Reconstruction of piecewise constant signals by the L^1 -Potts functional

New Trends and Directions in Harmonic Analysis, Fractional Operator Theory, and Image Analysis

Laurent Demaret, Martin Storath, Andreas Weinmann

Institute of Biomathematics - Helmholtz Zentrum München Supported by the BMBF project "Multimodal Proteome Imaging"

September 20, 2012

Motivation

Retinal tissue from Institute of Pathology, Helmholtz Center Munich

Retina tissue

- High-resolution image of microscopy (purple)
- Low-resolution mass spectrometry image "MALDI" (green)

Goal: Find protein distribution of the retinal tissue

Formulation as one-dimensional problem

Assumption

Homogeneous mass
distribution within retina layers

Idea (Binnig, Schmidt, Schönmeyer, '11)

 Mass distribution only dependent from distance to layer boundary

Formulation as one-dimensional problem

Assumption

 Homogeneous mass distribution within retina layers

Idea (Binnig, Schmidt, Schönmeyer, '11)

 Mass distribution only dependent from distance to layer boundary

Relative ion count

Distance to baseline in μm

Reconstruction of true piecewise constant signal from

- Non-Gaussian noise
- Non-equidistant sampling
- Blurred data

Reconstruction of piecewise constant signals by minimization of the L^1 -Potts functional

Paradigm: Signal reconstruction \leftrightarrow Minimization of cost functional "regularity + data fidelity"

L¹-Potts functional (Potts '52, Friedrich et al. '08)

$$P_{\gamma}(u) = \gamma \cdot \|\nabla u\|_0 + \|u - f\|_1$$

- Jump penalty $||\nabla u||_0$ enforces piecewise constant solutions
- Data term $||u f||_1$ robust also to non-Gaussian noise

Reconstruction of piecewise constant signal \sim Optimization of the non-convex L^1 -Potts functional

 $f \in \mathbb{R}^n$ data vector, $\|\nabla u\|_0 = \#\{i : u_{i+1} \neq u_i\}, \gamma > 0$ trade-off parameter

Related approaches

L¹-TV (Rudin et al. '92, Fu et. al. '06, Clason et. al. '09, ...)

$$\min_{u} \gamma \cdot \|\nabla u\|_1 + \|u - f\|_1$$

- Penalization of total variation $\|\nabla u\|_1 = \sum_i |u_{i+1} u_i|$
- Convex functional → Convex optimization

L²-Potts (Potts '52, Friedrich et al. '08)

$$\min_{u} \gamma \cdot \|\nabla u\|_0 + \|u - f\|_2^2$$

- Data deviation measured in L²-norm
- Non-convex → Dynamic programming

 $f \in \mathbb{R}^n$ data vector, $\gamma > 0$ trade-off parameter

Denoising: Laplacian noise

Denoising: Gaussian noise

Denoising: Salt and pepper noise

Minimization of Potts functionals

Dynamic program for L²-Potts (Friedrich, Kempe, Liebscher, Winkler, '08)

- Exact solution
- Fast, $O(n^2)$ time and O(n) space

Question (Liebscher '11): Same complexity for L¹-Potts possible?

- L² data term → mean value (closed formula, cheap)
- L¹ data term → median (requires sorting, expensive!)

Dynamic program:

- Given: Minimizer for data of length *r* – 1, *r* – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

 $f \in \mathbb{R}^{n}$, $P_{\gamma}(u) = \gamma \cdot ||\nabla u||_{0} + ||u - f||_{1}$; here $\gamma = 1$ and f = (4, 2, 6, 8, 9), n = 5

Dynamic program:

- Given: Minimizer for data of length r – 1, r – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

$$P_{\gamma} = 4 + \gamma + \gamma + \mathbf{0} = 6$$

$$f \in \mathbb{R}^{n}$$
, $P_{\gamma}(u) = \gamma \cdot \|\nabla u\|_{0} + \|u - f\|_{1}$; here $\gamma = 1$ and $f = (4, 2, 6, 8, 9)$, $n = 5$

Dynamic program:

