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We consider cost sharing for a class of facility location games, where the strategy space of each player
consists of the bases of a player-specific matroid defined on the set of resources. We assume that
resources have nondecreasing load-dependent costs and player-specific delays. Our model includes the
important special case of capacitated facility location problems, where players have to jointly pay for
opened facilities. The goal is to design cost sharing protocols so as to minimize the resulting price of anar-
chy and price of stability. We investigate two classes of protocols: basic protocols guarantee the existence
of at least one pure Nash equilibrium and separable protocols additionally require that the resulting cost
shares only depend on the set of players on a resource. We find optimal basic and separable protocols that
guarantee the price of stability/price of anarchy to grow logarithmically/linearly in the number of players.
These results extend our previous results (cf. von Falkenhausen & Harks, 2013), where optimal basic and
separable protocols were given for the case of symmetric matroid games without delays.

We finally study the complexity of computing optimal cost shares. We derive several hardness results
showing that optimal cost shares cannot be approximated in polynomial time within a logarithmic factor
in the number of players, unless P ¼ NP. For a restricted class of problems that include the above hard
instances, we devise an approximation algorithm matching the logarithmic bound.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Consider a setting where players jointly use resources that have
load-dependent monetary costs and player-specific delays. The
monetary cost of each resource must be shared by its users while
the player-specific delays are unavoidable physical quantities. This
setting arises in facility location models, where users share the
monetary cost of opened facilities and additionally experience
delays measured by the distance to the closest open facility. As
players might value the delay and monetary cost differently, these
delays depend on both, the player and the facility the player is
assigned to. Another example appears in distributed network
design, where players jointly install capacities on a subgraph
satisfying user-specific connectivity requirements. Besides the
monetary cost for installing enough capacity, each player experi-
ences player-specific delays on the resources used.
Given the resource cost functions, delays and user’s require-
ments, in an ideal world resources are allocated optimally, that
is, an allocation minimizes the social costs. In distributed systems,
however, players will selfishly select resources for their demands
based on the cost shares they have to pay and delays they experi-
ence. While physical delays (such as switching times or travel
times) are unavoidable, the ways the monetary cost of a resource
is shared among its users determine the equilibrium states of the
strategic game induced.

In this article, we study the design of cost sharing protocols as a
means to induce efficient equilibria of the strategic game played.
We consider cost sharing protocols axiomatized by the following
three properties:

1. Budget-balance: The cost of each resource is exactly covered by
the collected cost shares of the players using the resource.

2. Stability: There is at least one pure strategy Nash equilibrium in
each game induced by the cost sharing protocol.

3. Separability: When assigning the cost shares on a given
resource, the protocol has no information about the load on
other resources.

We call a cost sharing protocol basic if it satisfies 1–2 and
separable if it satisfies 1–3. These properties have been used first
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by Chen, Roughgarden, and Valiant (2010) in the context of
network design games. While condition 1 is straightforward, the
stability condition 2 requires the existence of at least one Nash
equilibrium in pure strategies (abbreviated PNE; see Osborne &
Rubinstein (1994, Section 3.2) for several drawbacks of using
mixed Nash equilibria instead). Condition 3 is for instance crucial
for practical applications in which cost sharing protocols must be
distributed because each resource has only local information about
its own usage.

1.1. Our results and paper organization

We study the design of cost sharing protocols for games in which
every player wants to use resources that together form a basis of a
player-specific matroid defined on the set of resources. We demon-
strate that the aforementioned class of facility location games can
be represented by player-specific matroids. As we assume general
nondecreasing cost functions on the resources, our model also
includes the case of facility location with hard capacities. Our set-
ting has further applications in network design games, where each
player wants to allocate a spanning tree in a graph.

1.1.1. Price of anarchy and stability
The main objective of this paper is to design basic or separable

cost sharing protocols so as to minimize the efficiency loss of the
equilibria induced. We consider the price of anarchy and the price
of stability as the two prevailing performance metrics used in the
literature. The price of anarchy (PoA) is defined as the worst-case
ratio of the cost of a Nash equilibrium over the cost of a system
optimum (see Koutsoupias & Papadimitriou (1999)), while the
price of stability (PoS) captures the ratio of the best possible Nash
equilibrium over a system optimum (see Anshelevich et al. (2008)
and Correa, Schulz, & Stier-Moses (2004)).

The first main result presented in Section 3 is a characterization
of Nash equilibria in games with general cost functions and strat-
egy spaces defined by player-specific matroids, showing that only
a subclass of strategy profiles (called decharged) are candidates for
being a pure Nash equilibrium. This allows to give lower bounds by
constructing instances where all decharged profiles are expensive.
Our characterization of Nash equilibria using the notion of
decharged profiles strictly generalizes a characterization intro-
duced in our previous paper (von Falkenhausen & Harks, 2013).
While in von Falkenhausen and Harks (2013) we assumed sym-
metric strategy spaces, i.e., the same strategies are available to
each player, we allow in this work player-specific strategy spaces
and, additionally, individual delay for each player and resource.

As a second contribution, we give in Section 4 an algorithm that
constructs decharged profiles establishing an optimal protocol
with PoS matching our lower bounds. In Section 5, we further
prove that this protocol is also optimal with respect to the PoA.
Note that our protocol used for the positive results also fulfill the
stricter separability requirement from Chen et al. (2010), i.e., when
assigning the cost shares on a given facility, the protocol has no
information about the load on other facilities. When the class of
cost functions is restricted to be either concave or convex, we show
in Section 6 a drastic improvement of the PoS and PoA. The results
in comparison to those obtained in von Falkenhausen and Harks
(2013) are summarized in Table 1.

1.1.2. Computational complexity
In Section 7, we study the computational complexity of com-

puting optimal cost shares that minimize the cost of the best/worst
induced Nash equilibrium. We prove that both problems are
strongly NP-hard and there are no polynomial time c logðnÞ
approximations for any 0 < c < 1, unless P ¼ NP. These hardness
results even hold for instances with unweighted players, zero
delays, singleton strategies and unit fixed costs. In light of the
hardness even for this restricted class of problems, we study
approximation algorithms for the case of unweighted players, zero
delays and singleton strategies, still assuming general nondecreas-
ing costs. This setting includes several interesting classes of prob-
lems such as scheduling applications, where each player is
associated with a job of unit weight. The job can be processed on
a job-specific set of machines, and the monetary cost on a resource
(for instance energy costs as in Yao, Demers, & Shenker (1995)) is a
non-decreasing function of its total load. Another application arises
in capacitated facility location with delays in f0;1g. We devise a
polynomial time algorithm computing cost shares with an approx-
imation guarantee of Hn and n for the problem of minimizing the
cost of the best/worst Nash equilibrium, respectively.

1.2. Related work

Cost sharing approaches to facility location problems and net-
work design problems were analyzed in Könemann, Leonardi,
Schäfer, and van Zwam (2008); Pál and Tardos (2003). In these
works it is only required that total cost shares cover (approxi-
mately) total cost as the players play for the service of being con-
nected. In contrast in our work, we require the stricter notion that
the cost of every individual resource is paid for by the players using
it. Our model also includes the case of the congested facility loca-
tion problem considered by Desrochers, Marcotte, and Stan (1995),
where players have to jointly pay for the congestion related costs
and the opening costs of the facilities. Instead of a game-theoretic
problem formulation, they consider a centralized approach using
mixed-integer programming techniques for minimizing total cost.

The existence of pure Nash equilibria and their price of anarchy
and price of stability in congestion games has been studied by sev-
eral researchers, (Ackermann, Röglin, & Vöcking, 2009; Even-Dar,
Kesselman, & Mansour, 2007; Fotakis, Kontogiannis, Koutsoupias,
Mavronicolas, & Spirakis, 2002; Gairing, Monien, & Tiemann,
2006; Harks & Klimm, 2012; Ieong, McGrew, Nudelman, Shoham,
& Sun, 2005; Milchtaich, 1996). The fundamental difference from
our work is the ways cost shares are assigned. In congestion games,
every player pays the average total cost, while in our setting we
follow a design perspective of cost sharing protocols. Kollias and
Roughgarden (2011) considered weighted congestion games and
proposed a cost sharing protocol based on the Shapley value for
which they are able to prove existence of PNE and corresponding
bounds on the price of anarchy/stability. They focus on polynomial
cost per unit functions with nonnegative coefficients but it is not
known that this protocol is optimal. For further work on conges-
tion games with average cost sharing assuming nonincreasing
marginal cost functions modeling economies of scale or buy-
at-bulk we refer to Albers (2009); Anshelevich et al. (2008);
Epstein, Feldman, and Mansour (2009); Hoefer (2011); Rozenfeld
and Tennenholtz (2006). There is also a large body of papers study-
ing cost sharing protocols for continuous and convex strategy
spaces assuming convex cost sharing functions, cf. (Chen &
Zhang, 2012; Harks & Miller, 2011; Johari & Tsitsiklis, 2006;
Johari & Tsitsiklis, 2009; Moulin & serial, 2008; Moulin, 2010).

