
ar
X

iv
:1

80
2.

10
35

1v
1

 [
cs

.G
T

]
 2

8
Fe

b
20

18

Efficient Black-Box Reductions for Separable Cost Sharing

Tobias Harks∗ Martin Hoefer† Anja Huber‡ Manuel Surek§

Abstract

In cost sharing games with delays, a set of agents jointly allocates a finite subset of resources.
Each resource has a fixed cost that has to be shared by the players, and each agent has a non-
shareable player-specific delay for each resource. A prominent example is uncapacitated facility
location (UFL), where facilities need to be opened (at a shareable cost) and clients want to
connect to opened facilities. Each client pays a cost share and his non-shareable physical connec-
tion cost. Given any profile of subsets allocated by the agents, a separable cost sharing protocol
determines cost shares that satisfy budget balance on every resource and separability over the
resources. Moreover, a separable protocol guarantees existence of pure Nash equilibria in the
induced strategic game for the agents.

In this paper, we study separable cost sharing protocols in several general combinatorial do-
mains. We provide black-box reductions to reduce the design of a separable cost-sharing protocol
to the design of an approximation algorithm for the underlying cost minimization problem. In
this way, we obtain new separable cost-sharing protocols in games based on arbitrary player-
specific matroids, single-source connection games without delays, and connection games on n-
series-parallel graphs with delays. All these reductions are efficiently computable – given an
initial allocation profile, we obtain a cheaper profile and separable cost shares turning the profile
into a pure Nash equilibrium. Hence, in these domains any approximation algorithm can be used
to obtain a separable cost sharing protocol with a price of stability bounded by the approximation
factor.

∗Universität Augsburg, Institut für Mathematik, Germany. tobias.harks@math.uni-augsburg.de
†Goethe University Frankfurt, Institute of Computer Science, Germany. mhoefer@cs.uni-frankfurt.de
‡Universität Augsburg, Institut für Mathematik, Germany. anja.huber@math.uni-augsburg.de
§Universität Augsburg, Institut für Mathematik, Germany. manuel.surek@math.uni-augsburg.de

1

http://arxiv.org/abs/1802.10351v1

1 Introduction

Cost sharing is a fundamental task in networks with strategic agents and has attracted a large amount
of interest in algorithmic game theory. Traditionally, cost sharing has been studied in a cooperative
sense, i.e., in the form of cooperative games or mechanism design. Many of these approaches treat
cost in a non-separable way and return a single, global cost share for each agent. In contrast,
when agents jointly design a resource infrastructure in large networks, it is much more desirable
to provide algorithms and protocols for separable cost sharing that specify which agent needs to
pay how much to each resource. Here the natural approach are strategic cost sharing games with
n players that allocate subsets of m resources. Each resource generates a cost depending on the
subset of players allocating it. A protocol determines a cost share for each resource and each player
using it. In addition to separability, there are further natural desiderata for such protocols, such as
budget-balance (distribute exactly the arising cost of each resource) and existence of a pure Nash
equilibrium (PNE), i.e., allow the resulting game to stabilize.

Perhaps the most prominent such protocol is the fair-share protocol, in which the cost of each
resource is allocated in equal shares to the players using it. This approach has been studied intensively
(see our discussion below), but there are several significant drawbacks. It can be PLS-hard to find [50]
a PNE, even in connection games on undirected networks. The price of stability (PoS), i.e., the total
cost of the best Nash equilibrium compared to the cost of the optimal allocation, can be as large as
Ω(log n) [5, 17], even though much better solutions can often be found in polynomial time.

In this paper, we study a slight generalization of cost sharing games, where every resource has a
shareable cost component and a non-shareable player-specific delay component. The shareable cost
needs to be shared by the players using it, the non-shareable player-specific delay represents, e.g.,
a physical delay and is thus unavoidable. This setting arises in several relevant scenarios, such as
uncapacitated facility location (UFL) [36]. Here players share the monetary cost of opened facilities
but additionally experience delays measured by the distance to the closest open facility. Another
important example appears in network design, where players jointly buy edges of a graph to connect
their terminals. Besides the monetary cost for buying edges, each player experiences player-specific
delays on the chosen paths. In such a distributed network environment, it is not clear a priori if an
optimal solution can be stable – i.e., if the shareable costs can be distributed among the players in
a separable way so that players do not want to deviate from it. This question leads directly to the
design of protocols that distribute the costs in order to induce stable and good-quality solutions of
the resulting strategic game.

Our results are three polynomial-time black-box reductions for the price of stability of separable
cost sharing protocols in combinatorial resource allocation problems. Our domains represent broad
generalizations of UFL – arbitrary, player-specific matroids, single-source connection games without
delays, and connection games on undirected n-series-parallel graphs with delays. In each of these
domains, we take as input an arbitrary profile and efficiently turn it into a cheaper profile and a
sharing of the shareable costs such that it is a Nash equilibrium. Our protocols are polynomial-time
in several ways. Firstly, the games we study are succinctly represented. In matroids, we assume that
strategies are represented implicitly via an independence oracle. For connection games on graphs,
the strategies of each player are a set of paths, which is implicitly specified by terminal vertices of
the player and the graph structure. The cost sharing protocol is represented by a strategy profile S
and a sharing of the shareable costs arising in S on each resource. While in principle the protocol
must specify a sharing of the costs for all of the other (possibly exponentially many) strategy profiles,
one can do so implicitly by a simple lexicographic assignment rule. It guarantees that the profile S
becomes a PNE. As such, starting from an arbitrary initial profile S′, we can give in polynomial time
the Nash equilibrium profile S, the cost shares for S, and the assignment rule for cost shares in the
other profiles. Hence, if S′ is polynomial-time computable, then both protocol and Nash equilibrium
S are both polynomial-time computable and polynomial-space representable.

2

1.1 Our Results

We present several new polynomial-time black-box reductions for separable cost sharing protocols
with small price of stability (PoS). We study three domains that represent broad generalizations of the
uncapacitated facility location problem. In each domain, we devise an efficient black-box reduction
that takes as input an arbitrary strategy profile and computes a new profile of lower cost together
with a separable cost sharing protocol inducing the cheaper profile as a PNE. Thus, any polynomial-
time α-approximation of the social cost can be turned into a separable cost sharing protocol with
PoS at most α.

Matroidal Set Systems. In Section 3 we provide a black-box reduction for matroidal set systems.
Our results even apply to the broad class of subadditive cost functions that include fixed costs and
discrete concave costs even with weighted players as a special case. Here we assume access to a value
oracle for the subadditive cost function for each resource. Matroidal set systems with player-specific
delays include uncapacitated facility location as a special case, since these correspond to matroid
games, where each player has a uniform rank 1 matroid. For metric UFL, there is for instance a
1.488-approximation algorithm [44] using ideas of a previous 1.5-approximation algorithm [11]. This
leads to a separable cost sharing protocol with PoS of 1.488. Also, the existing hardness results for
UFL carry over to the design of separable cost sharing protocols, and for metric UFL there is a lower
bound of 1.46 [31].

Connection Games with Fixed Costs. In Section 4 we consider cost sharing games on graphs,
where the set systems correspond to paths connecting a player-specific source with a player-specific
terminal. The underlying optimization problem is Steiner forest. For multi-terminal connection
games without delays, we observe that a simple greedy algorithm for the underlying Steiner forest
problem combined with the idea of Prim-Sharing [17] yields a separable protocol in polynomial time.
Since the greedy algorithm has recently been shown to provide a constant-factor approximation [32],
the protocol yields a constant PoS.

For single-source multi-terminal connection games we again provide a polynomial-time black-box
reduction. Our result improves significantly over the existing Prim-Sharing [17] with a price of stabil-
ity of 2. We obtain separable protocols based on any approximation algorithm for Steiner tree, such
as, e.g., the classic 1.55-approximation algorithm [48], or the celebrated recent 1.39-approximation
algorithm [12]. Our black-box reduction continues to hold even for directed graphs, where we can use
any algorithm for the Directed Steiner Tree problem [15], or games based on the (directed or undi-
rected) Group Steiner Tree problem [16,26]. Similarly, all lower bounds on approximation hardness
translate to the price of stability of polynomial-time computable separable protocols.

Connection Games with Delays. Finally, in Section 5 we study multi-terminal connection games
with delays and fixed costs. For directed graphs, an optimal Steiner forest is not enforceable by a
separable cost sharing protocol, even for two players [17]. Very recently, a similar result was shown
even for two-player games on undirected graphs [34]. Thus, for general graphs, we cannot expect
separable protocols with optimal or close-to-optimal equilibria, or (efficient) black-box reductions. We
introduce a class of so-called n-series-parallel graphs, which allows to obtain a black-box reduction in
polynomial time. The transformation directly implies that the n-series-parallel graphs always admit
a separable cost sharing protocol inducing an optimal Steiner forest as an equilibrium.

