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Abstract

This paper studies the existence of pure Nash equilibria in resource graph games, which
are a general class of strategic games used to succinctly represent the players’ private costs.
There is a finite set of resources and the strategy set of each player corresponds to a set of
subsets of resources. The cost of a resource is an arbitrary function that depends on the load
vector of the resources in a specified neighborhood. As our main result, we give complete
characterizations of the cost functions guaranteeing the existence of pure Nash equilibria for
weighted and unweighted players, respectively.

1. For unweighted players, pure Nash equilibria are guaranteed to exist for any choice of the
players’ strategy space if and only if the cost of each resource is an arbitrary function
of the load of the resource itself and linear in the load of all other resources where the
linear coefficients of mutual influence of different resources are symmetric. This implies in
particular that for any other cost structure there is a resource graph game that does not
have a pure Nash equilibrium.

2. For weighted games where players have intrinsic weights and the cost of each resource
depends on the aggregated weight of its users, pure Nash equilibria are guaranteed to exist
if and only if the cost of a resource is linear in all resource loads, and the linear factors of
mutual influence are symmetric, or there is no interaction among resources and the cost is
an exponential function of the local resource load.

3. For the special case that the players’ strategy sets are matroids, we show that pure Nash
equilibria exist under a local monotonicity property, even when cost functions are player-
specific. We point out an application of this result to bilevel load balancing games, which
are motivated by the study of network infrastructures that are resilient against external
attackers and internal congestion effects.

4. Finally, we discuss the computational complexity of deciding whether a given strategy
profile is a pure Nash equilibrium and derive hardness results for network routing games
and matroid games, respectively.
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1 Introduction

Multi-agent systems are characterized by the intricate interplay of the different and sometimes
conflicting self-interests of a large number of independent individuals. In order to study the effects
of selfish behavior on the overall state of these systems game-theoretic solution concepts are used,
most notably the concept of a Nash equilibrium. Important questions for the analysis of multi-
agents systems are, thus, under which conditions Nash equilibria exists and how they can be
computed. For systems with a large number of players (as they frequently appear in multi-agent
systems modelling economic, traffic, or telecommunication applications), the representation of the
games becomes an important issue. For illustration, consider a system with n agents, each with
m strategies. Encoding the payoffs of each agent in each of the mn strategy profiles requires
the encoding of nmn rational number which is impractical even for modest sizes of n and m.
Fortunately, for many multi-agents systems that arise from practical application, the agents’ payoff
have additional structure that allows for a succinct representation of the payoffs. Examples include
extensive form games, congestion games (Rosenthal [32]), graphical games (Kearns et al. [23]),
action graph games (Jiang et al. [21]), and local effect games (Leyton-Brown and Tenneholtz [25]).

A general class of games that includes several of the specific classes of games above is the class
of resource graph games introduced by Jiang et al. [19]. In a resource graph game, we are given a
finite set N = {1, . . . , n} of players and a finite set R = {1, . . . ,m} of resources. The strategy set
available to player i is a set Xi ⊆ {0, 1}m with a succinct representation.1 Given a strategy profile
x = (x1, . . . ,xn), let x =

∑

i∈N xi ∈ R
m
≥0 denote the configuration profile representing the total

number of players using each resource in strategy profile x. Then, the private cost of player i is
defined as

πi(x) = x⊤
i c(x) =

∑

r∈R

xi,r cr(x) for all i ∈ N,

where c : Rm
≥0 → R

m is an arbitrary function. For most applications, the function c : Rm
≥0 → R

m

itself has a succinct representation of the following form. For each resource r, let Br ⊆ R be
an arbitrary subset of neighbors of r ∈ R and assume that the function c : Rm

≥0 → R
m, x 7→

(c1(x), . . . , cm(x)) has the property that for every resource r ∈ R the cost cr depends only on the
configuration profile of the resources in Br, i.e., cr(x) = cr(y) for all x,y ∈ R

m
≥0 with xs = ys for

all s ∈ Br. A graphical illustration of such a game is obtained by the graph that has the vertex
set R and a directed edge from s to r if and only if s ∈ Br. This is the intuition behind the name
resource graph games, see Fig. 1 for an illustration.

Below, we illustrate classes of games that are special cases of resource graph games. We start
with the class of unweighted congestion games introduced by Rosenthal [32] as a model for road
traffic and for production with demand-dependent costs.

Example 1 (Unweighted congestion games). When the neighborhood of each resource r contains
only r, i.e., Br = {r} for all r ∈ R, the cost of each resource depends only on the number of players
using it. We then obtain the class of (unweighted) congestion games as a special case of resource
graph games.

Another example of a subclass of resource graph games is the class of local effect games as
introduced by Leyton-Brown and Tennenholtz [25]. Compared to unweighted congestion games,
they are less general in terms of the players’ strategies since only singleton strategies are allowed;

1Jiang et al. consider a polytopal representation, but the exact specifics how the set Xi is represented is less

important in this work, as we focus on existence of equilibria and less on computational aspects.
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Figure 1: An example of a resource graph game with resource set R = {r1, . . . , r8} visualizing
the non-separable effects among resources w.r.t the cost function. The white rectangles represent
the 8 resources, the (bi)directed edges represent the non-separability of costs, that is, a directed
edge from node rj to node ri indicates that the function value cri(x) depends on the entry xrj , or
equivalently, rj ∈ Bri . The colored subsets of resources represent the strategies x1,y1 and x2,y2

of the two players {1, 2}.

in terms of the cost structure on the resources, they are more general since the cost of a resource
may also depend on the load of other resources. We call a resource graph game a singleton game,
if
∑

r∈R xi,r = 1 for all xi = (xi,r)r∈R ∈ Xi and all i ∈ N .

Example 2 (Local effect games). Local effect games are singleton resource graph games, where for
every resource r, there is a function fr : R≥0 → R and for every pair of resources r, s ∈ R such
that s ∈ Br, there is a function fr,s : R≥0 → R such that cr(x) = fr(xr) +

∑

s∈Br
fs,r(xs) .

The following class of action graph games is a generalization of local effect games. They are
introduced by Jiang et al. [21] and generalize local effect games as they allow an arbitrary functional
dependence of the cost of a resource on the load of all other resources, yet, they are a sublcass
of resource graph games. Jiang et al. discuss applications in modelling location games, congestion
games, and anonymous games, but the class of games is universal as any strategic game can be
represented as an action graph game. Thompson and Leyton-Brown [35] show how to use action
graph games to compute equilibria in position auctions.

Example 3 (Action graph games). The class of action graph games is equivalent to the class of
singleton resource graph games.

We now introduce a new class of games related to security games with congestion effects.
Consider a load balancing setting where players choose one resource out of a set of resources.
After observing the realized loads, a follower attacks the resources with maximum loads causing
additional disutilities for the players choosing the attacked resources. Attacks may be thought of
as either being actual attacks by a malicious player or as controls by a central authority to counter
tax or fare evasion (see Correa et al. [7] for a related mathematical model of fare evasion without
any congestion or load balancing effects). In both applications it is sensible to assume that the
attacker has a budget B that is spent evenly among the resources with maximal load and that the
leaders anticipate this strategy. This motivates the definition of the following class of bilevel load
balancing games that, to the best of our knowledge, is new in the literature.

Example 4 (Bilevel load balancing games). Bilevel load balancing games are singleton resource
graph games, where for every resource r, the cost is of the form

cr(x) := xr + κ∗r(x), where κ∗r(x) =

{
B

| argmaxr∈R{xr}|
, if r ∈ argmaxr∈R{xr},

0, else.
. (1)
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Finally, we mention that the interdependence of costs of resources on the loads of other resources
has a long history in non-atomic traffic models. Dafermos [8] proposes the use of such models to
model the dependencies of the travel times on opposing directions of a two-lane road and on road
segments leading to a common crossing. We obtain the following class of congestion games with
non-separable costs as the natural atomic counterpart of the non-atomic traffic models with non-
separable costs considered in the traffic literature (Dafermos [8, 9], Smith [34]).