- Given: Minimizer for data of length r – 1, r – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

$$P_{\gamma} = \mathbf{0} + 2\gamma + \frac{\gamma}{1} = 4$$

 $f \in \mathbb{R}^{n}$, $P_{\gamma}(u) = \gamma \cdot \|\nabla u\|_{0} + \|u - f\|_{1}$; here $\gamma = 1$ and f = (4, 2, 6, 8, 9), n = 5

Dynamic program:

- Given: Minimizer for data of length r – 1, r – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

$$P_{\gamma} = \mathbf{0} + \gamma + \frac{\gamma}{\mathbf{3}} = \mathbf{5}$$

 $f \in \mathbb{R}^{n}$, $P_{\gamma}(u) = \gamma \cdot ||\nabla u||_{0} + ||u - f||_{1}$; here $\gamma = 1$ and f = (4, 2, 6, 8, 9), n = 5

Dynamic program:

- Given: Minimizer for data of length r – 1, r – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

 $P_{\gamma} = 0 + \gamma + 9 = 10$

 $f \in \mathbb{R}^{n}$, $P_{\gamma}(u) = \gamma \cdot ||\nabla u||_{0} + ||u - f||_{1}$; here $\gamma = 1$ and f = (4, 2, 6, 8, 9), n = 5

Dynamic program:

- Given: Minimizer for data of length r – 1, r – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

$$f \in \mathbb{R}^{n}$$
, $P_{\gamma}(u) = \gamma \cdot ||\nabla u||_{0} + ||u - f||_{1}$; here $\gamma = 1$ and $f = (4, 2, 6, 8, 9)$, $n = 5$

Dynamic program:

- Given: Minimizer for data of length r – 1, r – 2, ..., 1
- Then: Minimizer for data of length *r* in *r* steps

 \rightarrow For each r = 1, ..., n: r median deviations required

 $P_{\gamma} = 11$

 $f \in \mathbb{R}^{n}$, $P_{\gamma}(u) = \gamma \cdot ||\nabla u||_{0} + ||u - f||_{1}$; here $\gamma = 1$ and f = (4, 2, 6, 8, 9), n = 5

A new fast L^1 -Potts algorithm

Challenge: Compute $O(n^2)$ median deviations in $O(n^2)$ time

Idea

- Given: Median deviation of data (*f*₁, ..., *f*_r)
- Then: Median deviation of reduced data $(f_{l+1}, ..., f_r)$ in O(1)

New data structure: Indexed Linked Histogram

- · Histogram values as linked list structure
- Extra indexing "data $f_i \mapsto$ histogram entry"
- \rightsquigarrow Reduction step of histogram in O(1)

Runtime of our L^1 -Potts algorithm

Theorem (Demaret, Storath, Weinmann, '12)

The proposed algorithm computes an exact minimizer of the discrete L^1 -Potts functional within $O(n^2)$ time and O(n) space.

Runtime of our L^1 -Potts algorithm

Theorem (Demaret, Storath, Weinmann, '12)

The proposed algorithm computes an exact minimizer of the discrete L^1 -Potts functional within $O(n^2)$ time and O(n) space.

Blurred data

MALDI measurements f are averages over neighborhoods

f=K*g,

but kernel K unknown.

g true piecewise constant function, K convolution kernel

Blurred data

MALDI measurements f are averages over neighborhoods

$$f = K * g,$$

but kernel K unknown.

 L^1 -Potts restores the true signal g from the blurred data!

g true piecewise constant function, K convolution kernel

Comparison to other approaches

Blind deconvolution property of L¹-Potts

Theorem (Demaret, Storath, Weinmann, '12) For data of the form

f = K * g, g piecewise constant,

there is a maximal size of the kernel's support and Potts parameters γ , such that g is the unique minimizer of the L¹-Potts functional, i.e.,

$$g = \arg\min_{u} \gamma \cdot \|\nabla u\|_0 + \|u - f\|_1.$$

K positive symmetric convolution kernel, compactly supported

Blind deconvolution property of L¹-Potts

Theorem (Demaret, Storath, Weinmann, '12) *For data of the form*

f = K * g, g piecewise constant,

there is a maximal size of the kernel's support and Potts parameters γ , such that g is the unique minimizer of the L¹-Potts functional, i.e.,

$$g = \arg\min_{u} \gamma \cdot \|\nabla u\|_0 + \|u - f\|_1.$$

In practice: data f is contaminated by noise

$$f = K * g +$$
noise

K positive symmetric convolution kernel, compactly supported

Blind deconvolution property under noise

Top: signal blurred by moving average of length 7 plus noise, Bottom: L1-Potts solution

