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The plan of these lectures is the following:
1. Introduction
2. Examples of operators with variable parameters
3. Examples of spaces with variable exponents
4. Variable exponent Lebesgue spaces ( the Euclidean case and the general
case of quasimetric measure spaces)
5. The principal difficulties (BAD NEWS) with variable exponents
6. Some hopes (GOOD NEWS)
7. Sobolev embedding
8. On variable dimensions
9. On convolution operators
9. On convolution operators
10. Characterization of the range of the fractional operator
11. On a multidimensional analogue of Marchaud formula for domains
12. Variable order Hölder spaces; background
13. On quasimetric measure sets
14. Mapping properties of fractional integrals; the 1st approach
15. Mapping properties on sets without cancelation property
16. Fractional integrals of constant functions on a set
17. On the α-property of sets
18. Mapping properties; continuation
19. Application to the Euclidean case

1 Introduction

Last decade there was a strong increase of interest to studies of fractional type
operators and function spaces in the ”variable setting”, when the parameters
defining the operator or the space (which usually are constant), may vary from
point to point.

The area which is now called variable exponent analysis, last decade became
a rather branched field with many interesting results obtained in
1) Harmonic Analysis,
2) Approximation Theory,
3)Operator Theory,
4) Pseudo-Differential Operators.

We dwell on some results on the classical operators of harmonic analysis.
We do not give exact references on every occasion. The interested listeners

can find the references in the recent book

L. Diening et al. Lebesgue and Sobolev Spaces with Variable Exponents,
2011] Springer-Verlag, Lecture Notes in Mathematics
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and surveying papers

[ L. Diening, P. Hästö, A. Nekvinda. Open problems in variable exponent
Lebesgue and Sobolev spaces, 2005],
[V. Kokilashvili. On a progress in the theory of integral operators in weighted
Banach function spaces, 2005],
[ S. Samko. On a progress in the theory of Lebesgue spaces with variable
exponent, 2005],
[V. Kokilashvili, S. Samko. Weighted Boundedness of the Maximal, Singular
and Potential Operators in Variable Exponent Spaces, 2008]

2 Typical examples of operators

The Riesz fractional integration operator of order α of functions on Rn has the
form

Iαf(x) =
1

γn(α)

∫
Rn

f(y)

|x− y|n−α
dy, 0 < α < n,

where the normalizing constant

γn(α) =

2απ
n
2Γ

(
α
2

)
Γ

(
n−α
2

)
is chosen so that the semigroup property IαIβ = Iα+β holds.

We can admit variable order α(x) (Why not?):

Iα(·)f(x) =
1

γn[α(x)]

∫
Rn

f(y) dy

|x− y|n−α(x)
,

0 < α(x) < n.

Usually we will omit the normalizing factor, since we have no hope for the
semigroup property, but on the other hand there is a sense to keep it when we
allow α(x) to approach singular value

α(x) = 0

at some points.

As is known, in the case of constant α, the operator (left)-inverse to the
Riesz potential operator (formally the fractional power (−∆)

α
2 ) is given by the

hypersingular integral

Dαf(x) =
1

dn(α)

∫
Rn

f(x)− f(x− y)

|y|n+α
dy,
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0 < α < 1

The corresponding variable order construction is:

Dα(·)f(x) =
1

dn[α(x)]

∫
Rn

f(x)− f(x− y)

|y|n+α(x)
dy,

0 < α(x) < 1.

But!! No hope for the inversion formula

Dα(·)Iα(·)f ≡ f.

In the one-dimensional case we can also deal with the Riemann-Liouville
form of the fractional differentiation

Iα(·)f(x) =
1

Γ[α(x)]

x∫
a

f(y)

(x− y)1−α(x)
dy,

0 < α(x) < 1,

Dα(·)f(x) =
1

Γ[1− α(x)]

d

dx

x∫
a

f(y)

(x− y)α(x)
dy,

0 < α(x) < 1.

No hope for the inversion formula Dα(·)Iα(·)f ≡ f .
There are also known investigations of spherical Riesz type potentials of

variable order

Iα(·)f(x) =

∫
Sn−1

f(y)

|x− σ|n−1−α(x)
dσ,

0 < α(x) < n− 1.

In general, potential type operators (fractional integration operators) may be
considered on arbitrary domains in Rn, surfaces, manifolds, fractal sets, and
more generally, in the setting of quasimetric measure spaces

(X, d, µ)

with a quasimetric d and positive Borel measure µ:

Iα(·)f(x) =

∫
X

f(y) dµ(y)

[d(x, y)]N−α(x)
,

0 < α(x) < N. (1)
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However, what is N? In the general setting, the space X may have no ”di-
mension”, but may have the so calledlower and upper dimensions. In the case
where the measure satisfies the growth condition

µB(x, r) ≤ CrN

with some N > 0, this exponent N (not necessarily an integer), may be used
in (1).

An important example of quasimetric measure space is a Carleson curve,
i.e. a curve with an arc-length measure on which

µΓ(t, r) ≤ Cr.

