Basic relations valid for the Bernstein space B_{σ}^{2} and their extensions to functions from larger spaces in terms of their distances from B_{σ}^{2}
 Part 2: Foundations for a unified approach to extensions

P. L. Butzer, G. Schmeisser, R. L. Stens

New Trends and Directions in Harmonic Analysis, Fractional Operator Theory, and Image Analysis

Summer School, Inzell, September 17-21, 2012

Preliminary reflections

The Bernstein space B_{σ}^{p} comprises all entire functions of exponential type σ whose restriction to \mathbb{R} belongs to $L^{p}(\mathbb{R})$.
There exist numerous relations of the form

$$
U(f)=V_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f) \quad\left(f \in B_{\sigma}^{p}\right)
$$

where U and V_{σ} are functionals.

Preliminary reflections

The Bernstein space B_{σ}^{p} comprises all entire functions of exponential type σ whose restriction to \mathbb{R} belongs to $L^{p}(\mathbb{R})$.
There exist numerous relations of the form

$$
U(f)=V_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f) \quad\left(f \in B_{\sigma}^{p}\right)
$$

where U and V_{σ} are functionals.

Examples

- The sampling formula:

$$
U(f)=f(t), \quad V_{\sigma}(f)=\sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{\sigma}\right) \operatorname{sinc}\left(\frac{\sigma t}{\pi}-k\right)
$$

- Bernstein's inequality in $L^{2}(\mathbb{R})$

Preliminary reflections

The Bernstein space B_{σ}^{p} comprises all entire functions of exponential type σ whose restriction to \mathbb{R} belongs to $L^{p}(\mathbb{R})$.
There exist numerous relations of the form

$$
U(f)=V_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f) \quad\left(f \in B_{\sigma}^{p}\right)
$$

where U and V_{σ} are functionals.

Examples

- The sampling formula:

$$
U(f)=f(t), \quad V_{\sigma}(f)=\sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{\sigma}\right) \operatorname{sinc}\left(\frac{\sigma t}{\pi}-k\right)
$$

- Bernstein's inequality in $L^{2}(\mathbb{R})$:

$$
U(f)=\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}, \quad V_{\sigma}(f)=\sigma\|f\|_{L^{2}(\mathbb{R})}
$$

Preliminary reflections, continued

Suppose that $f \notin B_{\sigma}^{p}$ but $U(f)$ and $V_{\sigma}(f)$ exists. The previous relations may not hold any more. Write

$$
U(f)=V_{\sigma}(f)+R_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f)+R_{\sigma}(f)
$$

Interpretation

- $R_{\sigma}(f)$ is a remainder (engineers: aliasing error)
- $\left|R_{\sigma}(f)\right|$ is small when f is close to B_{σ}^{p}

Aims

Preliminary reflections, continued

Suppose that $f \notin B_{\sigma}^{p}$ but $U(f)$ and $V_{\sigma}(f)$ exists. The previous relations may not hold any more. Write

$$
U(f)=V_{\sigma}(f)+R_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f)+R_{\sigma}(f)
$$

Interpretation

- $R_{\sigma}(f)$ is a remainder (engineers: aliasing error)
- $\left|R_{\sigma}(f)\right|$ is small when f is close to B_{σ}^{p}

Aims

Preliminary reflections, continued

Suppose that $f \notin B_{\sigma}^{p}$ but $U(f)$ and $V_{\sigma}(f)$ exists. The previous relations may not hold any more. Write

$$
U(f)=V_{\sigma}(f)+R_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f)+R_{\sigma}(f)
$$

Interpretation

- $R_{\sigma}(f)$ is a remainder (engineers: aliasing error)
- $\left|R_{\sigma}(f)\right|$ is small when f is close to B_{σ}^{p}

Aims
(1) Describe a hierarchy of spaces that extend B_{σ}^{p}
(2) Introduce a metric for measuring the distance of f from B_{σ}^{P}
(3) Estimate the distance in terms of properties of the spaces

Preliminary reflections, continued

Suppose that $f \notin B_{\sigma}^{p}$ but $U(f)$ and $V_{\sigma}(f)$ exists. The previous relations may not hold any more. Write

$$
U(f)=V_{\sigma}(f)+R_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f)+R_{\sigma}(f)
$$

Interpretation

- $R_{\sigma}(f)$ is a remainder (engineers: aliasing error)
- $\left|R_{\sigma}(f)\right|$ is small when f is close to B_{σ}^{p}

Aims
(1) Describe a hierarchy of spaces that extend B_{σ}^{p}
(2) Introduce a metric for measuring the distance of f from B_{σ}^{p}
© Estimate the distance in terms of properties of the spaces

Preliminary reflections, continued

Suppose that $f \notin B_{\sigma}^{p}$ but $U(f)$ and $V_{\sigma}(f)$ exists. The previous relations may not hold any more. Write

$$
U(f)=V_{\sigma}(f)+R_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f)+R_{\sigma}(f)
$$

Interpretation

- $R_{\sigma}(f)$ is a remainder (engineers: aliasing error)
- $\left|R_{\sigma}(f)\right|$ is small when f is close to B_{σ}^{p}

Aims
(1) Describe a hierarchy of spaces that extend B_{σ}^{p}
(2) Introduce a metric for measuring the distance of f from B_{σ}^{p}
(3) Estimate the distance in terms of properties of the spaces

Preliminary reflections, continued

Suppose that $f \notin B_{\sigma}^{p}$ but $U(f)$ and $V_{\sigma}(f)$ exists. The previous relations may not hold any more. Write

$$
U(f)=V_{\sigma}(f)+R_{\sigma}(f) \quad \text { or } \quad U(f) \leq V_{\sigma}(f)+R_{\sigma}(f)
$$

Interpretation

- $R_{\sigma}(f)$ is a remainder (engineers: aliasing error)
- $\left|R_{\sigma}(f)\right|$ is small when f is close to B_{σ}^{p}

Aims
(1) Describe a hierarchy of spaces that extend B_{σ}^{p}
(2) Introduce a metric for measuring the distance of f from B_{σ}^{p}
(3) Estimate the distance in terms of properties of the spaces
(4) Find representations for $R_{\sigma}(f)$ and give estimates in terms of the distance

Fourier inversion classes and summability classes

Properties of members of Bernstein spaces:

- analytic • exp. growth • $L^{p}(\mathbb{R})$ membership

What are appropriate wider spaces?
Fourier inversion classes: $p \in[1,2]$

Fourier inversion classes and summability classes

Properties of members of Bernstein spaces:

- analytic • exp. growth • $L^{p}(\mathbb{R})$ membership

What are appropriate wider spaces?
Fourier inversion classes: $p \in[1,2]$

$$
F^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: f \in L^{p}(\mathbb{R}) \cap C(\mathbb{R}), \widehat{f} \in L^{1}(\mathbb{R})\right\}
$$

ℓ^{p} summability class of step size h :

Fourier inversion classes and summability classes

Properties of members of Bernstein spaces:

- analytic • exp. growth • $L^{p}(\mathbb{R})$ membership

What are appropriate wider spaces?
Fourier inversion classes: $p \in[1,2]$

$$
\begin{aligned}
& F^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: f \in L^{p}(\mathbb{R}) \cap C(\mathbb{R}), \widehat{f} \in L^{1}(\mathbb{R})\right\} \\
& f \in F^{p} \Longrightarrow f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \widehat{f}(v) e^{i v t} d v \quad(t \in \mathbb{R})
\end{aligned}
$$

ℓ^{p} summability class of step size h :

$\left.B_{\sigma}^{p}\right|_{\mathbb{R}} \subset F^{p} \cap S_{h}^{p}$

Fourier inversion classes and summability classes

Properties of members of Bernstein spaces:

