

As proposed in our model, each infinitesimal agent updates its route each time after
traversing an edge. As our flow is continuous, this would imply, that the prediction
and therefore also the dynamic shortest paths are updated in a continuous manner.
For a computational study, this can only be approximated: In our implementation,
we assume that a prediction taken at time θ̄ stays valid for a certain time interval
[θ̄, θ̄ + ε), after which all queue predictions are recalculated and agents choose new
routes. More specifically, during our implementation, we maintain piece-wise constant
inflow and outflow functions f+i,e, f

−
i,e as well as piece-wise linear queue lengths qe. We

have a sequence of equidistant prediction times θ̄k at which the predictions are updated
in the form of piece-wise linear functions q̂i,e( · ; θ̄k; q). From these predictions, we derive

the time-dependent cost functions ĉi,e( · ; θ̄k; q) as well as labels l̂i,v( · ; θ̄k; q) which are
in turn piece-wise linear functions.

For a commodity i the label functions (l̂i,v( · ; θ̄k; q))v∈V describe the time-dependent
arrival times at sink ti with respect to the dynamic cost functions (ĉi,e( · ; θ̄k; q))e∈E .
These label functions can be computed using a simple Bellman-Ford based algorithm
introduced by [28]. Once, the label functions are available, the set of active edges
Êi(θ̄k; θ̄k; q) can be easily determined. We then send flow along these active edges until
the next prediction time θ̄k+1. This is done with the following so-called distribution
phase: Let us first assume, that the node inflow b−i,v(θ) :=

∑

e∈δ−v
f−i,e(θ) is constant

on some proper interval [φ, φ + ε) ⊆ [θ̄k, θ̄k+1). The edge-inflow functions of edges

e ∈ δ+v are then extended on [φ, φ + ε) by setting f+i,e(θ) := b−v,i(θ)/
∣

∣

∣
δ+v ∩ Êi(θ̄k; θ̄k; q)

∣

∣

∣
if

e ∈ Êi(θ̄k; θ̄k; q) and f+i,e(θ) := 0 otherwise. The edge outflow rates are then determined
using conditions (4) and (5).

To build a feasible dynamic flow, we have to comply with the flow conservation con-
straints when extending the flow. As the outflow of edges may vary during a single
interval [θ̄k, θ̄k+1) we can only extend the flow with the above method until some edge
outflow changes, after which we would have to start another distribution phase. By
choosing ε > 0 such that φ + ε is the next time an edge changes its outflow rate (or
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Figure 2: A network with constant inflow at source s. The only sink is node t. Edges
are labeled with (τe, νe).

the next prediction time), the flow conservation constraint is satisfied. This implies that
there might be a multitude of smaller distribution phases during a single prediction in-
terval. However, these subsequent distribution phases can be sped up by only updating
nodes where edge outflow rates of incoming edges have changed.

We include the code of our simulations in the supplementary material.

5.2. Data

We conduct our experiments on three graphs. The first is a warm-up synthetic graph
with 4 nodes and 5 edges. We present the graph in Figure 2. The second graph is
the road map of Sioux Falls as given in [20] which is commonly used in the transport
science literature. This public data set comes with edge attributes free-flow travel time
τe and capacity νe. The third graph is the center of Tokyo, as obtained from Open Street
Maps [27]. This graph includes information about the free-flow speed, the length and
the numbers of lanes of each road segment e. We compute the transit time τe as the
product of the free-flow speed and the length of edge e. The capacity νe is calculated by
multiplying the number of lanes with the free-flow speed.

For the latter two networks, commodities are randomly chosen. Detailed information
on these networks are depicted in Table 1.

Network |E| |V | |I|

Sioux Falls 75 24 12
Tokyo 4,803 3,538 35

Table 1: Attributes of the considered networks

5.3. The Machine Learned Predictor

To assess the impact of ML-based models in our setting, we train a simple linear re-
gression predictor for each network. To obtain training data for the regression, we run
simulations using the extension based framework of Section 5.1 with the simpler constant
predictor introduced in Section 4.2. This allows the model to estimate the progression of
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Figure 3: Average travel times of competing predictors in the synthetic network in Fig-
ure 2.

queues when agents follow our behavioral model. The features used to train the model
are 10 observations of the past queue length of the edge and of neighboring edges.