Example 5 (Unweighted network congestion games with non-separable costs). These games are
resource graph games, where the set of resources R corresponds to the set of edges of a road network.
For every player i, the strategy set Xi corresponds to the (indicator vectors of the edge set) of all
paths between a source node oi and a destination node di in the road network. One typically assumes
that c : RR

≥0 → R
m is monotonically non-decreasing, i.e., cr(x) ≤ cr(y) for all x, y ∈ X with xs ≤ ys

for all s ∈ R.

In the examples discussed above, a mixed Nash equilibrium is guaranteed to exist due to Nash’s
theorem [29]. However, as discussed, e.g., in Jiang and Leyton-Brown [20], pure Nash equilibria are
more favorable as a solution concept as they are easier to implement in practice. We are interested
in identifying maximal conditions on the cost functions that ensure the existence of pure Nash
equilibria in resource graph games.

1.1 Our results

In this paper, we study the existence of pure Nash equilibria for resource graph games with respect
to the non-separable cost structures. We call a non-empty set C of cost functions consistent, if every
resource graph game with cost functions from C admits pure Nash equilibria. We only require a
natural condition on C, namely that C is closed under composition. This means that for any two
functions c1, c2 ∈ C (c1 = c2 is allowed) acting on resource sets R1 and R2 with |R1| = m1 and
|R2| = m2, respectively, the cost function c1⊕ c2 : R

m1+m2

≥0 → R
m1+m2 defined as c1⊕ c2 = (c1, c2)

also belongs to C. This property naturally arises by composing two disjoint subsets R1 and R2 so
that the cost structure within each set of the disjoint union is given by c1 and c2, and there is no
interaction between the loads and costs of resources contained in the two different sets. We obtain
the following results.

1. As our main result we show in Theorem 1 that a composition-closed set C of cost functions
is consistent if and only if for each c ∈ C with c : Zm

≥0 → R
m for some m ∈ N, there are

arbitrary functions f1, . . . , fm : Z≥0 → R and a symmetric matrix A ∈ R
m×m such that

c(x) =
(
f1(x1), . . . , fm(xm)

)⊤
+Ax.

Our result implies in particular that every resource graph game with this cost structure has
a pure Nash equilibrium. This generalizes a result of Leyton-Brown and Tennenholtz [25]
who show that for the special case of local effect games with this cost structure, a pure Nash
equilibrium exists. Our characterization also implies that for every other cost function c̃ that
does not adhere to this form, there is an unweighted resource graph game with costs defined
by c̃ that does not have a pure Nash equilibrium. For the proof of this result, we construct
several highly symmetric resource graph games that allow to derive functional equations on
the set of consistent cost functions that combined leave cost functions of the form above as the
only possibility. Our results are also relevant for related work on the complexity of deciding
the existence of pure Nash equilibria in action graph games (Jiang and Leyton-Brown [20])
as it implies that this computational problem is trivial for cost functions of the required form
above.
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2. We then study weighted resource graph games, a natural generalization of resource graph
games, where every player i has an intrinsic weight wi and their strategy set is Xi = {wi xi :
xi ∈ Yi}, where Yi ⊆ {0, 1}m is arbitrary. These games are relevant as a more fine-grained
model for congestion games with non-separable costs, where the players have a different
impact on the costs of the resources. We also provide a full characterization of the cost
functions that are consistent for weighted resource graph games. Specifically, we show in
Theorem 2 that a composition-closed set C of continuous cost functions is consistent if and only
if for each c ∈ C with c : Rm

≥0 → R
m for some m ∈ N, either c consists of separable exponential

functions with a common exponent φ ∈ R, or there is a symmetric matrix A ∈ R
m×m and

vector b ∈ R
m such that c(x) = Ax+ b.

3. If the players’ strategy spaces are restricted by some combinatorial property, then other non-
separable cost functions are possibly consistent. In this regard, we consider matroid bases as
such combinatorial domain. We show in Theorem 3 that pure Nash equilibria exist under a
local monotonicity property, even when cost functions are player-specific. We demonstrate
the applicability of this result by deriving an existence result of pure Nash equilibria for bilevel
load balancing games as introduced in Example 4. This classs of games is motivated by the
study of network infrastructures facing external attackers and internal congestion effects.

4. Finally, in Section 6, we discuss the computational complexity of deciding whether a given
strategy profile is a pure Nash equilibrium and derive hardness results for network routing
games and matroid games, respectively.

1.2 Related work

Rosenthal [32] shows that every unweighted congestion game with separable costs has a pure Nash
equilibrium. Milchtaich [28] proposes two generalizations of unweighted congestion games. In the
first generalization, called weighted congestion games, each player has a weight and the cost of
each resource depends on the aggregated weight of its users. In the second generalization, called
congestion games with player-specific costs, every player has an individual cost function for each
resource. Both generalizations alone still admit a pure Nash equilibrium for singleton congestion
games, but the combination of both games fails to provide pure Nash equilibria, even for singleton
games. The positive result for singletons is generalized by Ackermann et al. [2] to games, where
the strategy set of each player corresponds to the set of basis of a matroid. Weighted congestion
games with general strategy spaces may fail to have a pure Nash equilibrium (Goemans et al. [14],
Libman and Orda [26]), but have a pure Nash equilibrium for affine costs or exponential costs
(Harks and Klimm [15], Harks et al. [16], Fotakis et al. [12], Panagopoulou and Spirakis [30]).
Local effect games are introduced by Leyton-Brown and Tennenholtz [25] who show that a pure
Nash equilibrium exists when the mutual influence of different resources on the cost is linear and
symmetric. Dunkel and Schulz [11] show that for these games the computation of a pure Nash
equilibrium is PLS-complete. They also show that for both local effect games with non-linear mutual
effects and weighted congestion games with arbitrary cost functions, it is NP-hard to decide whether
a pure Nash equilibrium exists. The PLS-completeness of computing a pure Nash equilibrium in
unweighted congestion games with affine costs due to Ackermann et al. [1] carries over to the
weighted case.

Action graph games are introduced by Bhat and Leyton-Brown [3] and Jiang et al. [21] as a
generalization of local-effect games. They show that every strategic game can be represented as
an action graph game. Daskalakis et al. [10] give a fully polynomial-time approximation scheme
(FPTAS) for computing an approximate mixed equilibrium in action graph games with constant
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degree, constant treewidth, and a constant number of agent types. They also give several hardness
results for the case that one of the conditions on the game is violated. Jiang and Leyton-Brown [20]
show that for symmetric action graph games played on a graph of bounded treewidth, it can be
decided efficiently whether a pure Nash equilibrium exists while the problem is NP-hard to decide
in general.

Resource graph games are introduced as by Jiang et al. [19] as a further generalization of action
graph games. Chan and Jiang [5] give an FPTAS for computing an approximate Nash equilibrium
in resource graph games with a constant number of player types and further restrictions on the
strategy sets.

Congestion games with non-atomic players where the load of one resource has an impact on the
cost of another resource are usually called congestion games with non-separable costs. They were
first proposed by Dafermos [8, 9]. She shows that the equilibrium condition can be formulated as
an optimization problem, if the Jacobian of the cost function is symmetric. Smith [34] provides
a variational inequality for the non-symmetric case. Perakis [31] studies the price of anarchy of
non-atomic congestion games with linear non-separable costs of the form c(x) = Ax+ b.

Bilevel, Stackelberg, or Leader-Follower games, have been studied extensively over the last years.
In these games, the players are partitioned into leaders, acting first, and followers, choosing their
strategy only after the leaders’ choices become apparent. Such hierarchical relationships appear in
many real-world problems, e.g. in pricing or toll setting problems [24, 6, 17], security games [33, 22],
fare evasion games [7], supply chain and marketing management [18], or in voting scenarios [36].
In the context of bilevel games with congestion effects, Castiglioni et al. [4] and Marchesi et al. [27]
considered Stackelberg games with an underlying unweighted congestion game. However, they
assume that there is only one leader and the leader participates in the same congestion game
as the followers (but the leader’s congestion cost functions may be different from the followers’).
Depending on the structure of strategy spaces and congestion cost functions, they analyze the
computational complexity of computing Stackelberg equilibria. In particular, they devise efficient
algorithms for singleton strategy spaces, where either all followers have the same strategies [4], or
the followers can be divided in “classes” having the same strategies [27]. The case of multiple leaders
playing an unweighted or weighted congestion game subject to followers affecting the resource costs
(as for instance by attacks as modeled in Example 4) is, to the best of our knowledge, completely
open.