The reduction also applies to discrete-concave cost functions and player-specific delays, however,
we do not know if polynomial running time is guaranteed. n-series-parallel graphs have treewidth
at most 2, thus, for fixed edge costs and no delays, it is possible to compute efficiently even an
optimal Steiner forest [7]. Hence, in this case we obtain a separable protocol with PoS of 1 in
polynomial time. We finally demonstrate that the specific setting of n-series-parallel graphs is in

3

some sense necessary: Even for generalized series-parallel graphs we give a counterexample showing
that a black-box reduction is impossible to achieve.

1.2 Preliminaries and Related Work

Cooperative cost sharing games have been studied over the last decades for a variety of combinatorial
optimization problems, such as minimum spanning tree [10], Steiner tree [29, 30, 45, 51], facility
location [28], vertex cover [22], and many more. Cooperative cost sharing games have interesting
implications for (group-)strategyproof cost sharing mechanisms [40, 41, 46, 47]. For Bayesian cost-
sharing mechanisms there even exist efficient black-box reductions from algorithm to mechanism
design [27]. A major difference to our work is that cooperative cost sharing is not separable.

The most prominent example of a separable cost sharing protocol is the fair-share protocol, in
which the cost of each resource is divided in equal shares among the players that allocate it. This
protocol is also anonymous, and it implies that the resulting game is a congestion game [49]. It
guarantees the smallest price of stability within a class of anonymous protocols [17]. The fair-share
protocol has attracted a serious amount of research interest over the last decade [1, 5, 8, 33], espe-
cially the notorious open problem of a constant price of stability for connection games in undirected
graphs [9, 23, 25, 42, 43]. However, as a significant drawback, outside of the domain of undirected
connection games the price of stability is often as large as Ω(log n). Moreover, computing a PNE is
PLS-hard, even for undirected connection games [50].

More general separable protocols have been studied mostly in terms of the price of anarchy, e.g.,
for scheduling (or matroid games) [6, 13, 19, 24, 52] or single-source network design with [20, 21] and
without uncertainty [17]. The best result here is a price of anarchy (and stability) of 2 via Prim-
Sharing [17], a protocol inspired by Prim’s MST algorithm. A protocol with logarithmic price of
stability was shown for capacitated UFL games [36].

We note here that separable protocols with low PoS can be obtained using results for cost sharing
games with so-called arbitrary sharing. In cost sharing games with arbitrary sharing, each agent
i ∈ N specifies as strategy a set Si of allocated resources and a payment pi,e for every resource e ∈ E.
A resource e ∈ E is bought if the total payments exceed the costs

∑

i pi,e ≥ ce(S). The private cost
of player i is the sum of all payments

∑

e pi,e if all resources e ∈ Si are bought, and ∞ otherwise.
Note that for games with fixed costs ce(S) = ce, one usually drops the explicit allocation Si from
the strategy of a player. Instead, each player i ∈ N simply specifies strategic payments pi,e for each
e ∈ E. Then the private cost of player i is

∑

e pi,e if payments suffice to buy at least one feasible set
in Si, and ∞ otherwise. The following proposition is an interesting, straightforward insight. It has
been observed before in the special case of single-source connection games [17, Proposition 6.5].

Proposition 1. If for a cost sharing model, the non-cooperative game with arbitrary sharing has
a pure Nash equilibrium, then there is a separable cost sharing protocol with the same pure Nash
equilibrium.

Proof. It is easy to see that in a PNE (S, p) for a game with arbitrary sharing, every player i ∈ N
contributes only to resources from one feasible set Si ∈ Si. Moreover, the cost of every resource is
exactly paid for. Finally, if a player i deviates to a different feasible set S′

i, then for each e ∈ S′
i \ Si

she only needs to contribute the marginal costs that arise due to her presence. In particular, for fixed
costs, she can use all resources bought by others for free.

Hence, given a PNE (S, p) for the game with arbitrary sharing, we obtain a basic and separable
protocol Ξ as follows. If in profile S′ a resource e is allocated by the set Ne(S), then we assign
ξe,i(S

′) = pi,e for every i ∈ Ne(S). For a profile S
′, in which at least one other player i ∈ Ne(S

′)\Ne(S)
allocates e, we pick one of these players i, and she has to pay the full cost ξi,e(S

′) = ce(S
′). If players

from a strict subset Ne(S
′) ⊂ Ne(S) allocate e in S′, we can use an arbitrary budget-balanced sharing

4

of ce(S
′). It is straightforward to verify that such a protocol is basic and separable, and the state S

is a PNE.

This implies existence of separable protocols with optimal PNE and price of stability 1 for a variety
of classes of games, including matroid games with uniform discrete-concave costs [35], uncapacitated
facility location with fixed [14] and discrete-concave costs [38], connection games (single-source [2,
37] and other classes [3, 4, 39]) with fixed costs, and more. However, the large majority of these
results are inefficient, i.e., there is no polynomial-time algorithm that computes the required optimal
equilibrium.

Alternatively, one may resort to approximate equilibria in games with arbitrary sharing that
are efficiently computable. The most prominent technique works via reducing costs by an additive
value ε to ensure polynomial running time (put forward for single-source connection games in [2]
and used in much of the follow-up work [3, 4, 14,37]). This approach does not translate to separable
protocols, since a player must eventually contribute to all resources. This is impossible for the model
we consider here.

2 Separable Cost Sharing Protocols

We are given a finite set N of players and a finite set E of resources. Each player i ∈ N is associated
with a predefined family of subsets Si ⊆ 2E from which player i needs to pick at least one. The space
of strategy profiles is denoted by S := ×i∈NSi. For S ∈ S we denote by Ne(S) = {i ∈ N : e ∈ Si}
the set of players that allocate resource e. Every resource e ∈ E has a fixed cost ce ≥ 0, e ∈ E that is
assumed to be shareable by the players. In addition to the shareable costs, there are player-specific
constant costs di,e ≥ 0, i ∈ N, e ∈ E that are not shareable. If player i chooses subset Si, then the
player-specific costs

∑

e∈Si
di,e must be paid completely by player i. The total cost of a profile S is

defined as C(S) =
∑

e∈∪i∈NSi
ce +

∑

i∈N

∑

e∈Si
di,e.

A cost sharing protocol Ξ assigns cost share functions ξi,e : S → R≥0 for all i ∈ N and e ∈ E
and thus induces the strategic game (N,S, ξ). For a player i, her total private cost of strategy Si in
profile S is ξi(S) :=

∑

e∈Si
(ξi,e(S) + di,e). We assume that every player picks a strategy in order to

minimize her private cost. A prominent solution concept in non-cooperative game theory are pure
Nash equilibria. Using standard notation in game theory, for a strategy profile S ∈ S we denote
by (S′

i, S−i) := (S1, . . . , Si−1, S
′
i, Si+1, . . . , Sn) ∈ S the profile that arises if only player i deviates to

strategy S′
i ∈ Si. A profile is a pure Nash equilibrium (PNE) if for all i ∈ N it holds ξi(S) ≤ ξi(S

′
i, S−i)

for all S′
i ∈ Si.

In order to be practically relevant, cost sharing protocols need to satisfy several desiderata. In
this regard, separable cost sharing protocols are defined as follows [17].

Definition 2 (Cost Sharing Protocols and Enforceability). A cost sharing protocol Ξ is

1. stable if it induces only games that admit at least one pure Nash equilibrium.

2. budget balanced, if for all e ∈ E with Ne(S) 6= ∅

ce =
∑

i∈Ne(S)

ξi,e(S) and ξi,e(S) = 0 for all i 6∈ Ne(S).

3. separable if it is stable, budget-balanced and induces only games for which in any two profiles
S, S′ ∈ S for every resource e ∈ E,

Ne(S) = Ne(S
′)⇒ ξi,e(S) = ξi,e(S

′) for all i ∈ Ne(S).

5

4. polynomial time computable, if the cost sharing functions ξ can be computed in polynomial
time in the encoding length of the cost sharing game.

We say that a strategy profile S is enforceable, if there is a separable protocol inducing S as a pure
Nash equilibrium.

Separability means that for any two profiles S, S′ the cost shares on e are the same if the set of
players using e remains unchanged. Still, separable protocols can assign cost share functions that
are specifically tailored to a given congestion model, for example based on an optimal profile. In
this paper, we are additionally interested in polynomial-time computable protocols that we introduce
here.

3 Matroid Games

In this section, we consider matroid games. As usual in matroid theory, we will write Bi instead of Si,
and B instead of S, when considering matroid games. The tupelM = (N,E,B, (ce)e∈E , (di,e)e∈E,i∈N)
is called a matroid game if E =

⋃

i∈N Ei, and each set system Bi ⊆ 2Ei forms the base set of some
matroid Mi = (Ei,Bi). While seemingly abstract, the class includes several prominent application
domains, such as UFL games. In a UFL game, the resources are facilities (e.g. common transport
hubs) and the players incur delay di,e in addition to their cost shares for opening used facilities.
Every player i chooses exactly one resource, that is |Bi| = 1 for all Bi ∈ Bi and i ∈ N and hence Bi
corresponds to a uniform matroid of rank one. Recall that every base B of a matroidMi = (Ei,Bi)
has the same cardinality which we denote with rki (the rank ofMi).