Christodoulou, Koutsoupias, and Nanavati (2004) and follow-up
papers such as Caragiannis (2009); Cole, Correa, Gkatzelis,
Mirrokni, and Olver (2011); Immorlica, Li, Mirrokni, and Schulz
(2009) study scheduling policies and their price of anarchy in
scheduling games in which each player assigns a job to machine
with the goal to minimize its completion time. Since the comple-
tion time of a job depends on the order in which jobs are processed
the design of scheduling policies is fundamentally different to the
design of cost sharing protocols.

Cost sharing is a central topic in the area of cooperative game
theory, cf. (Archer, Feigenbaum, Krishnamurthy, Sami, & Shenker,



Table 1
The results without reference are derived in this paper.

Player-spec. matroids Symmetric matroids without delays

PoS PoA PoS PoA

General cost Hn n Hn von Falkenhausen and Harks (2013) Hn von Falkenhausen and Harks (2013)
Concave cost 1 n 1 6 Hn von Falkenhausen and Harks (2013)
Convex cost 1 1 1 1
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2004; Bogomolnaia, Holzman, & Moulin, 2010; Moulin & Shenker,
2001) or the survey of Moulin (2002, chap. 06) with a pointer to
further references.

2. Model and problem statement

In a facility location model, there is a set N ¼ f1; . . . ;ng of players
that choose facilities (also called resources) from a set
R ¼ fr1; . . . ; rmg. For each player i 2 N, there is a set Ri of feasible
resource choices, where a strategy Xi 2 Ri is a set of resources,
i.e. Xi # R, and there is a matroid Mi ¼ ðR; IÞ such that Ri equals
the set of bases of Mi. As a set of matroid bases, Ri has the basis
exchange property: given a strategy from Ri, one can alter it
resource by resource towards another strategy from Ri such that
all intermediate strategies are also contained in Ri. In other words,
for any strategies Xi; Yi 2 Ri and any r 2 Xi there is some
r0 2 Yi n Xi; r – r0, such that Xi n frg [ fr0g 2 Ri (cf. Schrijver (2003)
for a comprehensive introduction into matroid theory). Given
strategies Xi for all players i 2 N, we denote by X :¼ ðX1; . . . ;XnÞ
the joint strategy profile and correspondingly R :¼

Q
i2NRi.

Furthermore, a vector d ¼ ðdiÞi2N specifies the player’s weights,
which in a strategy profile X sum up on each resource r 2 R to
the load ‘rðXÞ :¼

P
i2Nr ðXÞdi, where NrðXÞ :¼ fi : r 2 Xig is the set of

players using r. The resources’ cost functions are given by a vector
c ¼ ðcrÞr2R, they are non-decreasing in the load. Each player i incurs
a player-specific delay ti;r P 0 when using resource r. Altogether, a
facility location model is represented by a tuple I ¼ ðN;R;R; d; c; tÞ.

To measure the social cost of a profile X, we use utilitarian wel-
fare, i.e. the sum of the individual players’ costs and delays, and we
denote CðXÞ :¼

P
r2Rcrð‘rðXÞÞ þ

P
i2N:r2Xi

ti;r . Abusing notation, we
often refer to the cost on resource r by crðXÞ instead of crð‘rðXÞÞ.
We now give two examples of such models.

Example 2.1 (Capacitated facility location games). In a capacitated
facility location game, motivated by the classic FACILITY LOCATION

problem, every player i chooses exactly one resource, that is
jXij ¼ 1 for all Xi 2 Ri and i 2 N and hence Mi corresponds to a
uniform matroid of rank one. Hard capacities on the facilities can
be modeled by cost functions that sharply increase at the corre-
sponding capacity.
Example 2.2. (MST games). We are given an undirected graph
G ¼ ðV ; EÞ with non-negative and non-decreasing edge cost func-
tions ceð‘Þ; e 2 E. In a minimum spanning tree (MST) game, every
player i is associated with demand of size di > 0 and a subgraph
Gi of G. A strategy for player is then to route its demand along a
spanning tree for Gi. Formally, we set R ¼ E and the sets Xi; i 2 N,
are the spanning trees of Gi, hence Mi corresponds to the graphical
matroid.

We study how different ways of sharing the costs of a resource
affect the resulting pure Nash equilibria of the induced game. To
model this, we introduce cost sharing protocols N that assign cost
share functions ni;r : R! R for all i 2 N and r 2 R to the facility
location model I and thus induce the strategic game ðN;R; nÞ. For
a player i, her total private cost is niðXÞ :¼

P
r2Xi

ni;rðXÞ þ ti;r and
we assume that every player strives to minimize her private cost.
An important solution concept in non-cooperative game theory
are pure Nash equilibria. Using standard notation in game theory,
for a strategy profile X 2 R we denote by

ðZi;X�iÞ :¼ ðX1; . . . ;Xi�1; Zi;Xiþ1; . . . ;XnÞ 2 R

the profile that arises if only player i deviates to strategy Zi 2 Ri.

Definition 2.3 (Pure Nash equilibrium (PNE)). Let ðN;R; nÞ be a
strategic game. The profile X is a pure Nash equilibrium if no player
i can strictly reduce her private cost by unilaterally moving to a
different strategy, that is, for all i 2 N

niðXÞ 6 niðZi;X�iÞ for all Zi 2 Ri:

For facility location games with cost sharing protocol n, this trans-
lates to: a strategy profile X is a Nash equilibrium ifX
r2Xi

ni;rðXÞ þ ti;r
� �

6

X
r2Zi

ni;rðZi;X�iÞ þ ti;r
� �

for all strategies Zi

2 Ri and players i 2 N:
Two well established concepts that quantify the efficiency of

Nash equilibria are the price of anarchy and the price of stability.
The price of anarchy measures the largest possible ratio of the cost
of a Nash equilibrium and the cost of an optimal profile. The price
of stability measures the smallest ratio of the cost of a Nash equi-
librium and the cost of an optimal profile. For a cost sharing proto-
col N, we define by PoAðNÞ and PoSðNÞ the corresponding worst
case price of anarchy and price of stability across games induced
by protocol N. The main goal of this paper is to design cost sharing
protocols that minimize the price of anarchy and price of stability,
respectively. Of course, the attainable objective values crucially
depend on the design space that we permit. The following proper-
ties have been first proposed by Chen et al. (2010) in the context of
designing cost sharing protocols for network design games.
Definition 2.4 (Properties of cost sharing protocols). A cost sharing
protocol N is

1. stable if it induces only games that admit at least one pure Nash
equilibrium.

2. basic if it is stable and additionally budget balanced, i.e. if it
assigns all facility location models ðN;R;R; d; c; tÞ with cost
share functions ni;r such that for all r 2 R and X 2 R
crðXÞ ¼
X

i2NrðXÞ
ni;rðXÞ and ni;rðXÞ ¼ 0 for all i R NrðXÞ:
This property requires crð0Þ ¼ 0 for unused resources, which we will
assume in the paper.
3. separable if it is basic and if it induces only games for which in

any two profiles X;X0 2 R for every resource r 2 R,
NrðXÞ ¼ NrðX 0Þ ) ni;rðXÞ ¼ ni;rðX0Þ for all i 2 NrðXÞ:
Informally, separability means that in a profile X the values
ni;rðXÞ; i 2 N depend only on the set NrðXÞ of players sharing
resource r and disregard all other information contained in X. Still,
separable protocols can assign cost share functions that are specif-
ically tailored to the given facility location model, for example
based on an optimal profile. We denote by Bn and Sn the set of
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basic and separable protocols for facility location games with n
players, respectively. We obtain the following optimization prob-
lems that we address in this paper.

min
N2Bn

PoAðNÞ; min
N2Bn

PoSðNÞ; min
N2Sn

PoAðNÞ; min
N2Sn

PoSðNÞ:
3. Characterizing pure Nash equilibria

Before we analyze the cost of Nash equilibria, we reveal two
structural properties of PNE in the context of facility location
games. For this, denote the cost of the cheapest alternative of
player i to resource r in a profile Z 2 R by

Dr
i ðZÞ :¼ min

s2R
Ziþs�r2Ri

csðZi þ s� r; Z�iÞ þ ti;s
� �

:

Lemma 3.1. A PNE X in a facility location game with a separable
protocol fulfills the following two properties:

1. Each player i is willing to pay the delay ti;r for each chosen resource
r 2 Xi:
ti;r 6 Dr
i ðXÞ: ðD1Þ
2. The users NrðXÞ of each resource r, after having paid their delays,
are willing to share the cost of the resource:
crðXÞ 6
X

i2Nr ðXÞ
Dr

i ðXÞ � ti;r
� �

: ðD2Þ
Note that (D1) implies that each summand Dr
i ðXÞ � ti;r in (D2) is

nonnegative.
We call a strategy profile X that fulfills (D1) and (D2) decharged,

regardless of the cost shares. Profiles that are not decharged are
called charged, similarly resources are called decharged or charged
depending on whether both (D1) and (D2) are fulfilled for all play-
ers using the resource.

