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Abstract

We study the equilibrium computation problem for two classical resource allocation games:
atomic splittable congestion games and multimarket Cournot oligopolies. For atomic splittable
congestion games with singleton strategies and player-specific affine cost functions, we devise the
first polynomial time algorithm computing a pure Nash equilibrium. Our algorithm is combina-
torial and computes the exact equilibrium assuming rational input. The idea is to compute an
equilibrium for an associated integrally-splittable singleton congestion game in which the play-
ers can only split their demands in integral multiples of a common packet size. While integral
games have been considered in the literature before, no polynomial time algorithm computing
an equilibrium was known. Also for this class, we devise the first polynomial time algorithm and
use it as a building block for our main algorithm.

We then develop a polynomial time computable transformation mapping a multimarket
Cournot competition game with firm-specific affine price functions and quadratic costs to an
associated atomic splittable congestion game as described above. The transformation preserves
equilibria in either game and, thus, leads – via our first algorithm – to a polynomial time algo-
rithm computing Cournot equilibria. Finally, our analysis for integrally-splittable games implies
new bounds on the difference between real and integral Cournot equilibria. The bounds can be
seen as a generalization of the recent bounds for single market oligopolies obtained by Todd [44].1

1 Introduction

One of the core topics in computational economics, operations research and optimization is the
computation of equilibria. As pointed out by several researchers (e.g. [11, 15]), the computational
tractability of a solution concept contributes to its credibility as a plausible prediction of the outcome
of competitive environments in practice. The most accepted solution concept in non-cooperative
game theory is the Nash equilibrium – a strategy profile, from which no player wants to unilaterally
deviate. While a Nash equilibrium generally exists only in mixed strategies, the practically im-
portant class of congestion games admits pure Nash equilibria, see Rosenthal [41]. In the classical
model of Rosenthal, a pure strategy of a player consists of a subset of resources, and the congestion
cost of a resource depends only on the number of players choosing the same resource.

While the complexity of computing equilibria for (discrete) congestion games has been intensively
studied over the last decade (cf. [2, 9, 10, 12, 18, 43]), the equilibrium computation problem for

1An extended abstract of parts of this paper appeared in the Proceedings of the 19th International IPCO Confer-

ence on Integer Programming and Combinatorial Optimization under the title “Equilibrium Computation in Atomic

Splittable Singleton Congestion Games”.
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the continuous variant, that is, for atomic splittable congestion games is much less explored. In
such a game, a player is associated with a positive demand and a collection of allowable subsets of
the resources. A strategy for a player is a (possibly fractional) distribution of the player-specific
demand over the allowable subsets. This quite basic model has been extensively studied, starting
in the 80’s in the context of traffic networks (Haurie and Marcotte [24]) and later for modeling
communication networks (cf. Orda et al. [38] and Korilis et al. [27, 28]), and logistics networks
(Cominetti et al. [13]). Regarding polynomial time algorithms for equilibrium computation, we are
only aware of four works: (1) For affine player-independent cost functions, there exists a convex
potential whose global minima are pure Nash equilibria, see Cominetti et al. [13]. Thus, for any
ǫ ą 0 one can compute an ǫ-approximate equilibrium in polynomial time by convex programming
methods. (2) Huang [25] also considered affine player-independent cost functions, and he devised a
combinatorial algorithm computing an exact equilibrium for routing games on symmetric s-t graphs
that are so-called well-designed. This condition is met for instance by series-parallel graphs. His
proof technique also uses the convex potential. (3) After the initial publication of the conference
version of this article, Bhaskar and Lolakapuri [6] proposed two algorithms with exponential worst-
case complexity that compute approximate Nash equilibria in games with convex costs, when set
systems consist of singletons only. (4) Klimm and Warode [26] recently proved that computing a
pure Nash equilibrium for atomic splittable and integer-splittable network congestion games with
affine player-specific costs is PPAD-complete (see [39]). In light of these hardness results, it becomes
clear that some restrictions on the strategy space are likely to be necessary to obtain polynomial
time algorithms for equilibrium computation.

1.1 Our Results and Techniques

Atomic Splittable Congestion Games. We study atomic splittable congestion games as de-
fined above, where the set systems consist of singletons only, and cost functions are player-specific,
increasing and affine. We call these games atomic splittable singleton congestion games and for
these games we develop the first polynomial time algorithm computing a pure Nash equilibrium.
From now on we use equilibrium as shortcut for pure Nash equilibrium. Our algorithm is purely
combinatorial and computes an exact equilibrium. The main ideas and constructions are as follows.
By analyzing the first order necessary optimality conditions of an equilibrium, it can be shown that
any equilibrium is rational as it is a solution to a system of linear equations with rational coefficients
(assuming rational input). Using that equilibria are unique for singleton games (see Richmann and
Shimkin [40] and Bhaskar et al. [5]), we further derive that the constraint matrix of the equation
system is non-singular, allowing for an explicit representation of the equilibrium by Cramer’s rule
(using determinants of the constraint- and their sub-matrices). This way, we obtain an explicit
lower bound on the minimum demand value for any used resource in the equilibrium. We further
show that the unique equilibrium is also an equilibrium for an associated integrally-splittable game
in which the players may only distribute the demands in integer multiples of a common packet
size of some value k˚ P Qą0 over the resources. Moreover, all equilibria in this integral splittable
game are very similar. While we are not able to compute k˚ exactly, we can efficiently compute
some sufficiently small k0 ď k˚ with the property that an equilibrium for the k0-integrally-splittable
game allows us to determine the set of resources on which a player will put a positive amount of
load in the atomic splittable equilibrium. Once these support sets are known, an atomic splittable
equilibrium can be computed in polynomial time by solving a system of linear equations. This way,
we can reduce the problem of computing the exact equilibrium for an atomic splittable game to
computing an equilibrium for an associated k0-integrally-splittable game.

The class of integrally-splittable congestion games has been studied before by Tran-Thanh et al. [47]
for the case of player-independent convex cost functions and later by Harks et al. [23] (for the more
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general case of polymatroid strategy spaces and player-specific convex cost functions). In particular,
Harks et al. devised an algorithm with running time n2mpδ{k0q3, where n is the number of players,
m the number of resources, and δ is an upper bound on the maximum demand of the players (cf.
Theorem 5.2 [23]). As δ is encoded in binary, however, the algorithm is only pseudo-polynomial
even for player-specific affine cost functions.

We devise a polynomial time algorithm for integrally-splittable singleton congestion games with
player-specific affine cost functions. Our algorithm works as follows. For a game with initial packet
size k0, we start by finding an equilibrium for packet size k “ k0 ¨2q for some q of order Oplogpδ{k0qq,
satisfying only a part of the player-specific demands. Then we repeat the following two actions:

1. We halve the packet size from k to k{2 and construct in polynomial time a k{2-equilibrium us-
ing the k-equilibrium. Here, a k-equilibrium denotes an equilibrium for an integrally-splittable
game with common packet size k.

2. For each player i we repeat the following step: if the current packet size k is smaller than the
currently unscheduled demand of player i, we add one more packet for this particular player
to the game and recompute the equilibrium. This part of the algorithm has also been used in
the algorithm by Tran-Thanh et al. [47] and Harks et al. [23].

After q iterations, we have scheduled all demands and obtain an equilibrium for the desired packet
size k0.

Key to the analysis of the correctness and the running time of the algorithm are several structural
results on the sensitivity of equilibria with respect to different integral packet sizes k P Qą0 and
k{r P Qą0 for some r P N. Specifically, we derive bounds on the difference of resulting global load
vectors as well as individual load vectors of players in any respective equilibrium. These sensitivity
results may be of independent interest as they show how equilibria gradually behave in terms of the
discretization granularity.

Overall, compared to the existing algorithms of Tran-Thanh et al. [47] and Harks et al. [23], our
algorithm has two main innovations: packet sizes are decreased exponentially (yielding polynomial
running time in δ) and k-equilibrium computation for an intermediate packet size k is achieved in
polynomial running time.

Multimarket Cournot Oligopolies. We then study the equilibrium computation problem for
Cournot oligopolies. In the basic model of Cournot [14] introduced in 1838, firms produce homo-
geneous goods and sell them in a common market. The selling price of the goods depends on the
total amount of goods that is offered in the market. Each firm aims to maximize its profit, which is
equal to the revenue minus the production costs. In a multimarket oligopoly (cf. Bulow [8]), firms
compete over a set of markets and each firm has access to a firm-specific subset of the markets.

