

Advertisement: Bachelor's Thesis

Topic: Hamiltonicity of expander graphs

Supervisor: Prof. Dr. Stefan Glock

Description: A *Hamilton cycle* in a graph G is a cycle that contains every vertex of G. The study of Hamiltonicity of graphs is one of the main topics of graph theory and connects to many other areas such as coding theory, optimisation and theoretical computer science. A graph G is called a C-expander if $|N(X)| \geq C|X|$ for every $X \subseteq V(G)$ with |X| < n/2C, where N(X) denotes the neighbourhood of X in G. Recently, Draganić, Montgomery, Munhá Correia, Pokrovskiy and Sudakov proved that there is an absolute constant C > 0 such that every C-expander has a Hamilton cycle. This implies in a strong form a well-known conjecture of Krivelevich and Sudakov from 2003.

Thesis goals: The candidate is expected to study in-depth the research paper "Hamiltonicity of expanders: optimal bounds and applications" by Draganić et al. and write a detailed exposition on it. The final thesis should in particular introduce the research area (Hamiltonicity / expander graphs), survey the history and significance of the research problem, and explain the relevant methods and their advantages/limitations. Further potential ways to make original scientific contributions are to seek simplifications in the proof arguments, improve the exposition where possible, strengthen or generalize the main result (e.g.: value of the constant C, cycle factors), or adapt the methods to obtain similar results in other settings.

Main article:

 N. Draganić, R. Montgomery, D. Munhá Correia, A. Pokrovskiy and B. Sudakov, Hamiltonicity of expanders: optimal bounds and applications, preprint (2024).
https://arxiv.org/pdf/2402.06603

Further reading:

- S. Glock, D. Munhá Correia and B. Sudakov, Hamilton cycles in pseudorandom graphs, Advances in Mathematics 458 (2024), 109984.
- D. Hefetz, M. Krivelevich and T. Szabó, Hamilton cycles in highly connected and expanding graphs, Combinatorica 29 (2009), 547–568.
- M. Krivelevich and B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, Journal of Graph Theory 42 (2003), 17–33.