- analytic • exp. growth • $L^{p}(\mathbb{R})$ membership

What are appropriate wider spaces?
Fourier inversion classes: $p \in[1,2]$

$$
\begin{aligned}
& F^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: f \in L^{p}(\mathbb{R}) \cap C(\mathbb{R}), \widehat{f} \in L^{1}(\mathbb{R})\right\} \\
& f \in F^{p} \Longrightarrow f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \widehat{f}(v) e^{i v t} d v \quad(t \in \mathbb{R})
\end{aligned}
$$

ℓ^{p} summability class of step size h :

$$
S_{h}^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C}:(f(h k))_{k \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z})\right\}
$$

Fourier inversion classes and summability classes

Properties of members of Bernstein spaces:

- analytic • exp. growth • $L^{p}(\mathbb{R})$ membership

What are appropriate wider spaces?
Fourier inversion classes: $p \in[1,2]$

$$
\begin{aligned}
& F^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: f \in L^{p}(\mathbb{R}) \cap C(\mathbb{R}), \widehat{f} \in L^{1}(\mathbb{R})\right\} \\
& f \in F^{p} \Longrightarrow f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \widehat{f}(v) e^{i v t} d v \quad(t \in \mathbb{R})
\end{aligned}
$$

ℓ^{p} summability class of step size h :

$$
\begin{gathered}
S_{h}^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C}:(f(h k))_{k \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z})\right\} \\
\left.B_{\sigma}^{p}\right|_{\mathbb{R}} \subset F^{p} \cap S_{h}^{p}
\end{gathered}
$$

Sobolev spaces

$\mathrm{AC}_{\text {loc }}^{r-1}(\mathbb{R})$: the $(r-1)$-times locally abs. cont. functions on \mathbb{R}

$$
\begin{aligned}
\mathcal{W}^{r, p}(\mathbb{R}):=\{ & f: \mathbb{R} \rightarrow \mathbb{C}: f=\phi \text { a. e., } \phi \in \mathrm{AC}_{\text {loc }}^{r-1}(\mathbb{R}), \\
& \left.\phi^{(k)} \in L^{p}(\mathbb{R}), 0 \leq k \leq r\right\}
\end{aligned}
$$

This is a Sobolev space if endowed with the norm

$$
\|f\|_{W^{r, p}(\mathbb{R})}:=\left\{\sum_{k=0}^{r}\left\|\phi^{(k)}\right\|_{L^{p}(\mathbb{R})}^{p}\right\}^{1 / p},
$$

Alternative description of $W^{r, p}(\mathbb{R})$
Proposition
For $p \in[1.2]$ we have $W^{r, p}(\mathbb{R})=\left\{f \in L^{P}(\mathbb{R}): v^{r} \widehat{f}(v)=\widehat{g}(v), g \in L^{P}(\mathbb{R})\right\}$

Sobolev spaces

$\mathrm{AC}_{\text {loc }}^{r-1}(\mathbb{R})$: the $(r-1)$-times locally abs. cont. functions on \mathbb{R}

$$
\begin{gathered}
W^{r, p}(\mathbb{R}):=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: f=\phi \text { a. e., } \phi \in \mathrm{AC}_{\mathrm{loc}}^{r-1}(\mathbb{R}),\right. \\
\left.\phi^{(k)} \in L^{p}(\mathbb{R}), 0 \leq k \leq r\right\}
\end{gathered}
$$

This is a Sobolev space if endowed with the norm

$$
\|f\|_{W^{r, p}(\mathbb{R})}:=\left\{\sum_{k=0}^{r}\left\|\phi^{(k)}\right\|_{L^{p}(\mathbb{R})}^{p}\right\}^{1 / p}
$$

Alternative description of $W^{r, p}(\mathbb{R})$

Proposition

For $p \in[1,2]$ we have

$$
W^{r, p}(\mathbb{R})=\left\{f \in L^{p}(\mathbb{R}): v^{r} \widehat{f}(v)=\widehat{g}(v), g \in L^{p}(\mathbb{R})\right\}
$$

Sobolev spaces, continued

The following statement is due to Nikol'skiï:
Let $f \in B_{\sigma}^{p}$ with $p \in[1, \infty)$. Then for any $h>0$,

$$
\left\{h \sum_{k \in \mathbb{Z}}|f(h k)|^{p}\right\}^{1 / p} \leq(1+h \sigma)\|f\|_{L^{p}(\mathbb{R})}
$$

The proof includes the following more general result:

Proposition

\square

For $p \in[1,2],(r, p) \neq(1,1)$, the previous propositions imply $W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}) \subset F^{p} \cap S_{h}^{p}$

Sobolev spaces, continued

The following statement is due to Nikol'skiï:
Let $f \in B_{\sigma}^{p}$ with $p \in[1, \infty)$. Then for any $h>0$,

$$
\left\{h \sum_{k \in \mathbb{Z}}|f(h k)|^{p}\right\}^{1 / p} \leq(1+h \sigma)\|f\|_{L^{p}(\mathbb{R})}
$$

The proof includes the following more general result:

Proposition

Let $f \in W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}), r \in \mathbb{N}, p \in[1, \infty]$. Then for any $h>0$,

$$
\left\{h \sum_{k \in \mathbb{Z}}|f(h k)|^{p}\right\}^{1 / p} \leq\|f\|_{L^{p}(\mathbb{R})}+h\left\|f^{\prime}\right\|_{L^{p}(\mathbb{R})}
$$

For $p \in[1,2],(r, p) \neq(1,1)$, the previous propositions imply $W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}) \subset F^{p} \cap S_{h}^{p}$

Sobolev spaces, continued

The following statement is due to Nikol'skiï:
Let $f \in B_{\sigma}^{p}$ with $p \in[1, \infty)$. Then for any $h>0$,

$$
\left\{h \sum_{k \in \mathbb{Z}}|f(h k)|^{p}\right\}^{1 / p} \leq(1+h \sigma)\|f\|_{L^{p}(\mathbb{R})}
$$

The proof includes the following more general result:

Proposition

Let $f \in W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}), r \in \mathbb{N}, p \in[1, \infty]$. Then for any $h>0$,

$$
\left\{h \sum_{k \in \mathbb{Z}}|f(h k)|^{p}\right\}^{1 / p} \leq\|f\|_{L^{p}(\mathbb{R})}+h\left\|f^{\prime}\right\|_{L^{p}(\mathbb{R})}
$$

For $p \in[1,2],(r, p) \neq(1,1)$, the previous propositions imply

$$
W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}) \subset F^{p} \cap S_{h}^{p}
$$

Lipschitz spaces

$$
\begin{aligned}
& \qquad \begin{array}{l}
X_{\infty}:=C(\mathbb{R}), \quad X_{p}:=L^{p}(\mathbb{R}), \quad p \in[1, \infty) \\
X_{\infty}^{(r)}:=C^{(r)}(\mathbb{R}), \quad X_{p}^{(r)}:=W^{r, p}(\mathbb{R}) \quad(r \in \mathbb{N}) \\
\left.\left(\Delta_{h}^{r} f\right)(u):=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} f(u+j h) \quad \text { (forward difference of order } r\right) \\
\omega_{r}\left(f ; \delta ; X_{p}\right):=\sup _{|h| \leq \delta}\left\|\Delta_{h}^{r} f\right\|_{X_{p}} \quad \text { (modulus of smoothness of order } r \text {) }
\end{array} \\
& \text { The Lipschitz spaces are defined by }
\end{aligned}
$$

Lipschitz spaces

$$
\begin{gathered}
X_{\infty}:=C(\mathbb{R}), \quad X_{p}:=L^{p}(\mathbb{R}), \quad p \in[1, \infty) \\
X_{\infty}^{(r)}:=C^{(r)}(\mathbb{R}), \quad X_{p}^{(r)}:=W^{r, p}(\mathbb{R}) \quad(r \in \mathbb{N}) \\
\left(\Delta_{h}^{r} f\right)(u):=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} f(u+j h) \quad \text { (forward difference of order } r \text {) } \\
\omega_{r}\left(f ; \delta ; X_{p}\right):=\sup _{|h| \leq \delta}\left\|\Delta_{h}^{r} f\right\|_{X_{p}} \quad \text { (modulus of smoothness of order } r \text {) }
\end{gathered}
$$