2 Preliminaries

For an integer k ∈ N, let [k] := {1, . . . , k}. Let N = [n] be a finite set of players and R = [m]
be a finite set of m resources. For each player i, the set of strategies available to player i is an
arbitrary set Xi ⊆ {0, 1}m. We call x = (x1, . . . ,xn) with xi ∈ Xi for all i ∈ N a strategy profile
and X = X1 × · · · ×Xn the strategy space. We use standard game theory notation; for a strategy
profile x ∈ X, we write x = (xi, x−i) meaning that xi is the strategy that player i plays in x and
x−i is the partial strategy profile of all players except i. Every strategy profile x = (x1, . . . ,xn) ∈ X
induces a load vector x =

∑

i∈[n] xi ∈ R
m
≥0. For a set S ⊆ R = [m], we denote by 1S the indicator

vector of set S in R
m. We are further given a cost function c : Rm

≥0 → R
m. Usually, one assumes

that c has a succinct representation of the following form. For every resource r ∈ R, there is a
neighborhood Br ⊆ R such that cr(x) is independent of xs for all s /∈ Br, i.e., cr(x) = cr(y) for all
x,y ∈ X with xs = ys for all s ∈ Br. If this is the case, and |Br| ≤ k for all r ∈ R the function
c can be encoded by mnk numbers since it suffices to specify for each r ∈ R the value of cr(x)
as a function of the nk possible load vectors of the resources in Br. Intuitively, the function c
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maps a load vector x ∈ R
m
≥0 to a cost vector c(x) ∈ R

m, i.e., c(x) = (c1(x), . . . , cm(x))⊤ and for
a resource r ∈ R the cost experienced by players using e when the congestion vector is x is cr(x).
The strategic game G = (N,X, (πi)i∈N ) where the private cost of player i in strategy profile x ∈ X
is defined as πi(x) = x⊤

i c(x) =
∑

r∈R xi,rcr(x) is called a resource graph game.
We also consider a generalization of resource graph game to weighted players. In a weighted

resource graph game, every player i ∈ N has a weight wi ∈ R>0. The strategy set of player i is
then defined as Xi = {wi xi : xi ∈ Yi} where Yi ⊆ {0, 1}m is arbitrary. Compared to unweighted
resource graph games, in a weighted resource graph game, the set of vectors in the strategy of
player i is multiplied with the scalar wi. The weighted resource graph game is then the strategic
game G = (N,X, (πi)i∈N ) where πi is defined as before.

A strategy profile x ∈ X is a pure Nash equilibrium, if πi(x) ≤ πi(yi, x−i) for all i ∈ N and
yi ∈ Xi. For a non-empty set C set of cost functions, we are interested in establishing conditions
on C that ensure that every resource graph game with cost functions from C admits pure Nash
equilibria. We require a mild technical assumption on C, namely that C is closed under composition
in the following sense. Let c, c′ ∈ C with c : Rm

≥0 → R
m and c′ : Rm′

≥0 → R
m′
. Then, we require

that the function c⊕ c′ : Rm+m′

≥0 → R
m+m′

≥0 defined as c⊕ c′(x,y) = (c(x), c′(y)) is also contained
in C. This is an intuitive property of a set of functions C for the following reasons. The cost
functions c, c′ each define a cost structure on sets of resources R, R′ with |R| = m and |R′| = m′.
The cost function c ⊕ c′ : Rm+m′

≥0 → R
m+m′

then defines a cost structure on the disjoint union
of R and R′, where the cost structure within each set of the disjoint union is given by c or c′,
and there is no interaction between the loads and costs of resources contained in the two different
sets. In particular, for any k ∈ N and any c ∈ C, c : R

m
≥0 → R

m, the k-fold disjoint union

c⊕ · · · ⊕ c : Rkm
≥0 → R

km is contained in C. In the following, we denote the k-fold disjoint union of

c by ck. For a set C of cost functions as above, we say that C is consistent for unweighted resource
graph games, if for every c ∈ C, we have that every unweighted resource graph game with costs
given by c has a pure Nash equilibrium. Recall that when c : Rm

≥0 → R
m with m ∈ N, then every

unweighted resource graph game with costs given by c has m resources. Consistency for weighted
resource graph games is defined analogously.

3 Resource graph games with unweighted players

In this section, we consider unweighted resource graph games. Since in such a game, the load on
each resource is a nonnegative integer, it is without loss of generality to assume that the domain
of all cost functions is the non-negative integer lattice, that is, they are of the form c : Zm

≥0 → R
m

for some m ∈ N. Our main result gives a complete characterization of consistency for unweighted
resource graph games.

Theorem 1. Let C be a set cost functions that is closed under composition. Then the following
two statements are equivalent:

1. C is consistent for unweighted resource graph games.

2. For each c ∈ C with c : Zm
≥0 → R

m for some m ∈ N, there are functions f1, . . . , fm : Z≥0 → R

and a symmetric matrix A ∈ R
m×m such that

c(x) =
(
f1(x1), . . . , fm(xm)

)⊤
+Ax. (2)

In particular, the set C∗ of all cost functions of the form (2) is the unique maximal set of cost
functions that is closed under composition and consistent for unweighted resource graph games.

7



We subdivided the proof of both directions in the following subsections.

3.1 Proof of Theorem 1: 2. ⇒ 1.

We first prove that statement 2. of Theorem 1 implies consistency of C. Observe that any compo-
sition of functions of form (2) is again of form (2). It is thus sufficient to show existence of a pure
Nash equilibrium for any any unweighted resource graph game with a cost function of this form.

Lemma 1. Let G be an unweighted resource graph game on m resources with cost function c :

R
m
≥0 → R

m given by c(x) =
(
f1(x1), . . . , fm(xm)

)⊤
+Ax, where f1, . . . , fm : Z≥0 → R are arbitrary

functions and A ∈ R
m×m is a symmetric matrix. Then G has a pure Nash equilibrium.

Proof. Fix an arbitrary unweighted resource graph game G whose cost is determined by c ∈ C and
an arbitrary strategy profile x ∈ X. Consider the process of adding the players to the game in
order 1, . . . , n and let us sum their private costs. In the following, we write x≤i =

∑

j∈N :j≤i xi

for the load vector of players up to i. Let P (x) be the sum of the private costs of the player
added to the game when adding them in order 1, . . . , n. We define the function f : Zm

≥0 → R
m as

f(x) =
(
f1(x1), . . . , fm(xm)

)⊤
and obtain

P (x) =
∑

i∈N

x⊤
i

[

f(x≤i) +Ax≤i

]

.

We have

∑

i∈N

x⊤
i f(x≤i) =

∑

r∈R

xr∑

k=1

fr(k)

as well as
∑

i∈N

x⊤
i Ax≤i =

∑

i∈N

x⊤
i A

( ∑

j∈N :j≤i

xj

)

=
1

2

∑

i∈N

∑

j∈N

x⊤
i Axj +

1

2

∑

i∈N

x⊤
i Axi

=
1

2
x⊤Ax+

1

2

∑

i∈N

x⊤
i Axi,

where for the second equation we used the symmetry of A. We obtain

P (x) =
∑

r∈R

xr∑

k=1

fr(k) +
1

2
x⊤Ax+

1

2

∑

i∈N

x⊤
i Axi.

This shows that P (x) is invariant under a reordering of the players. Next, consider a deviation of
an arbitrary player. Since P (x) is invariant under a reordering of the players, it is without loss of
generality to assume that player n deviates. We obtain

P (yi, x−i)− P (x) = y⊤
n

[

f(x≤n−1 + yn) +A(x≤n−1 + yn)
]

− x⊤
n

[

f(x≤n) +A(x≤n)
]

= πn(yi, x−i)− πn(x).

