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(Complex) wavelet at scale a > 0 and location b € R
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Local signal analysis by wavelet transform

(Complex) wavelet at scale a > 0 and location b € R

kap(X) = —— K(X - b)

Va a
Wavelet coefficient decomposition
(f,Kap)
(Fkap) = f.Kap)l - =20 = KF.Kap)l -5GN (F. Kap)
|<f9 Ka,b>| — S———
amplitude sign
Amplitudes of wavelet coefficients Signs of wavelet coefficients
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(e.g. Sobolev, Besov)
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Observations and approaches to wavelet signs

Importance of signs in signals
e Bandpass signals determined
by sign information (Logan 1977)
¢ Signs important for image
reconstruction (Oppenheim, Lim 1981)
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Phase congruency (Morrone, Owens 1987; Kovesi 1999)
e Heuristic approach to signal analysis based on Fourier-signs
e Successful application to edge detection

Wavelet sign in signal analysis (kronland-Martinet, Grossmann, Morlet 1987; Mallat
1990)
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converge towards singularities
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Observations and approaches to wavelet signs

Importance of signs in signals

e Bandpass signals determined
by sign information (Logan 1977)

¢ Signs important for image
reconstruction (Oppenheim, Lim 1981)

Shuffle of sign Shuffle of amplitude

Phase congruency (Morrone, Owens 1987; Kovesi 1999)
e Heuristic approach to signal analysis based on Fourier-signs
e Successful application to edge detection

Wavelet sign in signal analysis (kronland-Martinet, Grossmann, Morlet 1987; Mallat
1990)

o Lines of constant sign (phase) in scalogram (a, b) — (f, xap)
converge towards singularities

Wavelet sign as indicator of local symmetry (Holschneider 1995; Kovesi 1999)
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Complex signature wavelets

Complex valued function x € S(R; C)
is called signature wavelet if

e frequency spectrum real and
non-negative, i.e.,

k>0,

e support of frequency spectrum
compact and one-sided, i.e.,

supp k C [c, d].

O<c<d<o

1078

Re x(x)
— Im«(x)

0.5




The complex signature

Definition (Demaret, Massopust, Storath 2012)
The signature of f at location b € R is defined by

of(b) = ;lm) sgn{f, kap),

if the limit exists and has the same value for all signature wavelets «;

otherwise, we set
of(b) =0.

f € 8'(R; R) real-valued tempered distribution; sgn z = é sgn0 =0
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The complex signature

Definition (Demaret, Massopust, Storath 2012)
The signature of f at location b € R is defined by

of(b) = ;lm) sgn{f, kap),

if the limit exists and has the same value for all signature wavelets «;
otherwise, we set

Idea
e bsalientpoint < |of(b) =1
e bregularpoint < of(b) =0

f € 8'(R; R) real-valued tempered distribution; sgn z = é sgn0 =0
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e Bandlimited function f

Basic examples

of(b) =0, forallbeR.
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Basic examples

e Bandlimited function f

of(b) =0, forallbeR.

e Unit step U
" f = bl
sU(b) = i orb=20
0, else.
e Cusp|e|”
-1, forb=0
Y\(b) = > ’
ol )(b) {O, else,

where 0 <y < 1.




Signature at regular regions

Theorem (Demaret, Massopust, Storath 2012)
If f is smooth in a neighborhood of b € R and if

f)(b) =0, forall k € Ny,
then

of(b) = 0.

f real-valued, locally integrable function of polynomial growth



Signature at regular regions

Theorem (Demaret, Massopust, Storath 2012)
If f is smooth in a neighborhood of b € R and if

f)(b) =0, forall k € Ny,
then

of(b) = 0.

Sketch of proof
e Show that all moments of G(u) = (f,k1 ), U € R, vanish.

® Conclude that either Re G and Im G have infinitely many sign changes or are equal to
0 for u large enough; thus

lim sgn G(u) = lim sgn{f, kap)
u—oo a—0

does not exist or is equal to 0. In either case, of(b) = 0.

f real-valued, locally integrable function of polynomial growth



Locally polynomial signals

Corollary
If f coincides on an open set U c R with a polynomial then

of(b) =0, foreverybeU.