In the following, instead of fixed costs on the resource, we allow for general subadditive cost
functions ce : 2N → R+, e ∈ E. ce is called subadditive, if it satisfies (1) ce(S) ≤ ce(T) for all
S ⊆ T ⊆ N , and (2) ce(S + {i}) ≤ ce(S) + ce({i}) for all S ⊂ N, i ∈ N . Note that subadditive
functions include fixed costs and discrete concave costs as a special case including the possibility of
weighted demands as in weighted congestion games.

Let us denote the cost of the cheapest alternative of player i to resource e for profile B ∈ B
by ∆e

i (B) := min f∈E
Bi+f−e∈Bi

(cf (Bi + f − e,B−i) + di,f). Here we use the intuitive notation ce(B) :=

ce(Ne(B)). We recapitulate a characterization of enforceable strategy profiles obtained in [36].1

Lemma 3. A collection of bases B = (B1, . . . , Bn) is enforceable by a separable protocol if and only
if the following two properties are satisfied. Note that (D1) implies that each summand ∆e

i (B)− di,e
in (D2) is nonnegative.

di,e ≤ ∆e
i (B) for all i ∈ N, e ∈ Bi (D1)

ce(B) ≤
∑

i∈Ne(B)

(∆e
i (B)− di,e) for all e ∈ E. (D2)

Remark 4. The characterization was used in [36] to prove that an optimal collection of bases is
enforceable. This implies a PoS of 1 for a separable cost sharing protocol that relies on the optimal
profile. As such, the protocol is not efficiently computable (unless P = NP).

In the following, we devise a black-box reduction in Algorithm 1. It takes as input an arbitrary
collection of bases B and transforms them in polynomial time into an enforceable set of bases B′ of
lower cost C(B′) ≤ C(B). We define for each i ∈ N, e ∈ E a virtual cost value πe

i = ce({i})+di,e, and

1The original characterization in [36] was proven for weighted players and load-dependent non-decreasing cost
functions but the proof also works for subadditive cost functions.

6

Algorithm 1: Transforming any profile B into an enforceable profile B′

Input: Congestion model (N,B, c, d) and profile B ∈ B
Output: Enforceable profile B′ with C(B′) ≤ C(B).

1 Set B′ ← B
2 while there is e ∈ E that satisfies at least one of the following conditions:

di,e > ∆̄e
i (B

′) for some i ∈ Ne(B
′) (1) or

ce(B
′) >

∑

i∈Ne(B′)

(

∆̄e
i (B

′)− di,e
)

(2) do

3 if (1) holds true for some i ∈ Ne(B
′) then

4 Let fi ∈ arg min
f∈E

B′
i+f−e∈Bi

πf
i

5 Update B′
i ← B′

i + fi − e

6 else if (2) holds true then

7 while (2) holds true on e do

8 Pick i ∈ Ne(B
′) with πi

e > ∆̄e
i (B

′)

9 Let fi ∈ arg min
f∈E

B′
i+f−e∈Bi

πf
i

10 Update B′
i ← B′

i + fi − e

for each B ∈ B, i ∈ N, e ∈ E a virtual deviation cost ∆̄e
i (B) = min f∈E

Bi+f−e∈Bi

πf
i . The algorithm now

iteratively checks whether (D1) and (D2) from Lemma 3 hold true (in fact it checks this condition for
smaller values on the right hand side given by the virtual values), and if not, exchanges one element
of some player. We show that the algorithm terminates with an enforceable profile after polynomially
many steps.

Theorem 5. Let B be a strategy profile for a matroid congestion model with subadditive costs. There
is an enforceable strategy B′ with C(B′) ≤ C(B) that can be computed in at most n·m·rk(B) iterations
of the while-loop in Algorithm 1, where rk(B) = maxi∈N rki.

Proof. First, observe that if (D1) and (D2) from Lemma 3 hold true for smaller values 0 ≤ ∆̄e
i (B) ≤

∆e
i (B), i ∈ N, e ∈ E, then the profile B is also enforceable. Hence, if the algorithm terminates, the

resulting strategy profile B′ will be enforceable.
To show that the algorithm is well-defined, we only need to check Line 8. By subadditivity

we get
∑

i∈Ne(B′) ce({i}) ≥ ce(B
′). Thus, whenever ce(B

′) >
∑

i∈Ne(B′)

(

∆̄e
i (B

′)− di,e
)

, there is an

i ∈ Ne(B
′) with ce({i}) + di,e > ∆̄e

i (B
′).

It is left to bound the running time. For this we consider player i and the matroid bases Bi. We
interpret a basis Bi ∈ Bi as distributing exactly rki unit sized packets over the resources in E. This
way, we can interpret the algorithm as iteratively moving packets away from those resources e ∈ E
for which either (1) or (2) holds true. We give each packet a unique ID ik, k = 1, . . . , rki. For Bi ∈ Bi,
let eik denote the resource on which packet ik is located. We now analyze the two types of packet
movements during the execution of the algorithm. For a packet movement executed in Line 5 of
Algorithm 1, we have di,e > ∆̄e

i (B
′), thus, when packet ik located on e = eik is moved to fi, it holds

that π
eik
i = πe

i ≥ di,e > ∆̄e
i (B

′) = πfi
i . For packet movements executed in Line 10, then by the choice

of player i ∈ Ne(B
′) (see Line 8) for the corresponding packet ik it holds π

eik
i = πe

i > ∆̄e
i (B

′) = πfi
i .

In both cases we obtain πe
i > πfi

i . Hence, every movement of a single packet ik is in strictly decreasing

7

order of virtual value of the resource. Note that the virtual cost value πe
i does not depend on the

profile B. Thus, there are at most m different virtual cost values that a packet ik of player i can
experience, and thus packet ik can move at most m− 1 times. The following is an upper bound on
the total number of packet movements for all players

∑

i∈N rki ·(m− 1) ≤ n ·m · rk(B).
It is left to argue that the final output B′ has lower cost. We prove this inductively by the

different types of packet movements. Consider first a packet movement of type (1). Let B and B′ be
the profiles before and after packet ik has been moved from e to fi, respectively. We obtain

C(B′)− C(B) = (cfi(B
′)− cfi(B) + di,fi)− (ce(B)− ce(B

′) + di,e)

≤ cfi({i}) + di,fi − (ce(B)− ce(B
′) + di,e)

= ∆̄e
i (B)− di,e + (ce(B

′)− ce(B))

≤ ∆̄e
i (B)− di,e < 0.

The first inequality follows from subadditivity, the second inequality from monotonicity of costs ce.
The last strict inequality follows from assumption (1).

Now consider packet movements of type (2). We treat all movements occurring in one run of
the while loop in Line 7. Let B denote the profile before and B′ after all these movements. Let
Te(B) ⊆ Ne(B) denote the set of those players whose packet ik on e is moved to fi during the while
loop. Let Fe(B) =

⋃

i∈Te(B){fi} and for i ∈ Te(B) define Tfi(B) = {j ∈ Te(B) | fj = fi}. We derive
some useful observations. Before entering the while loop, it holds

ce(B) >
∑

i∈Ne(B)

(

∆̄e
i (B)− di,e

)

=
∑

i∈Ne(B)\Te(B)

(

∆̄e
i (B)− di,e

)

+
∑

i∈Te(B)

(

∆̄e
i (B)− di,e

)

. (3)

Moreover, after exiting the while loop it holds

ce(B
′) ≤

∑

i∈Ne(B)\Te(B)

(

∆̄e
i (B)− di,e

)

. (4)

Thus, combining (3) and (4) we get

ce(B)− ce(B
′) >

∑

i∈Te(B)

(

∆̄e
i (B)− di,e

)

. (5)

Putting everything together, we obtain

C(B′)− C(B) =
∑

fi∈Fe(B)

(

cfi(B
′)− cfi(B)

)

+
∑

i∈Te(B)

di,fi −
(

ce(B)− ce(B
′) +

∑

i∈Te(B)

di,e

)

≤
∑

fi∈Fe(B)

∑

j∈Tfi
(B)

cfi({j}) +
∑

i∈Te(B)

di,fi −
(

ce(B)− ce(B
′) +

∑

i∈Te(B)

di,e

)

=
∑

i∈Te(B)

∆̄e
i (B)−

(

ce(B)− ce(B
′) +

∑

i∈Te(B)

di,e

)

< 0,

where the first inequality follows from subadditivity and the last inequality follows from (5).

4 Connection Games without Delays

In this section, we study connection games in an undirected graph G = (V,E) with a common
source vertex s ∈ V . Every player i wants to connect a player-specific terminal node ti ∈ V to s.
Consequently, every strategy Pi of player i is an (s, ti)-path in G. We denote the set of paths for
player i by Pi and the set of profiles by P.

8

Note that when each edge cost contains a player-specific delay component di,e, we can take any
multi-source multi-terminal connection game and introduce a new auxiliary source vertex s. Then
connect s to each si with an auxiliary edge ei, which has cost di,ei = 0 and dj,ei = M , for some
prohibitively large constant M . Now in any equilibrium and any optimal state of the resulting
game, player i will choose an (s, ti)-path which begins with edge ei. Moreover, ei does not generate
additional cost for player i. As such, the optimal solutions, the Nash equilibria, and their total
costs correspond exactly to the ones of the original multi-source multi-terminal game. Hence, in
games with non-shareable player-specific delays, the assumption of a common source is without loss
of generality and existing lower bounds on the price of stability apply [17,34].