The Lipschitz spaces are defined by

$$
\operatorname{Lip}_{r}\left(\alpha ; X_{p}\right):=\left\{f \in X_{p}: \omega_{r}\left(f ; \delta ; X_{p}\right)=\mathcal{O}\left(\delta^{\alpha}\right), \delta \rightarrow 0+\right\} \quad(0<\alpha \leq r)
$$

Lipschitz spaces, continued

Given $f \in X_{p}, 1 \leq p \leq \infty$, there exists an $f_{\sigma} \in B_{\sigma}^{p}$ with

$$
\left\|f-f_{\sigma}\right\|_{x_{p}}=\inf _{g \in B_{\sigma}^{p}}\|f-g\|_{x_{p}}
$$

Proposition (Junggeburth-Scherer-Trebels 1973)

For $f \in X_{n}, 1<p<\infty$ and $s<\alpha<r$, where $s, r \in \mathbb{N}_{0}$, the following assertions are equivalent:
and $\left\|f^{(s)}-f_{\sigma}^{(s)}\right\|_{X_{p}}=\mathcal{O}\left(\sigma^{-\alpha+s}\right) \quad(\sigma \rightarrow \infty)$,

Lipschitz spaces, continued

Given $f \in X_{p}, 1 \leq p \leq \infty$, there exists an $f_{\sigma} \in B_{\sigma}^{p}$ with

$$
\left\|f-f_{\sigma}\right\|_{X_{p}}=\inf _{g \in B_{\sigma}^{p}}\|f-g\|_{x_{p}}
$$

Proposition (Junggeburth-Scherer-Trebels 1973)

For $f \in X_{p}, 1 \leq p \leq \infty$ and $s<\alpha<r$, where $s, r \in \mathbb{N}_{0}$, the following assertions are equivalent:
(i) $f \in \operatorname{Lip}_{r}\left(\alpha ; X_{p}\right)$,
(ii) $\left\|f-f_{\sigma}\right\|_{X_{p}}=\mathcal{O}\left(\sigma^{-\alpha}\right) \quad(\sigma \rightarrow \infty)$,
(iii) $f \in X_{p}^{(s)}$ and $\left\|f^{(s)}-f_{\sigma}^{(s)}\right\|_{X_{p}}=\mathcal{O}\left(\sigma^{-\alpha+s}\right) \quad(\sigma \rightarrow \infty)$,

Wiener amalgam and modulation spaces

For $p, q \in[1, \infty]$ the Wiener amalgam space $W\left(L^{p}, \ell^{q}\right)$ comprises all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{p, q}:=\left\{\sum_{n \in \mathbb{Z}}\left\{\int_{n}^{n+1}|f(t)|^{p} d t\right\}^{q / p}\right\}^{1 / q}=\| \| f\left\|_{L^{p}(n, n+1)}\right\|_{\ell^{q}}<\infty
$$

(Wiener 1932, Cooper 1960, Holland 1975, Fournier-Stewart 1988)

The modulation space $M^{2,1}$ is given by (Feichtinger 1980):

Wiener amalgam and modulation spaces

For $p, q \in[1, \infty]$ the Wiener amalgam space $W\left(L^{p}, \ell^{q}\right)$ comprises all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{p, q}:=\left\{\sum_{n \in \mathbb{Z}}\left\{\int_{n}^{n+1}|f(t)|^{p} d t\right\}^{q / p}\right\}^{1 / q}=\| \| f\left\|_{L^{p}(n, n+1)}\right\|_{\ell^{q}}<\infty
$$

(Wiener 1932, Cooper 1960, Holland 1975, Fournier-Stewart 1988)

$$
\begin{array}{ll}
W\left(L^{p}, \ell^{q}\right) \subset L^{p}(\mathbb{R}) \cap L^{q}(\mathbb{R}) & \text { if } q \leq p \\
W\left(L^{p}, \ell^{q}\right) \supset L^{p}(\mathbb{R}) \cup L^{q}(\mathbb{R}) & \text { if } q \geq p
\end{array}
$$

The modulation space $M^{2,1}$ is given by (Feichtinger 1980):

Wiener amalgam and modulation spaces

For $p, q \in[1, \infty]$ the Wiener amalgam space $W\left(L^{p}, \ell^{q}\right)$ comprises all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{p, q}:=\left\{\sum_{n \in \mathbb{Z}}\left\{\int_{n}^{n+1}|f(t)|^{p} d t\right\}^{q / p}\right\}^{1 / q}=\| \| f\left\|_{L^{p}(n, n+1)}\right\|_{\ell q}<\infty
$$

(Wiener 1932, Cooper 1960, Holland 1975, Fournier-Stewart 1988)

$$
\begin{array}{ll}
W\left(L^{p}, \ell^{q}\right) \subset L^{p}(\mathbb{R}) \cap L^{q}(\mathbb{R}) & \text { if } q \leq p \\
W\left(L^{p}, \ell^{q}\right) \supset L^{p}(\mathbb{R}) \cup L^{q}(\mathbb{R}) & \text { if } q \geq p
\end{array}
$$

The modulation space $M^{2,1}$ is given by (Feichtinger 1980):

$$
\begin{aligned}
M^{2,1} & :=\left\{f: f:=\widehat{g}, g \in W\left(L^{2}, \ell^{1}\right)\right\} \\
\|f\|_{M^{2,1}} & :=\sum_{n \in \mathbb{Z}}\left\{\int_{n}^{n+1}|\widehat{f}(v)|^{2} d t\right\}^{1 / 2}=\| \| \widehat{f}\left\|_{L^{2}(n, n+1)}\right\|_{\ell^{1}}
\end{aligned}
$$

The space $M_{*}^{2,1}$

Consider a dilation $f_{h}: t \mapsto f(h t)$. Then $\widehat{f}_{h}(v)=h^{-1} \widehat{f}(v / h)$. The space $M^{2,1}$ is known to be dilation invariant, i. e.,

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \frac{1}{h}\left\{\int_{n}^{n+1}\left|\hat{f}\left(\frac{v}{h}\right)\right|^{2} d v\right\}^{1 / 2}<\infty \tag{*}
\end{equation*}
$$

for $f \in M^{2,1}$ and all $h>0$.
The series $(*)$ need not converge uniformly with respect to h.
$M_{*}^{2,1}$ comprises all $f \in M^{2,1}$ such that $(*)$ converges uniformly on bounded subintervals of $(0, \infty)$. We have

The space $M_{*}^{2,1}$

Consider a dilation $f_{h}: t \mapsto f(h t)$. Then $\widehat{f}_{h}(v)=h^{-1} \widehat{f}(v / h)$. The space $M^{2,1}$ is known to be dilation invariant, i.e.,

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \frac{1}{h}\left\{\int_{n}^{n+1}\left|\hat{f}\left(\frac{v}{h}\right)\right|^{2} d v\right\}^{1 / 2}<\infty \tag{*}
\end{equation*}
$$

for $f \in M^{2,1}$ and all $h>0$.
The series $(*)$ need not converge uniformly with respect to h.
$M_{*}^{2,1}$ comprises all $f \in M^{2,1}$ such that $(*)$ converges uniformly on bounded subintervals of $(0, \infty)$. We have

$$
M_{*}^{2,1} \subset M^{2,1} \quad \text { and } \quad M_{*}^{2,1} \subset \operatorname{Lip}_{r}\left(\frac{1}{2}, L^{2}(\mathbb{R})\right)
$$