Proof. We first show (D1). Let X be a Nash equilibrium under a
separable protocol n; i 2 N and r 2 Xi. Let s :¼ argmins2R:Xiþs�r2Ri

cs

ðXi þ s� r;X�iÞ þ ti;s be the cheapest alternative for i to r and let
Zi :¼ Xi þ s� r. Then the Nash inequality for player i can be
restated as

ti;r 6 ti;r þ
X
r�2Zi

ni;r�ðZi;X�iÞ þ ti;r�
� �

�
X
r�2Xi

ni;r�ðXÞ þ ti;r�
� �

¼ ni;sðZi;X�iÞ þ ti;s � ni;rðXÞ þ ti;r
� �

þ ti;r 6 csðZi;X�iÞ þ ti;s

¼ Dr
i ðXÞ: ð1Þ

For (1) observe that going from Xi to Zi only r and s are exchanged
and since n is separable the cost shares for all other resources
remain the same, i.e. ni;r� ðXÞ ¼ ni;r� ðZi;X�iÞ for r� 2 Xi \ Zi.

We now show (D2), again using the Nash inequality for player i,

crðXÞ ¼
X

i2NrðXÞ
ni;rðXÞ

6

X
i2NrðXÞ

min
s 2 R

Xi þ s� r 2 Ri

ni;sðXi þ s� r;X�iÞ þ ti;s
� �

� ti;r

0
BBB@

1
CCCA

6

X
i2NrðXÞ

min
s 2 R

Xi þ s� r 2 Ri

csðXi þ s� r;X�iÞ þ ti;s
� �

� ti;r

0
BBB@

1
CCCA

¼
X

i2NrðXÞ
Dr

i ðXÞ � ti;r
� �

ð2Þ
Here, (2) comes from budget-balance. h

Not only are all PNE decharged, but we can also find cost shares
for any decharged strategy profile such that it is a PNE.

Definition 3.2 (X-enforcing cost shares). Given a facility location
model and a decharged strategy profile X, cost shares n are called
X-enforcing if

ni;rðXÞ ¼
Dr

i ðXÞ � ti;rP
j2NrðXÞD

r
j ðXÞ � tj;r

� crðXÞ;

ni;rðZi;X�iÞ ¼ crðZi;X�iÞ ifr 2 Zi n Xi for any Zi 2 Ri:

That is, in X the cost of each resource is shared among the users
proportional to their cheapest alternatives minus the delay and a
unilaterally deviating player pays the entire cost.

There always exists a separable protocol with such cost shares
as we show in Section 4.

Lemma 3.3. Given a decharged profile X and X-enforcing cost shares
n;X is a PNE.
Proof. To establish that X is a PNE, we first show that no player can
improve by unilaterally exchanging a single resource in his
strategy.

ni;rðXÞ þ ti;r ¼
Dr

i ðXÞ � ti;rP
j2Nr ðXÞD

r
j ðXÞ � tj;r

� crðXÞ þ ti;r

6 Dr
i ðXÞ � ti;r þ ti;r ¼ Dr

i ðXÞ ð3Þ
where (3) holds because for decharged profiles we have (D2) and
hence the denominator of the cost share is not smaller than crðXÞ.
Using the basis exchange property of matroids as introduced at
the beginning of Section 2, we now conclude that no player can
improve by changing his strategy to an arbitrary Zi 2 Ri and thus
that X is a PNE. To this end, fix such a Zi 2 Ri and denote by
GðXiMZiÞ the bipartite graph ðV ; EÞ with V :¼ ðXi n ZiÞ [ ðZi n XiÞ and
E :¼ fðr; sÞ : r 2 Xi n Zi; s 2 Zi n Xi; ðXi þ s� rÞ 2 Rig.

Proposition 3.4 (Schrijver ’03 Schrijver (2003)).
There exists a perfect matching in the graph GðXiMZiÞ.

Consider such a matching and observe that, as shown above, no
player can improve unilaterally by exchanging a single resource
across a matching edge ðr; sÞ with r 2 Xi; s 2 Zi,

ni;rðXÞ þ ti;r 6 ni;sðXi þ s� r;X�iÞ þ ti;s ¼ ni;sðZi;X�iÞ þ ti;s;

where in the last step we use that player i’s cost share on s is inde-
pendent of the other resources. Summing this up across all match-
ing edges yields the desired

niðXÞ þ
X
r2Xi

ti;r ¼
X
r2Xi

ni;rðXÞ þ ti;r
� �

6

X
s2Zi

ni;sðZi;X�iÞ þ ti;s
� �

¼ niðZi;X�iÞ þ
X
s2Zi

ti;r: �
Theorem 3.5 (Characterization of PNE for separable protocols). A
profile X 2 R is a pure Nash equilibrium in the game induced by some
separable protocol if and only if it is decharged.
Proof. Follows from Lemmas 3.1 and 3.3, the existence of the sep-
arable protocol is the content of Section 4. h
4. An optimal protocol for the price of stability

In this section, we deal with the existence and cost of decharged
strategy profiles, which by Theorem 3.5 correspond to the
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(possible) PNE of a facility location game. We present an algorithm
that ‘decharges’ any strategy profile of a facility location model,
increasing the cost in the process by at most a factor Hn. We then
give a separable protocol that is X-enforcing for the output of the
algorithm. Using this protocol and starting the algorithm at the
optimal strategy profile of a facility location model gives an upper
bound on the Price of Stability. The proof techniques used here
resemble at a high level those used in von Falkenhausen and
Harks (2013). However, player-specific strategy spaces and the
existence of delays in addition to the facility costs require extra
care. While in the setting of von Falkenhausen and Harks (2013)
decharged profiles are characterized by (D2), in this setting the
algorithm needs ensure that also (D1) is satisfied. We start the sec-
tion with a known lower bound.

Lemma 4.1 von Falkenhausen and Harks (2013). There price of
stability for symmetric singleton games without transport induced by
basic or separable protocols is at least Hn.

These games are facility location games with the restrictions
that Ri ¼ Rj ¼ R, i.e. the strategies of the players are single
resources, and ti;r ¼ 0 for all i; j 2 N and r 2 R. Consequently, the
Price of Stability for facility location games induced by basic or
separable protocols is at least Hn.

We now introduce Algorithm 1. The algorithm returns for every
instance ðN;R;R; d; c; tÞ and input profile Y a decharged profile X
that costs no more than Hn � CðYÞ, as shown in the upcoming
lemmas.

Algorithm 1. Find decharged profile X.

Input: Facility location model ðN;R;R; d; c; tÞ, profile Y
Output: Decharged profile X
1: k 1 {step number}

2: X1  Y {starts with profile Y}
3: while there are charged resources do
4: select the most expensive charged resource

rk  arg maxfcrðXkÞ : r 2 R is chargedg
5: if (D1) not fulfilled by all players on rk then {case

called Transp}

6: select such a player ik 2 Nrk ðXkÞ with tik ;rk > Drk

ik

7: else if some player on rk was moved before then
{case called Shuffle}

8: select player ik 2 Nrk ðXkÞ that was moved last
9: else {case called Kickoff}

10: select player who is willing to pay the least

11: ik  arg mini2Nrk ðXkÞD
rk

ik
� ti;rk

12: end if
13: select cheapest (1,1)-exchange

sk  arg min s 2 R
Xk

ik
þ s� rk 2 Rik

csðXk
ik
þ s� rk;Xk

�ik
Þ þ ti;s

14: execute (1,1)-exchange Xkþ1  ðXk
ik
þ sk � rk;Xk

�iÞ
15: iterate k kþ 1
16: end while

17: Return X  Xk

The algorithm iteratively moves players away from charged
resources. If there is a player that is not even willing to pay her
delay (case called Transp, lines 5–6), this player is immediately
moved away. Otherwise, if there are players that have been moved
before (case called Shuffle, lines 7–8) these players are moved in a
last-in-first-out order. Finally, if all players are willing to pay a
non-negative cost share and non of them have been moved before
(case called Kickoff, lines 9–11), the one who is willing to pay the
least is moved. Each time, the selected player is moved to the best
available (1,1)-exchange (line 14). To show that the algorithm
works as desired, we prove two lemmas: First, we show that the
algorithm terminates, then we deal with the cost of profile X.
Lemma 4.2. Algorithm 1 terminates.
Proof. For the proof, we adhere to the interpretation of each player
i scheduling jYij jobs on the resources. We fix a player and follow
one of his jobs over the course of the algorithm. The job can be
moved at most once by a Kickoff, afterwards multiple times by
Transp and Shuffle moves. We show that these moves strictly
decrease the cost of the job independent of what happens in
between the moves. More precisely, if a job of player i is moved
in iteration k of the algorithm to resource sk and stays there until
iteration l (i.e., sk ¼ rl) when it is moved to resource sl, we show

that csk ðXkþ1Þ þ ti;sk > csl ðXlþ1Þ þ ti;sl . Since there are only finitely
many values for the cost of the job, this proves that the algorithm
terminates.