For multimarket oligopolies, we develop a poly-time computable isomorphism mapping a multimar-
ket Cournot competition game to an associated atomic splittable singleton congestion game. The
isomorphism is payoff invariant (up to constants) and thus preserves equilibria in either games. As a
consequence, we can apply the isomorphism and the polynomial time algorithm for atomic splittable
congestion games to efficiently compute Cournot equilibria for models with firm-specific affine price
functions and quadratic production costs. In addition, our analysis for integrally-splittable games
also implies new bounds on the difference between real and integral Cournot equilibria complement-
ing and extending recent results of Todd [44]. The case of affine price functions with quadratic cost
functions is a well-studied model in economics, see Moulin et al. [35] and further references therein.
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1.2 Related Work

Discrete Congestion Games. As the first seminal work regarding the computational complexity
of equilibrium computation in congestion games, Fabrikant et al. [18] showed that the problem of
computing a pure Nash equilibrium is PLS-complete for network congestion games. Ackermann et
al. [2] strengthened this result to hold even for network congestion games with linear cost functions.
On the other hand, there are polynomial algorithms for symmetric network congestion games (cf.
Fabrikant et al. [18]), for matroid congestion games with player-specific cost functions (Ackermann
et al. [2, 3]) and for so-called total unimodular congestion games (see Del Pia et al. [16]).

In particular, there is a pseudo-polynomial time algorithm that computes pure Nash equilibria
for polymatroid congestion games with player-specific cost functions and polynomially bounded
demands (Harks et al. [23]). As mentioned in Section 1.1, their results plays a significant role in
this paper. The algorithm by Harks et al. starts with the trivial equilibrium for the game where
all player-specific demands are zero. Then, they sequentially add packets to the game. After a
packet is added, additional packet exchanges might be executed to recompute the equilibrium. For
the special case of affine cost functions and singleton strategy spaces we construct an alternative
algorithm that can compute equilibria in polynomial time.

Further results regarding the computation of approximate equilibria in congestion games can be
found in Caragiannis et al. [9, 10], Chien and Sinclair [12] and Skopalik and Vöcking [43].

Atomic Splittable Congestion Games. Atomic splittable congestion games on networks with
player-independent cost functions have been studied (seemingly independently) by Orda et al. [38]
and Haurie and Marcotte [24] and Marcotte [31]. Both lines of research mentioned that Rosen’s
existence result for concave games on compact strategy spaces implies the existence of pure Nash
equilibria via Kakutani’s fixed-point theorem. Cominetti et al. [13] presented the first upper bounds
on the price of anarchy in atomic splittable congestion games. These were later improved by
Harks [21] and finally shown to be tight by Schoppmann and Roughgarden [42].

For the computation of equilibria, Marcotte [31] proposed four numerical algorithms and showed
local convergence results. Meunier and Pradeau [32] developed a pivoting-algorithm (similar to
Lemke’s algorithm) for nonatomic network congestion games with affine player-specific cost func-
tions. Polynomial running time was, however, not shown and seems unlikely to hold. Gairing et
al. [19] considered nonatomic routing games on parallel links with affine player-specific cost func-
tions. They developed a convex potential function that can be minimized within arbitrary precision
in polynomial time. Deligkas et al. [17] considered general concave games with compact action
spaces and investigated algorithms computing an approximate equilibrium. Roughly speaking, they
discretized the compact strategy space and use the Lipschitz constants of utility functions to show
that only a finite number of representative strategy profiles need to be considered for obtaining an
approximate equilibrium (see also Lipton et al. [30] for a similar approach). The running time of
the algorithm, however, depends on an upper bound of the norm of strategy vectors, thus, implying
only a pseudo-polynomial algorithm for our setting.

Note that the problem of computing pure Nash equilibria in atomic splittable congestion games with
singleton strategies and affine cost functions can be written as a linear complementary problem, but
does not seem to fall in any of the classes for which a solution can be found in polynomial time.

Multimarket Cournot Oligopolies. The existence of equilibria in single market Cournot mod-
els (beyond quasi-polynomial utility functions) has been studied extensively in the past decades (see
Vives [49] for a good survey). E.g., Novshek [37] proved that equilibria exists whenever the marginal
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revenue of each firm is decreasing in the aggregate quantities of the other firms. Then, several works
(cf. Topkis [45], Amir [4], Kukushkin [29], Milgrom and Roberts [33], Milgrom and Shannon [34],
Topkis [46] and Vives [48]) proved existence of equilibria when the underlying game is supermodular,
i.e., when the strategy space forms a lattice and the marginal utility of each firm is increasing in any
other firm’s output. Using supermodularity, one can obtain existence results without assuming that
the utility functions are quasi-convex. Very recently, Todd [44] considered Cournot competition on
a single market, where the price functions are linear and cost functions are quadratic. For such
games, he proved that equilibria exist and can be computed in time Opn logpnqq, where n denotes
the number of firms. Additionally, he analyzed the maximum differences of production quantities
of real and integral equilibria, respectively.

Abolhassani et al. [1] devised several polynomial time algorithms for multimarket Cournot oligopolies,
partly using algorithms for solving nonlinear complementarity problems. In contrast to our work,
they assume that price functions are firm-independent. Bimpikis et al. [7] provided a character-
ization of the production quantities at the unique equilibrium, when price functions are player-
independent and concave, and cost functions are convex. They study the impact of changes in the
competition structure on the firm’s profit. This framework can be used to either identify opportu-
nities for collaboration and expanding in new markets. Harks and Klimm [22] studied the existence
of Cournot equilibria, under the condition that each firm can only sell its items to a limited number
of markets simultaneously. They proved that equilibria exist when production cost functions are
convex, marginal return functions strictly decrease for strictly increased own quantities and non-
decreased aggregated quantities and when for every firm, the firm specific market reaction functions
across markets are identical up to market-specific shifts.

2 Preliminaries

Atomic Splittable Singleton Games. An atomic splittable singleton congestion game is defined
by a tuple: G :“ pN,E, pdiqiPN , pEiqiPN , pci,eqiPN,ePEi

q , where E “ te1, . . . , emu is a finite set of
resources and N “ t1, . . . , nu is a finite set of players. Each player i P N is associated with a
demand di P Qě0 and a set of allowable resources Ei Ď E. A strategy for player i P N is a (possibly
fractional) distribution of the demand di over the singletons in Ei. Thus, one can represent the
strategy space of every player i P N by the polytope:

Sipdiq :“ txi P R
|Ei|
ě0 |

ÿ

ePEi

xi,e “ diu.

The combined strategy space is denoted by S :“
Ś

iPN Sipdiq and x “ pxiqiPN is the overall strategy
profile. We define xi,e :“ pxiqe as the load of player i on e P Ei and xi,e “ 0 when e P EzEi.
The total load on resource e is given as xe :“

ř

iPN xi,e. The total load on resource e minus the
contribution of player i is given by x´i,e :“

ř

jPNztiu xj,e.

Resources have player-specific affine cost functions ci,epxeq “ ai,exe ` bi,e with ai,e P Qą0 and
bi,e P Qě0 for all i P N and e P E. The total cost of player i in strategy distribution x is defined
as: πipxq “

ř

ePEi
ci,epxeqxi,e. We write S´ipd´iq “

Ś

j‰i Sjpdjq and we write x “ pxi, x´iq for each
i P N , meaning that xi P Sipdiq and x´i P S´ipd´iq. A strategy profile x is an equilibrium if πipxq ď
πipyi, x´iq for all i P N and yi P Sipdiq. A pair

`

x, pyi, x´iq
˘

P S ˆ S is called an improving move of
player i, if πipxi, x´iq ą πipyi, x´iq. We define µi,epxq “ ci,epxeq ` xi,ec

1
i,epxeq “ ai,epxe ` xi,eq ` bi,e

to be the marginal cost for player i on resource e. We obtain the following sufficient and necessary
equilibrium condition.

Lemma 2.1 (cf. Harks [21]). Strategy profile x is an equilibrium if and only if the following holds
for all i P N : if xi,e ą 0, then µi,epxq ď µi,f pxq for all f P Ei.
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Using that the strategy space is compact and cost functions are convex, Kakutani’s fixed point
theorem implies the existence of an equilibrium. Uniqueness is proven by Richmann and Shimkin [40]
and Bhaskar et al. [5].

Game G is called symmetric whenever Ei “ E for all i P N . We can project any asymmetric game
G on a symmetric game G˚ by setting c˚

i,epxeq to ci,epxeq whenever e P Ei, and to xe ` pn`2qpamaxq2

otherwise. Here,
amax :“ maxttai,e, bi,e | i P N, e P Eiu, tdi | i P Nu, 1u.

In this case µi,ep0q ě µi,fpxeq for any e P EzEi, f P Ei, i P N and x P S. Thus, in an equilibrium
y for game G˚ no player i puts load on any resource e P EzEi. Hence, y is also an equilibrium for
game G. In the rest of this paper, we project every asymmetric game on a symmetric game using
the construction above and write G :“ pN,E, pdiqiPN , pci,eqiPN,ePEi

q instead.