5.4. Comparison of Predictors

We first take a closer look at the synthetic network as shown in Figure 2. Here, we want
to analyze how the average travel times of competing predictors evolve while increasing
the total network inflow. For each oblivious predictor described in Section 4.2, we add a
commodity i ∈ {q̂Z, q̂C, q̂L, q̂RL, q̂ML}. Each of these commodities has the same source s
and sink t and the same constant inflow ūi up to time h = 25. The outcome of running
the simulation with time horizon H = 100 for each sampled total inflow in (0, 30) can
be seen in Figure 3. The ML based predictor performed best, while notably the Zero-
Predictor, who sends flow along paths (s, t) and (s, v, w, t) equally at all times, performs
better than the remaining predictors.

For the road-networks of Sioux Falls and Tokyo, we randomly generate inflow rates
according to the edge capacities of the network. For each commodity i, we ran the
simulation after adding 5 additional commodities with the same source and sink as i
– one for each predictor – with a very small constant inflow rate. We monitored their
average travel time as a measure of the performance of the different predictors. All other
commodities in the network were assigned the constant predictor, such that the resulting
queues should behave similar to the training data.

Generally, the Zero-Predictor performs the worst in this scenario; the machine learning
based predictor performs similarly well as the remaining predictors. We include more
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detailed results in the appendix. We believe it is an interesting future direction to explore
more complex learning algorithms and how they interface with the dynamic prediction
equilibrium concept as well as understand how different graph topologies impact the
various predictors.
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and Yoshua Bengio. Graph attention networks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018.

[36] William S Vickrey. Congestion theory and transport investment. American Eco-
nomic Review, 59(2):251–60, May 1969.

[37] David Watling. Urban traffic network models and dynamic driver information sys-
tems. Transport Reviews, 14(3):219–246, 1994.

[38] David Watling and Martin L. Hazelton. The dynamics and equilibria of day-to-day
assignment models. Networks and Spatial Economics, 3:349–370, 2003.

17

 https://www.openstreetmap.org 


[39] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph
wavenet for deep spatial-temporal graph modeling. In Proceedings of the 28th In-
ternational Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, 2019.

[40] Hai Yang. Multiple equilibrium behaviors and advanced traveler information
systems with endogenous market penetration. Transportation Research Part B:
Methodological, 32(3):205–218, 1998.

[41] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden., pages 3634–3640, 2018.

[42] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. GMAN: A
graph multi-attention network for traffic prediction. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 1234–1241, 2020.

[43] Daoli Zhu and Patrice Marcotte. On the existence of solutions to the dynamic user
equilibrium problem. Transportation Science, 34(4):402–414, 2000.

18



A. Omitted Proof Details

In this section we provide the proofs for our theoretical results which were omitted from
the main body of the paper.

A.1. The Proof of the Extension Lemma

Before we can prove Lemma 9 we first have to recall some definitions from functional
analysis. Let [a, b] ⊆ R≥0 be a closed interval. Then the L2-space for this interval is
defined as

L2([a, b]) :=

{

x : [a, b]→ R

∣

∣

∣

∣

∫ b

a

x(ξ)2 dξ <∞

}

.

Together with the scalar product 〈x, y〉 :=
∫ b

a
x(ξ)y(ξ) dξ it forms a Hilbert space with

induced norm ‖f‖L2 . For vectors of functions f, g ∈ L2([a, b])d we define 〈f, g〉 :=
∑d

i=1〈fi, gi〉 making L2([a, b])d itself a Hilbert space.
The space of continuous functions C([a, b]) on this interval together with the uniform

norm ‖f‖∞ := sup { |f(x)| | x ∈ [a, b] } forms a Banach space.

Definition 13. A sequence fk of vectors of functions in L2([a, b])d converges weakly to
f ∈ L2([a, b])d, if limk→∞〈f

k, g〉 = 〈f, g〉 holds for all g ∈ L2([a, b])d.
A mapping A : K → Y from some subset K ⊆ L2([a, b])d to a Banach space Y is

weak-strong-continuous at f ∈ K, if for every sequence fk that converges weakly to f ,
we have limk→∞

∥

∥A(fk)−A(f)
∥

∥

Y
= 0. The mapping itself is weak-strong-continuous if

it is weak-strong-continuous at all f ∈ K.