We conclude that P is an exact potential function and, hence, G admits a pure Nash equilibrium.
Since G was chosen arbitrarily, the result follows.
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3.2 Proof of Theorem 1: 1. ⇒ 2.

In the following, we show that statement 2 of Theorem 1 is a necessary condition for the consistency
of C. We prove this by constructing for any given c ∈ C a family of different resource graph games
whose cost functions are 4-fold compositions of c. All these games will have the following symmetry
property, which we will use to establish that c is indeed of the form (2).

Definition 1. Let A,B ∈ R. We say a game G = (N,X, (πi)i∈N ) is (A,B)-symmetric for players
i, j ∈ N , if for any strategy profile x ∈ X, the following two statements are fulfilled:

• πi(x) = A and πj(x) = B or πi(x) = B and πj(x) = A.

• There are yi ∈ Xi and yj ∈ Xj such that πi(yi, x−i) = πj(x) and πj(yj , x−j) = πi(x).

The following lemma shows a key property for (A,B)-symmetric games.

Lemma 2. If a game G is (A,B)-symmetric for players i, j ∈ N and admits a pure Nash equilib-
rium, then A = B.

Proof. Let x ∈ X be a pure Nash equilibrium for G. Because G is symmetric for i and j, there
are are yi ∈ Xi and yj ∈ Xj such that πi(yi, x−i) = πj(x) and πj(yj , x−j) = πi(x). Because x is a
pure Nash equilibrium, we obtain

πi(x) ≤ πi(yi, x−i) = πj(x) ≤ πj(yj , x−j) = πi(x)

and hence πi(x) = πj(x). Note that symmetry of G implies {A,B} = {πi(x), πj(x)} and therefore
A = B.

We proceed to prove a first functional equation that needs to be satisfied for a set of consistent
cost functions that is closed under composition. The equation states that a discrete version of
the Jacobian of the cost function must be symmetric. For the proof, we construct a suitable
(A,B)-symmetric game.

Lemma 3. Let C be closed under composition and consistent for unweighted resource graph games.
Then, for all c ∈ C, c : Zm

≥0 → R
m with m ∈ N, we have

cr(x+ 1{r,s})− cr(x+ 1r) = cs(x+ 1{r,s})− cs(x+ 1s)

for all r, s ∈ [m] and all x ∈ Z
m
≥0.

Proof. Let c ∈ C, r, s ∈ [m] with r 6= s, let x ∈ Z
m
≥0 be arbitrary. Since C is closed under

composition, we have that c4 : Z4m
≥0 → R

4m is also contained in C. Consider the following game

with 4m resources and cost function c4. For k ∈ [4] and t ∈ [m] we denote the k-th copy of resource
t by tk. For each original resource t ∈ [m], there are xt dummy players whose only strategy is
∑

k∈[4] 1tk . In addition there are two players 1 and 2 with strategy sets X1 = {1{r1,s2}, 1{s3,r4}}
and X2 = {1{s1,r3}, 1{r2,s4}}. See Figure 2(i) for a depiction of the strategy space.

It is straightforward to check that the above game is (A,B)-symmetric for players 1 and 2 with

A = cr(x+ 1{r,s}) + cs(x+ 1s) and B = cr(x+ 1r) + cs(x+ 1{r,s}).

Since C is consistent, the thus defined game has a pure Nash equilibrium and we conclude A = B
by Lemma 2, which completes the proof of the lemma.
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(ii)

Figure 2: Games constructed for the proofs of Lemmas 3 and 4, respectively. Each clique represents
a copy of the resource set (resources other than r, s and dummy players are omitted). Player 1
chooses among strategies x1 and x′

1, player 2 chooses among strategies x2 and x′
2.

The following two lemmas establish that the discrete Hessian of each cr for r ∈ [m] must be
diagonal. For the proof of these two lemmas, we use the symmetry of the Jacobian shown in
Lemma 3 together with suitably constructed (A,B)-symmetric games.

Lemma 4. Let C be closed under composition and consistent for unweighted resource graph games.
Then, for all c ∈ C, c : Zm

≥0 → R
m with m ∈ N, the following two functional equations are satisfied

for all r, s ∈ [m] with r 6= s and all x ∈ Z
R
≥0 with xr > 0:

(a) cr(x+ 1s)− cr(x) = cr(x+ 1{r,s})− cr(x+ 1r) and

(b) cr(x+ 2 · 1s)− cr(x+ 1s) = cr(x+ 1s)− cr(x).

Proof. Let c ∈ C, c : Zm
≥0 → R

m, r, s ∈ [m] with r 6= s, and x ∈ Z
m
≥0 with xr > 0 be arbitrary.

Since C is closed under composition, the function c4 : Z4m
≥0 → R

4m is also contained in C. Consider

the following game with 4m resources and cost function c4. For k ∈ [4] and t ∈ [m], we denote the
k-th copy of resource t by tk. For each original resource t ∈ [m] \ {r}, there are xt dummy players
whose only strategy is

∑

k∈[4] 1tk . There also are xr − 1 dummy players for resource r whose only
strategy is

∑

k∈[4] 1rk . In addition there are two players 1 and 2 with strategy sets

X1 =
{
1{r1,s1,r2}, 1{r3,r4,s4}

}
and X2 =

{
1{r1,r3,s3}, 1{r2,s2,r4}

}
.

See Figure 2(ii) for a depiction of the strategy space. It is easy to check that the above game is
(A,B)-symmetric for players 1 and 2 with

A = cr(x+ 1{r,s}) + cs(x+ 1{r,s}) + cr(x) and

B = cr(x+ 1s) + cs(x+ 1s) + cr(x+ 1{r,s}).

By consistency of c, the game must have a pure Nash Equilibrium and thus A = B by Lemma 2.
Subtracting the first and third term of A and the second term of B on both sides yields

cs(x+ 1{r,s})− cs(x+ 1s) = cr(x+ 1s)− cr(x). (3)

Applying Lemma 3 to the left-hand side of (3) yields

cr(x+ 1{r,s})− cr(x+ 1r) = cr(x+ 1s)− cr(x),

which proves (a).
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Applying Lemma 3 to the right-hand side of (3) instead, yields

cs(x+ 1{r,s}) − cs(x+ 1s) = cs(x+ 1s)− cs(x− 1r + 1s),

which is equivalent to (b) when substituting x for x − 1r + 1s and then swapping the roles of r
and s.

Lemma 5. Let C be closed under composition and consistent for unweighted resource graph games.
Then, for all c ∈ C, c : Zm

≥0 → R
m with m ∈ N we have

cr(x+ 1s) − cr(x) = cr(x+ 1{s,t}) − cr(x+ 1t)

for all r, s, t ∈ [m] with r, s, t pairwise distinct and all x ∈ Z
m
≥0 with xr > 0.

Proof. Let c ∈ C, c : Zm
≥0 → R

m, m ∈ N be arbitrary, let r, s, t ∈ [m] be pairwise distinct, and
let x ∈ Z

m
≥0 with xr > 0. Let x′ = xr − 1r. Consider the following game with 4m resources and

cost function c4. For k ∈ [4] and u ∈ [m], we denote the k-th copy of resource u by uk. For each
resource u ∈ [m] \ {r}, there are x′u dummy players whose only strategy is

∑

k∈[4] 1uk
. In addition

there are two players 1 and 2 with strategy sets

X1 =
{
1{r1,s2,t2}, 1{s3,t3,r4}

}
and X2 =

{
1{s1,t1,r4}, 1{r2,s4,t4}

}
.

See Figure 3 for a depiction of the strategy space. It is easy to check that the above game is
(A,B)-symmetric for players 1 and 2 with

A = cr(x
′ + 1{r,s,t}) + cs(x

′ + 1{s,t}) + ct(x
′ + 1{s,t}), and

B = cr(x
′ + 1r) + cs(x

′ + 1{r,s,t}) + ct(x
′ + 1{r,s,t}).