Integral Singleton Games. A k-integral singleton game is compactly defined by the tuple Gk :“
pN,E, pdiqiPN , pci,eqiPN,ePEq with k P Qą0. Here, players cannot split their load fractionally, but only
in multiples of k. Assume di is a multiple of k, then the strategy space for player i is the following
set:

Sipdi, kq :“
!

xi P Q
|E|
ě0 | xi,e “ kqi,e, qi,e P Ně0,

ř

ePE xi,e “ di

)

.

In this game, k is also called the packet size. When k and di are clear from the context, we refer
to Sipdi, kq as Si. When E,N and pci,eqiPN,ePE are clear from the context, we also refer to the game
as GkppdiqiPN q. For player-specific affine cost functions, the (discrete) marginal costs are defined as
follows:

µ`k
i,e pxq “ pxi,e ` kqci,epxe ` kq ´ xi,eci,epxeq, (1)

µ´k
i,e pxq “

#

xi,eci,epxeq ´ pxi,e ´ kqci,epxe ´ kq, if xi,e ą 0

´8, if xi,e ď 0.
(2)

Here, µ`k
i,e pxq represent the cost increment for player i, if one packet of size k is added to resource e

and µ´k
i,e pxq denotes the cost saving for player i, if one packet from resource e is removed. Assuming

cost functions are affine, we obtain µ`k
i,e pxq “ kpai,epxe ` xi,e ` kq ` bi,eq and µ´k

i,e pxq “ kpai,epxe `
xi,e ´ kq ` bi,eq, if xi,e ą 0.

Lemma 2.2 (cf. Groenevelt [20]). Strategy profile x is an equilibrium in a k-integral congestion
game if and only if for all i P N it holds that if xi,e ą 0, then also µ´k

i,e pxq ď µ`k
i,f pxq for all f P E.

We also introduce some new notation. For two vectors xi, yi P R|E|, we define

Hpxi, yiq :“
ÿ

ePE

|xi,e ´ yi,e|

to be their Hamming distance. For two strategies x, y, we write Hpx, yq :“
ř

ePE |xe ´ ye|. We
define a restricted improving move and a restricted best response as follows:

Definition 2.3. Let x be a strategy profile for game GkppdiqiPN q.

1. A strategy x1
i is called a restricted improving move to x for player i, if

x1
i P tyi P Sipdi, kq | Hpxi, yiq “ 2k and πipyi, x´iq ă πipxi, x´iqu.
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2. A strategy x1
i is called a restricted best response to x for player i, if

x1
i P arg min

yiPSipdi,kq
tπipyi, x´iq | Hpxi, yiq “ 2ku.

Note that both a restricted improving move and a restricted best response can be executed by
moving a single packet.

3 Sensitivity Results for Equilibria

In Section 4, we show that computing an equilibrium for atomic splittable games can be reduced
to the problem of computing an equilibrium of an associated integrally-splittable game with small
enough packet size. For such a class of discrete games, we will develop a polynomial time scaling
algorithm, where we write the total demand as a power of two and then iteratively scale down the
allowed packet size and recompute equilibria for the resulting integrally-splittable games. The key
for the well-definedness and further analysis of this algorithm is a structural result on the sensitivity
of equilibria for integrally-splittable games with respect to changed packet sizes. In the following,
we derive such sensitivity results between equilibria of an integrally-splittable game Gk with packet
size k P Qą0 and those of a game G k

r

with r P N. These results may be of independent interest in

the area of comparative statics, where the influence of parameters w.r.t. to resulting equilibria are
analyzed.

Theorem 3.1. Let xk be an equilibrium for game Gk, and xk{r be an equilibrium for game Gk{r.

Then |pxkqe ´ pxk{rqe| ď npm ´ 1qp1 ` 1
r
qk for all e P E.

Proof. Let us first recall the definition of marginal cost functions for players with packet sizes k{r.

µ
`k{r
i,e pxk{rq “ k

r
pai,eppxk{rqi,e ` pxk{rqe ` k

r
q ` bi,eq.

µ
´k{r
i,e pxk{rq “

#

k
r

pai,eppxk{rqi,e ` pxk{rqe ´ k
r

q ` bi,eq, if pxk{rqi,e ą 0

´8, if pxk{rqi,e ď 0.

(3)

In order to prove the theorem we need to show that both:

1. pxkqe ´ pxk{rqe ď npm ´ 1qp1 ` 1
r
qk and

2. pxk{rqe ´ pxkqe ď npm ´ 1qp1 ` 1
r
qk.

As the proofs for both statements are very similar, we only prove the first statement here. On the
contrary, assume that there exists a resource e1 with

pxkqe1 ´ pxk{rqe1 ą npm ´ 1qp1 ` 1
r
qk.

We introduce two edge sets E`, E´ as:

E` “ te P E|pxkqe ě pxk{rqeu and E´ “ te P E|pxkqe ă pxk{rqeu.

We get
ÿ

ePE`

ppxkqe ´ pxk{rqeq “
ÿ

iPN

ÿ

ePE`

ppxkqi,e ´ pxk{rqi,eq ą npm ´ 1qp1 ` 1
r
qk.
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Thus, with n “ |N |, there exists i P N with

ÿ

ePE`

ppxkqi,e ´ pxk{rqi,eq ą pm ´ 1qp1 ` 1
r
qk. (4)

With |E`| ď m ´ 1, there exists e P E` with

pxkqi,e ´ pxk{rqi,e ą p1 ` 1
r
qk.

With (4) and the balance constraint
ř

ePEpxkqi,e ´ pxk{rqi,e “ 0, we get

ÿ

ePE´

ppxkqi,e ´ pxk{rqi,eq ă ´pm ´ 1qp1 ` 1
r
qk.

Again using |E´| ď m ´ 1, there is f P E´ with

pxkqi,f ´ pxk{rqi,f ă ´p1 ` 1
r
qk. (5)

Note that (5) implies pxk{rqi,f ą 0. Altogether we have for some i P N, e P E`, f P E´ the following
conditions:

pxkqe ´ pxk{rqe ` pxkqi,e ´ pxk{rqi,e ą p1 ` 1
r
qk (6)

pxkqf ´ pxk{rqf ` pxkqi,f ´ pxk{rqi,f ă ´p1 ` 1
r
qk. (7)

We rearrange Equations (6), (7) by first multiplying the respective inequalities with ai,e, ai,f and
then adding bi,e, bi,f to the respective sides to obtain

ai,eppxkqe ` pxkqi,e ´ kq ` bi,e ą ai,eppxk{rqe ` pxk{rqi,e ` k
r

q ` bi,e

ai,f ppxkqf ` pxkqi,f ` kq ` bi,f ă ai,f ppxk{rqf ` pxk{rqi,f ´ k
r

q ` bi,f .

We multiply both inequalities with k
r

ą 0 and obtain

k
r

pai,eppxkqe ` pxkqi,e ´ kq ` bi,eq ą k
r

pai,eppxk{rqe ` pxk{rqi,e ` k
r

q ` bi,eq (8)

k
r

pai,f ppxkqf ` pxkqi,f ` kq ` bi,f q ă k
r

pai,f ppxk{rqf ` pxk{rqi,f ´ k
r

q ` bi,f q. (9)

We combine Equation (8), Equation (9) and the fact that xk is an equilibrium for packet size k to
obtain (recall (3) and pxkqi,e ą 0 and pxk{rqi,f ą 0 ):

µ
`k{r
i,e pxk{rq ă

(8)

1

r
µ´k
i,e pxkq ď

1

r
µ`k
i,f pxkq ă

(9)
µ

´k{r
i,f pxk{rq.

Hence, player i that has a restricted improving move in xk{r shifting a packet of size k{r from f to
e, which contradicts the fact that xk{r is an equilibrium strategy.

With
lim
rÑ8

r

k
µ

`k{r
i,e pxq “ lim

rÑ8

r

k
µ

´r{k
i,e pxq “ µi,epxq,

we immediately obtain the following statement from Theorem 3.1.

Corollary 3.2. Let x be the unique equilibrium for an atomic splittable game, and xk be an equi-
librium for a k-integral splittable game. Then |pxkqe ´ xe| ď npm ´ 1qk for all e P E.

We obtain a similar result for player-specific load differences:
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Theorem 3.3. Let xk be an equilibrium for game Gk, and xk{r be an equilibrium for game Gk{r.

Then |pxkqi,e ´ pxk{rqi,e| ď mnpm ´ 1qp1 ` 1
r
qk for all e P E, i P N .