In this section, we instead focus on connection games with fixed shareable costs ce ≥ 0 and no
player-specific delays di,e = 0, for all players i and all edges e ∈ E. For the general multi-terminal
multi-source case with such costs, it is straightforward to observe that the greedy algorithm analyzed
by Gupta and Kumar [32] can be turned into a separable protocol via the Prim-Sharing idea [17].
This implies that we can obtain separable cost sharing protocols with a constant price of stability in
polynomial time.

Proposition 6. For every connection game in undirected graphs with fixed costs, there is an enforce-
able profile that can be computed in polynomial time and yields a separable cost sharing protocol with
constant price of stability.

For single-source games with fixed costs, existing results for cost sharing games with arbitrary
sharing imply that an optimal profile is always enforceable [2, 17]. We here provide a significantly
stronger result for polynomial-time computation of cheap enforceable profiles.

Theorem 7. Let P be a strategy profile for a single-source connection game with fixed costs. There
is an enforceable strategy P ′ with C(P ′) ≤ C(P) that can be computed by Algorithm 2 in polynomial
time.

It is straightforward that for fixed costs we can transform each profile P into a cheaper tree
profile P̂ , in which the union of player paths constitute a tree T . Over the course of the algorithm,
we adjust this tree and construct a cost sharing for it in a bottom-up fashion. The approach has
similarities to an approach for obtaining approximate equilibria for single-source cost sharing games
with arbitrary sharing [2]. However, our algorithm exploits crucial properties of separable protocols,
thereby providing an exact Nash equilibrium and polynomial running time.

When designing a separable protocol based on a state P̂ , we can always assume that when a
player i deviates unilaterally to one or more edges e ∈ G \ P̂i, she needs to pay all of ce. As such,
player i always picks a collection of shortest paths with respect to ce between pairs of nodes on her
current path P̂i. All these paths in G are concisely represented in the algorithm as “auxiliary edges”.
The algorithm initially sets up an auxiliary graph Ĝ given by T and the set of auxiliary edges based
on P̂ . It adjusts the tree T by removing edges of T and adding auxiliary edges in a structured fashion.

We first show in the following lemma that this adjustment procedure improves the total cost
of the tree, and that the final tree T̂ is enforceable in Ĝ. In the corresponding cost sharing, every
auxiliary edge contained in T̂ is completely paid for by a single player that uses it. In the subsequent
proof of the theorem, we only need to show that for the auxiliary edges in T̂ , the edge costs of
the corresponding shortest paths in G can be assigned to the players such that we obtain a Nash
equilibrium in G. The proof shows that the profile P ′ evolving in this way is enforceable in G and
only cheaper than P .

Lemma 8. Algorithm 2 computes a cost sharing of a feasible tree T̂ in the graph Ĝ. The total cost
C(T̂) ≤ C(T), every auxiliary edge in T̂ is paid for by a single player, and the corresponding profile
P̂ is enforceable in Ĝ.

9

Algorithm 2: Transforming any profile P into an enforceable profile P ′

Input: Connection game (N,G, (t1, . . . , tn), s, c) and profile P ∈ P
Output: Enforceable profile P ′ with C(P ′) ≤ C(P).

1 Transform P into a tree profile P̂ and let T ←
⋃

i P̂i

2 ĉe(i)← 0, for all e ∈ T, i ∈ N
3 Insert T into empty graph G′, root T in s, number vertices of T in BFS order from s

4 foreach i ∈ N and each vk, vk′ ∈ P̂i with k > k′ do

5 Add to Ĝ an auxiliary edge e = (vk, vk′)
6 P (vk, v

′
k)← shortest path in G from vk to vk′

7 For all j ∈ N , set ĉe(j)←
∑

f∈P (vk ,vk′)
cf

8 Label every e ∈ T as “open”
9 foreach open e ∈ T in bottom-up order do

10 ĉe(i)← ce, for all i ∈ Ne(P̂)

11 Pd(i)← shortest (s, ti)-path in Ĝ for edge costs ĉe(i)
12 ∆e

i ←
∑

e′∈Pd(i)
ĉe′(i)−

∑

e′∈P̂i,e′ 6=e
ĉe′(i)

13 if ce ≤
∑

i∈Ne(P̂)∆
e
i then

14 For all i ∈ Ne(P̂), assign ĉe(i) ∈ [0,∆e
i] such that

∑

i∈Ne(P̂) ĉe(i) = ce

15 Label e as “closed”

16 else

17 D ← set of highest deviation vertices
18 PT (e, v)← path between higher node of e and v in T

19 Remove all paths PT (e, v) from T and Ĝ
20 foreach v ∈ D do

21 Pick one auxiliary edge e′ ∈ Pd(i), for some i ∈ Ne(P̂), such that e′ = (v, u) with u
a node above e in T , and add e′ to T

22 P̂i ← Pd(i)
23 foreach player j 6= i with tj below v in T do

24 P̂j ← (P̂j from tj to v) ∪ (Pd(i) from v to s)
25 ĉe′(j)← 0

26 Label e′ as “closed”

27 For every i ∈ N , compute P ′
i by replacing in P̂i every auxiliary edge e = (u, v) by the

corresponding shortest path P (u, v) in G

Proof. After building Ĝ, the algorithm considers T rooted in the source s. Initially, all edges of T
are assumed to have zero cost for all players. All edges of T are labelled “open”. Our proof works
by induction. We assume that players are happy with their strategies P̂i if all open edges of T have
cost 0, all open edges outside T have cost ĉe for every player, and the closed edges e ∈ T are shared
as determined by ĉe.

The algorithm proceeds in a bottom-up fashion. In an iteration, it restores the cost of an open
edge e to its original value. It then considers how much each player i ∈ Ne(P̂) is willing to contribute
to e. The maximum contribution ∆e

i is given by the difference in the cheapest costs to buy an (s, ti)-
path for i when (1) e has cost 0 and (2) e has cost ce. By induction, for case (1) we can assume that
i is happy with P̂i when e has cost 0. In case (2), suppose i deviates from (parts of) his current path
P̂i and buys auxiliary edges.

10

Since by induction i is happy with P̂i when e has cost 0, there is no incentive to deviate from
P̂i between two vertices of P̂i below e. Moreover, clearly, there is no incentive to deviate from P̂i

between two vertices above e (since edges of T above e are assumed to have zero cost). Hence, if in
case (2) the path Pd(i) includes e, then Pd(i) = P̂i, so ∆e

i = ce. Otherwise, player i finds a path that
avoids e. By the observations so far, Pd(i) can be assumed to follow P̂i from ti up to a vertex v, then
picks a single auxiliary edge (v, u) to node u above e, and then follows P̂i to s. We call the vertex v
the deviation vertex of Pd(i).

Based on Pd(i), the algorithm computes a maximum contribution ∆e
i for each player i ∈ Ne(P̂),

which i is willing to pay for edge e currently under consideration. If in total these contributions
suffice to pay for e, then we determine an arbitrary cost sharing of ce such that each player i ∈ Ne

pays at most ∆e
i . Thereby, every player i ∈ Ne(P̂) remains happy with his path P̂i, and the inductive

assumptions used above remain true. We can label e as closed and proceed to work on the next open
edge in the tree T .

Otherwise, if the contributions ∆e
i do not suffice to pay for ce, then for every i ∈ Ne(P̂) the path

Pd(i) avoids e and contains a deviation vertex. The algorithm needs to drop e and change the strategy
of every such player. It considers the “highest” subset D of deviation vertices, i.e., the unique subset
such that D contains exactly one deviation vertex above each terminal ti. The algorithm removes
all edges from T that lie below and including e and above any v ∈ D. For each v ∈ D, it then adds
one auxiliary edge from the corresponding Pd(i) to T . As observed above, these edges connect v to
some node u above e, and thereby yield a new feasible tree T in Ĝ.

Since Pd(i) is a best response for player i, we assign i to pay for the cost of the auxiliary edge.
After this update, i is clearly happy with P̂i. Moreover, every other player j ∈ Ne(P̂) that now uses
the auxiliary edge paid by player i is happy with his new strategy P̂j. The auxiliary edge has cost
zero for player j, and the path from ti to the deviation vertex v has not changed. By induction j
was happy with this path after we finished paying for the last edge below v. Thus, we can label all
auxiliary edges added to T as closed and proceed to work on the next open edge in the tree T .

By induction, this proves that the algorithm computes a cost sharing that induces a separable
protocol with the final tree T ′ being a Nash equilibrium in Ĝ. Moreover, if we change the tree
during the iteration for edge e, it is straightforward to verify that the total cost of the tree strictly
decreases.