By consistency of C the game must have a pure Nash Equilibrium and thus A = B by Lemma 2.
By subtracting the second term of A and the first and third term of B from both sides we obtain

cr(x
′ + 1{r,s,t}) −

(
ct(x

′ + 1{r,s,t})− ct(x
′ + 1{s,t})

)

︸ ︷︷ ︸

= cr(x′+1{r,s,t})−cr(x′+1{r,s})

− cr(x
′ + 1r)

= cs(x
′ + 1{r,s,t}) − cs(x

′ + 1{s,t})
︸ ︷︷ ︸

= cr(x′+1{r,s,t})−cr(x′+1{r,t})

.

Applying the identities indicated above, which follow from Lemma 3, and then using x′ = x− 1r
yields cr(x+ 1s)− cr(x) = cr(x+ 1{s,t})− cr(x+ 1t).

Given the form of the discrete Hessian established in Lemmas 4 and 5, we conclude now that
the influence of the load on a resource s on the cost of some other resource r must be linear. This
is formalized in the following lemma, which follows by inductively applying our previous results.

Lemma 6. Let C be closed under composition and consistent for unweighted resource graph games.
Then, for all c ∈ C, c : Zm

≥0 → R
m with m ∈ N we have

cr(x+ 1s)− cr(x) = cr(y + 1s)− cr(y)

for all r, s ∈ [m] with r 6= s and all x,y ∈ Z
m
≥0 with xr, yr > 0.

Proof. Let c ∈ C, c : Zm
≥0 → R

m, r, s ∈ [m] with r 6= s, and x, y ∈ Z
m
≥0 with xr, yr > 0 be arbitrary.

We show the lemma by induction on k =
∑

r′∈R |xr′ − yr′ |. If k = 0, then x = y and the claim is
trivially fulfilled. Thus assume k > 0. Without loss of generality, there is t ∈ R with xt > yt. Let
x′ := x − 1t. Note that x′r ≥ yr > 0, so that Lemma 4 and Lemma 5 can be applied to x′. We
distinguish three cases for t.
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Figure 3: Game constructed for the proof of Lemma 5. Each clique represents a copy of the resource
set (resources other than r, s, t and dummy players are omitted). Player 1 chooses among strategies
x1 and x′

1, player 2 chooses among strategies x2 and x′
2.

Case t = r: In this case, x = x′ + 1r. We obtain

cr(x+ 1s)− cr(x) = cr(x
′ + 1{r,s})− cr(x

′ + 1r) = cr(x
′ + 1s)− cr(x

′).

where the second equality follows from Lemma 4.

Case t = s: In this case, x = x′ + 1s. We obtain

cr(x+ 1s)− cr(x) = cr(x
′ + 2 · 1s)− cr(x

′ + 1s) = cr(x
′ + 1s)− cr(x

′).

where the second equality follows from Lemma 4.

Case t ∈ R \ {r, s}: In this case, x = x′ + 1t. We obtain

cr(x+ 1s)− cr(x) = cr(x
′ + 1{s,t})− cr(x

′ + 1t) = cr(x
′ + 1s)− cr(x

′).

where the second equality follows from Lemma 5.
In either case, cr(x+ 1s)− cr(x) = cr(x

′ + 1s)− cr(x
′), which is equal to cr(y+ 1s)− cr(y) by

the induction hypothesis because
∑

r′∈R |x′r′ − yr′ | < k.

Combining Lemmas 3 and 6, we observe that the interaction effects of distinct resources in
the cost function c must be linear and symmetric and thus condition (2) is indeed necessary for
consistency. This is formalized in the following lemma, which completes the proof of Theorem 1.

Lemma 7. Let C be closed under composition and consistent for unweighted resource graph games.
Then, for all c ∈ C, c : Zm

≥0 → R
m with m ∈ N there are m functions f1, . . . , fm : Z≥0 → R and a

symmetric matrix A ∈ R
m×m such that c(x) = (f1(x1), . . . , fm(xm))⊤ +Ar,· x for all x ∈ Z

R
≥0.

Proof. For r ∈ R define fr : R≥0 → R by fr(x) = cr(x · 1r) for all x ∈ R≥0. The matrix
A ∈ R

m×m = (ar,s)r,s∈[m] is defined as

ar,s =

{

cr(1{r,s})− cr(1r) if r 6= s ,

0 otherwise .

Note that ar,s = as,r and, hence A is symmetric by Lemma 3.
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Let x ∈ R
m
≥0 and r ∈ [m] be arbitrary. For r ∈ [m], we denote by Ar,· its r-th row. We show

that cr(x) = fr(xr) + Ar,·x by induction on k =
∑

s∈R\{r} xs. For k = 0 the claim is true by
definition of fr. Thus assume k > 0 and let s ∈ R \ {r} with xs > 0. We obtain

cr(x) = cr(x− 1s) + cr(1{r,s})− cr(1r)

= fr(xr) +Ar,·(x− 1s) + ar,s

= fr(xr) +Ar,·x

where the first identity follows from Lemma 6 and the second identity follows from the induction
hypothesis and the definition of ar,s.

4 Resource graph games with weighted players

In this section, we establish necessary and sufficient conditions for consistency when each player
i ∈ N imposes a weight wi ∈ R≥0 on the resources in their strategy. The characterization reveals
two possible cases: A consistent set of cost functions either contains only affine functions with a
symmetric Jacobian, or the cost functions of individual resources are exponential and separable
(i.e., there is no interaction among distinct resources).

Theorem 2. Let C be a set of continuous cost functions that is closed under composition. Then C
is consistent for weighted resource graph games if and only if one of the following two statements
is fulfilled:

1. For each c ∈ C with c : Rm
≥0 → R

m for some m ∈ N there is a symmetric matrix A ∈ R
m×m

and a vector b ∈ R
m such that c(x) = Ax+ b.

2. There is φ ∈ R such that for all c ∈ C with c : Rm
≥0 → R

m there are a,b ∈ R
m such that

cr(x) = ar exp(φxr) + br for all r ∈ [m] and all x ∈ R
m
≥0.

The two distinct cases arise due to the fact that weighted congestion games are a special case of
weighted resource graph games, namely where the cost of each resource r depends on the load of r
only, i.e., Br = {r} for all r ∈ R. For these games Harks and Klimm [15] provided a characterization
that shows that consistent sets contain only affine or only exponential cost functions. In the
following, we give prove the sufficiency and necessity of either of the two conditions.

4.1 Proof of Theorem 2: 1. or 2. ⇒ Consistency of C:

We show sufficiency of conditions 1 or 2 in Theorem 2, respectively, for the consistency of C. If
condition 2 is fulfilled, then any weighted resource graph game with cost function c ∈ C is a weighted
congestion game with exponential costs. For these games, the existence of pure Nash equilibria
has been established in [15], Theorem 5.1. It is therefore sufficient to show that condition 1 of
Theorem 2 is also sufficient for consistency. The following lemma establishes the sufficiency of
condition 1, following the same lines as the proof of Lemma 1.

Lemma 8. Let G be a weighted resource graph game on m resources with cost function c : Rm
≥0 →

R
m given by c(x) = Ax + b, where A ∈ R

m×m is a symmetric matrix and b ∈ R
m is a vector.

Then G has a pure Nash equilibrium.

Proof. Fix an arbitrary weighted resource graph game G whose cost is determined by c ∈ C and
an arbitrary strategy profile x ∈ X. As in the proof of Theorem 1, let P (x) be the sum of the
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private costs of the players when adding them to the game in order 1, . . . , n. We again write
x≤i =

∑

j∈N :j≤i xi for the load vector of the players up to i. We then obtain

P (x) =
∑

i∈N

x⊤
i

[

Ax≤i + b
]

.

Similarly to the proof of Theorem 1, we calculate

∑

i∈N

x⊤
i Ax≤i =

∑

i∈N

x⊤
i A

( ∑

j∈N :j≤i

xj

)

=
1

2

∑

i∈N

∑

j∈N

x⊤
i Axj +

1

2

∑

i∈N

x⊤
i Axi

=
1

2
x⊤Ax+

1

2

∑

i∈N

x⊤
i Axi,

as in the unweighted case where we again used the symmetry of A. We obtain

P (x) =
1

2
x⊤Ax+

1

2

∑

i∈N

x⊤
i

[

Axi + b
]

.