Proof of Lemma 9. Let f be a partial dynamic prediction flow up to time θ with respect
to a set of oblivious and continuous predictors q̂. Choose some α ∈ (0,mine∈E τe),
let D := [φ, φ + α] and define the inflow of commodity i at node v and time θ by
b−i,v(θ) :=

∑

e∈δ−v
f−i,e(θ) + 1v=siui(θ) for all θ ∈ [φ, φ + α], where f−i,e is uniquely defined

by (4) and (5). Because we chose α < τe, the outflow rates f−i,e|D and therefore also

the balances b−i,v do not depend on the yet do be defined inflow rates f+i,e|D during the
interval D.

To apply Theorem 7, we first define the set of all possible extensions of f on the
interval D in the form of inflow functions gi,e ∈ L

2(D) one of which should later become
f+i,e|D:

K :=

{

g ∈ L2(D)I×E

∣

∣

∣

∣

∣

∀i ∈ I, v ∈ V \ {ti} :
∑

e∈δ+v
gi,e = b−i,v a.e.

∀i ∈ I :
∑

e∈δ+ti
gi,e ≤ b

−
i,ti

a.e.,∀i ∈ I, e ∈ E : gi,e ≥ 0

}

This set is clearly closed and convex. Boundedness follows from the boundedness of the
network inflow rates and the edge outflow rates (cf. (4)). Finally, for non-emptiness, we
observe that flow particles of commodity i start at node si, from which ti is reachable,
and – in a dynamic prediction flow – can never enter an edge towards a node from which
there is no path to ti. Thus, flow of commodity i can only arrive at nodes which have at
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least one outgoing edge or are ti. So, for every node v 6= ti with b−i,v 6= 0 we can always

choose some edge e ∈ δ−v and define gi,e := b−i,v to obtain some element of K.
We note that, for any g ∈ K, we can extend the flow f with g to a partial flow up

to time φ + α by assigning f+i,e|D ← gi,e and reassign f−i,e using (4) and (5). Then,
conditions (2) and (3) are fulfilled almost everywhere due to

∑

e∈δ+v
gi,e = bi,v and

∑

e∈δ+ti
gi,e ≤ bi,ti , respectively. Changing g on a null set, we can obtain the required

properties for all θ ≤ φ+ α.
Now, we want to establish a weak-strong-continuous map A : K → L2(D)I×E to

which a solution of the variational inequality (13) would give an extension preserving
the properties of dynamic prediction equilibria. For this, we choose the map defined by

A(g)i,e(θ) := l̂i,w

(

T̂i,e(θ; θ; q
g); θ; qg

)

− l̂i,v (θ; θ; qg) for θ ∈ D, e = (v,w) ∈ E, i ∈ I

where qg ∈ C (R≥0,R≥0)
E is the queue of the partial flow up to time φ + α defined by

the extension of f with g. We observe that for any time θ ∈ D we have A(g)i,e(θ) = 0
if and only if e is θ-predicted active for commodity i, i.e. particles of commodity i are
allowed to enter this edge at that time.

In order to show that this mapping A is indeed weak-strong continuous we decompose
it into a concatenation of several simpler maps and then prove continuity of each of those
intermediate steps separately.

Claim 1. The mapping B : L2(D)I×E → C([0, φ + α])E , (gi,e)i∈I,e∈E 7→ (qge )e∈E is
weak-strong continuous, i.e.

‖gn − g‖L2 −→ 0 =⇒
∥

∥qg
n

− qg
∥

∥

∞
−→ 0.

Proof of Claim 1. Cominetti, Correa and Larré have shown in [5, Lemma 4 and sec-
tion 5.5] that for any feasible dynamic flow f , the map (f+i,e)i∈I 7→ qe is weak-strong-

continuous from Lp([0,M))I to C([0,M ]) and therefore (f+i,e)i∈I,e∈E 7→ (qe)e∈E is also

weak-strong-continuous from L2([0,M))I×E to C([0,M ])E for any M ≥ 0. This directly
implies that B is also weak-strong continuous.

Claim 2. Let M ∈ R≥0, (qn)n ⊆ C([0, φ+α])E some sequence of partial queue functions
converging uniformly to some set of queue functions q ∈ C([0, φ + α])E and q̂i,e some
continuous and oblivious predictor. Then for every ǫ > 0 there exist N ∈ N and δ > 0
such that for all n ≥ N , θ, θ′ ∈ [0,M ] and θ̄, θ̄′ ∈ D with |θ − θ′| ,

∣

∣θ̄ − θ̄′
∣

∣ < δ we have

∣

∣q̂i,e(θ
′; θ̄′; qn)− q̂i,e(θ; θ̄; q)

∣

∣ ≤ ǫ.