Proof. In order to prove the theorem we need to show that for all i P N, e P E the following two
inequalities hold:

1. pxkqi,e ´ pxk{rqi,e ď mnpm ´ 1qp1 ` 1
r
qk and

2. pxk{rqi,e ´ pxkqi,e ď mnpm ´ 1qp1 ` 1
r
qk

We again only prove the first statement here. Assume by contradiction that there exists a resource
e1 and a player i P N with pxkqi,e1 ´ pxk{rqi,e1 ą mnpm ´ 1qp1 ` 1

r
qk. By Theorem 3.1, we know

that pxkqe1 ´ pxk{rqe1 ě ´npm ´ 1qp1 ` 1
r
qk. Adding both inequalities, we get:

pxkqe1 ´ pxk{rqe1 ` pxkqi,e1 ´ pxk{rqi,e1 ą npm ´ 1q2p1 ` 1
r
qk.

The total load distributed by all player is the same in both xk{r and xk. Thus, we obtain:

ř

e‰e1
pxkqe ´ pxk{rqe ` pxkqi,e ´ pxk{rqi,e ă ´npm ´ 1q2p1 ` 1

r
qk.

By the pigeonhole principle, there must exist at least one resource f P E, f ‰ e1 such that:

pxkqf ´ pxk{rqf ` pxkqi,f ´ pxk{rqi,f ă ´npm ´ 1qp1 ` 1
r
qk. (10)

Note that pxk{rqi,f ą 0, as pxk{rqi,f “ 0 implies pxk{rqf ´pxkqf ą npm´1qp1` 1
r
qk, which contradicts

Theorem 3.1. We obtain in a similar fashion as in the proof of Theorem 3.1:

µ
`k{r
i,e1

pxk{rq ă
1

r
µ´k
i,e1

pxkq ď
1

r
µ`k
i,f pxkq ď µ

´k{r
i,f pxk{rq. (11)

As pxk{rqi,f ą 0, player i has a restricted improving move from resource f to resource e1 contradicting
the fact that xk{r is an equilibrium strategy.

Again, we immediately obtain the following statement from Theorem 3.3.

Corollary 3.4. Let x be the unique equilibrium for an atomic splittable game, and xk be an equi-
librium for the corresponding k-integral splittable game. Then |pxkqi,e ´ xi,e| ď nmpm ´ 1qk for all
i P N and e P E.

To complement Theorem 3.1 and Theorem 3.3, we provide a lower bound example where

|pxkqi,e ´ pxk{rqi,e| “ |pxkqe ´ pxk{rqe| “ pm ´ 1q
k

r
.

Example 3.5. Consider a k´splittable congestion game Gk with player set N “ t1u and resource
set te1, . . . , emu. Let d1 “ pm ´ 1qk, and the cost functions are defined as follows:

c1,epxeq :“

#

xe

2pr´1qpm´1q if e “ em,

xe otherwise.

In game Gk, a best response xk for player 1 is to put all m´1 packets on resource em. Alternatively,
if the packet size is k

r
instead of k, strategy

xk{r :“ pk
r
, . . . , k

r
, pm ´ 1qpk ´ k

r
qq,

is an equilibrium strategy for player 1.

9



4 Reduction to Integrally-Splittable Games

We show that the problem of finding an equilibrium for an atomic splittable game reduces to the
problem of finding an equilibrium for a k0-integral game for some k0 P Qą0.

Theorem 4.1. Let x be the unique equilibrium of an atomic splittable singleton game G. Then,
there exists k˚ P Qą0 such that x is an equilibrium for game Gk˚.

Proof. We define the support set Ii :“ te P E | xi,e ą 0u for each player i P N . Lemma 2.1 implies
that if x is an equilibrium, and xi,e, xi,f ą 0, then µi,epxq “ µi,f pxq. Define p :“

ř

iPN |Ii| ď nm.
Then, if the correct support set Ii of each player is known, the equilibrium can be computed by
solving the following set of p linear equations on p variables.

1. For every player we have an equation that makes sure the demand of that player is satisfied.
Thus, for each player i P N we have

ř

ePIi
xi,e “ di.

2. For every player i P N , there are |Ii| ´1 equations of type µi,epxq “ µi,fpxq for e, f P Ii, which
we write as ai,epxe ` xi,eq ´ ai,f pxf ` xi,f q “ bi,e ´ bi,f . Note that xe is not an extra variable,
but an abbreviation for

ř

iPN xi,e.

We refer to this set of equalities as Ax “ b, where A is a pˆ p matrix. Note that as the equilibrium
exists and is unique, matrix A is non-singular. Then, using Cramer’s Rule, the unique solution of
this system is given by: xi,e “ detpAi,eq{detpAq “ |detpAi,eq|{|detpAq|, where Ai,e is the matrix
formed by replacing the column that corresponds to value xi,e in A by b. We define Q :“ ttai,e, bi,e |
i P N, e P Eiu Y tdi | i P Nu Y t1uu as the set of input values and agcd :“ maxta P Qą0 | @q P
Q, Dℓ P N such that q “ a ¨ ℓu as the greatest common divisor of Q. Note that since 1 P Q, we have
agcd “ 1

h
for some h P N. Then, as all values in A and b depend on adding and subtracting values

in Q, |detpAi,eq| is an integer multiple of pagcdqp and, hence, (using agcd “ 1
h
) an integer multiple of

anmgcd. Thus, all player-specific loads are integer multiples of anmgcd{|detpAq| and, hence, if we define
k˚ “ anmgcd{p2 ¨ |detpAq|q, x is an equilibrium for the k˚-integral splittable game. Note that we can
compute agcd in running time Opnm log amaxq.

We do not know matrix A beforehand, but we do know that 2amax is an upper bound on the values
occurring in A. Using Hadamard’s inequality we find that |detpAq| ď p2amaxqnmpnmqnm{2. Hence,
we can find a lower bound of k˚:

k˚ ě anmgcd{pp2amaxqnmpnmqnm{2q.

By Corollary 3.2 and Corollary 3.4, we know that for the unique atomic splittable equilibrium x

and any k-integral-splittable equilibrium xk, there exist bounds on |xe ´ pxkqe| and |xi,e ´ pxkqi,e| in
terms of k, n and m. Thus, if we compute an equilibrium for a sufficiently small k0, this k0-integral-
splittable equilibrium should be fairly similar to the unique atomic splittable equilibrium. Hence,
it enables us to find the correct support sets. Then, given the correct support set of each player,
we can compute the exact atomic splittable equilibrium by solving the system Ax “ b as described
earlier.

Theorem 4.2. Given an atomic splittable congestion game G and an equilibrium xk0 for the k0-
splittable game Gk0, where k0 :“ anmgcd{p3nmpm ´ 1qrp2amaxqnmpnmqnm{2sq. We can compute in

Oppnmq3q the unique atomic splittable equilibrium x for game G.

10



Proof. First note that all demands di are integer multiples of k0, as di is an integer multiple of agcd,
and both 3nmpm´1q and rp2amaxqnmpnmqnm{2s are integers. Theorem 4.1 implies that there exists
a k˚ such that the atomic splittable equilibrium is also an equilibrium for the k˚-integral splittable
game. Hence, for all i P N and e P E we have that xi,e “ zi,e ¨ k˚ for some zi,e P Ně0. In the
following we show that there is a load-threshold 3

2
nmpm´1qk0 that enables us to decide whether or

not a resource receives any demand from player i in the equilibrium of the atomic splittable game.

1. If pxk0qi,e ă 3
2
nmpm ´ 1qk0, then xi,e “ 0. Assume by contradiction that xi,e ą 0. Remember

that the atomic splittable equilibrium is also a k˚-equilibrium and thus, if xi,e ą 0, then the
inequality xi,e ě k˚ must hold. We obtain xi,e´pxk0qi,e ą k˚´ 3

2
nmpm´1qk0 ě 3

2
nmpm´1qk0,

where we used k˚ ě 3nmpm ´ 1qk0. This contradicts Corollary 3.4 and hence xi,e “ 0.

2. If pxk0qi,e ě 3
2
nmpm ´ 1qk0, then we prove that xi,e ą 0. Assume by contradiction that

xi,e “ 0. We get pxk0qi,e ´ xi,e ě 3
2
nmpm ´ 1qk0, which contradicts Corollary 3.4. Thus,

xi,e ą 0.

Hence, given an equilibrium pxk0q for k0-splittable game Gk0, we can compute the correct support
sets Ii “ te P E | pxk0qi,e ě nmpm ´ 1qk0u for all i P N . Given the correct support sets, we can
easily compute the correct, exact equilibrium by solving the system Ax “ b of at most nm linear
equations in running time Oppnmq3q using Gaussian elimination [36].

It is left to compute an equilibrium xk0 for the k0-splittable game Gk0 .