Proof of Theorem 7. The previous lemma shows that the algorithm computes a cost sharing of a
tree T̂ in Ĝ, such that every player is happy with the path P̂i and every auxiliary edge in T̂ is paid
for completely by a single player. We now transform P̂ into P ′ by replacing each auxiliary edge
e = (u, v) ∈ P̂i by the corresponding shortest path P (u, v) in G. We denote by Ei the set of edges
introduced in the shortest paths for auxiliary edges in P̂i. For the total cost of the resulting profile we
have that C(P ′) ≤ C(P̂) ≤ C(P), since the sets Ei can overlap with each other or the non-auxiliary
edges of T̂ .

We show that P ′ is enforceable by transforming the cost sharing constructed in function ĉ into
separable cost sharing functions as follows. Initially, set ξi,e(P

′) = 0 for all e ∈ E and i ∈ N . Then,
for each non-auxiliary edge e ∈ T̂ we assign ξi,e(P

′) = ĉe(i) if e ∈ P̂i and ξi,e(P
′) = 0 otherwise.

Finally, number players arbitrarily from 1 to n and proceed in that order. For player i, consider the
edges in Ei. For every e ∈ Ei, if

∑

j<i ξj,e(P
′) = 0, then set ξi,e(P

′) = ce.
This yields a budget-balanced assignment for state P ′. As usual, if a player i deviates in P ′ from

P ′
i to P ′′

i , we can assume player i is assigned to pay the full cost ce for every edge e ∈ P ′′
i \ P

′
i . To

show that there is no profitable deviation from P ′, we first consider a thought experiment, where
every edge in Ei comes as a separate edge bought by player i. Then, clearly P ′ is enforceable – the
cost of P ′

i with ξ is exactly the same as the cost of P̂ with ĉ in Ĝ. Moreover, any deviation P ′′
i can

be interpreted as an (s, ti)-path in Ĝ by replacing all subpaths consisting of non-auxiliary edges in
P ′′ by the corresponding auxiliary edge of Ĝ. As such, the cost of P ′′

i is exactly the same as the cost

11

of the corresponding deviation in Ĝ. Now, there is not a separate copy for every edge in Ei. The
set Ei can overlap with other sets Ej and/or non-auxiliary edges. Then player i might not need to
pay the full cost on some e ∈ Ei. Note, however, every edge for which player i pays less than ce is
present in P ′

i as well. Hence, P ′′
i cannot improve over P ′

i due to this property.

The result continues to hold for various generalizations. For example, we can immediately apply
the arguments in directed graphs, where every player i seeks to establish a directed path between
ti and s. Moreover, the proof can also be applied readily for a group-connection game, where each
player wants to establish a directed path to s from at least one node of a set Vi ⊂ V . For this game,
we simply add a separate super-terminal ti for every player i and draw a directed edge of cost 0 from
ti to every node in Vi.

Corollary 9. Let P be a strategy profile for a single-source group-connection game in directed graphs
with fixed costs. There is an enforceable profile P ′ with C(P ′) ≤ C(P) that can be computed by
Algorithm 2 in polynomial time.

5 Connection Games and Graph Structure

In this section, we consider connection games played in undirected graphs G = (V,E) with player-
specific source-terminal pairs. Each player i ∈ N has a source-terminal-pair (si, ti). Note that we
can assume w.l.o.g. that (G, (s1, t1), . . . , (sn, tn)) is irredundant, meaning that each edge and each
vertex of G is contained in at least one (si, ti)-path for some player i ∈ N (nodes and edges which
are not used by any player can easily be recognized (and then deleted) by Algorithm Irredundant
at the end of the section; adapted from Algorithm 1 in [18]).
Harks et al. [34] characterized enforceability for the special case with di,e = 0 for all i ∈ N, e ∈ E via
an LP. We can directly adapt this characterization as follows:

LP(P) max
∑

i∈N,e∈Pi

ξi,e

s.t.:
∑

i∈Ne(P)

ξi,e ≤ ce ∀e ∈ E with Ne(P) 6= ∅

∑

e∈Pi\P ′
i

(ξi,e + di,e) ≤
∑

e∈P ′
i\Pi

(ce + di,e) ∀P ′
i ∈ Pi ∀i ∈ N (NE)

ξi,e ≥ 0 ∀e ∈ Pi ∀i ∈ N

Theorem 10. The strategy profile P = (P1, . . . , Pn) is enforceable if and only if there is an optimal
solution (ξi,e)i∈N,e∈Pi

for LP(P) with

∑

i∈Ne(P)

ξi,e = ce ∀e ∈ E with Ne(P) 6= ∅. (BB)

Given an optimal solution (ξi,e)i∈N,e∈Pi
for LP(P) with the property (BB), the profile P becomes

a PNE in the game induced by ξ, which assigns for each i ∈ N and e ∈ E and each strategy profile
P ′ = (P ′

1, . . . , P
′
n) the following cost shares (these cost shares resemble those introduced in [52]):

ξi,e(P
′) =

ξi,e, if i ∈ Se(P
′) = Se(P),

ce, if i ∈ (Se(P
′) \ Se(P)) and i = min(Se(P

′) \ Se(P)),

ce, if i ∈ Se(P
′) (Se(P) and i = minSe(P

′),

0, else.

12

We now introduce a subclass of generalized series-parallel graphs for which we design a polynomial
time black-box reduction that computes, for a given strategy profile P , an enforceable strategy profile
with smaller cost.

Definition 11 (n-series-parallel graph). An irredundant graph (G, (s1, t1), . . . , (sn, tn)) is n-series-
parallel if, for all i ∈ N , the subgraph Gi (induced by Pi) is created by a sequence of series and/or
parallel operations starting from the edge si − ti. For an edge e = u− v, a series operation replaces
it by a new vertex w and two edges u − w,w − v; A parallel operation adds to e = u− v a parallel
edge e′ = u− v.

The following theorem summarizes our results for n-series-parallel graphs.

Theorem 12. If (G, (s1, t1), . . . , (sn, tn)) is n-series-parallel, the following holds:

(1) Given an arbitrary strategy profile P , an enforceable strategy profile P ′ with cost C(P ′) ≤ C(P),
and corresponding cost share functions ξ, can be computed in polynomial time.

(2) For all cost functions c, d, every optimal strategy profile of (G, (s1, t1), . . . , (sn, tn), c, d) is en-
forceable.

(3) For all edge costs c, an optimal Steiner forest of (G, (s1, t1), . . . , (sn, tn), c) can be computed in
polynomial time.

To prove Theorem 12, we need to introduce some notation. Let (ξi,e)i∈N,e∈Pi
be an optimal

solution for LP(P). For i ∈ N and f ∈ Pi, we consider all paths P ′
i ∈ Pi with f /∈ P ′

i , Pi ∪ P ′
i

contains a unique cycle C(P ′
i) and

∑

e∈Pi\P ′
i
(ξi,e + di,e) =

∑

e∈P ′
i\Pi

(ce + di,e). Among all these

paths, choose one for which the number of edges in C(P ′
i) ∩ Pi is minimal. The corresponding path

Ai,f := C(P ′
i) ∩ P ′

i is called a smallest tight alternative of player i for f . If we say that player i
substitutes f by using Ai,f , we mean that the current path Pi of player i is changed by using Ai,f

instead of the subpath C(P ′
i) ∩ Pi (which contains f). Figure 1 illustrates the described concepts.

Note that Ai,f is also smallest in the sense that every other (tight) alternative for f substitutes
a superset of the edges substituted by Ai,f .

We are now able to prove Theorem 12.

Proof of Theorem 12. We first describe how to compute, given an arbitrary strategy profile P =
(P1, . . . , Pn), an enforceable strategy profile with cost at most C(P).

Assume that P is not enforceable (otherwise there is nothing to do). Let (ξi,e)i∈N,e∈Pi
be an

optimal solution for LP(P). In the following, we denote the variables (ξi,e)i∈N,e∈Pi
as cost shares,

although they do not correspond to a budget-balanced cost sharing protocol (since P is not enforce-
able). There is at least one edge f which is not completely paid, i.e. for which

∑

i∈Nf (P) ξi,f < cf
holds. The optimality of the cost shares (ξi,e)i∈N,e∈Pi

for LP(P) implies that each player i ∈ Nf (P),
i.e. each user of f , has an alternative path P ′

i with f /∈ P ′
i , for which equality holds in the correspond-

ing LP(P)-inequality (otherwise increasing ξi,f by a small amount, while all other cost shares remain
unchanged, would yield a feasible LP-solution with higher objective function value). Using the no-
tation introduced above, each user i of f has a smallest tight alternative Ai,f for f . Furthermore,
if Pi contains more than one edge which is not completely paid, there is a combination of smallest
tight alternatives so that all edges which are not completely paid are substituted (see Figure 2, where
f, g, h are not completely paid and we substitute all these edges by combining Ai,g and Ai,h).

We now consider the strategy profile P ′ = (P ′
1, . . . , P

′
n) which results from P if all players with

unpaid edges in their paths substitute all these edges by a combination of smallest tight alternatives.