Proof of Claim 2. This follows directly from the continuity of the predictor q̂i,e together
with the fact that [0,M ] and D are compact sets.

Claim 3. For every M ∈ R≥0 the mapping

C(D)E → C([0,M ]×D)I×V , (qe) 7→ (ℓ̂i,v( · , · , (qe)))
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is strong-strong continuous, i.e.

‖qn − q‖∞ −→ 0 =⇒
∥

∥

∥
(ℓ̂i,v( · , · , qn))− (ℓ̂i,v( · , · , q))

∥

∥

∥

∞
−→ 0.

Proof of Claim 3. We first show that for every commodity i and every simple path P
the mapping

C(D)E → C([0,M ] ×D)I , q 7→ ℓ̂Pi ( · , · , q)

is strong-strong continuous for every M ∈ R≥0. We prove this by induction on the
length of P . The base case, i.e. a path consisting of a single edge e, follows directly from
Claim 2 as in this case we have ℓ̂Pi (θ; θ̄; q) = θ + 1

νe
q̂i,e(θ; θ̄; q) + τe. For the induction

step let P be a path of length at least two and ending with some edge e, i.e. P = P ′, e.
Then we have
∥

∥

∥
ℓ̂Pi ( · ; · ; qn)− ℓ̂Pi ( · ; · ; q)

∥

∥

∥

∞
= sup

θ∈[0,M ]
θ̄∈D

∣

∣

∣
ℓ̂Pi (θ; θ̄; qn)− ℓ̂Pi (θ; θ̄; q)

∣

∣

∣

= sup
θ∈[0,M ]
θ̄∈D

∣

∣

∣
T̂i,e(ℓ̂

P ′

i (θ; θ̄; qn); θ̄; qn)− T̂i,e(ℓ̂
P ′

i (θ; θ̄; q); θ̄; q)
∣

∣

∣

= sup
θ∈[0,M ]
θ̄∈D

∣

∣

∣

∣

ℓ̂P
′

i (θ; θ̄; qn) +
1

νe
q̂i,e(ℓ̂

P ′

i (θ; θ̄; qn); θ̄; qn)− ℓ̂P
′

i (θ; θ̄; q)−
1

νe
q̂i,e(ℓ̂

P ′

i (θ; θ̄; q); θ̄; q)

∣

∣

∣

∣

≤ sup
θ∈[0,M ]
θ̄∈D

∣

∣

∣
ℓ̂P

′

i (θ; θ̄; qn)− ℓ̂P
′

i (θ; θ̄; q)
∣

∣

∣

+ sup
θ∈[0,M ]
θ̄∈D

∣

∣

∣

∣

1

νe
q̂i,e(ℓ̂

P ′

i (θ; θ̄; qn); θ̄; qn)−
1

νe
q̂i,e(ℓ̂

P ′

i (θ; θ̄; q); θ̄; q)

∣

∣

∣

∣

=
∥

∥

∥
ℓ̂P

′

i ( · ; · ; qn)− ℓ̂P
′

i ( · ; · ; q)
∥

∥

∥

∞

+
1

νe
sup

θ∈[0,M ]
θ̄∈D

∣

∣

∣
q̂i,e(ℓ̂

P ′

i (θ; θ̄; qn); θ̄; qn)− q̂i,e(ℓ̂
P ′

i (θ; θ̄; q); θ̄; q)
∣

∣

∣
,

where the first term converges by induction while the second converges by induction
combined with Claim 2. From this the statement of Claim 3 follows immediately as
every ℓ̂i,v is a minimum over a finite number of functions ℓ̂Pi .

Claim 4. For any set of continuous and oblivious predictors (q̂i,e) ∈ C(R≥0)
I×E and any

set of partial queues q ∈ C([0, φ + α])E the predicted labels ℓ̂i,v( · ; · ; q) are continuous
in the first two arguments.