5 A Polynomial Algorithm for Integral Games

The goal of this section is to develop a polynomial time algorithm that computes an equilibrium
for any k-integral splittable singleton game with player-specific affine cost functions. Our algorithm
uses as a subroutine the algorithm of Harks, Klimm and Peis [23, Algorithm 1] that computes
in pseudo-polynomial time an equilibrium for any integer-splittable congestion game with player-
specific discrete-convex cost functions.

5.1 The Algorithm of Harks, Klimm and Peis [23, Algorithm 1]

The algorithm of Harks, Klimm and Peis [23, Algorithm 1], which we denote by PAlg, starts with
the empty strategy profile and then inductively increases the demand of some player by one packet
(of size k in our case). This new packet is placed greedily on some resource in order to minimize the
private cost of the respective player. By induction, the initial strategy profile (without the additional
packet) is an equilibrium and it is shown that by greedily placing the packet, the respective player
plays a best response for the enlarged game. Moreover, only players using the resource with the
increased load by the new packet may have an incentive to deviate, and, a best response consists of
shifting a single packet away, see Fig. 1. This leads to a structured restricted best response dynamic
with a total running time of Opn2mp δ

k
q3q, where δ :“ maxiPN di. Note that δ is not polynomially

bounded in the input size, thus, the running time is only pseudo-polynomial, hence, the naming
PAlg.

5.2 A Polynomial Time Algorithm

We will construct a new algorithm named PacketHalver with polynomial running time of order
Opn5m10 logpδ{kqq. This algorithm works as follows. For a game with desired packet size k0, we

11



Algorithm 1: Pseudo-polynomial algorithm PAlg computing a pure Nash equilibrium.

Input: GkppdiqiPN q
Output: pure Nash equilibrium x

1 d1
i Ð 0 and xi Ð 0 for all i P N ;

2 while
ř

iPN d1
i ă

ř

iPN di do
3 Choose i P N with d1

i ă di;
4 d1

i Ð d1
i ` k ;

5 Choose a best response yi P Sipd
1
i, kq with Hpyi, xiq “ k;

6 xi Ð yi;
7 while Di P N who can improve in Gkppd1

iqiPN q do
8 Compute a best response yi P Sipd

1
i, kq with Hpyi, xiq “ 2k;

9 xi Ð yi;

10 end

11 end
12 Return x;

start by finding an equilibrium for packet size k “ k0 ¨2q for some q of order Oplogpδ{k0qq, satisfying
only a part of the player-specific demands. Then we repeat the following two steps:

1. Subroutine Restore. We half the packet size from k to k{2 and construct a k{2-equilibrium
using the k-equilibrium. Here, a k-equilibrium denotes an equilibrium for an integrally-
splittable game with common packet size k.

2. Subroutine Add. For each player i we repeat the following step: if the current packet size
k is smaller than the currently unscheduled demand of player i, we add one more packet for
this particular player to the game and recompute the equilibrium. This part of the algorithm
has also been used in the algorithm by Tran-Thanh et al. [47] and Harks et al. [23].

After q iterations, we have scheduled all demands and obtain an equilibrium for the desired packet
size k0. Let us now describe the two subroutines Add and Restore and the main algorithm
PacketHalver in more detail below.

5.2.1 Add

The first subroutine, Add, is described in Algorithm 2 and consists of lines 4-10 of [23, Algorithm
1]. Given an equilibrium xk for game GkppdiqiPN q, it computes an equilibrium for the game, where
the demand for some player j is increased by a packet of size k. First it decides on the best resource
f for player j to put her new packet. In effect, the load on resource f increases and only those
players with xi,f ą 0 can potentially decrease their cost by a deviation. In this case, Harks et al.
proved in [23, Theorem 3.2] that a best response yi can be obtained by a restricted best response
moving a single packet away from f .

5.2.2 Restore

The second subroutine, Restore, takes as input an equilibrium xk for packet size k and game
GkppdiqiPN q, and constructs an equilibrium for game Gk{2ppdiqiPN q with packet size k{2. The
algorithm relies on the sensitivity result of Theorem 3.3 bounding the load difference of every

12



Algorithm 2: Subroutine Addpx, j,GkppdiqiPN qq

Input: equilibrium xk for GkppdiqiPN q, player j

Output: equilibrium x1
k for Gkppd1

iqiPN q, where d1
j Ð dj ` k; d1

i Ð di for all i P Nztju

1 x Ð xk; d
1
j Ð dj ` k;S 1

j Ð Sjpd
1
j , kq; d1

i Ð di for all i P Nztju

2 Choose f P argminePEtµ`k
j,e pxqu;

3 xj,f Ð xj,f ` k;
4 while Di P N who can improve in Gk do
5 Compute a restricted best response yi P S 1

i;
6 xi Ð yi;

7 end
8 x1

k Ð x;
9 return x1

k

player under an equilibrium for the games GkppdiqiPN q and Gk{2ppdiqiPN q, respectively. In partic-
ular, Theorem 3.3 implies that for any two equilibria xk, xk{2 of the respective games, we have
|pxkqi,e ´ pxk{2qi,e| ď 2m2nk for all i P N, e P E. Hence, we know already that any equilibrium xk{2

satisfies pxk{2qi,e ě yi,e for all i P N, e P E, where

yi,e :“ maxtpxkqi,e ´ 2m2nk, 0u for all i P N, e P E. (12)

It follows that we can safely fix yi,e, i P N, e P E according to (12). The idea is to construct a new
game with reduced demand of at most 4m3n2 packets of size k{2 and strategies zk{2 P Sipd̄i, k{2q,
where the reduced demands are defined as

d̄i “
ÿ

ePE

ppxkqi,e ´ yi,eq for all i P N and e P E.

The private cost functions for players i P N are defined as

π̂ipzk{2q :“
ÿ

ePE

ai,eppzk{2qe ` pyk{2qeqppzk{2qi,e ` pyk{2qi,eq ` bi,eppzk{2qi,e ` pyk{2qi,eq, (13)

where yk{2 :“ y appears as a parameter. The form of π̂ipzk{2q in (13) is designed to replicate the
original cost function πipxk{2q for xk{2 :“ zk{2 ` yk{2. By multiplying out terms in (13), it follows
that the expressions

ř

ePE ai,epppzk{2q´i,e ` pyk{2qeqpyk{2qi,eq ` bi,epyk{2qi,e are independent of pzk{2qi
and can thus be left out (without losing equilibria). We obtain a strategically equivalent game by
replacing π̂ipzk{2q with

π̄ipzk{2q :“
ÿ

ePE

ai,eppzk{2 ` yk{2qepzk{2qi,e ` pzk{2qi,epyk{2qi,eq ` bi,epzk{2qi,e

“
ÿ

ePE

ai,epzk{2qepzk{2qi,e ` pbi,e ` ai,eppyk{2qe ` pyk{2qi,eqqpzk{2qi,e.

Defining b̄i,e :“ bi,e ` ai,eppyk{2qe ` pyk{2qi,eq, i P N, e P E, we obtain a standard integer-splittable
singleton congestion game with packet size k{2 and affine player-specific cost functions c̄i,epzeq :“
ai,eze ` b̄i,e, i P N, e P E. This new game is denoted by

Ḡk{2ppd̄iqiPN q :“
`

N,E, pd̄iqiPN , pπ̄i,eqiPN,ePE

˘

.

Restore uses now PAlg on Ḡk{2ppd̄iqiPN q to compute an equilibrium for game Ḡk{2. The key
property leading to the claimed polynomial running time is that Ḡk{2ppd̄iqiPN q only involves a poly-
nomially bounded number of packets. The pseudo-code of subroutine Restore can be found in
Algorithm 3.
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Algorithm 3: Subroutine Restorepxk,GkppdiqiPN qq.

Input: equilibrium xk for GkppdiqiPN q
Output: equilibrium xk{2 for Gk{2ppdiqiPN q

1 Define yi,e :“ maxtpxkqi,e ´ 2m2nk, 0u for all i P N and e P E;
2 Define d̄i “

ř

ePEpxkqi,e ´ yi,e for all i P N and e P E;
3 zk{2 :“ PAlgpḠk{2ppd̄iqiPN qq;

4 return xk{2 :“ y ` zk{2;

5.2.3 PacketHalver

Using the subroutines Add and Restore, the algorithm PacketHalver computes an equilibrium
xk0 for the k0-splittable game Gk0ppdiqiPN qq. In this algorithm, we start with an equilibrium xk for
Gkppd1

iqiPN qq, where d1
i “ 0 for all i P N , k “ 2q1k0 and q1 “ argminqPNt2qk0 ą maxiPN diu. Note

that this game has a trivial equilibrium, where pxkqi,e “ 0 for all i P N and e P E. Then, we repeat
the following two steps:

1. Given an equilibrium xk for Gkppd1
iqiPN q, we construct an equilibrium for Gk{2ppd1

iqiPN q using
subroutine Restore and set k to k{2.

