Frequency detection with orthogonal polynomials on the bitorus

Sebastian Penka
University of Lübeck

In this presentation, we consider the problem of recovering the frequency pairs of a real-valued bivariate exponential sum from sample values. The mathematical problem is as follows. Given function values

$$
f_{k, l}:=\sum_{j=1}^{M} \rho_{j} \mathrm{e}^{\mathrm{i}\left(k \lambda_{j}+l \mu_{j}\right)}, \quad k=0, \ldots, N_{1}-1, l=0, \ldots, N_{2}-1
$$

with complex coefficients $\rho_{j} \neq 0$ and $\left(\lambda_{j}, \mu_{j}\right) \in(0, \pi)^{2}$ we want to find good estimates of the integer M and the frequency pairs $\left(\lambda_{j}, \mu_{j}\right)$.
For the one-dimensional case, there are many methods to solve this problem e.g Prony's method, Szegő's method, the Matrix-Pencil method and several improvements of the above methods. Since the Szegő-method has proven to be very stable under the influence of noise, we extend this method to the two-dimensional case.