If the move in iteration l is a Transp move, then the cost of the
delay ti;rl is greater than the cheapest (1,1)-exchange and we have

csk ðXkþ1Þ þ ti;sk P ti;sk ¼ ti;rl > Drl

i ðX
lÞ ¼ csl ðXlþ1Þ þ ti;sl : ð4Þ

If on the other hand the move in iteration l is a Shuffle move, the
last-in-first-out scheme of Shuffles ensures that Nrl ðXkþ1Þ � Nrl ðXlÞ
and hence

csk ðXkþ1ÞP crl ðXlÞ

>
X

j2N
rl ðXlÞ

Drl

j ðX
lÞ � tj;rl

� �
ð5Þ

P Drl

i ðX
lÞ � ti;rl ¼ csl ðXlþ1Þ þ ti;sl � ti;rl : ð6Þ

When the algorithm does a Shuffle on resource rl, all users of the
resource fulfill (D1) (otherwise a Transp would be done), but the
resource does not fulfill (D2) (otherwise it would be decharged
and hence be disregarded by the algorithm). Not fulfilling (D2) leads
to (5) and since every user fulfills (D1) all summands in (5) are non-
negative, which leads to (6). h
Lemma 4.3. Profile X returned by Algorithm 1 has at most Hn times
the cost of the input profile Y.
Proof. Throughout the proof of this claim, we regard the set
Q :¼ fq1; . . .g of all jobs instead of the players they belong to. We
denote the player to which a job q belongs by iðqÞ and the resource
on which job q is scheduled in profile Y by yðqÞ. For ease of expo-
sition, we often use jobs q interchangeably with iðqÞ, e.g. tq;r as a
shorthand for tiðqÞ;r . If k is the iteration of the algorithm in which

q is first moved by the algorithm, we define pðqÞ :¼ jNyðqÞðXkÞj to

be the number of players on yðqÞ in Xk. This first move can either
be a Transp or a Kickoff. For a Transp, we have already seen in

(4) that csk ðXkþ1Þ þ tq;sk < tq;yðqÞ. If the first move is a Kickoff, then

there are no foreign players on yðqÞ, hence NyðqÞðXkÞ# NyðqÞðYÞ and
we have

cyðqÞðYÞP cyðqÞðXkÞ

>
X

j2NyðqÞ ðXkÞ

DyðqÞ
j ðX

kÞ� tj;yðqÞ

� �
ð7Þ

P pðqÞ � DyðqÞ
q ðX

kÞ� tq;yðqÞ

� �
¼pðqÞ � csk ðXkþ1Þþ tq;sk � tq;yðqÞ

� �
: ð8Þ
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(7) stems like (5) from the fact that in a Kickoff, the resource
yðqÞ does not fulfill (D2). Since all summands are positive (like in
(5)) and the summand corresponding to job q is the smallest of
the pðqÞ summands (see line 11 of the algorithm), we have inequal-
ity (8).

Altogether, the first time a job is moved by the algorithm, we
have

cskðXkþ1Þ þ tq;sk 6
1

pðqÞ � cyðqÞðYÞ þ tq;yðqÞ

regardless of whether this move is a Kickoff or a Transp. Further
Transp and Shuffle moves only reduce this quantity, hence for every
further iteration �k of the algorithm where job q is on resource �r and
no job has been moved there after him, we have

c�rðX
�kÞ þ tq;�r 6

1
pðqÞ � cyðqÞðYÞ þ tq;yðqÞ: ð9Þ

Particularly, for resources where jobs have been moved by the algo-
rithm, the cost in the final profile X returned by the algorithm is
determined by the last job that was moved to the resource in the
sense of (9). In the following, we estimate the cost of such resources
by summing up (9) over all jobs on the resource X. For resources
where no job was moved, the cost is no greater than in the original
profile Y. Thus,

CðXÞ ¼
X

r2R
jobs moved to r

crðXÞþ
X

q2Nr ðXÞ
tq;r

 !
þ

X
r2R

no jobs moved to r

crðXÞþ
X

q2Nr ðXÞ
tq;r

 !

6

X
r2R

jobs moved to r

X
q2Nr ðXÞ

1
pðqÞ �cyðqÞðYÞþ tq;yðqÞ

� �
þ

X
r2R

no jobs moved to r

crðYÞþ
X

q2Nr ðXÞ
tq;yðqÞ

 !

6

X
r2R

X
q2Nr ðYÞ
q moved

1
pðqÞ �crðYÞþ

X
r2R

jobs remained on r

crðYÞþ
X

alljobs q

tq;yðqÞ ð10Þ

6

X
r2R

Hn �crðYÞþ
X

all jobs q

tq;yðqÞ 6Hn �CðYÞ: ð11Þ

In (10) we change the order of summation: before we grouped the
jobs by the resource they are on in X, in (10) they are grouped by the
resource they are on in Y. For each resource r the 1

pðqÞ fractions sum
up to at most Hn or, if jobs remained on r, to at most Hn � 1 by def-
inition of pðqÞ, hence (11). h
Corollary 4.4. Every facility location model has a decharged strategy
profile X at cost CðXÞ 6 Hn � CðYÞ where Y is the cost-optimal strategy
profile.
Proof. Follows from Lemmas 4.2 and 4.3 h

We now use the algorithm together with our insights about
X-enforcing cost shares to construct a protocol that matches our
lower bound for the Price of Anarchy. For this, we assume without
loss of generality that players are indexed by non-increasing
weights d1 P d2 P . . . P dn.

Definition 4.5 (Enforcing protocol). For any facility location model
ðN;R;R; d; t; cÞ, the Enforcing Protocol runs Algorithm 1 with a cost-
optimal profile Y as input to obtain a decharged profile X with cost
CðXÞ 6 Hn � CðYÞ. Then, define for any profile Z and resource r the
set of foreign players N1

r ðZÞ :¼ NrðZÞ n NrðXÞ and assign the cost
share functions

ni;rðZÞ :¼

Dr
i ðXÞ�ti;rP

j2Nr ðXÞ
Dr

j ðXÞ�tj;r
�crðXÞ; if NrðZÞ¼NrðXÞ and crðXÞ>0;

crðZÞ; if N1
r ðZÞ– ; and i¼minN1

r ðZÞ;
crðZÞ; if N1

r ðZÞ¼ ;; NrðZÞ�NrðXÞ and i¼minNrðZÞ;
0; else:

8>>>>><
>>>>>:
One can easily verify that the protocol is budget-balanced and
separable. The cost shares are X-enforcing and hence the Price of
Stability for the Enforcing Protocol is Hn.
Theorem 4.6. The Price of Stability for facility location games induced
by basic and separable protocols is Hn.
Proof. The lower bound is given by Lemma 4.1. One can easily ver-
ify that the Enforcing Protocol is budget-balanced and separable.
Furthermore, it is X-enforcing for a decharged profile X returned
by Algorithm 1 with CðXÞ 6 Hn � CðYÞ and hence the Price of Stabil-
ity for the Enforcing Protocol is Hn. h
5. An optimal protocol for the price of anarchy

We now turn to the case of finding an optimal protocol for min-
imizing the resulting price of anarchy. We will prove that the
Enforcing Protocol induces a price of anarchy of at most n. We fur-
ther show that no basic protocol can have a price of anarchy below
n, thus, the Enforcing Protocol is optimal.

Lemma 5.1. The Price of Anarchy for facility location games with
basic or separable cost sharing protocols is at least n.
Proof. Consider the facility location model ðN;R;R; d; c; tÞ with n
players i 2 N, resource set R ¼ fr0; r1; . . . ; rng, strategy spaces
Ri ¼ fðr0Þ; ðriÞg, weights di ¼ 1 for all i 2 N, delays ti;r ¼ 0 for all
i 2 N; r 2 R and constant resource cost cr � 1 independent of the
load for all r 2 R. Here, the optimal profile Y ¼ ðr0; . . . ; r0Þ hast cost
CðYÞ ¼ 1. However, the profile X ¼ ðr1; . . . ; rnÞ with cost CðXÞ ¼ n is
a Nash equilibrium under any protocol that satisfies budget-
balance. h

Note that for this lower bound a singleton model without delays
is sufficient. It can equivalently be constructed with a symmetric
singleton model (Ri ¼ Rj for all i; j 2 N) with delays. However, for
symmetric singleton games without delays the Price of Anarchy
has been shown to be Hn (von Falkenhausen & Harks, 2013).

Lemma 5.2. The Price of Anarchy for facility location games with
basic or separable protocols is at most n.
Proof. We only give a sketch of the proof as it is largely similar to
the one found in von Falkenhausen and Harks (2013). A complete
version can be found in the appendix.

Let ðN;R;R; d; c; tÞ be a facility location model. Let ni;r for
i 2 N; r 2 R be the cost share functions assigned by the Enforcing
Protocol and let X be the decharged profile returned by Algorithm 1
for the protocol, using some optimal profile Y as input. We show
CðZÞ 6 n � CðYÞ for any pure Nash equilibrium Z. In a first step, we
link the cost in Z to the cost in profiles ðXi; Z�iÞ via the Nash
property. The major challenge of the proof is then to estimate the
cost of these profiles in relation to the cost of Y. To this end we
employ properties of X found in the analysis of the algorithm in the
previous section. h
6. Concave and convex costs

We now restrict the set of cost functions to be either concave or
convex. Concave functions are frequently used to model economies
of scale, that is, situations in which marginal costs are decreasing.
Examples include network design games, where cost functions are
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modeled by fixed or concave costs, cf. (Anshelevich et al., 2008;
Bilò, Fanelli, Flammini, Melideo, & Moscardelli, 2010; Chekuri,
Chuzhoy, Lewin-Eytan, Naor, & Orda, 2006; Chen & Roughgarden,
2009). On the other hand, convex costs are used to model the sharp
increase of costs if resources are scarce or if there are hard capac-
ities on the amount of resources available. For instance in telecom-
munication networks, relevant cost functions are the so-called
M=M=1-delay functions (see Bertsekas & Gallagher, 1992; Orda,
Rom, & Shimkin, 1993). These are convex functions of the form
caðxÞ ¼ 1=ðua � xÞ, where ua represents the physical capacity of
arc a.