13

(a) Example for Pi (thick) and all alternative paths with tight inequality in LP(P).

si tif

(b) Dashed path P ′
i with f /∈ P ′

i , but no unique cycle with Pi.

si tif

(c) Dashed path P ′
i with f /∈ P ′

i , unique cycle C(P ′
i) with Pi, but not smallest for f .

si tif

(d) Substituting f by using smallest tight alternative Ai,f .

si tif

Ai,f

Figure 1: Illustration of the introduced concepts.

si tifg h

Figure 2: Illustration of combining smallest tight alternatives.

Furthermore we define cost shares (again not necessarily budget-balanced) for P ′ as follows: For each
player i and each edge e ∈ P ′

i :

ξi,e(P
′) =

{

ξi,e, for e ∈ P ′
i ∩ Pi,

ce, for e ∈ P ′
i \ Pi.

Note that the private cost of player i under P equals the private cost of i under P ′ since the players
use tight alternatives. Furthermore note that

∑

i∈Ne(P ′) ξi,e(P
′) > ce is possible (for example if there

are two players which did not use an edge e with ce > 0 in their paths under P , but use it in P ′ and
therefore both pay ce). If

∑

i∈Ne(P ′) ξi,e(P
′) ≥ ce holds for all edges e with Ne(P

′) 6= ∅, we found a

strategy profile with the desired properties: P ′ is cheaper than P since

C(P) =
∑

e∈E:Ne(P)6=∅

ce +
∑

i∈N

∑

e∈Pi

di,e

>
∑

i∈N

∑

e∈Pi

(ξi,e + di,e)

=
∑

i∈N

∑

e∈P ′
i

(

ξi,e(P
′) + di,e

)

=
∑

e∈E:Ne(P ′)6=∅

∑

i∈Ne(P ′)

ξi,e(P
′) +

∑

i∈N

∑

e∈P ′
i

di,e

≥
∑

e∈E:Ne(P ′)6=∅

ce +
∑

i∈N

∑

e∈P ′
i

di,e = C(P ′).

14

The strict inequality holds since P is not enforceable, the following equality because the private costs
remain unchanged, and the last inequality because of our assumption above. Furthermore, P ′ is
enforceable since the cost shares (ξi,e(P

′))i∈N,e∈P ′
i
induce a feasible solution of LP(P ′) with (BB) if

we decrease the cost shares for overpaid edges arbitrarily until we reach budget-balance.
Thus assume that there is at least one edge f for which

∑

i∈Nf (P ′) ξi,f(P
′) < cf holds. First

note, for each player i ∈ Nf (P
′), that f ∈ Pi has to hold, since all edges in P ′

i \ Pi are completely
paid (player i pays ce for e ∈ P ′

i \ Pi). As we will show below, all i ∈ Nf (P
′) have a smallest tight

alternative Ai,f for f . We can therefore again update the strategy profile (resulting in P ′′) by letting
all players deviate from all nonpaid edges using a combination of smallest tight alternatives. Figure 3
illustrates this second phase of deviation, where the edges r and s are now not completely paid. Note
that Ai,r is not unique in this example, and to use Ai,s, we need to deviate from Ai,h (which player
i uses in P ′

i).

si tir s h

si tir s h

Figure 3: Illustration for the second phase of deviation.

The cost shares are again adapted, that means for each player i and each edge e ∈ P ′′
i :

ξi,e(P
′′) =

{

ξi,e, for e ∈ P ′′
i ∩ Pi,

ce, for e ∈ P ′′
i \ Pi.

It is clear that the private costs of the players again remain unchanged and therefore, if all edges are
now completely paid, the cost of P ′′ is smaller than the cost of P and P ′′ is enforceable.

We now show that the tight alternatives used in the second phase of deviation exist. Assume, by
contradiction, that there is a player j, an edge f ∈ P ′

j which is not completely paid according to P ′,
and player j has no tight alternative for f . Now recall that, whenever an edge f is not completely
paid in P ′, all users i ∈ Nf (P

′) already used f in P and therefore ξi,f (P
′) = ξi,f holds for all

i ∈ Nf (P
′) ⊆ Nf (P). Furthermore f was completely paid according to the cost shares of P since we

substituted all unpaid edges in the first phase of deviation from P to P ′. We get

∑

i∈Nf (P ′)

ξi,f +
∑

i∈Nf (P)\Nf (P ′)

ξi,f = cf >
∑

i∈Nf (P ′)

ξi,f (P
′) =

∑

i∈Nf (P ′)

ξi,f ,

thus there has to be at least one player k which used f in Pk, but not in P ′
k, and with ξk,f > 0.

Let Ak,g be the smallest tight alternative that player k used (to substitute the edge g which was
not completely paid in P), and also substituted f . The situation is illustrated in Figure 4. We
now show that the LP(P)-solution cannot be optimal. Since player j has no tight alternative for
f , increasing ξj,f by some suitably small amount, and decreasing ξk,f by the same amount, yields
a feasible LP(P)-solution. But now player k has no tight alternative for g anymore, since all tight
alternatives for g also substitute f . Therefore we can increase ξk,g by some small amount, leading to
a feasible LP(P)-solution with higher objective function value, contradiction. Thus we showed that
the tight alternatives used in the second phase of deviation exist.

15

(a) Illustration of the paths Pj and Pk (given by the thick edges).

sk tk

tjsj

g f

(b) Situation after the first phase of deviation (player k used Ak,g).

sk tk

tjsj

g f

Ak,g

Figure 4: Illustration for the proof that tight alternatives exist.

As already mentioned above, if all edges in P ′′ are completely paid, P ′′ is enforceable and cheaper
than P and we are finished. Thus we again assume that there is at least one edge which is not
completely paid. Analogously as for P ′ we can show that, for each such edge f and each player
i ∈ Nf (P

′′), f ∈ Pi has to hold. Furthermore all users of a nonpaid edge have a tight alternative
for this edge (the proof that this holds is a little bit more complicated as above, we possibly need
to involve three players now): Assume that a player i does not have a tight alternative for an edge
f ∈ Pi which is not completely paid according to P ′′, but was completely paid before (i.e. according
to P ′ and also according to P). Thus there has to be a player j ∈ Nf (P) with ξj,f > 0 who deviated
from f by using Aj,g in some phase before. If player j did this in the first phase of deviation, the edge
g was not completely paid according to P and we can change the LP(P)-solution as described above
to get a contradiction. If the deviation happened in the second phase, the edge g was completely
paid according to P . Thus there has to be a third player k (but k = i possible) with ξk,g > 0 which
used some Ak,h in the first phase of deviation that also substituted g. We are now able to change
the cost shares of P to get a contradiction: First, player i increases ξi,f , while player j decreases ξj,f .
Now player j increases ξj,g, while player k decreases ξk,g. Finally player k increases ξk,h. By suitably
small changes, we get a feasible solution for LP(P) with higher objective function value than the
original optimal cost shares; contradiction. Therefore, in a third phase of deviation, all players with
nonpaid edges deviate from all those edges by a combination of smallest tight alternatives.

If we proceed in this manner, we finally have to reach a strategy profile for which all edges
are completely paid (and thus it is enforceable and cheaper than the profile P): In each phase of
deviation, at least one edge is substituted by all players which use this edge in P . Furthermore,
players never return to substituted edges. Therefore, after at most |P | phases of deviation, we reach
a strategy profile with the desired property (where |P | denotes the number of edges in the union of
the paths P1, . . . , Pn). The existence of the needed tight alternatives in the kth phase of deviation
can be shown as follows: Assume that P (k) is the current strategy profile, f an edge which is not
completely paid according to P (k), and there is a player i which uses an edge f , but has no tight
alternative for it. Then there has to be a player j with ξj,f > 0 who deviated from f in some phase
ℓ ≤ k − 1 by using Aj,g, where g was not completely paid in the corresponding strategy profile P (ℓ).
If ℓ = 1 holds, we can decrease ξj,f and increase ξi,f , ξj,g; contradiction. For ℓ ≥ 2, the edge g
was completely paid in P and therefore, there has to be a player p with ξp,g > 0 which substituted
g in some phase ≤ ℓ − 1 by using Ap,h, and so on. This yields a sequence of players and edges
(i, f), (j, g), (p, h), . . . , (q, s), where the edge s was not completely paid according to P . We can now
change the cost shares along this sequence (as described above for the third phase of deviation) to

16

get a contradiction.
Algorithm n-SePa summarizes the described procedure for computing an enforceable strategy

profile P ′ with cost C(P ′) ≤ C(P) and corresponding cost share functions ξ. To complete the proof of
the first statement of Theorem 12, it remains to show that P ′ and ξ can be computed in polynomial
time, i.e. Algorithm n-SePa has polynomial running time. As a first step, we show how to compute
an optimal solution for LP(P) in polynomial time. To this end we show that, for every player i, we
do not need to consider all paths P ′

i ∈ Pi in (NE) of LP(P), which can be exponentially many paths,
but only a set of alternatives Ai of polynomial cardinality. Recall that the graph Gi (induced by Pi)
essentially looks like displayed in Figure 5, and we can w.l.o.g. assume that Pi is given by the thick
edges.

si ti

Figure 5: Structure of Gi, where Pi is given by the thick edges.