Reconstruction of true piecewise constant signal from

- Non-Gaussian noise
- Non-equidistant sampling
- Blurred data

Reconstruction of true piecewise constant signal from

- Non-Gaussian noise √
- Non-equidistant sampling
- Blurred data

Reconstruction of true piecewise constant signal from

- Non-Gaussian noise √
- Non-equidistant sampling \checkmark
- Blurred data

Reconstruction of true piecewise constant signal from

- Non-Gaussian noise √
- Non-equidistant sampling \checkmark
- Blurred data √

L¹-Potts to MALDI data

Jumps of L^1 -Potts reconstruction correlate with layer boundaries \rightarrow Confidence in MALDI measurements

LRC: Layer of rods and cones, ONL: Outer nuclear layer, OPL: Outer plexiform layer, INL: inner nuclear layer

Summary and references

Summary

- L¹-Potts for reconstruction of piecewise constant signal under various types of noise
- Deblurring without knowledge of the blurring operator
- Fast and exact algorithm

Summary and references

Summary

- L¹-Potts for reconstruction of piecewise constant signal under various types of noise
- · Deblurring without knowledge of the blurring operator
- Fast and exact algorithm

Reference

- L. Demaret, M. Storath, A. Weinmann. Reconstruction of piecewise constant signals by minimization of the L¹-Potts functional. 2012. (arXiv preprint)
- Potts Toolbox for Matlab, http://purl.org/potts/toolbox (open source)

Further references

F. Friedrich, A. Kempe, V. Liebscher, and G. Winkler. Complexity penalized M-Estimation. Journal of Computational and Graphical Statistics, 17(1):201–224, March 2008.

L. Boysen, A. Kempe, V. Liebscher, A. Munk, and O. Wittich. Consistencies and rates of convergence of jump-penalized least squares estimators.

The Annals of Statistics, 37(1):157–183, 2009.

 C. Clason, B. Jin, and K. Kunisch.
A duality-based splitting method for l-tv image restoration with automatic regularization parameter choice.
SIAM J. Sci. Comput. v32 i3, pages 1484–1505, 2009. http://math.uni-graz.at/optcon/projects/clason3/.

Sampling

Integral sampling

$$f^{k}(j) = S_{k}f(j) = \frac{1}{|I_{j}|}\int_{I_{j}}f\,\mathrm{d}\lambda,$$

where I_j are the intervals given by the discretization sets X_k .

Point sampling

$$f^k(j) = S_k f(j) = f(x_j)$$

where x_i might be taken as the midpoint of the interval I_i .

· Discrete Potts functionals

$$P_{\gamma}^{k}(u) = \begin{cases} \gamma \cdot J(u) + \left\| u - \sum_{j} S_{k} f(j) \cdot \mathbf{1}_{l_{j}} \right\|_{1}, & \text{if } u \in \mathrm{PC}^{k}[0, 1], \\ \infty, & \text{else.} \end{cases}$$

Γ-Convergence

A sequence F^k of functionals on $L^1[0, 1]$ taking values in the extended positive real line $[0, \infty]$, Γ -converges to a functional F_{∞} if

(i) for each $u \in L^1[0, 1]$ and each sequence $\{u^k\}_{k \in \mathbb{N}}$ in $L^1[0, 1]$ with $u^k \to u$ as $k \to \infty$ holds

$$F^{\infty}(u) \le \liminf_{k \to \infty} F^{k}(u^{k}), \tag{1}$$

(ii) and for each $u \in L^1[0, 1]$ there is a *recovery sequence* $\{u^k\}_{k \in \mathbb{N}}$ in $L^1[0, 1]$ with $u^k \to u$ as $k \to \infty$ such that

$$F^{\infty}(u) \ge \limsup_{k \to \infty} F^k(u^k).$$
 (2)