This shows that P is independent of the ordering of the player and the remainder of the proof is
equivalent to Theorem 1.

4.2 Proof of Theorem 2: Consistency of C ⇒ 1. or 2.:

We now prove the necessity of the conditions given in Theorem 2. By a slight adaptation of the
constructions in Section 3, we obtain the following stronger version of Lemmas 3 and 6 for cost
functions that are consistent for weighted players.

Lemma 9. Let C be closed under composition and consistent for weighted resource graph games.
Then, for all c ∈ C, c : Rm

≥0 → R
m with m ∈ N the following functional equations are satisfied:

(a) cr(x + ε · 1{r,s}) − cr(x + ε · 1r) = cs(x + ε · 1{r,s}) − cf (x + ε · 1s) for all r, s ∈ R and all
x ∈ R

m
≥0 and all ε > 0 and

(b) cr(x + ε · 1s) − cr(x) = cr(y + ε · 1s) − cr(y) for all r, s ∈ R with r 6= s and all x,y ∈ R
m
≥0

with xr, yr > 0 and all ε > 0.

Proof (Sketch). We follow the same constructions used to establish Lemmas 3, 4, 5, and 6. However,
we set w1 = w2 = ε and adjust the weights of the dummy players for each resource such that the
load on the resource equals the corresponding coordinate of x.

The following lemma follows from the characterization of consistent functions for weighted
congestion games with separable cost functions due to Harks and Klimm [15].

Lemma 10. Let C be a set of continuous functions that is closed under composition and consistent
for weighted resource graph games. Then, for all c ∈ C, c : Rm

≥0 → R
m with m ∈ N one of the

following statements is true:

(a) For all S ⊆ R and all z ∈ R
m
≥0 there are aS,z, bS,z ∈ R such that

∑

r∈S cr(z+λ1S) = aS,zλ+bS,z
for all λ ≥ 0.
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(b) There is φ ∈ R such that for all S ⊆ R and all z ∈ R
m
≥0 there are aS,z, bS,z ∈ R such that

∑

r∈S cr(z+ λ1S) = aS,z exp(φλ) + bS,z for all λ ≥ 0.

Proof. Let c ∈ C, c : R
m
≥0 → R

m with m ∈ N be arbitrary. For S ⊆ R and z ∈ R
m
≥0 define

cS,z : R≥0 → R by cS,z(λ) =
∑

r∈S cr(z + λ1S). Let C′ = {cS,z : S ⊆ R, z ∈ R
m} be the set of

all functions arising in this way. We show that any weighted congestion game with separable cost
functions on k resources where each resource has a cost function c′ ∈ C′ is isomorphic to a weighted
resource graph game with cost function ck on km resources. Since C is closed under composition,
the function ck is contained in C, and, hence, consistency of C for weighted resource graph games
implies the consistency of C′ for weighted congestion games. It is known ([15], Theorem 5.1) that
a set of continuous functions is consistent for weighted congestion games if and only if it contains
only affine functions (as described in case (a) of the lemma) or it only contains only exponential
functions (as described in case (b) of the lemma). Hence the lemma follows from the following
construction.

Consider any weighted congestion game G′ with arbitrary player set N ′, weights w′
i for each

i ∈ N ′, strategies X ′
i = {wi · xi : xi ∈ Yi} with Yi ⊆ {0, 1}k , and resource set R′ = {r′1, . . . , r

′
k}

such that for all r ∈ R′ the cost function c′r : R≥0 → R of resource r is of the form c′r = cS,z for
some S ⊆ R and z ∈ R

R
≥0. In what follows, we construct an isomorphic weighted resource graph

game G with player set N , mk resources, and cost function ck. For j ∈ [k] let Sj ⊆ R and zj =
(zj,1,, . . . , zj,m) ∈ R

m
≥0 be such that c′rj = cSj ,zj . We define N = N ′∪{(r, j) : r ∈ R, j ∈ [k]}, i.e., the

set of players N of G contains the player set N ′ of the original congestion game plus mk additional
dummy players. Each dummy player (r, j) can only play strategy 1rj where rj is the j-th copy of
resource r ∈ [m]. That dummy player has a weight w(r,j) = zj,r. Each normal player i ∈ N ′ has the
same weight wi = w′

i as in the original congestion game. For each strategy x′
i ∈ X ′

i of player i in the
original congestion game, there is a strategy xi ∈ Xi that arises from x′

i by replacing each resource
rj ∈ R′ by the set of resources Sj ⊆ R, i.e., Xi = {

∑

j∈[k] x
′
i,j 1Sj

: x′
i = (x′i,1, . . . , x

′
i,k) ∈ X ′

i}.

Thus, there is a one-to-one correspondence between strategy profiles x′ for G′ and strategy profiles
x of G and it is easy to see that by construction, the private cost of player i ∈ N ′ is the same for
x′ in G′ and the corresponding profile x in G.

Equipped with Lemmas 9 and 10, we can show that the impact of the load of resource s on
the cost of resource r needs to be linear and symmetric. In addition, the impact is non-existent if
case (a) of Lemma 10 does not hold. This is formalized in the following lemma.

Lemma 11. Let C be a set of continuous functions that is closed under composition and consistent
for weighted resource graph games. Then, for all c ∈ C, c : Rm

≥0 → R
m with m ∈ N and all r, s ∈ [m]

with r 6= s there is ar,s = as,r such that

cr(z+ λ1s)− cr(z) = ar,sλ

for all z ∈ R
m
≥0 with zr > 0 and all λ ≥ 0. Moreover, if case (a) of Lemma 10 does not hold, then

ar,s = 0 for all r, s ∈ R.

Proof. Let c ∈ C, c : Rm
≥0 → R

m with m ∈ N be arbitrary. Let r, s ∈ [m] with r 6= s and let z ∈ R
m
≥0

with zr > 0. Using Lemma 9 we obtain

cr(z+ λ1{r,s}) + cs(z+ λ1{r,s})
︸ ︷︷ ︸

h0(λ)

= cr(z+ λ1r) + cr(z+ λ1{r,s})− cr(z+ λ1r)

+ cs(z+ λ1f ) + cf (z+ λ1{r,s})− cs(z+ λ1s)

= cr(z+ λ1r)
︸ ︷︷ ︸

h1(λ)

+ cs(z+ λ1s)
︸ ︷︷ ︸

h2(λ)

+2
(
cr(z+ λ1{r,s})− cr(z+ λ1r)
︸ ︷︷ ︸

h4(λ)

)
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for all λ ≥ 0. We apply Lemma 10 to the expressions h0(λ), h1(λ), h2(λ) and distinguish two cases.
If we are in case (a) of Lemma 10, then all three expressions are affine functions of λ and we

conclude that also h4 must be affine in λ, i.e., there is a, b ∈ R such that cr(z+λ1{r,s})−cr(z+λ1r) =
aλ+ b. By part (a) of Lemma 9, we observe that this equality also holds (for the same values of a
and b) when swapping the roles of s and r. Applying part (b) of Lemma 9, we observe that b = 0
and a is independent of z, thus proving the statement of the lemma for this case.

If we are in case (b) of Lemma 10, then all three expressions are exponential functions of the
form a exp(φλ) + b for some φ ∈ R and we conclude that also h4 must be of this form, i.e., there is
a′, b′ ∈ R such that cr(z+ λ1{r,s})− cr(z+ λ1r) = a′ exp(φλ) + b′. Applying part (b) of Lemma 9,
we conclude that a′ = b′ = 0, thus proving the statement of the lemma for this case.

We are now ready to establish the necessity of condition 1 or 2 of Theorem 2, concluding the
proof of the theorem.

Lemma 12. Let C be a set of continuous functions that is closed under composition and consistent
for weighted resource graph games. Then, one of the following statements is true:

1. For each c ∈ C with c : Rm
≥0 → R

m for some m ∈ N there is a symmetric matrix A ∈ R
m×m

and a vector b ∈ R
m such that c(x) = Ax+ b.