Hardy spaces for strips

$$
\begin{aligned}
& \mathcal{S}_{d}:=\{z \in \mathbb{C}:|\Im z|<d\} \\
& H^{p}\left(\mathcal{S}_{d}\right):=\left\{f: f \text { analytic on } \mathcal{S}_{d},\|f\|_{H^{p}\left(\mathcal{S}_{d}\right)}<\infty\right\} \\
&\|f\|_{H^{p}\left(\mathcal{S}_{d}\right)}:=\left[\sup _{0<y<d} \int_{\mathbb{R}} \frac{|f(t-i y)|^{p}+|f(t+i y)|^{p}}{2} d t\right]^{1 / p}
\end{aligned}
$$

Proposition

and if $p \in[1,2], 0<\delta<d, 1 / p+1 / p^{\prime}=1$, then
\square

Hardy spaces for strips

$$
\begin{aligned}
& \mathcal{S}_{d}:=\{z \in \mathbb{C}:|\Im z|<d\} \\
& H^{p}\left(\mathcal{S}_{d}\right):=\left\{f: f \text { analytic on } \mathcal{S}_{d},\|f\|_{H^{p}\left(\mathcal{S}_{d}\right)}<\infty\right\} \\
&\|f\|_{H^{p}\left(\mathcal{S}_{d}\right)}:=\left[\sup _{0<y<d} \int_{\mathbb{R}} \frac{|f(t-i y)|^{p}+|f(t+i y)|^{p}}{2} d t\right]^{1 / p}
\end{aligned}
$$

Proposition

For $f \in H^{p}\left(\mathcal{S}_{d}\right)$:

$$
\left\|f^{(j)}\right\|_{L^{p}(\mathbb{R})} \leq \frac{j!}{d^{j}}\|f\|_{H^{p}\left(\mathcal{S}_{d}\right)} \quad\left(j \in \mathbb{N}_{0}\right)
$$

and if $p \in[1,2], 0<\delta<d, 1 / p+1 / p^{\prime}=1$, then

$$
\widehat{f}(v)=e^{-\delta|v|} g(v) \quad \text { a.e. on } \mathbb{R}, \quad \text { where } g \in L^{p^{\prime}}(\mathbb{R})
$$

The inclusions

So far, we have considered:

- The Fourier inversion class F^{p} and the summability class S_{h}^{p}
- The Sobolev space $W^{r, p}(\mathbb{R})$
- The Lipschitz space $\operatorname{Lip}_{r}\left(\alpha, X_{p}\right)$
- The modulation space $M^{2,1}$ and its subspace $M_{*}^{2,1}$
- The Hardy space $H^{p}\left(\mathcal{S}_{d}\right)$

For these spaces, the following inclusions hold, where $p \in[1,2]$
$\left.\left.B_{\sigma}^{p}\right|_{\mathbb{R}} \varsubsetneqq H^{p}\left(\mathcal{S}_{d}\right)\right|_{\mathbb{R}} \varsubsetneqq W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}) \varsubsetneqq F^{p} \cap S_{h}^{p} \varsubsetneqq F^{p} \varsubsetneqq L^{p}(\mathbb{R})$
For $p=2$ we have in addition:

$$
W^{r, 2}(\mathbb{R}) \cap C(\mathbb{R}) \varsubsetneqq M_{*}^{2,1} \varsubsetneqq M^{2,1} \varsubsetneqq F^{2} \cap S_{h}^{2}
$$

and

$$
M_{*}^{2,1} \varsubsetneqq \operatorname{Lip}_{r}\left(\frac{1}{2}, L^{2}(\mathbb{R})\right) \cap F^{2} .
$$

The inclusions

So far, we have considered:

- The Fourier inversion class F^{p} and the summability class S_{h}^{p}
- The Sobolev space $W^{r, p}(\mathbb{R})$
- The Lipschitz space $\operatorname{Lip}_{r}\left(\alpha, X_{p}\right)$
- The modulation space $M^{2,1}$ and its subspace $M_{*}^{2,1}$
- The Hardy space $H^{p}\left(\mathcal{S}_{d}\right)$

For these spaces, the following inclusions hold, where $p \in[1,2]$:
$\left.\left.B_{\sigma}^{p}\right|_{\mathbb{R}} \varsubsetneqq H^{p}\left(\mathcal{S}_{d}\right)\right|_{\mathbb{R}} \varsubsetneqq W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}) \varsubsetneqq F^{p} \cap S_{h}^{p} \varsubsetneqq F^{p} \varsubsetneqq L^{p}(\mathbb{R})$.
For $p=2$ we have in addition:

The inclusions

So far, we have considered:

- The Fourier inversion class F^{p} and the summability class S_{h}^{p}
- The Sobolev space $W^{r, p}(\mathbb{R})$
- The Lipschitz space $\operatorname{Lip}_{r}\left(\alpha, X_{p}\right)$
- The modulation space $M^{2,1}$ and its subspace $M_{*}^{2,1}$
- The Hardy space $H^{p}\left(\mathcal{S}_{d}\right)$

For these spaces, the following inclusions hold, where $p \in[1,2]$:
$\left.\left.B_{\sigma}^{p}\right|_{\mathbb{R}} \varsubsetneqq H^{p}\left(\mathcal{S}_{d}\right)\right|_{\mathbb{R}} \varsubsetneqq W^{r, p}(\mathbb{R}) \cap C(\mathbb{R}) \varsubsetneqq F^{p} \cap S_{h}^{p} \varsubsetneqq F^{p} \varsubsetneqq L^{p}(\mathbb{R})$.
For $p=2$ we have in addition:

$$
W^{r, 2}(\mathbb{R}) \cap C(\mathbb{R}) \varsubsetneqq M_{*}^{2,1} \varsubsetneqq M^{2,1} \varsubsetneqq F^{2} \cap S_{h}^{2}
$$

and

$$
M_{*}^{2,1} \varsubsetneqq \operatorname{Lip}_{r}\left(\frac{1}{2}, L^{2}(\mathbb{R})\right) \cap F^{2}
$$

Examples for verifying strict inclusions

$$
f(t)=\operatorname{sinc}^{2}\left(\frac{t}{4 \pi}\right) e^{i t / 2} \sum_{n=1}^{\infty} a_{n} e^{i k_{n} t}=\sum_{n=1}^{\infty} a_{n} \phi_{n}(t)
$$

where

$$
\phi_{n}(t):=\operatorname{sinc}^{2}\left(\frac{t}{4 \pi}\right) e^{i t\left(k_{n}+1 / 2\right)}
$$

Examples for verifying strict inclusions

$$
f(t)=\operatorname{sinc}^{2}\left(\frac{t}{4 \pi}\right) e^{i t / 2} \sum_{n=1}^{\infty} a_{n} e^{i k_{n} t}=\sum_{n=1}^{\infty} a_{n} \phi_{n}(t)
$$

where

$$
\begin{aligned}
\phi_{n}(t) & :=\operatorname{sinc}^{2}\left(\frac{t}{4 \pi}\right) e^{i t\left(k_{n}+1 / 2\right)} \\
\Longrightarrow \widehat{f}(v) & =2 \sqrt{2 \pi} \sum_{n=1}^{\infty} a_{n} \psi\left(v-k_{n}\right)
\end{aligned}
$$

Examples for verifying strict inclusions

$$
f(t)=\operatorname{sinc}^{2}\left(\frac{t}{4 \pi}\right) e^{i t / 2} \sum_{n=1}^{\infty} a_{n} e^{i k_{n} t}=\sum_{n=1}^{\infty} a_{n} \phi_{n}(t)
$$

where

$$
\begin{aligned}
\phi_{n}(t) & :=\operatorname{sinc}^{2}\left(\frac{t}{4 \pi}\right) e^{i t\left(k_{n}+1 / 2\right)} \\
\Longrightarrow \widehat{f}(v) & =2 \sqrt{2 \pi} \sum_{n=1}^{\infty} a_{n} \psi\left(v-k_{n}\right)
\end{aligned}
$$

The graph of ψ is an equilateral triangle with base $[0,1]$, height 1 .