0.5

25 68 ,024

A piecewise polynomial signal from Wavelab (Donoho et. al.)

f real-valued, locally integrable function of polynomial growth



Jump discontinuites

Theorem (Demaret, Massopust, Storath 2012)
If f has a jump discontinuity at b, then

+i, it f(b-) < f(b+),

Uf(b):{—:, it f(b-) > f(b+).

f real-valued, locally integrable function of polynomial growth



Jump discontinuites
Theorem (Demaret, Massopust, Storath 2012)
If f has a jump discontinuity at b, then

[+, it f(b=) < f(b+),
Uf(b)_{—i, it f(b-) > f(b+).

Example

13, f
f(x) = (x + )2 or x <0,
—(x—=1)4, forx>0.

—i, ifb=0,
0, else.

of(b) = {

f real-valued, locally integrable function of polynomial growth




Differences to classical singular support

Gaussian function

f(x) =e™

{0} c supp of ¢ singsupp f =0

singsupp f ={b e R: fnot C* at b}
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Differences to classical singular support

Gaussian function

f(x) =e™

{0} c supp of ¢ singsupp f =0

Weierstrass function

f(x) = i r" cos(t"x)

R = singsupp f ¢ supp of = 0. W J1 ‘ 1 W

singsupp f ={b e R: fnot C* at b}



Signature complementary to classical regularity

Fractional power of Laplacian Fractional Hilbert transform

(~AYf=F"(eP -7 HOf = 7 (e ToFsan(e) .}y,

r,a €R; s¢(b) :=sup{seR : g D(R), ¢(b) # 0, so that ¢f € H°(R)}
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Signature complementary to classical regularity

Fractional power of Laplacian Fractional Hilbert transform

(-A)f=F"(lef 1) HOF = 1 (g7 san(e) ),

Local Sobolev regularity

Addition Invariant
S(_A)rf = Sf — 2r Sqyaf = Sf
Signature
Invariant Rotation
o (“AYF) = of o (Hf) = "% - of

r,a €R; s¢(b) :=sup{seR : g e D(R), ¢(b) # 0, so that ¢f € H°(R)}



Geometric interpretation
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Geometric interpretation

Step right I

&

Signature +i

Step left 1

D

Signature —i

Imaginary signature

!

locally antisymmetric

Cusp upwards /\

Im
@e

Signature +1

Cusp downwards \\/

Im
@ae

Signature —1

Real signature

l

locally symmetric



Discretization (1)

Reminder: If of(b) # O, then

of(b) = lim sgn(f, xa.p),
jooo

for a; — 0.
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Discretization (1)

Reminder: If of(b) # O, then

of(b) = lim sgn(f, xa.p), for gy — 0.
jooo

Observations
e Cesaro-sequence converges to signature,

N
1
I\Ili'nw N 21 sgn(f, kg.p) = of(b).
]:
e Modulus of Cesaro-sequence tends to 1,

N
. 1
Jim | 121 sgn (f, ka p)| = lof(b)| = 1.



Discretization (1)
In practice: finite number of scale samples {a,-}j’\’:1

Idea
Consider the finite sum

N
_ 1
Wp =g 1_21 sgn (f, ka.b)s

as N-th element of Cesaro-sequence
e |wp| < 1 — estimate signature as 0
e [Wp| ~ 1 — estimate signature by orientation in complex plane of wy,



Discretization (1)
In practice: finite number of scale samples {a,-}j’\’:1

Idea
Consider the finite sum

N
_ 1
Wp =g 1_21 sgn (f, ka.b)s

as N-th element of Cesaro-sequence
e |wp| < 1 — estimate signature as 0
e [Wp| ~ 1 — estimate signature by orientation in complex plane of wy,

Discrete signature

0, if [wp| < T,
SgNWe, if Wyl > 7,

of(b) ::{

where 7 € [0, 1] is an empirical threshold parameter



Experiment - Jump and cusp
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Experiment - Piecewise polynomial
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Summary

Summary
e Signature as new rigorous approach to sign-based signal analysis

¢ Detection of salient points in signals and determination of local
symmetry

¢ Discrete signature for numerical estimation
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Difference to phase congruency

Phase congruency (kovesi 1999)

—_— Z]N:*] <fs Kaj,b>

PC(b) = .
S K Kab)]
Discrete signature
0, if [w, ,
Fi(p) = O Twel<T
sgnwp, if (wp| >,

where

N
— 1
Wo =g }Z; sgn(f, ka;p).
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