6.1. Concave cost functions

For concave cost functions, we now show that for facility loca-
tion games, an optimal strategy profile is decharged, thus, the price
of stability is one in this case.

Theorem 6.1. The price of stability of facility location games with
concave costs is one.
Proof. We prove that any socially optimal configuration profile
X 2 R satisfies (D1) and (D2) and, thus, by Theorem 3.5 the
enforcing protocol induces X as a pure Nash equilibrium. Assume
that X does not satisfy (D1). Then we can simply reassign player i
to her cheapest alternative and strictly reduce the total cost,
which is a contradiction to our assumption that X is socially
optimal.

Assume that X does not satisfy (D2). Hence, there is a resource
r 2 R with

crðXÞ >
X

i2NrðXÞ
Dr

i ðXÞ � ti;r: ð12Þ

We now construct a strategy profile Z with CðZÞ < CðXÞ, showing a
contradiction. To this end, for each player i 2 NrðXÞ, let

si :¼ argmin
s2R

Xiþs�r2Ri

csðXi þ s� r;X�iÞ þ ti;s
� �

be the cheapest alternative to r in X. Let Zi :¼ Xi þ si � r be the strat-
egy where i switches from r to si, such that Dr

i ðXÞ ¼ csi
ðZi;X�iÞ þ ti;si

.
For i R NrðXÞ, let Zi :¼ Xi.

Inequality (12) implies that si – r for all i 2 NrðXÞ and hence
that NrðZÞ ¼ ;, i.e. crðZÞ ¼ 0. Resources s – r either have the same
users in Z as in X, i.e. csðZÞ ¼ csðXÞ, or they have users NsðZÞ n NsðXÞ
that have switched from r to s. In the latter case, as the cost
functions are concave,

csðZÞ 6
X

i2NsðZÞnNsðXÞ
csðZi;X�iÞ ¼

X
i2NsðZÞnNsðXÞ

Dr
i ðXÞ � ti;s

� �
: ð13Þ

Combining these observations, we conclude

CðZÞ ¼
X

s2R
NsðZÞ¼Ns ðXÞ

csðZÞ þ
X

i2NsðZÞ
ti;s

 !

þ
X

s2R
NsðZÞ�Ns ðXÞ

csðZÞ þ
X

i2NsðZÞ
ti;s

 !
6

ð13Þ X
s2R

NsðZÞ¼Ns ðXÞ

csðXÞ þ
X

i2NsðXÞ
ti;s

 !

þ
X

i2Nr ðXÞ
Dr

i ðXÞ þ
X

s2R
Ns ðZÞ�NsðXÞ

X
i2Nr ðXÞ

ti;s <
ð12Þ X

s2R
Ns ðZÞ�Ns ðXÞ

csðXÞ þ
X

i2NsðXÞ
ti;s

 !

þ crðXÞ þ
X

i2NrðXÞ
ti;r

¼ CðXÞ:
This implies that X is not an optimal strategy profile, a
contradiction. h
6.2. Convex cost functions

When cost functions are convex, there is a universally optimal
protocol with a price of anarchy equal to one. We only require that
the cost functions are non-negative, non-decreasing and the
per-unit costs cð‘ðZÞÞ

‘ðZÞ are non-decreasing with respect to the load
‘ðZÞ. Such functions are quite rich and contain non-negative, non-
decreasing and convex functions.

We introduce the opt-enforcing protocol for which we prove a
price of anarchy of 1. The intuition behind this protocol is similar
to the enforcing protocols presented before: make all undesired
outcomes unstable by charging some player a very high price.

Definition 6.2 (opt-enforcing protocol). For a given model
ðN;R;R; d; c; tÞ the opt-enforcing protocol takes as input an optimal
outcome Y. We again denote for any outcome z and resource r the
set of foreign players on r by N1

r ðZÞ ¼ fi 2 NrðZÞ n NrðYÞg. Then, the
opt-enforcing protocol assigns the cost sharing methods

ni;rðZÞ :¼¼
di � crðZÞ

‘rðZÞ ; if r 2 Zi;N
1
r ðZÞ ¼ ;; ðaÞ

crðZÞ; if r 2 Zi;N
1
r ðZÞ– ; and i ¼min N1

r ðZÞ; ðbÞ
0; else: ðcÞ

8>><
>>:

ð14Þ
Under the opt-enforcing protocol, the players share the cost

proportional to their demands on all resources without foreign
players. On resources with foreign players, the foreign player with
the smallest index pays the entire cost of the resource.
Theorem 6.3. The opt-enforcing protocol is separable and has a price
of anarchy of 1.
Proof. Budget balance and separability are clear from the defini-
tion of the protocol. For stability it can easily be verified that for
an instance ðN;R;R; d; c; tÞ the optimal outcome Y is a Nash equilib-
rium. We only prove the bound on the price of anarchy, showing
that all Nash equilibria X have the same cost as a socially optimal
profile Y, i.e. for every player iX
r2Xi

ni;rðXÞ þ ti;r
� �

6

X
r2Yi

ni;rðYÞ þ ti;r
� �

: ð15Þ

By definition of Nash equilibria,X
r2Xi

ni;rðXÞ þ ti;r
� �

6

X
r2Yi

ni;rðYi;X�iÞ þ ti;r
� �

: ð16Þ

Two cases are to be considered for every resource r 2 Yi: either it
hosts a nonempty set N1

r ðXÞ of foreign players or N1
r ðXÞ ¼ ;. If there

are foreign players on r, then one of them will pay for the entire cost
there and hence(14c) gives ni;rðYi;X�iÞ ¼ 0 (note that by Definition
6.2 i R N1

r ðYi;X�iÞ). If there are no foreign players on r, then
‘rðYi;X�iÞ 6 ‘rðYÞ yields

crðYi;X�iÞ
‘rðYi;X�iÞ

6
crðYÞ
‘rðYÞ

;

because the cost per unit is non-decreasing. Plugging this into (14a)
we have ni;rðYi;X�iÞ 6 ni;rðYÞ. With ni;rðYi;X�iÞ 6 ni;rðYÞ in both cases
for all resources r 2 Yi,X
r2Yi

niðYi;X�iÞ þ ti;r
� �

6

X
r2Yi

ni;rðYÞ þ ti;r
� �

;

which combined with (16) yields (15). h
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7. Computational complexity of cost shares

Our protocols introduced in the previous sections involve
decharged profiles which in turn rely on the computation of opti-
mal profiles which are generally NP-hard to compute. A natural
question is whether there are different approaches that allow to
compute optimal cost shares or cost shares with good approxima-
tion guarantees in polynomial time (see also the open question in
von Falkenhausen & Harks (2013)[Section 5.1]). We will answer
this question negatively by showing that the problem of comput-
ing optimal cost shares is strongly NP-hard and not approximable
by any constant factor even for instances with unweighted players,
zero delays and singleton strategies. In light of this hardness we
restrict our model to unweighted players, zero delays and single-
ton strategies, and switch our objective: previously we looked for
cost shares such that the best/worst Nash equilibrium is a good
approximation of the social optimum, now we ask for polynomial
time computable cost shares that approximate the optimal cost
shares in terms of cost of the best/worst Nash equilibrium.

7.1. Hardness and Inapproximability

Let I be an instance of a matroid facility location game and NðIÞ
the set of possible cost shares for I. We investigate the computa-
tional complexity of the following two optimization problems

min
n2NðIÞ

min
X2PðI;nÞ

CðXÞ
CðYÞ ðBest NashÞ

min
n2NðIÞ

max
X2PðI;nÞ

CðXÞ
CðYÞ ; ðWorst NashÞ

where PðI; nÞ denotes the set of Nash equilibria of the game induced
by I and n;Y is some optimal strategy profile.

Theorem 7.1. Problem BEST NASH is strongly NP-complete and there
are no c log n approximation algorithms for any c < 1, unless P ¼ NP.
This holds even for instances with unweighted players, zero delays,
singleton strategies and unit fixed costs.
Proof. By Corollary 3.5, Problem BEST NASH can be reformulated as

min
X2R

CðXÞ s:t: X is decharged:

Now, given any X 2 R, we can check in polynomial time whether X
is feasible (i.e., it fulfills (D1) and (D2)) and whether CðXÞ ¼ k for
some given k, thus, BEST NASH is in NP.

We prove inapproximability by providing an approximation
preserving reduction from HITTING SET. An instance of HITTING SET

consists of a collection C of subsets of a finite set of elements E. A
hitting set for C is a subset S # E such that S contains at least one
element from each subset in C. The goal is to minimize the
cardinality of the hitting set.