Figure: The graph of \widehat{f}.

Functions representable by a Fourier integral

Definition

For $q \in[1, \infty]$, the class G^{q} comprises all $f: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \phi(v) e^{i t v} d v \tag{*}
\end{equation*}
$$

for some $\phi \in L^{1}(\mathbb{R}) \cap L^{q}(\mathbb{R})$.
The function ϕ associated with f is uniquely determined.
If $f \in F^{p}$, then $(*)$ holds with $\phi=\widehat{f}$. Since $\widehat{f} \in L^{1}(\mathbb{R}) \cap L^{p^{\prime}}(\mathbb{R})$, we have

$$
F^{\tilde{p}} \subset G^{q} \quad \text { for } q \in\left[1, p^{\prime}\right] \text {. }
$$

Furthermore,

for $p \in[1,2], q \in[1, \infty]$.

Functions representable by a Fourier integral

Definition

For $q \in[1, \infty]$, the class G^{q} comprises all $f: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \phi(v) e^{i t v} d v \tag{*}
\end{equation*}
$$

for some $\phi \in L^{1}(\mathbb{R}) \cap L^{q}(\mathbb{R})$.
The function ϕ associated with f is uniquely determined.
If $f \in F^{p}$, then $(*)$ holds with $\phi=\widehat{f}$. Since $\widehat{f} \in L^{1}(\mathbb{R}) \cap L^{p^{\prime}}(\mathbb{R})$, we have

$$
F^{p} \subset G^{q} \quad \text { for } q \in\left[1, p^{\prime}\right]
$$

Furthermore,

$$
\left.B_{\sigma}^{p}\right|_{\mathbb{R}} \subset G^{q}
$$

for $p \in[1,2], q \in[1, \infty]$.

Definition of a norm

For $f \in G^{q}$ with associated ϕ,

$$
|f|_{q}:=\|\phi\|_{L q(\mathbb{R})}=\left\{\int_{\mathbb{R}}|\phi(v)|^{q} d v\right\}^{1 / q}
$$

defines a norm on G^{q}.
Indeed, for $f, g \in G^{q}, c \in \mathbb{C}$, we have:
(i) $\quad|f|_{q} \geq 0 \quad$ and $\quad|f|_{q}=0 \Longleftrightarrow f=0$
(ii) $|c f|_{q}=|c||f|_{q}$
(iii) $|f+g|_{q} \leq|f|_{q}+|g|_{q}$

For $q=2$, by the isometry of the L^{2} Fourier transform,

$$
\|f\|_{2}=\|\phi\|_{L^{2}(\mathbb{R})}=\|\hat{\phi}\|_{L^{2}(\mathbb{R})}=\|f\|_{L^{2}(\mathbb{R})}
$$

Thus $\mid \cdot \|_{2}$ is the ordinary Euclidean norm $\|\cdot\|_{L^{2}(\mathbb{R})}$.

Definition of a norm

For $f \in G^{q}$ with associated ϕ,

$$
|f|_{q}:=\|\phi\|_{L^{q}(\mathbb{R})}=\left\{\int_{\mathbb{R}}|\phi(v)|^{q} d v\right\}^{1 / q}
$$

defines a norm on G^{q}.
Indeed, for $f, g \in G^{q}, c \in \mathbb{C}$, we have:
(i) $\quad|f|_{q} \geq 0$ and $|f|_{q}=0 \Longleftrightarrow f=0$
(ii) $|c f|_{q}=|c||f|_{q}$
(iii) $|f+g|_{q} \leq|f|_{q}+|g|_{q}$

For $q=2$, by the isometry of the L^{2} Fourier transform,

Thus $\mid \cdot \|_{2}$ is the ordinary Euclidean norm $\|\cdot\|_{L^{2}(\mathbb{R})}$.

Definition of a norm

For $f \in G^{q}$ with associated ϕ,

$$
|f|_{q}:=\|\phi\|_{L q(\mathbb{R})}=\left\{\int_{\mathbb{R}}|\phi(v)|^{q} d v\right\}^{1 / q}
$$

defines a norm on G^{q}.
Indeed, for $f, g \in G^{q}, c \in \mathbb{C}$, we have:
(i) $\quad|f|_{q} \geq 0 \quad$ and $\quad|f|_{q}=0 \Longleftrightarrow f=0$
(ii) $|c f|_{q}=|c||f|_{q}$
(iii) $|f+g|_{q} \leq|f|_{q}+|g|_{q}$

For $q=2$, by the isometry of the L^{2} Fourier transform,

$$
|f|_{2}=\|\phi\|_{L^{2}(\mathbb{R})}=\|\widehat{\phi}\|_{L^{2}(\mathbb{R})}=\|f\|_{L^{2}(\mathbb{R})}
$$

Thus $\boldsymbol{\|} \cdot \|_{2}$ is the ordinary Euclidean norm $\|\cdot\|_{L^{2}(\mathbb{R})}$.

Distances from the Bernstein space B_{σ}^{p}

For $f, g \in G^{q}$,

$$
\operatorname{dist}_{q}(f, g):=|f-g|_{q}
$$

In particular, dist_{q} is a metric on F^{p} for all $q \in\left[p^{\prime}, \infty\right]$.
For $f \in G^{q}, p \in[1,2]$

Proposition

Let $a \in[1, \infty]$ and $f \in G^{q}$ with associated ϕ. Then for $p \in[1,2]$,

Distances from the Bernstein space B_{σ}^{p}

For $f, g \in G^{q}$,

$$
\operatorname{dist}_{q}(f, g):=|f-g|_{q}
$$

In particular, dist_{q} is a metric on F^{p} for all $q \in\left[p^{\prime}, \infty\right]$.
For $f \in G^{q}, p \in[1,2]$:

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right):=\inf _{g \in B_{\sigma}^{p}}|f-g|_{q}
$$

Proposition
 Let $a \in[1, \infty]$ and $f \in G^{q}$ with associated ϕ. Then for $p \in[1,2]$,

Distances from the Bernstein space B_{σ}^{p}

For $f, g \in G^{q}$,

$$
\operatorname{dist}_{q}(f, g):=|f-g|_{q}
$$

In particular, dist_{q} is a metric on F^{p} for all $q \in\left[p^{\prime}, \infty\right]$.
For $f \in G^{q}, p \in[1,2]$:

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right):=\inf _{g \in B_{\sigma}^{p}}|f-g|_{q}
$$

Proposition

Let $q \in[1, \infty]$ and $f \in G^{q}$ with associated ϕ. Then for $p \in[1,2]$,

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right)= \begin{cases}\left\{\int_{|v| \geq \sigma}|\phi(v)|^{q} d v\right\}^{1 / q}, & q<\infty \\ \sup _{|v| \geq \sigma}|\phi(v)|, & q=\infty\end{cases}
$$

where ϕ is assumed to be continuous when $q=\infty$.

Why a new norm?

The spaces of Hardy and Sobolev as well as the modulation space have their individual norm which makes them a Banach space.

- Want a norm that suits for all spaces of our hierarchy.
- The Banach space norms are too strong for measuring distances.

Example (Sobolev space)

There exist $f \in B_{\sigma}^{2}$ and $f_{n} \in W^{r}{ }^{2}(\mathbb{R})$ such that

Recall that

Why a new norm?

The spaces of Hardy and Sobolev as well as the modulation space have their individual norm which makes them a Banach space.

- Want a norm that suits for all spaces of our hierarchy.
- The Banach space norms are too strong for measuring distances.

Example (Sobolev space)

There exist $f \in B_{\sigma}^{2}$ and $f_{n} \in W^{r, 2}(\mathbb{R})$ such that

Recall that

Why a new norm?