2. For each player i P N we check if di ´ d1
i ě k. If so, we increase d1

i by k and recompute
equilibrium xk using subroutine Add.

After q1 iterations PacketHalver returns an equilibrium xk0 for Gk0ppdiqiPN qq. The pseudo-code
of PacketHalver can be found in Algorithm 4.

Algorithm 4: Algorithm PacketHalverpGk0ppdiqiPN qq

Input: Integral splittable congestion game Gk0 “ pN,E, pdiqiPN , pci,eqiPN,ePEq.
Output: An equilibrium xk0 for Gk0 .

1 Initialize q1 “ argminqPNt2qk0 ą maxiPN diu; k Ð 2q1k0; d
1
i Ð 0; xk Ð p0qePE,iPN ;

2 for 1, . . . , q1 ´ 1 do
3 xk{2 Ð Restorepxk,Gkppd1

iqiPN qqq;

4 k Ð k{2;
5 for i P N do
6 if di ´ d1

i ą k then
7 xk Ð Addpxk, i,Gkppd1

iqiPN qqq;
8 d1

i Ð d1
i ` k;

9 end

10 end

11 end
12 return xk;

6 Correctness

In this section, we prove that PacketHalver indeed returns an equilibrium for game Gk0ppdiqiPN q.
In order to do so, we first need to verify that the two subroutines Add and Restore are correct.
Harks, Klimm and Peis [23, Thm. 5.1] proved that subroutine Add indeed returns an equilibrium
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strategy for the new game with increased demand. It is left to verify correctness of Restore and
PacketHalver.

6.1 Correctness Restore

By Lemma 2.2, a strategy profile zk{2 for the game Ḡk{2 is an equilibrium if and only if

µ̄
´k{2
i,e pzk{2q ď µ̄

`k{2
i,f pzk{2q for all i P N, e, f P E with pzk{2qi,e ą 0,

where µ̄
´k{2
i,e pzk{2q and µ̄

`k{2
i,e pzk{2q denote the respective marginal costs for game Ḡk{2. We need to

show that the combined profile xk{2 :“ pzk{2 ` yk{2q satisfies the conditions of Lemma 2.2 for the
original game Gk{2. For this, we first relate the different marginal costs with each other.

Lemma 6.1. Let xk{2 :“ pzk{2 ` yk{2q. Then, the following holds true:

1. µ̄
´k{2
i,e pzk{2q “ µ

´k{2
i,e pxk{2q for all e P E, i P N with pzk{2qi,e ą 0,

2. µ̄
`k{2
i,e pzk{2q “ µ

`k{2
i,e pxk{2q for all e P E, i P N .

Proof. Both statements follow by simple calculations. For pzk{2qi,e ą 0, we trivially have pxk{2qi,e ą 0

and thus we get:

µ̄
´k{2
i,e pzk{2q “ kpai,eppzk{2qi,e ` pzk{2qe ´ k{2q ` b̄i,eq

“ kpai,eppzk{2qi,e ` pyk{2qi,e ` pzk{2qe ` pyk{2qe ´ k{2q ` bi,eq

“ kpai,eppxk{2qi,e ` pxk{2qe ´ k{2q ` bi,eq

“ µ
´k{2
i,e pxk{2q.

The calculation for µ̄
`k{2
i,e pzk{2q “ µ

`k{2
i,e pxk{2q works exactly the same by replacing ´k{2 with

`k{2.

With Lemma 6.1 it follows that for an equilibrium zk{2 of game Ḡk{2, the strategy profile xk{2 :“
pzk{2 ` yk{2q is an equilibrium for Gk{2 provided pyk{2qi,e ą 0 ñ pzk{2qi,e ą 0 holds true for all
i P N, e P E. For proving this, we first show a further sensitivity result for the profiles xk and
pzk{2 ` yk{2q.

Lemma 6.2. Let xk be an equilibrium for Gk and let zk{2 be an equilibrium for the corresponding
game Ḡk{2. Then, |pzk{2qe ` pyk{2qe ´ pxkqe| ă 2nmk for all e P E.

Proof. Assume pzk{2qe ` pyk{2qe ´ pxkqe ě 2nmk. Define E` “ te P E|pzk{2qe ` pyk{2qe ´ pxkqe ě 0u
and E´ “ te P E|pzk{2qe ` pyk{2qe ´ pxkqe ă 0u. We get

ÿ

iPN

ÿ

ePE`

pzk{2qi,e ` pyk{2qi,e ´ pxkqi,e ě 2nmk.

Hence, there is i P N with

ÿ

ePE`

pzk{2qi,e ` pyk{2qi,e ´ pxkqi,e ě 2mk ą 3
2
mk. (14)
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Load balance implies
ÿ

ePE´

pzk{2qi,e ` pyk{2qi,e ´ pxkqi,e ď ´2mk ă ´3
2
mk.

From (14) we get that there is e P E` with

pzk{2qi,e ` pyk{2qi,e ´ pxkqi,e ą 3
2
k.

With pyk{2qi,e ď pxkqi,e (cf. (12)), we have pzk{2qi,e ą 0. Moreover, there is f P E´ with

pzk{2qi,f ` pyk{2qi,f ´ pxkqi,f ă ´3
2
k.

It follows that pxkqi,f ą 0. Altogether we obtain for some i P N, e P E`, f P E´:

pzk{2qe ` pyk{2qe ´ pxkqe ` pzk{2qi,e ` pyk{2qi,e ´ pxkqi,e ą 3
2
k

pzk{2qf ` pyk{2qf ´ pxkqf ` pzk{2qi,f ` pyk{2qi,f ´ pxkqi,f ă ´3
2
k.

With the usual calculation of marginal costs (as in the proof of Theorem 3.1) and using Lemma 6.1
we get:

µ̄
´k{2
i,e pzk{2q ą

1

2
µ`k
i,e pxkq ě

1

2
µ´k
i,f pxkq ą µ̄

`k{2
i,f pzk{2q.

This contradicts the fact that zk{2 is an equilibrium for game Ḡk{2.

Now we are ready to prove that xk{2 :“ pzk{2 ` yk{2q is an equilibrium for Gk{2.

Lemma 6.3. If zk{2 is an equilibrium for game Ḡk{2 w.r.t. an equilibrium xk for game Gk, then
xk{2 :“ pzk{2 ` yk{2q is an equilibrium for Gk{2.

Proof. With Lemma 6.1, it suffices to show that for all e P E, i P N :

pyk{2qi,e ą 0 ñ pzk{2qi,e ą 0.

Assume by contradiction that there is i P N , e P E with pyk{2qi,e ą 0, pzk{2qi,e “ 0. By (12), this
implies

pxkqi,e ´ ppzk{2qi,e ` pyk{2qi,eq “ 2m2nk.

It follows that pxkqi,e ą 0. With Lemma 6.2, we get

pxkqe ´ ppzk{2qe ` pyk{2qeq ě ´2mnk.

Hence,

pxkqe ´ ppzk{2qe ` pyk{2qeq ` pxkqi,e ´ ppzk{2qi,e ` pyk{2qi,eq ě 2mpm ´ 1qnk ą 2k.

Balance constraints imply
ÿ

f‰e

pxkqf ´ ppzk{2qf ` pyk{2qf q ` pxkqi,f ´ ppzk{2qi,f ` pyk{2qi,f q ď ´2mpm ´ 1qnk.

Thus, there is f ‰ e with

pxkqf ´ ppzk{2qf ` pyk{2qf q ` pxkqi,f ´ ppzk{2qi,f ` pyk{2qi,f q ď ´2mnk ă ´2k.

Using pxkqi,f ě pyk{2qi,f , the case pzk{2qi,f “ 0 implies that the sensitivity bound of Lemma 6.2
applied on f is violated, hence pzk{2qi,f ą 0 must hold. Applying the same argumentation regarding
the marginal cost (as in the proof of Theorem 3.1) we get that zk{2 is not an equilibrium for game
Ḡk{2 leading to a contradiction.
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6.2 Correctness PacketHalver

It is left to prove that PacketHalver returns an equilibrium for Gk0ppdiqiPN q.

Theorem 6.4. Given a k0-integral splittable singleton game with affine player-specific cost functions
Gk0 :“ pN,E, pdiqiPN , pci,eqiPN,ePEq, PacketHalver returns an equilibrium for Gk0 .