Proof of Claim 4. This follows directly from the continuity of the predictors and the
definition of the predicted labels.
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We can now proceed to prove that the mapping A is weak-strong continuous. Let (gni,e)
be a sequence in K converging weakly to some (gi,e) ∈ K. We have to show that A(gni,e)

then converges strongly to A(gi,e), i.e.
∥

∥

∥
A(gni,e)−A(gi,e)

∥

∥

∥

∞
−→ 0 or, equivalently, for

every ǫ > 0, e = (v,w) ∈ E and i ∈ I there exists some N ∈ N such that for all n ≥ N
we have

∥

∥A(gni,e)i,e −A(gi,e)i,e
∥

∥

∞

= sup
θ∈D

∣

∣

∣
l̂i,w(T̂i,e(θ; θ; q

gn); θ; qg
n

)− l̂i,v(θ; θ; qg
n

)− l̂i,w(T̂i,e(θ; θ; q
g); θ; qg) + l̂i,v(θ; θ; qg)

∣

∣

∣

≤ ǫ.

Due to Claim 4 and the fact that D is compact, there exists some δ > 0 such that for

all θ, θ̄ ∈ D and θ′ ∈ R≥0 with |θ − θ′| < δ we have
∣

∣

∣
ℓ̂i,w(θ; θ̄; qg)− ℓ̂i,w(θ′; θ̄; qg)

∣

∣

∣
< ǫ/3.

Now choose N ∈ N such that for all n ≥ N we have

•

∥

∥

∥
T̂i,e( · ; · ; qg

n

)− T̂i,e( · ; · ; qg)
∥

∥

∥

∞
= 1

νe

∥

∥q̂i,e( · ; · ; qg
n

)− q̂i,e( · ; · ; qg)
∥

∥

∞
< δ

on D ×D (possible because of Claims 1 and 2),

•

∥

∥

∥
ℓ̂i,v( · ; · ; q̂g

n

)− ℓ̂i,v( · ; · ; q̂g)
∥

∥

∥

∞
< ǫ/3 on D ×D (possible because of Claims 1

to 3) and

•

∥

∥

∥
ℓ̂i,w( · ; · ; q̂g

n

)− ℓ̂i,w( · ; · ; q̂g)
∥

∥

∥

∞
< ǫ/3 on D′×D, where we define a new interval

D′ = [φ, φ+ α+ maxθ∈D
q̂i,e(θ,θ,qg)

νe
+ δ] (possible because of Claims 1 to 3)

Then, for every k ≥ K and θ ∈ D we have T̂i,e(θ, θ, q
gn) ≤ Ti,e(θ, θ, q

g) + δ ∈ D′ and,
thus,

∣

∣

∣
l̂i,w

(

T̂i,e(θ; θ; q
gn); θ; qg

n
)

− l̂i,v
(

θ; θ; qg
n)

− l̂i,w

(

T̂i,e(θ; θ; q
g); θ; qg

)

− l̂i,v (θ; θ; qg)
∣

∣

∣

≤
∣

∣

∣
l̂i,w

(

T̂i,e(θ; θ; q
gn); θ; qg

n
)

− l̂i,w

(

T̂i,e(θ; θ; q
gn); θ; qg

)
∣

∣

∣

+
∣

∣

∣
l̂i,w

(

T̂i,e(θ; θ; q
gn); θ; qg

)

− l̂i,w

(

T̂i,e(θ; θ; q
g); θ; qg

)
∣

∣

∣

+
∣

∣

∣
l̂i,v

(

θ; θ; qg
n)

− l̂i,v (θ; θ; qg)
∣

∣

∣

< ǫ/3 + ǫ/3 + ǫ/3 = ǫ,

which is exactly what we had to prove.
Thus, Theorem 7 implies the existence of a solution g∗ to the variational inequality. It

remains to show that the extension f∗ of f with g∗ is in fact a partial dynamic prediction
flow up to time φ + α. We already argued that the extension is a partial flow. Hence,
we only have to verify that for all i ∈ I and θ ∈ [0, φ + α) the condition

f∗+i,e (θ) > 0 =⇒ e ∈ Êi(θ; θ; q
g∗). (14)

22



holds. As the predictors q̂i,e, i ∈ I are oblivious, they only depend on past queues;
therefore, this condition is already fulfilled for θ < φ as f was already a partial dynamic
prediction flow up to time φ and the queues of f and f∗ coincide on [0, φ). Hence, we
only have to show this condition for θ ∈ [φ, φ+ α).