2. There is φ ∈ R such that for all c ∈ C with c : Rm
≥0 → R

m there are a,b ∈ R
m such that

cr(x) = ar exp(φxr) + br for all r ∈ [m] and all x ∈ R
m
≥0.

Proof. Let c ∈ C, c : Rm
≥0 → R

m with m ∈ N be arbitrary. By Lemma 11, for all r, s ∈ [m],
there is ar,s such that cr(z + λ1s) − cr(z) = ar,sλ for all z ∈ R

m
≥0 with zr > 0 and all λ ≥ 0.

Let r1, . . . , rm be an arbitrary ordering of the resources in R with rm = r. Defining x(0) = x and
x(i) = x(i−1) − xri · 1ri for i ∈ [m] we obtain

cr(x) = cr(xr · 1r) +
m−1∑

i=1

cr(x
(i−1))− cr(x

(i))

= cr(xr · 1r) +
∑

s∈R\{r}

ar,s(xs − 1).

In case (a) of Lemma 10, we conclude that cr(xr · 1r) is an affine function of xr. This implies that
there is a symmetric matrix A ∈ R

m×m and a vector b ∈ R
m such that cr(x) = Ar,·x + br for all

r ∈ R and all x ∈ R
m
≥0 with xr > 0. Since C is closed under composition, all functions c ∈ C have

this property thus we retrieve case 1 of Lemma 12.
In case (b) of Lemma 10, we conclude that cr(xr · 1r) is an exponential function of xr. By

Lemma 11, we than have that ar,s = 0 and we thus obtain that cr(x) = ar exp(φxr) + br for all
r ∈ [m] for some constant ar, br, φ ∈ R. As C is closed under composition, this implies that all
functions c ∈ C have this property, and we retrieve case 2 of Lemma 12.

5 Resource graph games on matroids

While our previous characterizations hold for arbitrary strategy spaces of the players, we now turn
to restricted strategy spaces. Specifically, we consider matroidal strategy spaces, where the strategy
set Xi of player i ∈ N corresponds to the set of incidence vectors of bases of a player-specific
matroid Mi = (R,Bi), i ∈ N defined on the resource set R.
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A resource graph game on matroids is then represented by the tuple G = (N,X,C), where
C = (ci)i∈N denotes the vector of player-specific non-separable cost functions. The private cost of
player i under strategy profile x ∈ X is defined as πi(x) = x⊤

i ci(x). In order to specify assumptions
on the functions ci(x), i ∈ N , we introduce the concept of player types. Let B denote the set of
feasible matroid base systems represented in binary vectors over {0, 1}m. For example Uk ∈ B,
where Uk is the base set of the uniform matroid of rank 1 ≤ k ≤ m. For a matroid game G =
(N,X,C), we say that player i ∈ N is of type T ∈ B, if the matroid base system for i is given by
Xi = T . Now we define a general notion of local monotonicity of non-separable functions.

Definition 2 (Local Monotonicity). A function c : Zm
≥0 → R

m is locally monotone, if for all
T ∈ B, r ∈ R, there are non-decreasing functions νT,r : Z≥0 → R, such that for all t ∈ T , all
z ∈ Z

m
+ , and all r, s ∈ R with u = t+ 1s − 1r ∈ T and νT,r(tr) ≤ νT,f (us) it holds that

t⊤c(t + z) ≤ u⊤c(u+ z). (4)

The locality aspect of Definition 2 arises, because the condition relates the cost of playing
strategies t and u, which differ only by exchanging the entries of two elements. While this definition
is quite abstract, we will provide an application and illustrating example in the realm of bilevel
load balancing games, formalized in Theorem 4 and its proof given below. The main idea for
our existence proof is to use an associated matroid congestion game with separable player-specific
non-decreasing cost functions ν(x) := (νi(x))i∈N in order to construct a Nash equilibrium for the
original game with non-separable functions. The proof of the theorem is given in Section 5.1.

Theorem 3. Let G = (N,X,C) be a resource graph game on matroids with C = (ci)i∈N and locally
monotone cost functions ci, i ∈ N . Then, the following statements hold.

1. Any profile x ∈ X that is a Nash equilibrium for the matroid congestion game G = (N,X, ν)
is also a Nash equilibrium for the resource graph game G = (N,X,C).

2. Nash equilibria for the resource graph game G = (N,X,C) do exist.

As a consequence of Theorem 3, we obtain the following application to the class of bilevel load
balancing games on matroids. The proof of the theorem is given in Section 5.2.

Theorem 4. Bilevel load-balancing games on matroids possess pure Nash equilibria.

5.1 Proof of Theorem 3

We recap a trivial property of an equilibrium for the matroid game with separable cost functions.

Lemma 13. Let x ∈ X be an equilibrium for the matroid congestion game G = (N,X, ν), with
player-specific separable and non-decreasing cost functions ν(x) := (νi(x), i ∈ N). Then, for any
y ∈ X with yi = xi + 1s − 1r for some i ∈ N and yj = xj for all j 6= N \ {i}, we have
νi,r(xr) ≤ νi,s(ys).

Proof. Assume by contradiction νi,r(xr) > νi,s(ys). Then, by the monotonicity and separability of
νi, we have πi(y) < πi(x), contradiction.

Now we prove Theorem 3.
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Proof. For 1.:
Let x ∈ X be an equilibrium for the matroid congestion game G = (N,X, ν). Now we evaluate the
cost of a player i ∈ N when switching from xi ∈ Xi to some yi ∈ Xi for the game G = (N,X,C):

πi(x) = x⊤
i ci(x) =

∑

r∈supp(xi)

ci,r(x) =
∑

r∈supp(xi)\supp(yi)

ci,r(x) +
∑

r∈supp(xi)∩supp(yi)

ci,r(x).

Because Xi consists of the bases of a matroid, the profile yi can be decomposed into a sequence of
single-element exchanges of the form

yi = xi +

k∑

j=1

(1sj − 1rj )

with r1, . . . , rk, s1, . . . , sk ∈ R, rj 6= rj′ and sj 6= sj′ for all j 6= j′, and such that yℓ
i = xi +

∑ℓ
j=1(1sj − 1rj) ∈ Xi for all 1 ≤ ℓ ≤ k. We denote by yℓ := (yℓ

i , x−i) the corresponding profile,

where only player i changed the strategy according to yℓ
i . We prove by induction over 1 ≤ ℓ ≤ k−1

that πi(y
ℓ) ≤ πi(y

ℓ+1). For ℓ = 1, we get

πi(x) = x⊤
i ci(x) ≤ y1

i

⊤
ci(y

1) = πi(y
1),

where the inequality follows by νi,s1(y
1
s1
) ≥ νi,r1(xr1) and (4). Here, we used the local monotonicity

property of Definition 2 by identifying x−i = u,xi = t and y1
i = y. Now we consider the inductive

step ℓ → ℓ+ 1:

πi(y
ℓ) = yℓ

i

⊤
ci(y

ℓ) ≤ yℓ+1
i

⊤
ci(y

ℓ+1) = πi(y
ℓ+1),

which again follows by νi,sℓ+1
(yℓsℓ+1

) ≥ νi,rℓ+1
(yrℓ+1

) = νi,rℓ+1
(xrℓ+1

) and (4).
For 2.: We use 1. together with the fact that pure Nash equilibria do exist for the matroid

congestion game G = (N,X, ν) with non-decreasing separable player-specific cost functions, see
Ackermann, Röglin and Vöcking [2].

5.2 Proof of Theorem 4

In the following lemma, we verify that bilevel load balancing games as introduced in Example 4
satisfy the conditions of Definition 2 and thus possesses Nash equilibria. Instead of only considering
singleton strategies as in Example 4, we allow bases of matroids that may be player-specific.

Lemma 14. The cost function defined in (1) is locally monotone.