Proof. We initialize xi,e “ 0 for all i P N and e P E, which is an equilibrium for the game
G2q1k0pp0qiPN q. Assume that in iteration q we enter the for-loop in PacketHalver with an equilib-
rium x for game G2q1´q`1k0

with demands d1
i “ di ´ pdi mod 2q1´q`1k0q, where we use the notation

a mod b :“ αb, where α “ argmaxtz P Zě0|zb ď au. First, Restore computes an equilibrium for
demands demands d1

i and packet size 2q1´qk0. In lines 5-10 of PacketHalver we then check for
each player i P N , if her unscheduled load satisfies di ´ d1

i ě 2q1´qk0. If so, we schedule an extra
packet for player i using subroutine Add. Note that at most one packet can be added per player
and iteration. Thus, after the q’th iteration in the for-loop, we obtain an equilibrium for demands
d1
i “ di ´ pdi mod 2q1´qk0q and packet size 2q1´qk0. Hence, after the q1’th iteration, we obtain an

equilibrium for the desired packet size 20k0 “ k0 and demands d1
i “ di ´ pdi mod k0q “ di, which

is an equilibrium for game Gk0ppdiqiPN q.

7 Running Time

We prove that the running time of PacketHalver is polynomially bounded in n, m, log k and
log δ, where δ is the upper bound on player-specific demands di. For this, we first need to analyze
the running time of the two subroutines Add and Restore.

7.1 Running Time Add

In [23, Theorem 5.2] Harks et al. proved that it takes time nmpδ{kq2 to execute Add. If their
algorithm is applied to games with singleton strategy spaces and player-specific affine cost functions,
we show next that the running time reduces to Opnm4q. The main reason for this is that equilibria
are not very sensitive under small changes in demands.

Lemma 7.1. Let xk be an equilibrium for game GkppdiqiPN q and let xq be the strategy profile after
the q’th iteration of the while-loop described in lines 4-7 of subroutine Add. Then |pxkqi,e´pxqqi,e| ă
2mk for all i P N and e P E.

Proof. On the contrary, assume q is the first iteration where |pxqqi,e ´ pxkqi,e| “ 2mk for some i P N

and e P E. There are two cases: either (I)pxqqi,e ´ pxkqi,e “ 2mk or (II)pxkqi,e ´ pxqqi,e “ 2mk.
We prove that the first case leads to a contradiction. For the second case a contradiction can be
obtained in a similar manner.

Harks, Klimm and Peis [23] proved that only the players using a resource whose load increased in
the previous iteration may have an improving move, and if so, a best response consists in moving
one packet from this resource to another one. This implies that pxkqe ď pxqqe ď pxkqe ` k for all
e P E. Thus, when assuming pxqqi,e “ pxkqi,e ` 2mk, we obtain:

pxqqe ` pxqqi,e ě pxkqe ` pxkqi,e ` 2mk. (15)

Remember that the total load distributed in xq by player i exceeds the total load distributed in xk
by at most k, and hence

ř

fPEpxqqi,f ď k `
ř

fPEpxkqi,f . We obtain:
ř

f‰epxqqi,f ď
ř

f‰epxkqi,f ` p1 ´ 2mqk ă
ř

f‰epxkqi,f ´ 2pm ´ 1qk.

17



The pigeonhole principle implies that there exists f P E, f ‰ e such that pxqqi,f ă pxkqi,f ´ 2k and
thus pxqqi,f ď pxkqi,f ´ 3k. Combined with the fact that pxqqf ď pxkqf ` k, this implies:

pxqqi,f ` pxqqf ď pxkqi,f ` pxkqf ´ 2k. (16)

As q is the first iteration in which pxqqi,e ´ pxkqi,e “ 2mk, there is e1 ‰ e so that in iteration q,
player i moves a packet from e1 to e, that is,

pxqq´i “ pxq´1q´i and pxqqi,g “

$

’

&

’

%

pxq´1qi,g ` k, if g “ e,

pxq´1qi,g ´ k, if g “ e1,

pxq´1qi,g, else.

Using inequalities (15), (16), m ą 1 and the fact that xk is an equilibrium for packet size k, we
obtain:

µ´k
i,e pxqq ą µ`k

i,e pxkq ě µ´k
i,f pxkq ě µ`k

i,f pxqq.

This, combined with the fact that pxqqi,e ą pxkqi,e ě 0 and that pxkqi,f ě pxqqi,e ` 3k ą 0, implies
player i can decrease her cost by moving a packet from e to f . This contradicts the fact that in
strategy profile xq´1 moving a packet to e is a restricted best response for player i.

Lemma 7.2. Algorithm Add has running time Opnm4q.

Proof. Let xq be the strategy profile after line 5 of the algorithm has been executed for the q’th
time, where we use the convention that x0 denotes the preliminary strategy profile when entering
the while-loop. Note that there is a unique resource e0 such that px0qe0 “ xe0 ` k and px0qe “ xe
for all e P Ezte0u. Furthermore, because we choose in Line 5 a restricted best response, a simple
inductive argument shows that after each iteration q of the while-loop, there is a unique resource
eq P E such that px0qeq “ xeq ` k and px0qe “ xe for all e P Eztequ.

We give each packet of size k of the current demand of each player i P N an identity denoted by
ij, j “ 1, . . . , ri for some ri P N. We assume that players move packets according to a Last In First
Out (LIFO) principle. Thus, whenever player i removes packet ij from eq, she moves the packet
that was placed on this resource last. We keep track of the marginal cost of a packet ij at the
moment it is moved. Assume that packet ij is moved in p iterations q1, . . . , qp. Then:

µ´k
i,eq1

pxq1q ą µ`k
i,eq1`1

pxq1q “ µ´k
i,eq1`1

pxq1`1q “ µ´k
i,eq2

pxq2q.

Here, the first equality is true as moving packet ij is an improving move for player i, the second by
construction of xq1`1 and the third as eq2 “ eq1`1 and by LIFO principle pxq2qi,eq2 “ pxq1`1qi,eq2 .

Applying this argument inductively, we obtain: µ´k
i,eq1

pxq1q ą µ´k
i,eq2

pxq2q ą ¨ ¨ ¨ ą µ´k
i,eqp

pxqpq. Note

that in the iterations q1, . . . qp, the marginal cost value µ´k
i,eqℓ

pxqℓq does not depend on the aggregated

load pxqℓqeqℓ , as pxqℓqeqℓ “ pxqqeqℓ ` k for each ℓ P t1, . . . , pu. Instead it only depends on the player-
specific load pxqℓqi,eqℓ . Lemma 7.1 implies that each player i P N will move at most 2m packets
from or to each resource and hence there will occur at most 4m different values of pxqℓqi,eqℓ . Thus,

each packet visits each resource at most 4m times. As each player i moves at most 2m2 packets,
and each packet visits each resource (m resources) at most 4m times, the running time of Add is
bounded by Opnm4q.

7.2 Running Time Restore

Lemma 7.3. Restore has running time Opn5m10q.
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Proof. Applying the algorithm of Harks et al. [23, Theorem 5.2] on the game Ḡk{2 yields a running

time of n2mp δ
k{2q3, where n is the number of players, m the number of resources, and δ :“ maxiPN d̄i.

By construction of the game Ḡk{2, the demands satisfy di ď 2m3nk for all i P N . Thus, we get
δ ď 2m3nk yielding the desired result.

7.3 Running Time PacketHalver

Finally, we prove the following theorem.

Theorem 7.4. PacketHalver runs in time Opn5m10 logpδ{k0qq.

Proof. Note that we picked q1 P N to be the smallest number such that 2q1k0 ą di for all player-
specific demands di. This implies that q1 is in Oplogpδ{k0qq, where δ :“ maxiPN di. Thus, the number
of executions of lines 3-9 is in Oplogpδ{k0qq. In line 3, we call Restore, which runs in Opn5m10q.
In lines 5 ´ 9 we execute Add (which runs in Opnm4q) at most n times. Thus, the computation
time of lines 4 ´ 9 is Opn2m4q. This implies that the running of Restore dominates and it takes
time Opn5m10q to go through a complete iteration in the for loop. Thus, PacketHalver runs in
time Opn5m10 logpδ{k0qq.

Recall that for computing an atomic splittable equilibrium, we first compute the k0 splittable
equilibrium using the algorithm above. Second, we compute the exact equilibrium in time Oppnmq3q.

Theorem 7.5. Given game G, we can compute an atomic splittable equilibrium for G in running
time: O

`

pnmq3 ` n5m10 logpδ{k0q
˘

.