Suppose that (14) does not hold for almost all θ ∈ [φ, φ+α). Then there is an edge e, a
commodity i, and a set of times Θ ⊆ [φ, φ+α) of positive measure, such that g∗i,e(θ) > 0

and e 6∈ Êi(θ; θ; q
g∗) for all θ ∈ Θ. It follows that A(g∗)i,e(θ) > 0 for all θ ∈ Θ. Since g∗

and A(g∗) are non-negative we have:

〈A(g∗), g∗〉 ≥

∫

Θ
A(g∗)i,e(θ) · g

∗
i,e(θ) dθ > 0. (15)

We will now define a new solution g′ ∈ K that fulfils 〈A(g∗), g′〉 = 0. As already
mentioned, for any solution – and especially for g∗ – we have the following property:
For every commodity i, every node v 6= ti with b−i,v 6= 0 and every time θ there exists

an outgoing edge e ∈ δ+v that is active, i.e., e ∈ Êi(θ; θ; q
f∗

). Furthermore, the sets
Θi,e := { θ ∈ [φ, φ+ α] | e ∈ Êi(θ; θ; q

f∗

) } are, by their definition and the continuity of

the predicted label functions ℓ̂i,v, closed and, therefore, measurable. Thus, we can define
g′ ∈ K as follows. At every node v, for every commodity i and at every point in time
θ, we send all arriving flow at v of commodity i into an edge e ∈ Êi(θ; θ; q

f∗

), where
Êi(θ; θ; q

f∗

) are the active edges according to g∗. It is easy to check that this implies
〈A(g∗), g′〉 = 0. Combining this with (15) we get

〈A(g∗), g′ − g∗〉 = 〈A(g∗), g′〉 − 〈A(g∗), g∗〉 < 0,

which is a contradiction to (13). Thus, f∗ satisfies (14) almost everywhere. Now, let
Θ0 be the set of points in time where (14) is not satisfied. Then Θ0 is a set of measure
zero and it is possible to modify the edge inflow rates at every θ ∈ Θ0, such that flow
conservation and (14) is fulfilled by sending all flow into edges in Êi(θ; θ; q

f∗

). This has
no impact on the queues or the shortest path distances, thus, resulting in an extension
of f satisfying (14) everywhere.

A.2. Proof of the Existence Theorem

Proof of Theorem 10. We define the set of all partial dynamic prediction flows with
respect to the given set of predictors q̂ as

F(q̂) := { (f, θ) | f a partial dynamic prediction flow w.r.t. q̂ up to time θ ∈ R≥0 ∪ {∞} } .

This set is clearly non-empty as the zero-flow is a partial dynamic prediction flow up to
time 0. We also define a partial order � on F(q̂) by defining

(f, θ) � (f ′, θ′) :⇐⇒ θ ≤ θ′ ∧ f ′≤θ = f≤θ.

Then every chain (f1, θ1) � (f2, θ2) � . . . has an upper bound (f, θ). Namely, we can
define θ := supk∈N { θk } and f+ by setting f+i,e(θ) := f+k,i,e(θ) for any k with θ < θk.
Note that, due to the definition of the partial order � this is well-defined.
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Thus, Zorn’s lemma guarantees the existence of a maximal element (f, θ) ∈ F . Now
assume for contradiction that θ 6=∞. Then, by Lemma 9, we can extend this flow to a
partial dynamic prediction flow f ′ up to some time θ + α. This, however, means that
(f, θ) � (f ′, θ + α) and (f, θ) 6= (f ′, θ + α) – contradicting the maximality of (f, θ). So,
any maximal element f of F already has to be a dynamic prediction flow with respect
to q̂ for all times.

A.3. Continuity of the Regularized Linear Predictor

Proof of Proposition 12. We only consider the case without finite time horizon, i.e. H =
∞. The other case follows completely analogous. Let f be some feasible flow, θ, θ̄ ∈
R≥0, (qe) ∈ C(R≥0)

E , ǫ > 0 and e ∈ E some fixed edge. We define

ǫ′ :=
ǫ

4
·min

{

1,
δ

qe(θ̄)− qe(θ̄ − δ)
,

δ
∣

∣θ − θ̄
∣

∣ + 2

}

> 0. (16)

Now, due to the continuity of q there exists some γ > 0 such that for all e ∈ E and
ζ ∈ R≥0 with

∣

∣θ̄ − ζ
∣

∣ < γ we have
∣

∣qe(θ̄)− qe(ζ)
∣

∣,
∣

∣qe(θ̄ − δ) − qe(ζ − δ)
∣

∣ < ǫ′/2. Then,
for all θ′, θ̄′ ∈ R≥0, (q

′
e) ∈ C(R≥0)