Proof. We need to show that there are functions ν(x) := (νT (x))T∈B such that (4) holds under the
assumptions stated in Definition 2. Let us rewrite (4) in the current setting:

t⊤c(t + z) =
∑

g∈supp(t)

tg + zg + κ∗g(t+ z)

≤
∑

g∈supp(u)

ug + zg + κ∗g(u+ z) = u⊤c(u+ z).
(5)

We claim that by setting νT,g(x) = νT,g(x) = x for all x ∈ Z+, T ∈ B, g ∈ R inequality (5)
holds. Let t ∈ T , z ∈ Z

m
+ , and consider r, s ∈ R with u = t + 1s − 1r ∈ T and νT,r(tr + zr) =

tr+ zr ≤ νT,f (us+ zs) = us+ zs. By tr + zr ≤ us+ zs and tg + zg = ug+ zg for all g /∈ {r, s}, we get
∑

g∈supp(t)

tg + zg ≤
∑

g∈supp(u)

ug + zg.
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Thus, it suffices to show that

∑

g∈supp(t)

κ∗g(t+ z) ≤
∑

g∈supp(u)

κ∗g(u+ z). (6)

For w ∈ Z
R
+ define S(w) := argmax{wg|g ∈ R}. We distinguish two cases.

• Case 1: s /∈ S(u+ z).

With us+zs ≥ tr+zr, we get r /∈ S(t+z) and thus
∑

g∈supp(t) κ
∗
g(t+z) =

∑

g∈supp(u) κ
∗
g(u+z),

hence (6) follows.

• Case 2: s ∈ S(u+ z).

We consider the two sub-cases of whether or not s was already an argmax element under t + z or
not.

- Case 2(a): s ∈ S(t+ z).

This case implies S(u+ z) = {s} and thus we get

∑

g∈supp(u)

κ∗g(u+ z) = κ∗s(u+ z) = B ≥
∑

g∈supp(t)

κ∗g(t+ z).

- Case 2(b): s /∈ S(t+ z).

This case implies S(u + z) = S(t + z) ∪ {s}. Let us consider two further sub-cases: |S(t +
z) ∩ supp(t)| = 0 or |S(t + z) ∩ supp(t)| ≥ 1.

For |S(t + z) ∩ supp(t)| = 0, we trivially get

∑

g∈supp(u)

κ∗g(u+ z) ≥ 0 =
∑

g∈supp(t)

κ∗g(t+ z).

For |S(t + z) ∩ supp(t)| ≥ 1, we get in the case r /∈ S(t+ z)

∑

g∈supp(u)

κ∗g(u+ z) =
B · |S(u+ z) ∩ supp(u)|

|S(u+ z)|
=

B · (|S(t + z) ∩ supp(t)|+ 1)

|S(t+ z)|+ 1

≥
B · (|S(t + z) ∩ supp(t)|)

|S(t + z)|
=

∑

g∈supp(t)

κ∗g(t + z).

In case r ∈ S(t+z), we have |S(t+z)| = |S(u+z)| and |S(t+z)∩supp(t)| = |S(u+z)∩supp(u)|
and thus

∑

g∈supp(u)

κ∗g(u+ z) =
B · |S(u+ z) ∩ supp(u)|

|S(u+ z)|
=

B · (|S(t + z) ∩ supp(t)|)

|S(t+ z)|

=
∑

g∈supp(t)

κ∗g(t+ z).

This lemma together with the existence result in part 2 of Theorem 3 implies Theorem 4.
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6 Complexity of verifying equilibria

Theorem 5. It is NP-hard to determine whether a given strategy profile of a resource graph game
is a pure Nash equilibrium. This holds even when restricted to games where there is only a single
player, the cost function c fulfills the requirements of Theorem 1 and one of the following conditions
is fulfilled:

1. S1 is a partition matroid on R.

2. S1 is the set of s-t-paths in a directed graph and |Br| = 1 for all r ∈ R.

Proof. In case 1: We reduce from 3-SAT. Given a 3-SAT instance on m clauses, let zij denote the
jth literal of clause i. We let R = {zij : i ∈ [m], j ∈ [3]} be the set of resources of the game. The
strategy space of the single player 1 is given by the bases of a partition matroid such that S ⊆ R
is a basis of the matroid if and only if |S ∩ {zi1, zi2, zi3}| = 1 for all i ∈ [m]. We further define the
cost function cr(x) =

∑

s∈∆(r) xs where ∆(r) is the set of literals that contradict the literal r (i.e.,
s ∈ ∆(r) if and only if s and r are literals of the same variable but with different signs). It is easy
to see that player 1 has a strategy of cost 0 if and only if there is a truth assignment fulfilling all
clauses of the 3-SAT instance.

In case 2: We reduce from Forbidden Pairs s-t-path, which is known to be NP-hard [13]:
Given a digraph G = (V,E), two nodes s, t ∈ V , and a collection of edge pairs {e1, e

′
1}, . . . , {ek, e

′
k},

does there exist an s-t-path P such that |P ∩ {ei, e
′
i}| ≤ 1 for all i ∈ [k]?

We construct the resource graph game as follows: Let R = E be the resource set. For e ∈ E
and x ∈ R

E define ce(x) = xe′i if e = ei for some i ∈ [k], ce(x) = xei if e = e′i for some i ∈ [k] and
ce(x) = 0 otherwise. The game has a single player whose strategy space corresponds to the set of
s-t-paths in G. It is easy to see that player 1 has a strategy of cost 0 if and only if path avoiding
all forbidden pairs.
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[17] T. Harks, M. Schröder, and D. Vermeulen. Toll caps in privatized road networks. Eur. J.
Oper. Res., 276(3):947 – 956, 2019.

[18] X. He, A. Prasad, S. Sethi, and G. Gutierrez. A survey of Stackelberg differential game models
in supply and marketing channels. J. Syst. Sci. Syst. Eng., 16:385–413, 2007.

[19] A. X. Jiang, H. Chan, and K. Leyton-Brown. Resource graph games: A compact representation
for games with structured strategy spaces. In S. P. Singh and S. Markovitch, editors, Proc.
31st AAAI Conference on Artificial Intelligence, pages 572–578, 2017.

[20] A. X. Jiang and K. Leyton-Brown. Computing pure Nash equilibria in symmetric action graph
games. In Proc. 22nd AAAI Conference on Artificial Intelligence, pages 79–85, 2007.

[21] A. X. Jiang, K. Leyton-Brown, and Navin A. R. Bhat. Action-graph games. Games Econom.
Behav., 71(1):141–173, 2011.

[22] A. X. Jiang, A. D. Procaccia, Y. Qian, N. Shah, and M. Tambe. Defender (mis)coordination
in security games. In F. Rossi, editor, Proc. 23rd Internat. Joint Conf. Artif. Intell. (IJCAI),
pages 220–226, 2013.

[23] M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In Proc. Conf. on
Uncertainty in Artif. Intell. (UAI), pages 253–260, 2001.

21



[24] M. Labbé and A. Violin. Bilevel programming and price setting problems. Ann. Oper. Res.,
240(1):141–169, 2016.

[25] K. Leyton-Brown and M. Tennenholtz. Local-effect games. In G. Gottlob and T. Walsh,
editors, Proc. 18th Internat. Joint Conf. Artificial Intelligence, pages 772–780, 2003.

[26] L. Libman and A. Orda. Atomic resource sharing in noncooperative networks. Telecommun.
Syst., 17(4):385–409, 2001.

[27] A. Marchesi, M. Castiglioni, and N. Gatti. Leadership in congestion games: Multiple user
classes and non-singleton actions. In S. Kraus, editor, Proc. 28th Internat. Joint Conf. Artif.
Intell. (IJCAI), pages 485–491, 2019.

[28] I. Milchtaich. Congestion games with player-specific payoff functions. Games Econom. Behav.,
13(1):111–124, 1996.

[29] J. Nash. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA, 36:48–49, 1950.

[30] P. Panagopoulou and P. Spirakis. Algorithms for pure Nash equilibria in weighted congestion
games. ACM J. Exp. Algorithmics, 11:1–19, 2006.

[31] G. Perakis. The “price of anarchy” under nonlinear and asymmetric costs. Math. Oper. Res.,
32(3):614–628, 2007.

[32] R. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Internat. J. Game
Theory, 2(1):65–67, 1973.

[33] A. Sinha, F. Fang, B. An, C. Kiekintveld, and M. Tambe. Stackelberg security games: Looking
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