8 Multimarket Cournot Oligopoly

In this section, we derive a strong connection between atomic splittable singleton congestion games
with affine cost functions and multimarket Cournot oligopolies with affine price functions and
quadratic costs. Such a game is compactly represented by the tuple

M “ pN,E, pEiqiPN , ppi,eqiPN,ePEi
, pCiqiPN q,

where N is a set of n firms and E a set of m markets. Each firm i only has access to a subset Ei Ď E

of the markets. Each market e is endowed with firm-specific, non-increasing, affine price functions
pi,eptq “ si,e ´ ri,et, i P N . In a strategy profile, a firm chooses a non-negative production quantity
xi,e P Rě0 for each market e P Ei. We denote a strategy profile for a firm by xi “ pxi,eqePEi

, and
a joint strategy profile by x “ pxiqiPN . The production costs of a firm are of the form Ciptq “ cit

2

for some ci ě 0. The goal of each firm i P N is to maximize its utility, which is given by uipxq “
ř

ePEi
pi,epxeqxi,e ´ Ci

´

ř

ePEi
xi,e

¯

, where xe :“
ř

iPN xi,e. In the rest of this section we prove that

several results that hold for atomic splittable equilibria and k-splittable equilibria carry over to
multimarket oligopolies.

A strategic game G “ pN, pXqiPN , puiqi P Nq is defined by a set of players N , a set of feasible
strategies Xi for each player i P N and a pay-off function uipxq for each i P N , where x P

Ś

iPN Xi.

Definition 8.1. Let G “ pN, pXiqiPN , puiqi P Nq, H “ pN, pYiqiPN , pviqi P Nq be two strategic games
with identical player set N . Then, G and H are called isomorphic, if for all i P N there exists a
bijective function φi : Xi Ñ Yi and Ai P R such that: uipx1, . . . xnq “ νipφ1px1q, . . . , φnpxnqq ` Ai.
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Let G “ pN, pXiqiPN , puiqi P Nq and H “ pN, pYiqiPN , pviqi P Nq be isomorphic games. Then, pxiqiPN
is an equilibrium of game G if and only if pφipxiqqiPN is an equilibrium of game H. This implies
that pxiqiPN is the unique equilibrium of game G if and only if pφipxiqqiPN is the unique equilibrium
of game H.

We prove that for each multimarket oligopoly, there exists an isomorphic atomic splittable game.
Moreover, we can construct the isomorphism in polynomial time.

Theorem 8.2. Given a multimarket oligopoly M, there exists an atomic splittable game G that is
isomorphic to M.

Proof. Given multimarket oligopoly M, we construct an atomic splittable singleton game G. For
every firm i P N we create a player i and we define her demand di as an upper bound on the
maximal quantity that firm i will produce, that is, di :“

ř

ePEi
maxtt | pi,eptq “ 0u. Note that if we

limit the strategy space for each player i P N in game M to strategies x satisfying
ř

ePEi
xi,e ď di,

all equilibria are preserved. Then, for every player i we introduce a special resource ei, and define
the set of allowable resources for this player as: Ẽi “ Ei Y teiu with ei ‰ ej for i ‰ j. The cost
functions of special resources ei are defined as ci,eiptq :“ cipt ´ 2diq for all i P N and the cost
functions of resources e P Ei as: ci,eptq :“ ´pi,eptq “ ri,et ´ si,e for all i P N . In order to guarantee
that the affine cost functions are non-negative, one can add a sufficiently large positive constant
cmax to every cost function on each resource. We define

cmax “ max ttsi,e | for all i P N, e P Eiu Y t2cidi | for all i P Nuu .

Note that adding cmax to every cost function does not change the equilibrium, it only adds dicmax

to the total cost of each player. The total cost of a strategy x for player i in game G is: πipx
1q “

ř

ePẼi
ci,epx1

eqx1
i,e, which is equal to

πipx
1q “

ř

ePEi
´pi,epx

1
eqx1

i,e ` x1
i,ei

cipx
1
i,ei

´ 2diq. (17)

As maximizing pay-off equals minimizing costs, the payoff function of player i in x1 is defined by:
vipx

1q “ ´πipx
1q. It is left to prove that game G is isomorphic to game M. Let x be a feasible

strategy in M. For each player i P N , we define bijection φi : Ei Ñ Ẽ as: φipxi,1, . . . , xi,mq “
pxi,1, . . . , xi,m, di ´

ř

ePEi
xi,eq “: px1

i,1, . . . , x
1
i,m, x1

i,m`1q. As we limited the strategy space for each
i P N in game M to strategies x where

ř

ePEi
xi,e ď di, x

1 :“ φpxq is a feasible strategy in G. For
each feasible strategy x for game M, and for each i P N , we have:

uipxq “
ř

ePEi
pi,epxeqxi,e ´ Ci

´

ř

ePEi
xi,e

¯

“
ř

ePEi
pi,epxeqxi,e ´ ci

´

di ´
ř

ePEi
xi,e

¯´

´ di ´
ř

ePEi
xi,e

¯

´ cid
2
i

“
ř

ePEi
pi,epxeqxi,e ´ ci

´

di ´
ř

ePEi
xi,e

¯´

di ´
ř

ePEi
xi,e ´ 2di

¯

´ cid
2
i

“ vipφ1px1q, . . . , φ1pxnqq ´ cid
2
i .

Thus, games M and G are isomorphic.

One of our main results is our polynomial time algorithm that finds the unique equilibrium for
atomic splittable singleton congestion games within polynomial time. As for each multimarket
oligopoly there exists an atomic splittable game isomorphic to it, we can to construct this unique
equilibrium within polynomial time.

Theorem 8.3. Given a multimarket oligopoly M, an equilibrium can be computed within running
time: O

`

n15m10 log pδ{k0q
˘

.
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Proof. This theorem follows directly from the fact that we can construct an atomic splittable single-
ton game G isomorphic to M (using Theorem 8.2) and the fact that x “ pxiqiPN is an equilibrium in
G if and only if x “ pφipxiqqiPN is an equilibrium in M. Note that if in M, firms compete over m mar-
kets, the isomorphic atomic splittable singleton game G has m`n resources. For such a game, The-
orem 7.5 implies that an equilibrium can be found in O

`

n3pm ` nq3 ` n5pm ` nq10 log pδ{k0q
˘

.

In an integral multimarket oligopoly players sell indivisible goods. Thus, players can only produce
and sell integer quantities, i.e., xi,e P Ně0 for each i P N and e P Ei. For these games, we can
construct an isomorphic 1-splittable congestion game.

Theorem 8.4. Given an integral multimarket oligopoly M, we can construct a 1-splittable conges-
tion game G isomorphic to M within running time Opnmq.

Proof. We define di :“
ř

ePEi
tmaxtt | pi,eptq “ 0uu. Then, the theorem follows using the same

construction as in Theorem 8.2.

Theorem 8.5. Given an integral multimarket oligopoly M, an integral equilibrium can be computed
within O

`

n15m10 log pδ{k0q
˘

.

Proof. Theorem 8.4 implies that we can construct an atomic splittable singleton game G isomorphic
to M. Note that if in M, n firms compete over m markets, the isomorphic atomic splittable singleton
game has m ` n resources. For such a game, Theorem 7.4 implies the desired running time.

Lastly, we extend a result by Todd [44], where the total and individual production in one market
in an integer equilibrium and a real equilibrium are compared.

Theorem 8.6. Given a multimarket oligopoly M, with real equilibrium pxiqiPN . Then, for any
integer equilibrium pyiqiPN it holds that |xe´ye| ď npm`n´1q and |xi,e´yi,e| ď npm`n´1qpm`nq.

Proof. Assume that in game M, n firms compete over m markets. According to Theorem 8.2, we
can construct an atomic splittable congestion game G on m ` n resources that is isomorphic to M

using the bijection φ. Let x “ pxiqiPN be an atomic splittable equilibrium of M and let y “ pyiqiPN
be a 1-splittable equilibrium of M. Then x1 :“ pφipxiqqiPN is an atomic splittable equilibrium of G
and y1 :“ pφipyiqqiPN is a 1-splittable equilibrium of G. According to Theorem 3.1 and 3.3 we know
that for any real equilibrium x1 and 1-splittable equilibrium y1 it holds that |x1

e ´y1
e| ă npm`n´1q

and |x1
i,e´y1

i,e| ă npm`n´1qpm`nq for all i P N and e P Ei. Then, using the bijection φ described
in (17), we get |xe ´ ye| ă npm ` n ´ 1q and |xi,e ´ yi,e| ă npm ` n ´ 1qpm ` nq.

Todd [44] showed that the total production in a 1-splittable equilibrium is at most n{2 away from
that in the real equilibrium, and the individual firm’s choice can be more than pn´ 1q{4 away from
her choice in the real equilibrium. Our bounds are larger than Todd’s, yet, they hold for a more
general model – multiple markets and firm-specific price functions. We pose as an open question,
whether or not our bounds are tight or can be further improved.
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versions of the paper. This updated version contains a correction of the error and lead to some
changed sensitivity bounds in Theorems 1 and 2. Moreover, in light of this error, we had to change
the subroutine Restore which now is simpler and comes with a faster running time. All main
results of the paper contained in previous versions remain qualitatively intact (with some changed
bounds and corresponding running times though).
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