Given an instance of HITTING SET, we create an instance of BEST

NASH by identifying C with R; E with R and assuming fixed unit costs
on the resources and no delays.

Claim 7.2.

There is a hitting set of cardinality less or equal to k if and only if
there is a decharged profile with cost less or equal k.
Proof. In the constructed cost sharing instance, every strategy pro-
file is decharged: with no delays (D1) is always fulfilled, and with
fixed unit resource costs (D2), too. Given a strategy profile, the
used resources form a hitting set and the cost of the profile is equal
to the cardinality of the set. Given a hitting set, a strategy profile
can be constructed by assigning each player i to one of the
resources in Ri that is in the hitting set. h

The proof follows now from the above claim and the fact that HITTING

SET is equivalent to the SET COVER problem Ausiello, D’Atri, and
Protasi (1980) which is known not to be approximable within
c log n for any c < 1 unless P ¼ NP Raz and Safra (1997). h We
now prove an inapproximability result for computing cost shares
minimizing the cost of the worst Nash equilibrium.
Theorem 7.3. Problem WORST NASH is strongly NP-hard and there are
no c log n approximation algorithms for any c < 1 unless P ¼ NP. This
holds even for instances with unweighted players, zero delays,
singleton strategies and unit fixed costs.
Proof. We again reduce from HITTING SET. Given an instance of
HITTING SET, we construct a cost sharing game like above and add
two more players denoted player a and player b. We set
Ra ¼ Rb ¼ R. h
Claim 7.4. There is a hitting set of cardinality less or equal to k if and
only if

min
n2NðIÞ

max
X2PðI;nÞ

CðXÞ 6 k:
Proof. For the direction (, observe that if there are cost shares n
such that the most expensive PNE X has CðXÞ 6 k, then the
resources used in X form a hitting set of cardinality less than or
equal to k. For the ) direction, given a hitting set of size at most
k, we construct an assignment of players to resources that costs
at most k and in which both a and b share a resource with other
players. We call this profile X. We assign the following cost shares
for all r 2 R and Z 2 R:

na;rðZÞ¼

1; if NrðZÞ¼ fagorNrðZÞ¼ fa;bg;
1
2 ; if a2NrðZÞ and NrðZÞ#NrðXÞ[fa;bg and NrðZÞ:#fa;bg;
0; if a2NrðZÞ and NrðZÞ:#NrðXÞ[fa;bg and b R NrðZÞ;
1; if a2NrðZÞ and NrðZÞ:#NrðXÞ[fa;bg and b2NrðZÞ;
0; if a R NrðZÞ;

8>>>>>><
>>>>>>:

nb;rðZÞ¼
1; if b2NrðZÞ and a R NrðZÞ;
0; else;

�
and for all i – a;b

ni;rðZÞ¼
1�na;rðZÞ�nb;rðZÞ; if i¼minNrðZÞnNrðXÞ;
1�na;rðZÞ�nb;rðZÞ; if NrðZÞnNrðXÞ¼ ; and i¼minNrðZÞ;
0; else:

8><
>:

The profile X is a PNE under these cost shares, as player a pays 1
2 and

would pay either 1
2 or 1 on any other resource, player b pays 0 and

all other players pay 1 or less and would pay 1 if they switched.
For any profile Z – X with CðZÞ > CðXÞ, there is some resource r

with NrðXÞ ¼ ; and NrðZÞ– ;. We show that such a profile cannot
be an equilibrium. For an equilibrium, the definition of the cost
shares for player b implies that Zb ¼ Za, as otherwise player b could
immediately reduce her cost by switching to Za. We, hence, assume
from now on Zb ¼ Za. If NrðZÞ ¼ fa; bg, then player a has cost 1 and,
if NXa ðZÞ – ; could reduce her cost to 1

2 by switching to Xa or, in case
NXa ðZÞ ¼ ;, could reduce her cost to 0 by switching to some other
resource s with NsðZÞ:# NsðXÞ. If NrðZÞ– fa; bg, then there are
other players than a and b using r as NrðZÞ – ; and Zb ¼ Za. Hence,
either fa; bg \ NrðZÞ ¼ ; and player a could reduce her cost by
switching to r, or fa; bg � NrðZÞ and player a could reduce her cost
by switching somewhere else as above – unless NsðZÞ ¼ ; for all
s – r, in which case CðZÞ ¼ 1, a contradiction to CðZÞ > CðXÞ.
Consequently, X with CðXÞ 6 k is the most expensive PNE of the
game. h
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7.2. Approximation algorithms

We have shown that it is computationally hard to find cost
shares that approximate the cost of the optimal cost shares within
a logarithmic factor in n. This hardness result even holds for
instances with unweighted players, zero delays, singleton strate-
gies and unit fixed costs. In light of this hardness even for this
restricted class of problems, we study approximation algorithms
for the case of unweighted players, zero delays and singleton strat-
egies, still assuming general nondecreasing costs. Such instances
are given as I ¼ ðN;R;R; cÞ, with di ¼ 1 and ti;r ¼ 0 for all i 2 N
and r 2 R. We present in the following an approximation algorithm
that computes in polynomial time a decharged profile whose cost
is bounded from above by Hn times the cost of an optimal profile -
matching the performance bound presented in Section 4.

For a given instance I ¼ ðN;R;R; cÞ, the algorithm starts with an
empty strategy profile X and updates X as it iteratively assigns the
n players to the resources in R. While the algorithm runs, let �nðXÞ
be the number of players not yet assigned to a resource and let
GðXÞ be a directed graph representing the current allocation X.
The graph has vertices for all players, all resources and additional
source and sink vertices s and t. GðXÞ is bipartite with arcs accord-
ing to the following rules:

	 arc ði; rÞ from player i to resource r if r 2 Ri

	 arc ðr; iÞ from resource r to player i if r ¼ Xi, i.e., i is assigned to r
in X
	 arc ðs; iÞ if player i is not assigned to any resource in X.

All above arcs have cost 0 and capacity 1.

Algorithm 2. Compute semi-proportional cost shares

Input: instance I ¼ ðN;R;R; cÞ
Output: cost shares n
1: start with empty profile X, no players assigned to resources
2: while not all players N assigned to resources R do
3: compute GðXÞ
4: for all combinations r 2 R and 1 6 v 6 �nðXÞ
5: compute, if existent, an integer s; r flow f with flow value

vðf Þ ¼ v .
6: end for
7: from all combinations of r and vðf Þ for which a flow was

found, choose the one with the lowest resulting cost-
per-unit 1

vðf Þ crðjNrðXÞj þ vðf ÞÞ � crðXÞð Þ. For each ði; rÞ arc

used in this flow, update X such that player i is assigned
to resource r.

8: end while
9: assign cost shares for all i 2 N and Z 2 R

8

niðZÞ :¼¼

cZi
ðZÞ

jNZi
ðZÞj ; ifNZi

ðZÞ# NZi
ðXÞ

cZi
ðZÞ

jNZi
ðZÞnNZi

ðXÞj ; if NZi
ðZÞ:# NZi

ðXÞ and i 2 NZi
ðZÞ n NZi

ðXÞ

0 ;otherwise:

>>><
>>>:

10: Return n
Theorem 7.5. Algorithm 2 computes in polynomial time cost shares
that guarantee a price of stability of at most Hn and a price of anarchy
of at most n.
Proof. We prove the theorem in four lemmas. h
Lemma 7.6. The profile X used in the definition of the cost shares is a
PNE.
Proof. We use a counter k to enumerate the iterations of the algo-
rithm’s main while loop. Denote by Xk the profile at the beginning
of iteration k and denote by f k the selected flow. We observe that
on each resource r, the sequence of the per-unit costs of the load
increments is nondecreasing, that is, if in iteration k the load on r
is increased and the next load increase on r is in iteration l, then

crðXkþ1Þ � crðXkÞ
jNrðXkþ1Þj � jNrðXkÞj

6
crðXlþ1Þ � crðXlÞ
jNrðXlþ1Þj � jNrðXlÞj

because otherwise Algorithm 2 had increased the load on r in iter-
ation k directly to NrðXlþ1Þ instead of NrðXkþ1Þ. Thus, if on resource r
the last load increment was in iteration k�, then the per unit cost of r
in X, which is the average over all such increments, is no greater
then the per unit cost of the increment in k�. This in turn is no
greater than the cost of adding one player to any other resource �r
in Xk� because otherwise the algorithm had increased the load on
�r instead of increasing it on r. Hence, for all i 2 NrðXÞ and �r 2 Ri,

niðXÞ ¼
crðXÞ
jNrðXÞj

6
crðXÞ � crðXk� Þ
jNrðXÞj � jNrðXk� Þj

6
c�rðjN�rðXk� Þj þ 1Þ � c�rðjN�rðXk� ÞjÞ

1
6 c�rðjN�rðXk� Þj þ 1Þ

6 c�rðjN�rðXÞj þ 1Þ ¼ nið�r;X�iÞ: �

Lemma 7.7. Let Y be some optimal strategy profile. Then, the profile X
used to define the cost shares has cost CðXÞ 6 Hn � CðYÞ.
Proof. We first check that updating Xk corresponding to the flow
f k as done in line 7 works as desired. Clearly, updating Xk this
way is feasible with regard to the strategy space R. Moreover,
when we add vðf kÞ players going from Xk to Xkþ1, the load only
changes on one resource r and the cost difference of Xk and Xkþ1

is CðXkþ1Þ � CðXkÞ ¼ crðXkþ1Þ � crðXkÞ.
To bound the per-unit cost increase in a given iteration k, note

that for each resource �r with less users than in the optimal profile
Y; jN�rðXkÞj < jN�rðYÞj, there is an integer s;�r flow with flow value
jN�rðYÞj � jN�rðXkÞj. As the algorithm does not choose this flow, the
corresponding per-unit cost is greater than that on the resource r,

crðXkþ1Þ � crðXkÞ
vðf kÞ 6

c�rðYÞ � c�rðXkÞ
N�rðXkÞj � jN�rðYÞj

: ð17Þ

Noting that the number of players missing on such resources is in
total at least �nðkÞ, i.e.,