An arbitrary (si, ti)-path P ′
i consists of subpaths of Pi together with some of the “arcs”. We call

these arcs alternatives (according to Pi), and formally, an alternative is a path A which connects
two nodes of Pi, but is edge-disjoint with Pi. The subpath of Pi with the same endnodes as A is
denoted by PA

i , and we say that this subpath is substituted by A (cf. Figure 6 for illustration). Note
that there can be different alternatives which substitute the same subpath of Pi (in Figure 6, this
holds for example for the two arcs on the left which both substitute the second and third edge of
Pi). Whenever this is the case, we choose such an alternative with smallest sum of edge costs plus
player i’s delays, and denote this alternative A as a cheapest alternative for PA

i . Let Ai be the set
of all cheapest alternatives according to Pi. It is clear that

∑

e∈Pi\P ′
i

(ξi,e + di,e) ≤
∑

e∈P ′
i\Pi

(ce + di,e) ∀P ′
i ∈ Pi

holds if and only if
∑

e∈PA
i

(ξi,e + di,e) ≤
∑

e∈A

(ce + di,e) ∀A ∈ Ai

holds. Since the paths in Ai are edge-disjoint, |Ai| is bounded by |E|. Algorithm Alternatives(i)
computes Ai in polynomial time. Thus, we can solve LP(P) in polynomial time.

si ti

A

Figure 6: Alternative A (dashed); substituted subpath PA
i (thick).

To complete the proof that Algorithm n-SePa has polynomial running time, it remains to show
that the combination of smallest tight alternatives in Line 7 of Algorithm n-SePa can be found in
polynomial time (recall that there will be at most |P | ≤ |E| calls of the repeat-loop; and all other
steps are obviously polynomial). Since |Ai| ≤ |E| holds for all i ∈ N , we can find, for each edge f
which is not completely paid and each user i of f , a smallest tight alternative Ai,f in polynomial time.
If player i uses more than one edge which is not completely paid, a combination of the corresponding
smallest tight alternatives can also easily be found; thus step 7 is polynomial.

17

Overall we showed that the first statement of Theorem 12 holds. The second statement, i.e. that
every optimal strategy profile of (G, (s1, t1), . . . , (sn, tn), c, d) is enforceable, follows very easily from
the proof of statement (1). Note that, if P is not enforceable, Algorithm n-SePa computes a strategy
profile with strictly smaller cost. Since this would lead to a contradiction if P is an optimal, but not
enforceable strategy profile, every optimal strategy profile has to be enforceable.

We finally want to show the last statement of Theorem 12, i.e. that an optimal Steiner forest can
be computed in polynomial time (for di,e = 0 for all i ∈ N, e ∈ E). To this end we want to use the
result of Bateni et al. [7] that the Steiner forest problem can be solved in polynomial time on graphs
with treewidth at most 2. Thus it is sufficient to show that G has treewidth at most 2, or, since
generalized series-parallel graphs have treewidth at most 2 (what can easily be seen by induction on
the number of operations), that G is generalized series-parallel (note that we can assume w.l.o.g. that
G is connected, otherwise we can obviously treat each connected component separately). Recall that
generalized series-parallel graphs are created by a sequence of series, parallel, and/or add operations
starting from a single edge, where an add-operation adds a new vertex w and connects it to a given
vertex v by the edge w − v. We show that G can be created like this. It is clear that this holds for
each Gi since they are series-parallel; but since the Gis are (in general) neither equal nor disjoint, it
is not completely obvious that this also holds for their union G.

We now show, starting with the subgraph G1 which is generalized series-parallel, that we can
consecutively choose one player and add the vertices and edges of her paths which are not already
contained in the subgraph constructed so far by add, series, and parallel operations. Since this again
yields a generalized series-parallel graph, we finally conclude that G is generalized series-parallel.

Let G′ 6= G be the generalized series-parallel subgraph constructed so far. Choose a player i so
that Gi is not node-disjoint with G′ (exists since G is connected). Let Pi be an (si, ti)-path which is
not node-disjoint with G′ and subdivide Pi into the following three subpaths P 1

i , P
2
i , P

3
i (where some

of the subpaths may consist of only one node): P 1
i starts in si and ends in the first node u which is

contained in G′; P 2
i starts in u and ends in the last node v which is in G′′, and P 3

i starts in v and
ends in ti. Note that Gi consists of Pi together with all alternatives of player i (according to Pi).
The following points show that Gi \G

′ can be added to G′ by series, parallel and add operations:

1. P 1
i (P 3

i) can obviously be added by an add operation at u (v) and series operations.

2. P 2
i is completely contained in G′′. Thus P 2

i does not need to be added.

3. Any alternatives where both endnodes are in P 1
i or P 3

i are internal node-disjoint with G′′ and
can therefore be added by parallel and series operations during the addition of P 1

i and P 3
i .

4. Alternatives with both endnodes in P 2
i are already contained in G′′.

5. There are no alternatives with endnodes in different subpaths.

Note that 2.-5. holds since otherwise there would be a new (sj , tj)-path for a player j already added;
contradiction.

This completes the proof of statement (3). Hence, Theorem 12 is shown.

Remark 13. The first two results of Theorem 12 can be generalized to nonnegative, nondecreas-
ing and discrete-concave shareable edge cost functions. However, we do not know whether or not
polynomial running time can be guaranteed.

We now demonstrate that the assumption of n-sepa graphs is in some sense well justified.

Theorem 14. For n ≥ 3 players, there is a generalized series-parallel graph with fixed edge costs and
no player-specific delays, so that the unique optimal Steiner forest is not enforceable. Therefore, a
black-box reduction as for n-series-parallel graphs is impossible for generalized series-parallel graphs
(even without player-specific delays).

18

Proof. To prove Theorem 14, consider Figure 7. The displayed graph G is generalized series-parallel
since it can be created from a K2 by a sequence of series- and parallel-operations (as executed in
Figure 8). But the unique optimal Steiner forest OPT of (G, (s1, t1), (s2, t2), (s3, t3), c), given by the
solid edges, is not enforceable. To see this, note that the cost of OPT is C(OPT) = 346. Furthermore,
we can upper-bound the sum of cost shares that the players will pay for using their paths in OPT
by 100 + 69 + 170 = 339 < C(OPT), thus showing that OPT is not enforceable: Player 1 will pay
at most 100, because she can use the edge s1 − t1 with cost 100. Player 3 could use the edge s3 − t3
with cost 69, thus she will pay at most 69. It remains to analyze the cost shares of Player 2. Instead
of using the subpath from s2 to s1 of her path in OPT, Player 2 could use the edge s2 − s1 with
cost 84. Furthermore, she could use the edge t3 − t2 with cost 86 instead of her subpath from t3 to
t2. Since the mentioned subpaths cover the complete path of Player 2 in OPT, she will pay at most
84 + 86 = 170.
For n ≥ 4, we obviously get an instance with the properties stated in Theorem 14 by choosing an
arbitrary node v of G and setting si = ti = v for all i ∈ {4, . . . , n}.

s1

t1s2
t2

s3

t3

84 100 69

86

60

57

71 38 38

82

Figure 7: Graph G with three source-terminal pairs (s1, t1), (s2, t2), (s3, t3), fixed edge costs c given
on the edges, and no player-specific delays d.

Figure 8: Verification that G is generalized series-parallel.

Algorithm 3: Irredundant

Data: Undirected graph G, source-terminal pairs (s1, t1), . . . , (sn, tn)
Result: Maximum irredundant subgraph G′

1 C ← set of cut vertices of G;
2 for each i ∈ {1, . . . , n} do
3 Gi ← G;
4 for each c ∈ C do

5 Remove from Gi all vertices in the components of G− c containing neither si nor ti (if
any)

6 G′ ← G;
7 Delete from G′ all nodes and edges which are not contained in any Gi.

19

Algorithm 4: n-SePa

Data: Connection Game (N,G, (s1, t1), . . . , (sn, tn), c, d) with n-series-parallel graph
(G, (s1, t1), . . . , (sn, tn)); strategy profile P = (P1, . . . , Pn)

Result: Enforceable strategy profile P ′ with cost C(P ′) ≤ C(P); cost share functions ξ so
that P ′ is PNE

1 Solve LP(P); let (ξi,e)i∈N,e∈Pi
be the computed optimal solution;

2 P ′ ← P ;
3 ξi,e(P

′)← ξi,e for all i ∈ N , e ∈ P ′
i ;

4 if (BB) does not hold then

5 Let S be the set of edges which are not completely paid according to P ′;
6 repeat

7 All players with edges in S deviate from all unpaid edges by using a combination of
smallest tight alternatives;

8 Update P ′ accordingly;
9 Update the cost shares (for each player i and each edge e ∈ P ′

i):

ξi,e(P
′) =

{

ξi,e, for e ∈ P ′
i ∩ Pi,

ce, for e ∈ P ′
i \ Pi.