E with |θ − θ′| ,
∣

∣θ̄ − θ̄′
∣

∣ , ‖q − q′‖∞ < min { 1, ǫ′/2, γ }
we have

•
∣

∣qe(θ̄)− q
′
e(θ̄

′)
∣

∣ ≤
∣

∣qe(θ̄)− qe(θ̄
′)
∣

∣ +
∣

∣qe(θ̄
′)− q′e(θ̄

′)
∣

∣ < ǫ′ and

•
∣

∣qe(θ̄ − δ)− q
′
e(θ̄

′ − δ)
∣

∣ ≤
∣

∣qe(θ̄ − δ)− qe(θ̄
′ − δ)

∣

∣ +
∣

∣qe(θ̄
′ − δ)− q′e(θ̄

′ − δ)
∣

∣ < ǫ′.

Combining these allows us to get the desired bound

∣

∣

∣

∣

qe(θ̄) +
qe(θ̄)− qe(θ̄ − δ)

δ
· (θ − θ̄)− q′e(θ̄

′)−
q′e(θ̄

′)− q′e(θ̄
′ − δ)

δ
· (θ′ − θ̄′)

∣

∣

∣

∣

≤
∣

∣qe(θ̄)− q
′
e(θ̄

′)
∣

∣ +
1

δ

∣

∣qe(θ̄)− qe(θ̄ − δ)
∣

∣ ·
∣

∣θ − θ′ + θ̄′ − θ̄
∣

∣

+
1

δ

∣

∣qe(θ̄)− q
′
e(θ̄

′) + q′e(θ̄
′ − δ)− qe(θ̄ − δ)

∣

∣ ·
∣

∣θ′ − θ̄′
∣

∣

≤ ǫ′ +
1

δ

∣

∣qe(θ̄)− qe(θ̄ − δ)
∣

∣ · ǫ′ +
1

δ
· 2ǫ′ ·

(
∣

∣θ − θ̄
∣

∣ + 2
)

(16)

≤
ǫ

4
+
ǫ

4
+

2ǫ

4
= ǫ.

Since taking the maximum of two continuous functions is again a continuous function,
this shows that the regularized linear predictor is indeed a continuous predictor.

B. More Results of the Computational Analysis

As mentioned in the main paper, here are a few more results of the computational
study alongside some explanations. Here, we focus only on the two larger networks,
i.e. the Sioux-Falls and the Tokyo networks. In both cases the training data of the
linear regression predictor stems from simulations up to some time horizon H where all
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Figure 4: Average travel times compared to the minimum average travel time in the
Sioux Falls network.

commodities use the constant predictor. From these simulations, for all edges e ∈ E
samples of the form

(

qe′(θ̄ − iδ)
)

e′∈N(e),i=0,...,k

were extracted as input and
(

qe(θ̄ + jδ)
)

j=1,...,k′

as labels of the model for θ̄ ∈ [0,H].

B.1. Results on the Sioux Falls Network

As the number of edges is small enough in the Sioux Falls network, we trained a separate
model for each edge each with a 90%/10% split for the training data and test data. The
coefficient of determination was above 0.9 for all edges except for 6 edges but always
higher than 0.5.

Evaluating the average travel time of the different predictors for 12 random commodi-
ties as explained in Section 5.4 yields the results depicted in Figure 4. We can see that
the linear regression predictor q̂ML performs similarly well as the regularized linear pre-
dictor q̂RL which is slightly beaten by the constant and the linear predictors. The Zero
predictor performs worse than all of the rest many times.

B.2. Results on the Tokyo Network

Because the Tokyo instance has substantially more edges, we decided to train a single
model used for all edges. In order to predict the queue lengths of an edge e = vw in
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Figure 5: Average travel times compared to the minimum average travel time in the
Tokyo network.

this model, we use the data of (up to) 5 incoming edges of v and insert 0s if v has less
than 5 incoming edges. A training and validation split of 90%/10% yields a coefficient
of determination of 0.97.

Running the evaluation now on 35 randomly chosen commodities gives the results
shown in Figure 5. In this scenario, the linear regression predictor performed similarly
well as the linear and the constant predictor. Here, the Zero predictor performs a little
bit better than the regularized linear predictor, but worse than the remaining three.
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