�nðkÞ 6
X

�r2R
jN�r ðXk Þj<jN�r ðYÞj

ðjN�rðXkÞj � jN�rðYÞjÞ;

we sum up (17) over all such resources,

crðXkþ1Þ � crðXkÞ
vðf kÞ 6

X
�r2R

jN�r ðXk Þj<jN�r ðYÞj

c�rðYÞ � c�rðXkÞ
�nðkÞ 6

CðYÞ
�nðkÞ : ð18Þ

Then,

CðXÞ ¼
X

k

CðXkþ1Þ � CðXkÞ
� �

6

X
k

vðf kÞ
�nðXkÞ

� CðYÞ

¼
X

k

vðf kÞP
jPkvðf jÞ � CðYÞ ¼

X
k

Xvðf kÞ

i¼1

1P
jPkvðf jÞ � CðYÞ

6

X
k

Xvðf kÞ

i¼1

1P
jPkvðf jÞ � iþ 1

� CðYÞ ¼ Hn � CðYÞ: �
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Lemma 7.8. Let Y be some optimal strategy profile and Z 2 PðI; nÞ a
PNE. Then, CðZÞ 6 n � CðYÞ.
Proof. First observe that from (18) we can derive

crðXlþ1Þ � crðXlÞ 6 CðYÞ for every iteration l where the load on a
resource r is increased. Particularly, crðXÞ 6

P
i2Nr ðXÞCðYÞ. We

estimate the cost of Z by estimating the cost shares of groups of
players in Z.

For players that are in X on resources r with NrðXÞ ¼ NrðZÞ, by
the above observation

P
i2NrðXÞniðZÞ ¼ crðXÞ 6

P
i2NrðXÞCðYÞ.

For players that are in X on resources r with NrðZÞ � NrðXÞ, we

choose the smallest k such that jNrðZÞj þ 1 6 jNrðXkÞj and let q be
the number of times the algorithm has increased the load on r up
to iteration k. Then, q 6 jNrðZÞj þ 1 and by our above observation
the q load increases will increase the cost by up to q � CðYÞ. Then,
for all i 2 NrðXÞ,

niðZÞ 6 niðr; Z�iÞ ¼
crðjNrðZÞj þ 1Þ
jNrðZÞj þ 1

6
crðXkÞ

q
6

q � CðYÞ
q

¼ CðYÞ;

The first inequality holds because Z is a Nash equilibrium, the sec-
ond inequality follows from our previous observations
jNrðZÞj þ 1 6 jNrðXkÞj and q 6 jNrðZÞj þ 1. For the last inequality
observe that crðXkÞ is the sum of the costs of the q load increases
up to iteration k.

For players that are in X on resources r with NrðZÞ:# NrðXÞ, we
have niðZÞ 6 niðXi; Z�iÞ ¼ 0 for all players i 2 NrðXÞ because Z is a
PNE. Summing up across all player gives the desired

CðZÞ ¼
X
i2N

niðZÞ 6
X
i2N

CðYÞ ¼ n � CðYÞ: �
Lemma 7.9. The runtime of Algorithm 2 is polynomial in the size of
the input instance.
Proof. For an instance I with n players and m resources, the algo-
rithm’s main while loop (lines 2 to 8) can run at most n times.
Computing GðXÞ can be done in OðmnÞ time, the OðmnÞ flows of
an iteration can each be computed in Oðm3n3Þ with the
Edmonds–Karp algorithm (Edmonds & Karp, 1972), updating X
can be done in OðnÞ time. Hence, the algorithm’s runtime is
bounded by Oðm4n5Þ. h
8. Conclusions

We considered in this paper facility location games where facil-
ities have nondecreasing load-dependent costs and players experi-
ence player-specific delays when connecting to an open facility.
We designed several cost sharing protocols for this setting and
proved that they induce the smallest possible price of anarchy
and price of stability, respectively. The following problems remain
open and deserve further research. We assumed that the player’s
strategy space is described by the set of bases of a player-specific
matroid. While matroids contain many interesting classes (such
as the facility location games), other classes such as general
multi-commodity networks are not covered. The problem of
designing optimal cost sharing protocols for general strategy
spaces still eludes us. Our results regarding the computational
complexity of cost sharing protocols show that optimal cost shares
cannot be approximated by logarithmic factor in the number of
players. While we devised the best possible approximation
algorithm for singleton strategies and delays in f0;1g, the case
of general matroids with arbitrary delays remains unresolved.
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Appendix A. Appendix: Proof of Lemma 5.2

Lemma A.1. The Price of Anarchy for facility location games with
basic or separable protocols is at most n.
Proof. Let ðN;R;R; d; c; tÞ be a facility location model. Let ni;r for
i 2 N; r 2 R be the cost share functions assigned by the Enforcing
Protocol and let X be the decharged profile returned by Algorithm
1 for the protocol with intermediate profiles X1;X2; . . . ;X. We use
notation for players and jobs interchangeably, denoting jobs by
the letter q, for example q 2 NrðXÞ for the jobs on a resource. For
each job q, define yðqÞ and pðqÞ as in the analysis of the algorithm
and denote additionally by xðqÞ the resource job q is on in profile X
and by Xq the algorithm’s intermediate profile in which q is first on
xðqÞ. From the analysis of the algorithm, we know

cxðqÞðXqÞ þ tq;xðqÞ 6
1

pðqÞ cyðqÞðYÞ þ tq;yðqÞ ð19Þ

for all jobs q that were moved by the algorithm. For jobs q that were
not moved by the algorithm, we set Xq :¼ Y .

To prove the lemma, we show CðZÞ 6 n � CðYÞ for any pure Nash
equilibrium Z. To this end, we fix such a profile Z and link it to the
profiles ðXi; Z�iÞ via the Nash property,

CðZÞ¼
X
i2N

niðZÞþ
X
r2Zi

tr;i

 !
6

X
i2N

niðXi;Z�iÞþ
X
r2Xi

tr;i

 !

¼
X
i2N

X
r2Xi

N1
r ðZÞ¼;

ni;rðXi;Z�iÞþ
X
r2Xi

ti;r

0
BB@

1
CCA

¼
X

r2R
N1

r ðZÞ¼;

X
i2Nr ðXÞ

ni;rðXi;Z�iÞþ ti;r
� �

þ
X

r2R
N1

r ðZÞ–;

X
i2Nr ðXÞ

ti;r

6

X
r2R

N1
r ðZÞ¼;

X
q2Nr ðXÞ\Nr ðYÞ

crðYÞþ tq;r
� �

þ2 �
X

q2Nr ðXÞnNr ðYÞ

1
pðqÞcyðqÞðYÞþ tq;yðqÞ

� � !

þ
X

r2R
N1

r ðZÞ–;

X
q2Nr ðXÞ

tq;r

ð20Þ

Proving (20) is a major challenge of this proof and beforehand we
give a brief intuition for this inequality: for jobs that are moved
by the algorithm we have an at most logarithmic cost-increase
going from profile Y to profile Z, represented by the second term,
while for jobs not moved by the algorithm, the cost-increase can
even be linear as represented by the first term. In our worst-case
example in Lemma 5.1, this linear cost-increase dominates the log-
arithmic cost-increase: no jobs are moved by the algorithm.

To prove (20), we partition the resources without foreign
players into two sets,

	 R1 :¼ fr 2 R : N1
r ðZÞ ¼ ; and jNrðXÞ n NrðZÞj 
 1g - resources

where at most one job is missing,
	 R2 :¼ fr 2 R : N1

r ðZÞ ¼ ; and jNrðXÞ n NrðZÞj > 1g - resources,
where multiple jobs are missing.