The spaces of Hardy and Sobolev as well as the modulation space have their individual norm which makes them a Banach space.

- Want a norm that suits for all spaces of our hierarchy.
- The Banach space norms are too strong for measuring distances.

Example (Sobolev space)
There exist $f \in B_{\sigma}^{2}$ and $f_{n} \in W^{r, 2}(\mathbb{R})$ such that

Recall that

Why a new norm?

The spaces of Hardy and Sobolev as well as the modulation space have their individual norm which makes them a Banach space.

- Want a norm that suits for all spaces of our hierarchy.
- The Banach space norms are too strong for measuring distances.

Example (Sobolev space)

There exist $f \in B_{\sigma}^{2}$ and $f_{n} \in W^{r, 2}(\mathbb{R})$ such that

$$
\left|f-f_{n}\right|_{2} \rightarrow 0 \quad \text { but } \quad\left\|f-f_{n}\right\|_{W^{r, 2}(\mathbb{R})} \rightarrow \infty \quad(n \rightarrow \infty)
$$

Recall that

Why a new norm?

The spaces of Hardy and Sobolev as well as the modulation space have their individual norm which makes them a Banach space.

- Want a norm that suits for all spaces of our hierarchy.
- The Banach space norms are too strong for measuring distances.

Example (Sobolev space)

There exist $f \in B_{\sigma}^{2}$ and $f_{n} \in W^{r, 2}(\mathbb{R})$ such that

$$
\left|f-f_{n}\right|_{2} \rightarrow 0 \quad \text { but } \quad\left\|f-f_{n}\right\|_{W^{r, 2}(\mathbb{R})} \rightarrow \infty \quad(n \rightarrow \infty)
$$

Recall that

$$
|f|_{2}=\|f\|_{L^{2}(\mathbb{R})} \quad \text { and } \quad\|f\|_{W^{r, 2}(\mathbb{R})}=\left(\sum_{k=0}^{r}\left\|f^{(k)}\right\|_{L^{2}(\mathbb{R})}^{2}\right)^{1 / 2}
$$

Derivatives

Proposition

Let

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \phi(v) e^{i t v} d v
$$

with $\phi \in L^{1}(\mathbb{R})$. If $v^{r} \phi(v)$ belongs to $L^{1}(\mathbb{R})$ for some $r \in \mathbb{N}$, then f has derivatives up to order r in $C_{0}(\mathbb{R})$ and

$$
f^{(k)}(t)=\frac{i^{k}}{\sqrt{2 \pi}} \int_{\mathbb{R}} v^{k} \phi(v) e^{i t v} d v \quad(k=0,1, \ldots, r)
$$

An example

The previous proposition gave a sufficient condition for differentiability in G^{q}, namely $v \phi(v) \in L^{1}(\mathbb{R})$.
It is not necessary, but cannot be considerably relaxed.

Example

Consider

$$
\phi(v):=\sqrt{\frac{2}{\pi}} \frac{1}{1+v^{2}}
$$

Then $\phi \in L^{1}(\mathbb{R})$ but $v \phi(v) \notin L^{1}(\mathbb{R})$ and

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \phi(v) e^{i t v} d v=e^{-|t|}
$$

Note that f is not differentiable at $t=0$.

Distances of derivatives from the Bernstein space B_{σ}^{p}

The previous statements imply:

Proposition

Suppose that

$$
\begin{gathered}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \phi(v) e^{i t v} d v \\
\phi \in L^{1}(\mathbb{R}) \text {. If } v^{k} \phi(v) \in L^{1}(\mathbb{R}) \cap L^{q}(\mathbb{R}), \text { then for } p \in[1,2], \\
\operatorname{dist}_{q}\left(f^{(k)}, B_{\sigma}^{p}\right)=\left\{\begin{array}{lr}
\left\{\int_{|v| \geq \sigma}\left|v^{k} \phi(v)\right|^{q} d v\right\}^{1 / q}, & q<\infty, \\
\sup _{|v| \geq \sigma}\left|v^{k} \phi(v)\right|, & q=\infty,
\end{array}\right.
\end{gathered}
$$

where ϕ is assumed to be continuous if $q=\infty$.

For $k=0$, we recover the result on $\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right)$ for $f \in G^{q}$.

Application to functions from F^{p} and $W^{r, p}(\mathbb{R})$

In the following: $p \in[1,2], \quad q \in\left[1, p^{\prime}\right]$

Corollary

a) If $f \in F^{p}$, then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right)= \begin{cases}\left\{\int_{|v| \geq \sigma}|\widehat{f}(v)|^{q} d v\right\}^{1 / q}, & q<\infty \\ \sup _{|v| \geq \sigma}|\widehat{f}(v)|, & q=\infty\end{cases}
$$

b) If $f \in W^{r, p}(\mathbb{R}) \cap C(\mathbb{R})$ and $v^{r} \widehat{f}(v) \in L^{1}(\mathbb{R})$, then

Application to functions from F^{p} and $W^{r, p}(\mathbb{R})$

In the following: $p \in[1,2], \quad q \in\left[1, p^{\prime}\right]$

Corollary

a) If $f \in F^{p}$, then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right)= \begin{cases}\left\{\int_{|v| \geq \sigma}|\widehat{f}(v)|^{q} d v\right\}^{1 / q}, & q<\infty \\ \sup _{|v| \geq \sigma}|\widehat{f}(v)|, & q=\infty\end{cases}
$$

b) If $f \in W^{r, p}(\mathbb{R}) \cap C(\mathbb{R})$ and $v^{r} \widehat{f}(v) \in L^{1}(\mathbb{R})$, then

$$
\operatorname{dist}_{q}\left(f^{(k)}, B_{\sigma}^{p}\right)= \begin{cases}\left\{\int_{|v| \geq \sigma}\left|v^{k} \widehat{f}(v)\right|^{q} d v\right\}^{1 / q}, & q<\infty \\ \sup _{|v| \geq \sigma}\left|v^{k} \widehat{f}(v)\right|, & q=\infty\end{cases}
$$

$(k=0, \ldots, r)$.

Derivative-free estimates for the distance from B_{σ}^{p}

Proposition

a) Let $f \in F^{1}$ and $q \in[1, \infty]$. Then
$\operatorname{dist}_{q}\left(f, B_{\sigma}^{1}\right) \leq d_{r, 1, q} \begin{cases}\left\{\int_{\sigma}^{\infty}\left[\omega_{r}\left(f ; v^{-1} ; L^{1}(\mathbb{R})\right)\right]^{q} d v\right\}^{1 / q}, & q<\infty, \\ \omega_{r}\left(f ; \sigma^{-1} ; L^{1}(\mathbb{R})\right), & q=\infty .\end{cases}$
b) Let $f \in F^{P}, p \in(1,2]$ and $q \in\left[1, p^{\prime}\right]$. Then $\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right) \leq d_{r, p, q}\left\{\int_{\sigma}^{\infty} v^{-q / p^{\prime}}\left[\omega_{r}\left(f ; v^{-1} ; L^{p}(\mathbb{R})\right)\right]^{q} d v\right\}$

The constants dr,p,q depend on r, p and q only.

Derivative-free estimates for the distance from B_{σ}^{p}

Proposition

a) Let $f \in F^{1}$ and $q \in[1, \infty]$. Then
$\operatorname{dist}_{q}\left(f, B_{\sigma}^{1}\right) \leq d_{r, 1, q} \begin{cases}\left\{\int_{\sigma}^{\infty}\left[\omega_{r}\left(f ; v^{-1} ; L^{1}(\mathbb{R})\right)\right]^{q} d v\right\}^{1 / q}, & q<\infty, \\ \omega_{r}\left(f ; \sigma^{-1} ; L^{1}(\mathbb{R})\right), & q=\infty .\end{cases}$
b) Let $f \in F^{p}, p \in(1,2]$ and $q \in\left[1, p^{\prime}\right]$. Then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{p}\right) \leq d_{r, p, q}\left\{\int_{\sigma}^{\infty} v^{-q / p^{\prime}}\left[\omega_{r}\left(f ; v^{-1} ; L^{p}(\mathbb{R})\right)\right]^{q} d v\right\}^{1 / q}
$$

The constants $d_{r, p, q}$ depend on r, p and q only.