Γ -convergence to continuous L^1 -Potts model

Continuous L¹-Potts functional

$$P_{\gamma}(u) = \begin{cases} \gamma \cdot ||\nabla u||_0 + ||u - f||_1, & \text{if } u \in \mathrm{PC}[0, 1] \\ \infty, & \text{else.} \end{cases}$$

Interpretation of discrete data $(f_i)_i$ as sampling of the data $f \in L^1$.

 $f \in L^1$ data, PC[0, 1] piecewise constant functions on [0, 1], $\|\nabla u\|_0$ number of jumps of u

Γ -convergence to continuous L^1 -Potts model

Continuous L¹-Potts functional

$$P_{\gamma}(u) = \begin{cases} \gamma \cdot ||\nabla u||_0 + ||u - f||_1, & \text{if } u \in \mathrm{PC}[0, 1] \\ \infty, & \text{else.} \end{cases}$$

Interpretation of discrete data $(f_i)_i$ as sampling of the data $f \in L^1$.

Theorem (Demaret, Storath, Weinmann, '12)

- The discrete functionals Γ-converge to the continuous L¹-Potts functional P_γ as the sampling density approaches 0.
- Each accumulation point of a sequence of minimizers of the discrete approximations is a minimizer of the continuous model.

 $f \in L^1$ data, PC[0, 1] piecewise constant functions on [0, 1], $\|\nabla u\|_0$ number of jumps of u

Convolution kernel K known \rightsquigarrow "Deconvolution L¹-Potts functional"

 $\gamma \cdot ||\nabla u||_0 + ||\mathbf{K} * u - f||_1 \to \min$

Convolution kernel K known \sim "Deconvolution L¹-Potts functional"

 $\gamma \cdot ||\nabla u||_0 + ||K * u - f||_1 \to \min$

Splitting approach

$$\min_{u,v} \gamma \cdot \|\nabla u\|_0 + \mu \cdot \|u - v\|_1 + \|K * v - f\|_1.$$

Convolution kernel K known \sim "Deconvolution L¹-Potts functional"

 $\gamma \cdot ||\nabla u||_0 + ||K * u - f||_1 \to \min$

Splitting approach

$$\min_{u,v} \gamma \cdot \|\nabla u\|_0 + \mu \cdot \|u - v\|_1 + \|K * v - f\|_1.$$

Heuristic algorithm: alternately solve

$$\min_{u}\frac{\gamma}{\mu}\cdot\|\nabla u\|_{0}+\|u-v\|_{1},$$

Convolution kernel K known \sim "Deconvolution L¹-Potts functional"

 $\gamma \cdot \|\nabla u\|_0 + \|K * u - f\|_1 \to \min$

Splitting approach

$$\min_{u,v} \gamma \cdot \|\nabla u\|_0 + \mu \cdot \|u - v\|_1 + \|K * v - f\|_1.$$

Heuristic algorithm: alternately solve

$$\min_{u} \frac{\gamma}{\mu} \cdot \|\nabla u\|_{0} + \|u - v\|_{1},$$
$$\min_{v} \mu \cdot \|u - v\|_{1} + \|K * u - f\|_{1},$$

Convolution kernel K known \sim "Deconvolution L¹-Potts functional"

 $\gamma \cdot \|\nabla u\|_0 + \|K * u - f\|_1 \to \min$

Splitting approach

$$\min_{u,v} \gamma \cdot \|\nabla u\|_0 + \mu \cdot \|u - v\|_1 + \|K * v - f\|_1.$$

Heuristic algorithm: alternately solve

$$\min_{u} \frac{\gamma}{\mu} \cdot \|\nabla u\|_{0} + \|u - v\|_{1},$$
$$\min_{v} \mu \cdot \|u - v\|_{1} + \|K * u - f\|_{1},$$

and increase coupling parameter μ in each step.

K convolution kernel

Deconvolution by the iterative L^1 -Potts