Update S (set of edges which are not completely paid according to P ′);
10 until S = ∅;
11 If there are overpaid edges, decrease the corresponding cost shares arbitrarily until these

edges are exactly paid;
12 output P ′ and ξ (induced by (ξi,e(P

′))i∈N,e∈P ′
i
);

Algorithm 5: Alternatives(i)

Data: Connection Game (N,G, (s1, t1), . . . , (sn, tn), c, d) with n-series-parallel graph
(G, (s1, t1), . . . , (sn, tn)); player i ∈ N ; path Pi ∈ Pi

Result: Set of cheapest alternatives Ai according to Pi

1 Define c̃e := ce + di,e for all e ∈ Gi;
2 Delete all edges of Pi;
3 repeat

4 Let u be the first node of Pi which is not yet deleted;
5 repeat

6 Starting in u, execute a (partial) BFS in Gi, stop if a new node of Pi is reached;
7 if a new node v of Pi is reached then

8 Compute a shortest u− v-path Ai (shortest according to c̃);
9 Insert Ai in Ai;

10 Delete all nodes (different from u, v) and edges of Ai from Gi;
11 Mark v as visited ;

12 else

13 Delete all nodes (/∈ Pi) and edges of the connected component of u;
14 Delete u;
15 Remove all marks.

16 until u has been deleted ;

17 until all nodes of Pi have been deleted ;

20

References

[1] N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. Games Econom. Behav.,
65(2):289–317, 2009.

[2] E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network design with
selfish agents. Theory of Computing, 4(1):77–109, 2008.

[3] E. Anshelevich and B. Caskurlu. Exact and approximate equilibria for optimal group network
formation. Theor. Comput. Sci., 412(39):5298–5314, 2011.

[4] E. Anshelevich and B. Caskurlu. Price of stability in survivable network design. Theory Comput.
Syst., 49(1):98–138, 2011.

[5] E. Anshelevich, A. Dasgupta, J. Kleinberg, T. Roughgarden, É. Tardos, and T. Wexler. The
price of stability for network design with fair cost allocation. SIAM J. Comput., 38(4):1602–1623,
2008.

[6] G. Avni and T. Tamir. Cost-sharing scheduling games on restricted unrelated machines. Theor.
Comput. Sci., 646:26–39, 2016.

[7] M. Bateni, M. Hajiaghayi, and D. Marx. Approximation schemes for steiner forest on planar
graphs and graphs of bounded treewidth. JACM, 58(5):21:1–21:37, 2011.

[8] V. Biló, A. Fanelli, M. Flammini, and L. Moscardelli. When ignorance helps: Graphical multicast
cost sharing games. Theoretical Computer Science, 411(3):660 – 671, 2010.

[9] V. Bilò, M. Flammini, and L. Moscardelli. The price of stability for undirected broadcast network
design with fair cost allocation is constant. In Proc. 54th Symp. Foundations of Computer Science
(FOCS), pages 638–647, 2013.

[10] C. Bird. On cost allocation for a spanning tree: A game theoretic approach. Networks, 6:335–350,
1976.

[11] J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the metric uncapaci-
tated facility location problem. SIAM Journal on Computing, 39(6):2212–2231, 2010.

[12] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approximation via iterative
randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

[13] I. Caragiannis, V. Gkatzelis, and C. Vinci. Coordination mechanisms, cost-sharing, and ap-
proximation algorithms for scheduling. In N. R. Devanur and P. Lu, editors, Web and Internet
Economics, pages 74–87, 2017.

[14] J. Cardinal and M. Hoefer. Non-cooperative facility location and covering games. Theor. Com-
put. Sci., 411:1855–1876, March 2010.

[15] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, and S. Guha. Approximation algo-
rithms for directed Steiner problems. J. Algorithms, 33(1):192–200, 1999.

[16] C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed graphs. In Proc. 46th
Symp. Foundations of Computer Science (FOCS), pages 245–253, 2005.

[17] H.-L. Chen, T. Roughgarden, and G. Valiant. Designing network protocols for good equilibria.
SIAM J. Comput., 39(5):1799–1832, 2010.

21

[18] X. Chen, Z. Diao, and X. Hu. Network characterizations for excluding Braess’s paradox. Theory
Comput. Syst., 59(4):747–780, 2016.

[19] G. Christodoulou, V. Gkatzelis, and A. Sgouritsa. Cost-sharing methods for scheduling games
under uncertainty. In Proc. 18th ACM Conf. Economics and Computation (EC), pages 441–458,
2017.

[20] G. Christodoulou, S. Leonardi, and A. Sgouritsa. Designing cost-sharing methods for bayesian
games. In Proc. 9th Intl. Symp. Algorithmic Game Theory (SAGT), pages 327–339, 2016.

[21] G. Christodoulou and A. Sgouritsa. Designing networks with good equilibria under uncertainty.
In Proc. 27th Symp. Discrete Algorithms (SODA), pages 72–89, 2016.

[22] X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial
optimization games. Math. Oper. Res., 24(3):751–766, 1999.

[23] Y. Disser, A. Feldmann, M. Klimm, and M. Mihalák. Improving the Hk-bound on the price
of stability in undirected shapley network design games. Theoret. Comput. Sci., 562:557–564,
2015.

[24] M. Feldman and T. Tamir. Conflicting congestion effects in resource allocation games. Oper.
Res., 60(3):529–540, 2012.

[25] A. Fiat, H. Kaplan, M. Levy, S. Olonetzky, and R. Shabo. On the price of stability for designing
undirected networks with fair cost allocations. In Proc. 33rd Intl. Coll. Automata, Languages
and Programming (ICALP), volume 1, pages 608–618, 2006.

[26] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the Group
Steiner tree problem. J. Algorithms, 37:66–84, 2000.

[27] K. Georgiou and C. Swamy. Black-box reductions for cost-sharing mechanism design. In Proc.
23rd Symp. Discrete Algorithms (SODA), pages 896–913, 2012.

[28] M. X. Goemans and M. Skutella. Cooperative facility location games. J. Algorithms, 50(2):194–
214, 2004.

[29] D. Granot and G. Huberman. On minimum cost spanning tree games. Math. Prog., 21:1–18,
1981.

[30] D. Granot and M. Maschler. Spanning network games. Int. J. Game Theory, 27:467–500, 1998.

[31] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. J. Algo-
rithms, 31:228–248, 1999.

[32] A. Gupta and A. Kumar. Greedy algorithms for Steiner forest. In Proc. 47th Symp. Theory of
Computing (STOC), pages 871–878, 2015.

[33] T. D. Hansen and O. Telelis. Improved bounds for facility location games with fair cost allocation.
In Proc. 3rd Intl. Conf. Combinatorial Optimization and Applications (COCOA), pages 174–185,
2009.

[34] T. Harks, A. Huber, and M. Surek. A characterization of undirected graphs admitting optimal
cost shares. In N. R. Devanur and P. Lu, editors, Web and Internet Economics, pages 237–251,
Cham, 2017. Springer International Publishing.

[35] T. Harks and B. Peis. Resource buying games. Algorithmica, 70(3):493–512, 2014.

22

[36] T. Harks and P. von Falkenhausen. Optimal cost sharing for capacitated facility location games.
European Journal of Operational Research, 239(1):187–198, 2014.

[37] M. Hoefer. Non-cooperative tree creation. Algorithmica, 53:104–131, 2009.

[38] M. Hoefer. Competitive cost sharing with economies of scale. Algorithmica, 60:743–765, 2011.

[39] M. Hoefer. Strategic cooperation in cost sharing games. Internat. J. Game Theory, 42(1):29–53,
2013.

[40] K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative games. In
Proc. 33rd Symp. Theory of Computing (STOC), pages 364–372, 2001.

[41] J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. A group-strategyproof cost sharing
mechanism for the steiner forest game. SIAM J. Comput., 37(5):1319–1341, 2008.

[42] E. Lee and K. Ligett. Improved bounds on the price of stability in network cost sharing games.
In Proc. 14th Conf. Electronic Commerce (EC), pages 607–620, 2013.

[43] J. Li. An o(log(n)/log(log(n))) upper bound on the price of stability for undirected shapley
network design games. Inf. Process. Lett., 109(15):876–878, 2009.

[44] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013.

[45] N. Megiddo. Cost allocation for Steiner trees. Networks, 8(1):1–6, 1978.

[46] H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget balance versus
efficiency. Econom. Theory, 18(3):511–533, 2001.

[47] M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In FOCS,
pages 584–593, 2003.

[48] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM J.
Disc. Math., 19(1):122–134, 2005.

[49] R. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory,
2:65–67, 1973.

[50] V. Syrgkanis. The complexity of equilibria in cost sharing games. In A. Saberi, editor, Proc. 6th
Internat. Workshop on Internet and Network Econom., LNCS, pages 366–377, 2010.

[51] A. Tamir. On the core of network synthesis games. Math. Prog., 50:123–135, 1991.

[52] P. von Falkenhausen and T. Harks. Optimal cost sharing for resource selection games. Math.
Oper. Res., 38(1):184–208, 2013.

23

	1 Introduction
	1.1 Our Results
	1.2 Preliminaries and Related Work

	2 Separable Cost Sharing Protocols
	3 Matroid Games
	4 Connection Games without Delays
	5 Connection Games and Graph Structure