Proof of statement a)

$$
\begin{aligned}
& \qquad \Delta_{h}^{r} f(u)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(u+k h) \\
& \Longrightarrow\left(\Delta_{h}^{r} f\right)(v)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} e^{i k h v} \widehat{f}(v)=\left(e^{i h v}-1\right)^{r} \hat{f}(v) \\
& \text { For } h=\pi / v \text {, we obtain } \\
& \qquad \hat{f}(v)=\frac{1}{(-2)^{r} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\Delta_{\pi / v}^{r} f\right)(u) e^{-i v u} d u \\
& \Longrightarrow|\hat{f}(v)| \leq \frac{1}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ; \frac{\pi}{|v|} ; L^{1}(\mathbb{R})\right) \leq \frac{(1+\pi)^{r}}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ;|v|^{-1} ; L^{1}(\mathbb{R})\right)
\end{aligned}
$$

Proof of statement a)

$$
\begin{gathered}
\Delta_{h}^{r} f(u)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(u+k h) \\
\Longrightarrow\left(\Delta_{h}^{r} f\right)^{\imath}(v)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} e^{i k h v} \widehat{f}(v)=\left(e^{i h v}-1\right)^{r} \widehat{f}(v)
\end{gathered}
$$

$$
\text { For } h=\pi / v \text {, we obtain }
$$

$$
\widehat{f}(v)=\frac{1}{(-2)^{r} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\Delta_{\pi / v}^{r} f\right)(u) e^{-i v u} d u
$$

Proof of statement a)

$$
\begin{gathered}
\Delta_{h}^{r} f(u)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(u+k h) \\
\Longrightarrow\left(\Delta_{h}^{r} f\right)^{\wedge}(v)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} e^{i k h v} \widehat{f}(v)=\left(e^{i h v}-1\right)^{r} \widehat{f}(v)
\end{gathered}
$$

For $h=\pi / v$, we obtain

$$
\widehat{f}(v)=\frac{1}{(-2)^{r} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\Delta_{\pi / v}^{r} f\right)(u) e^{-i v u} d u
$$

Proof of statement a)

$$
\begin{gathered}
\Delta_{h}^{r} f(u)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(u+k h) \\
\Longrightarrow\left(\Delta_{h}^{r} f\right)^{\wedge}(v)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} e^{i k h v} \widehat{f}(v)=\left(e^{i h v}-1\right)^{r} \widehat{f}(v)
\end{gathered}
$$

For $h=\pi / v$, we obtain

$$
\begin{gathered}
\widehat{f}(v)=\frac{1}{(-2)^{r} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\Delta_{\pi / v}^{r} f\right)(u) e^{-i v u} d u \\
\Longrightarrow|\widehat{f}(v)| \leq \frac{1}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ; \frac{\pi}{|v|} ; L^{1}(\mathbb{R})\right) \leq \frac{(1+\pi)^{r}}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ;|v|^{-1} ; L^{1}(\mathbb{R})\right)
\end{gathered}
$$

Proof of statement a)

$$
\begin{gathered}
\Delta_{h}^{r} f(u)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(u+k h) \\
\Longrightarrow\left(\Delta_{h}^{r} f\right)^{\wedge}(v)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} e^{i k h v} \widehat{f}(v)=\left(e^{i h v}-1\right)^{r} \widehat{f}(v)
\end{gathered}
$$

For $h=\pi / v$, we obtain

$$
\begin{gathered}
\widehat{f}(v)=\frac{1}{(-2)^{r} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\Delta_{\pi / v}^{r} f\right)(u) e^{-i v u} d u \\
\Longrightarrow|\widehat{f}(v)| \leq \frac{1}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ; \frac{\pi}{|v|} ; L^{1}(\mathbb{R})\right) \leq \frac{(1+\pi)^{r}}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ;|v|^{-1} ; L^{1}(\mathbb{R})\right) \\
\text { Recall } \quad \operatorname{dist}_{q}\left(f, B_{\sigma}^{1}\right)=\left\{\int_{|v| \geq \sigma}|\widehat{f}(v)|^{q} d v\right\}^{1 / q}
\end{gathered}
$$

Proof of statement a)

$$
\begin{gathered}
\Delta_{h}^{r} f(u)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(u+k h) \\
\Longrightarrow\left(\Delta_{h}^{r} f\right)^{\wedge}(v)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} e^{i k h v} \widehat{f}(v)=\left(e^{i h v}-1\right)^{r} \widehat{f}(v)
\end{gathered}
$$

For $h=\pi / v$, we obtain

$$
\begin{gathered}
\widehat{f}(v)=\frac{1}{(-2)^{r} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\Delta_{\pi / v}^{r} f\right)(u) e^{-i v u} d u . \\
\Longrightarrow|\widehat{f}(v)| \leq \frac{1}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ; \frac{\pi}{|v|} ; L^{1}(\mathbb{R})\right) \leq \frac{(1+\pi)^{r}}{2^{r} \sqrt{2 \pi}} \omega_{r}\left(f ;|v|^{-1} ; L^{1}(\mathbb{R})\right) \\
\Longrightarrow \operatorname{dist}_{q}\left(f, B_{\sigma}^{1}\right) \leq \frac{(1+\pi)^{r}}{2^{r} \sqrt{2 \pi}}\left\{\int_{|v| \geq \sigma}\left[\omega_{r}\left(f ; v^{-1} ; L^{1}(\mathbb{R})\right)\right]^{q} d v\right\}^{1 / q}
\end{gathered}
$$

Distances of Lipschitz functions from B_{σ}^{2}

Recall

$$
\operatorname{Lip}_{r}\left(\alpha ; X_{p}\right):=\left\{f \in X_{p}: \omega_{r}\left(f ; \delta ; X_{p}\right)=\mathcal{O}\left(\delta^{\alpha}\right), \delta \rightarrow 0+\right\} \quad(0<\alpha \leq r)
$$

The estimates in terms of the modulus of smoothness imply:

Corollary

Let $f \in F^{2} \cap \operatorname{Lip}_{r}\left(\alpha ; L^{2}(\mathbb{R})\right)$ and $q \in[1,2]$ such that $1 / q-1 / 2<\alpha \leq r$. Then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\mathcal{O}\left(\sigma^{-\alpha-1 / 2+1 / q}\right) \quad(\sigma \rightarrow \infty)
$$

Since dist $_{2}$ is the Euclidean distance, the charcterization of Lip-functions gives:

Proposition

Distances of Lipschitz functions from B_{σ}^{2}

Recall

$$
\operatorname{Lip}_{r}\left(\alpha ; X_{p}\right):=\left\{f \in X_{p}: \omega_{r}\left(f ; \delta ; X_{p}\right)=\mathcal{O}\left(\delta^{\alpha}\right), \delta \rightarrow 0+\right\} \quad(0<\alpha \leq r)
$$

The estimates in terms of the modulus of smoothness imply:

Corollary

Let $f \in F^{2} \cap \operatorname{Lip}_{r}\left(\alpha ; L^{2}(\mathbb{R})\right)$ and $q \in[1,2]$ such that $1 / q-1 / 2<\alpha \leq r$. Then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\mathcal{O}\left(\sigma^{-\alpha-1 / 2+1 / q}\right) \quad(\sigma \rightarrow \infty)
$$

Since dist $_{2}$ is the Euclidean distance, the charcterization of Lip-functions gives:

Proposition

Let $f \in F^{2}$ and $0<\alpha \leq r$. Then

$$
f \in \operatorname{Lip}_{r}\left(\alpha, L^{2}(\mathbb{R})\right) \Longleftrightarrow \operatorname{dist}_{2}\left(f, B_{\sigma}^{2}\right)=\mathcal{O}\left(\sigma^{-\alpha}\right) \quad(\sigma \rightarrow \infty)
$$

Distance of $M_{*}^{2,1}$ - functions from B_{σ}^{2}

Proposition

a) If $f \in M_{*}^{2,1}$, then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\left\{\begin{array}{ll}
o(1), & q=1, \\
\mathcal{O}\left(\sigma^{-1+1 / q}\right), & q \in(1,2]
\end{array} \quad(\sigma \rightarrow \infty)\right.
$$

b) If $f \in W^{r, 2}(\mathbb{R}) \cap C(\mathbb{R})$ and $f^{(r)} \in M_{*}^{2,1}$, then for $q \in[1,2]$,

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\mathcal{O}\left(\sigma^{-r-1+1 / q}\right) \quad(\sigma \rightarrow \infty)
$$

and

Distance of $M_{*}^{2,1}$ - functions from B_{σ}^{2}

Proposition

a) If $f \in M_{*}^{2,1}$, then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\left\{\begin{array}{ll}
o(1), & q=1, \\
\mathcal{O}\left(\sigma^{-1+1 / q}\right), & q \in(1,2]
\end{array} \quad(\sigma \rightarrow \infty)\right.
$$

b) If $f \in W^{r, 2}(\mathbb{R}) \cap C(\mathbb{R})$ and $f^{(r)} \in M_{*}^{2,1}$, then for $q \in[1,2]$,

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\mathcal{O}\left(\sigma^{-r-1+1 / q}\right) \quad(\sigma \rightarrow \infty)
$$

and

$$
\operatorname{dist}_{q}\left(f^{\prime}, B_{\sigma}^{2}\right)=\left\{\begin{array}{ll}
o(1), & r=q=1 \\
\mathcal{O}\left(\sigma^{-r+1 / q}\right), & \text { otherwise }
\end{array} \quad(\sigma \rightarrow \infty)\right.
$$

Distance of functions in Sobolev spaces from B_{σ}^{2}

Proposition

Let $f \in F^{2} \cap W^{r, 2}(\mathbb{R})$ and $q \in[1,2]$. Then

$$
\operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right) \leq c_{r, q}\left\|f^{(r)}\right\|_{L^{2}(\mathbb{R})} \cdot \sigma^{-r-1 / 2+1 / q} .
$$

If, in addition, $v \widehat{f}(v) \in L^{1}(\mathbb{R})$, then for $r \geq 1 / 2+1 / q$,

$$
\operatorname{dist}_{q}\left(f^{\prime}, B_{\sigma}^{2}\right) \leq c_{r-1, q}\left\|f^{(r)}\right\|_{L^{2}(\mathbb{R})} \cdot \sigma^{-r+1 / 2+1 / q} .
$$

Values for the constants $c_{r, q}$ are known. In particular,

$$
c_{r, 1}=\sqrt{\frac{2}{2 r-1}} \quad \text { and } \quad c_{r, 2}=1
$$

Idea of proof

$$
f \in W^{r, 2}(\mathbb{R}) \Longrightarrow v^{r} \widehat{f}(v)=g(v) \quad\left(g \in L^{2}(\mathbb{R})\right)
$$

and

$$
\|g\|_{L^{2}(\mathbb{R})}=\left\|f^{(r)}\right\|_{L^{2}(\mathbb{R})}
$$

Now use Hölder's inequality for estimating the integral in terms of σ and $\left\|f^{(r)}\right\|_{L^{2}(\mathbb{R})}$.

Analogously for $\operatorname{dist}_{q}\left(f^{\prime}, B_{\sigma}^{2}\right)$.

Idea of proof

$$
f \in W^{r, 2}(\mathbb{R}) \Longrightarrow v^{r} \widehat{f}(v)=g(v) \quad\left(g \in L^{2}(\mathbb{R})\right)
$$

and

$$
\begin{gathered}
\|g\|_{L^{2}(\mathbb{R})}=\left\|f^{(r)}\right\|_{L^{2}(\mathbb{R})} \\
\Longrightarrow \operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\left\{\int_{|v| \geq \sigma}\left|\frac{g(v)}{v^{r}}\right|^{q} d v\right\}^{1 / q}
\end{gathered}
$$

Now use Hölder's inequality for estimating the integral in terms of σ and $\left\|f^{(r)}\right\|_{L^{2}(\mathbb{R})}$.

Analogously for $\operatorname{dist}_{q}\left(f^{\prime}, B_{\sigma}^{2}\right)$.

Distance of functions in Hardy spaces from B_{σ}^{2}

Proposition

Let $f \in H^{2}\left(\mathcal{S}_{d}\right)$ and $q \in[1,2]$. Then

$$
\begin{aligned}
& \operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right) \leq \gamma_{q} d^{1 / 2-1 / q} e^{-d \sigma}\|f\|_{H^{2}\left(\mathcal{S}_{d}\right)} \\
& \operatorname{dist}_{q}\left(f^{\prime}, B_{\sigma}^{2}\right) \leq \gamma_{q}^{\prime} d^{1 / 2-1 / q} \sigma e^{-d \sigma}\|f\|_{H^{2}\left(\mathcal{S}_{d}\right)} \quad(\sigma \geq 1 / d)
\end{aligned}
$$

Values for γ_{q} and γ_{q}^{\prime} are known. In particular, $\gamma_{2}=\gamma_{2}^{\prime}=\sqrt{2}$.
Idea of proof

$$
f \in H^{2}\left(\mathcal{S}_{d}\right) \Longrightarrow \widehat{f}(v)=e^{-\delta|v|} g(v) \quad\left(0<\delta<d, g \in L^{2}(\mathbb{R})\right)
$$

and

$$
\|g\|_{L^{2}(\mathbb{R})} \leq \sqrt{2}\|f\|_{H^{2}\left(\mathcal{S}_{d}\right)}
$$

Distance of functions in Hardy spaces from B_{σ}^{2}

Proposition

Let $f \in H^{2}\left(\mathcal{S}_{d}\right)$ and $q \in[1,2]$. Then

$$
\begin{aligned}
& \operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right) \leq \gamma_{q} d^{1 / 2-1 / q} e^{-d \sigma}\|f\|_{H^{2}\left(\mathcal{S}_{d}\right)} \\
& \operatorname{dist}_{q}\left(f^{\prime}, B_{\sigma}^{2}\right) \leq \gamma_{q}^{\prime} d^{1 / 2-1 / q} \sigma e^{-d \sigma}\|f\|_{H^{2}\left(\mathcal{S}_{d}\right)} \quad(\sigma \geq 1 / d)
\end{aligned}
$$

Values for γ_{q} and γ_{q}^{\prime} are known. In particular, $\gamma_{2}=\gamma_{2}^{\prime}=\sqrt{2}$. Idea of proof

$$
f \in H^{2}\left(\mathcal{S}_{d}\right) \Longrightarrow \widehat{f}(v)=e^{-\delta|v|} g(v) \quad\left(0<\delta<d, g \in L^{2}(\mathbb{R})\right)
$$

and

$$
\begin{gathered}
\|g\|_{L^{2}(\mathbb{R})} \leq \sqrt{2}\|f\|_{H^{2}\left(\mathcal{S}_{d}\right)} \\
\Longrightarrow \operatorname{dist}_{q}\left(f, B_{\sigma}^{2}\right)=\left\{\int_{|v| \geq \sigma}\left|e^{-\delta|v|} g(v)\right|^{q} d v\right\}^{1 / q}
\end{gathered}
$$

Thank you for your attention