For the resources in both sets, we find bounds corresponding to
(20) in two separate claims. Afterwards we will combine the two
claims to prove the lemma.
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Claim A.2.
For r 2 R1,X

i2NrðXÞ
ni;rðXi; Z�iÞ þ ti;r 6

X
q2NrðXÞ\Nr ðYÞ

crðYÞ þ tq;r
� �

þ 2

�
X

q2NrðXÞnNrðYÞ

1
pðqÞ cyðqÞðYÞ þ tq;yðqÞ

� �
:

Proof. Recall that for all r 2 R

crðXÞ6
crðYÞ if NrðXÞ nNrðYÞ¼ ;; ðaÞ
crðXqr Þ6 1

pðqr Þ
cyðqr ÞðYÞþ tqr ;yðqr Þ � tqr ;r if NrðXÞ nNrðYÞ– ;; ðbÞ

(
ð21Þ

where job qr denotes the last job moved to r by the algorithm. The
second inequality (21b) follows from (19). To prove the claim, we
have for r 2 R1,X
i2Nr ðXÞ

ni;rðXi;Z�iÞþ ti;r ¼1Nr ðZÞ–;
X

i2Nr ðZÞ
ni;rðZÞ

þ1Nr ðXÞnNr ðZÞ¼fi�gni� ;rðXi� ;Z�i� Þþ
X

i2Nr ðXÞ
ti;r ð22Þ

61Nr ðZÞ–;crðXÞþ1Nr ðXÞnNr ðZÞ¼fi�gcrðXÞþ
X

i2Nr ðXÞ
ti;r ð23Þ

6

X
q2Nr ðXÞ\Nr ðYÞ

crðYÞþ2 �
X

q2Nr ðXÞnNr ðYÞ

1
pðqÞcyðqÞðYÞþ tq;yðqÞ � tq;r

� �
þ
X

q2Nr ðXÞ
tq;r ð24Þ

6

X
q2Nr ðXÞ\Nr ðYÞ

crðYÞþ tq;r
� �

þ2 �
X

q2Nr ðXÞnNr ðYÞ

1
pðqÞcyðqÞðYÞþ tq;yðqÞ

� �
;

where 1 denotes the indicator function tied to the condition in
subscript and, if applicable, i� is the single player using resource r
in X but not in Z. Eq. (22) is due to the nature of R1 and for (23)
we use that there are no foreign players on machines r 2 R1. In
inequality (24), we estimate using both (21a) and (21b). For the case
where both indicator functions are true, we multiply the term from
(21b) by 2. For the term from (21a) this is not necessary because, if
both indicator functions are true and NrðXÞ n NrðYÞ ¼ ;, then there
are multiple jobs q 2 NrðXÞ \ NrðYÞ and, hence,

P
q2Nr ðXÞ\Nr ðYÞcrðYÞ

P 2 � crðYÞ. h
Claim 8.1. For r 2 R2,X
i2NrðXÞ

ni;rðXi; Z�iÞ þ ti;r 6
X

q2NrðXÞ\Nr ðYÞ
crðYÞ þ ti;r

þ
X

q2NrðXÞnNr ðYÞ

1
pðqÞ cyðqÞðYÞ þ tq;yðqÞ:
Proof. We denote the jobs on r 2 R2 in profile X by qr
1; . . . ; qr

jNr ðXÞj
such that they are indexed with non-increasing weights
dqr

1
P . . . P dqr

jNr ðXÞj
. Let sðrÞ :¼ minfi : qr

i 2 NrðZÞg. Since the jobs
are indexed in the same order as their players, the protocol assigns
for i 6 jNrðXÞj

nqr
i
;rðXqr

i
; Z�qr

i
Þ ¼

crð‘rðZÞ þ dqr
i
Þ if i < sðrÞ;

crð‘rðZÞÞ if i ¼ sðrÞ;
0 if i > sðrÞ:

8><
>: ð25Þ

We now define an automorphism rr : fqr
1; . . . ; qr

jNr ðXÞjg !
fqr

1; . . . ; qr
jNr ðXÞjg that maps the first tðrÞ :¼ jNrðXÞ n NrðYÞj jobs (by

index) to NrðXÞ n NrðYÞ, such that

	 rrðqr
1Þ is the last job that was moved to r by the algorithm,

	 rrðqr
2Þ is the second-last job that was moved to r by the

algorithm,
	 . . .

	 rrðqr
tðrÞÞ is the first job that was moved to r by the algorithm.
The remaining jobs are mapped arbitrarily to NrðXÞ \ NrðYÞ,
keeping rr bijective. Then,

‘rðZÞ 6 ‘rðXÞ �
XsðrÞ�1

j¼1

dqr
j

ð27aÞ

6 ‘rðXÞ �
XsðrÞ�1

j¼1

drrðqr
j
Þ ð27bÞ

6 ‘rðXrrðqr
sðrÞÞÞ; ð27cÞ

where (27a) holds because NrðZÞ � NrðXÞ and qr
1; . . . ; qr

sðrÞ�1 R NrðZÞ
by definition of sðrÞ. Inequality (27b) holds because we indexed
the jobs from big to small and hence the first sðrÞ � 1 jobs are the
‘biggest’ jobs on resource r. For (27c), if sðrÞ 6 tðrÞ, that is, if
rrðqr

sðrÞÞ was moved to resource r, then in profile Xrr ðqr
sðrÞÞ none of

the jobs rrðqr
sðrÞ�1Þ; . . . ;rrðqr

1Þ moved to r after job rrðqr
sðrÞÞ are on

resource r, and consequently (27c) follows. Otherwise, if
sðrÞ > tðrÞ, that is, if rrðqr

sðrÞÞ 2 NrðYÞ, then Y ¼ Xrr ðqr
sðrÞÞ and in this

profile none of the jobs rrðqr
tðrÞÞ; . . . ;rrðqr

1Þ that were moved to
resource r are on resource r and hence (27c) follows. We find like-
wise for i < sðrÞ,

‘rðZÞ þ dqr
i
6 ‘rðXÞ �

Xi�1

j¼1

dqr
j
6 ‘rðXÞ �

Xi�1

j¼1

drrðqr
j
Þ 6 ‘rðXrrðqr

i
ÞÞ; ð28Þ

where the above inequalities hold for similar reasons as (27). We
complete the proof of the claim by

X
i2Nr ðXÞ

ni;rðXi;Z�iÞþ ti;r ¼ crð‘rðZÞÞþ
XsðrÞ�1

i¼1

crð‘rðZÞþdqr
i
Þþ

X
i2Nr ðXÞ

ti;r ð29Þ

6

XsðrÞ
i¼1

crð‘rðXrr ðqr
i
ÞÞÞþ

X
i2Nr ðXÞ

ti;r 6
X

q2Nr ðXÞ
crðXrr ðqÞÞþ ti;r ð30Þ

¼
X

q2Nr ðXÞ
crðXqÞþ ti;r ð31Þ

6

X
q2Nr ðXÞ\Nr ðYÞ

crðYÞþ ti;rþ
X

q2Nr ðXÞnNr ðYÞ

1
pðqÞcyðqÞðYÞþ tq;yðqÞ; ð32Þ

where Eq. (29) follows from (25) and inequality (30) follows from
(27) and (28). Eq. (31) holds because rr is an automorphism on
SrðXÞ and finally inequality (32) follows from our definition of the
intermediate profiles Xq and our results regarding these profiles
as in (19). h

We now continue the proof of Lemma 5.2 where we left off with
(20) and conclude across both sets,

CðZÞ6
X

r2R
N1

r ðZÞ¼;

X
i2Nr ðXÞ

ni;rðXi;Z�iÞþ ti;r
� �

þ
X

r2R
N1

r ðZÞ–;

X
i2Nr ðXÞ

ti;r

6

X
r2R

N1
r ðZÞ¼;

X
q2Nr ðXÞ\Nr ðYÞ

crðYÞþ tq;r
� �

þ2 �
X

q2Nr ðXÞnNr ðYÞ

1
pðqÞcyðqÞðYÞþ tq;yðqÞ

� � !

þ
X

r2R
N1

r ðZÞ–;

X
q2Nr ðXÞ

tq;r ð33Þ

6

X
r2R

X
q2Nr ðXÞ\Nr ðYÞ

crðYÞþ tq;r
� �

þ
X

q2Nr ðYÞnNr ðXÞ

2
pðqÞcrðYÞþ2 � tq;r

� � !
ð34Þ

6

X
r2R

jNrðYÞ\NrðXÞj �crðYÞþ
XjNr ðYÞj

p¼jNr ðYÞ\Nr ðXÞjþ1

2
p
�crðYÞþ2 �

X
q2Nr ðYÞ

tq;r

 !
ð35Þ

6

X
r2R

jNrðYÞj �crðYÞþ2 �
X

q2Nr ðYÞ
tq;r

 !
6n �CðYÞ:

Here, (33) follows from Claims A.2 and 8.1. In (34), we change the
order of summation: instead summing up the q 2 NrðXÞ n NrðYÞ that
were moved from other resources by the algorithm, we sum up the
q 2 NrðYÞ n NrðXÞ that were moved to other resources by the algo-
rithm. At the same time we extend summation across all resources
r 2 R where before we only summed up across resources with
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N1
r ðZÞ ¼ ;. For (35), recall how we introduced pðqÞ: the first job that

is moved away has pðqÞ ¼ jNrðYÞj, the next has pðqÞ ¼ jNrðYÞ � 1j
until the last job that is moved away has pðqÞ ¼
jNrðYÞ \ NrðXÞj þ 1. h
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