Very often fractional operators over an arbitrary quasimetrric measure space
are defined as

Iα(·)f(x) =
1

α(x)

∫
X

[d(x, y)]α(x)

µB(x, d(x, y))
f(y) dµ(y), (2)

α(x) > 0.

Another example of an operator of variable order is the fractional maximal
function

Mα(·)f(x) = sup
r>0

1

rα(x)

∫
|y−x|<r

|f(y)| dy

and its corresponding version for an arbitrary quasimetric measure space.
In general, one may also consider

fractional powers Aα(x)

of this or other operator A; however, different definitions of such powers,
which coincide in the case α = const, now may lead do quite different objects.

3 Typical examples of spaces

a). Generalized Lebesgue spaces Lp(·)(Ω) with variable exponent defined by
the modular ∫

Ω

|f(x)|p(x) dx < ∞.

b). More generally,Musielak-Orlicz spaces LΦ(·)(Ω) with the Young function
also varying from point to point :∫

Ω

Φ[x, f(x)] dx < ∞.
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The study of classical operators of harmonic analysis (maximal, singular
operators and potential type operators) in the generalized Lebesgue spaces
Lp(·) with variable exponent, weighted or non-weighted, undertaken last decade,
continues to attract a strong interest of researchers. It is influenced not only
by mathematical curiosity, but also by the fact that these spaces proved to be
well adjusted for various applications as revealed in the book

[M. Ružička. Electroreological Fluids: Modeling and Mathematical Theory ,
2000 ].

There are also known applications in the problems of image restoration,
based on variable exponents.

c). Variable exponent Morrey spaces Lp(·),λ(·)(Ω) defined by

sup
x∈Ω, r>0

r−λ(x)

∫
B(x,r)∩Ω

|f(y)|p(y)dy < ∞. (3.1)

d). Hölder spaces Hλ(·)(Ω) of variable order, defined by the condition

sup
|h|<t

|f(x+ h)− f(x)| ≤ Ctλ(x), x ∈ Ω.

d1). More generally, generalized Hölder spaces with variable characteristic
ω(h) = ω(x, h) depending on x:

sup
|h|<t

|f(x+ h)− f(x)| ≤ Cω(x, t),

(the spaces of continuous functions with a given dominant of their continuity
modulus, which may vary from point to point).

In these lectures we touch only Lebesgue and Hölder spaces with variable
exponent.

4 Basics on variable exponent Lebesgue spaces

In future we abbreviate:
Variable exponent Lebesgue spaces =

= VELS
Let Ω be an open set in Rn. By

Lp(·)(Ω)

we denote the space of functions f(x) on Ω such that

Ip(f) =

∫
Ω

|f(x)|p(x)dx < ∞,

where p(x) is a measurable function on Ω with values in [1,∞).
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We will always use the notation

p− = inf
x∈Ω

p(x), p+ = sup
x∈Ω

p(x).

The functional Ip(f) is called modular. This is a linear space if and only if

sup
x∈Ω

p(x) < ∞

and then it is a Banach space with respect to

∥f∥Lp(·) = inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
. (4.1)

We will often abbreviate this to

∥f∥p(·).

From the definition of the norm it follows that

Ip

(
f

∥f∥p)·)

)
= 1.

The following comparison of the norm with the modular is straightforward:

∥f∥p+p(·) ≤ Ip(f) ≤ ∥f∥p−p(·) , if ∥f∥p(·) ≤ 1, (4.2)

∥f∥p−p(·) ≤ Ip(f) ≤ ∥f∥p+p(·), if ∥f∥p(·) ≥ 1. (4.3)

NOTE. Very often - but not always - we will assume that the exponent is
a little bit better than just continuous. Namely, We will often suppose that it
satisfies the following weak Lipschitz condition

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω.

For brevity, the class of functions satisfying the above condition, will be denoted
by

P log(Ω).

EXERCISE. Let
χr(y) = {y ∈ Rn : |y| > r}

be the characteristic function of the exterior of a ball. A simple calculation in
the case of constant p yields ∥∥∥∥χr(y)

|y|β

∥∥∥∥
Lp

=
const

rβ−
n
p

,

if β > n
p
.
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This gives an estimation of the growth of this norm when r → 0. What
about the case of variable p(x)?

In the case of integration in this example over a bounded domain Ω, the
following estimate holds.

Lemma 4.1. Let Ω be a bounded open set in Rn,

p− ≥ 1, p+ < ∞,

and
p, β ∈ P log(Ω).

If
sup
x∈Ω

β(x)p(x) > n,

then ∥∥∥∥ χr(y − x)

|y − x|β(x)

∥∥∥∥
Lp(·)

≤ C

rβ(x)−
n

p(x)

(4.4)

where C does not depend on x.
We omit the proof, since it is technically rather complicated, the proof may

be found in [S.Samko, Integr. Transf. Spec. Funct. 1998]
Remark: the above statement is given for a more general case of a ball

centered at an arbitrary point x, keeping in mind that now the space is not
invariant with respect to translations.

Sometimes, (4.1) is called Luxemburg norm because of a similar norm for
Orlich spaces (Luxemburg, 1955). However, just in form (4.1), this norm for
Lp(·) was introduced before W.Luxemburg by H.Nakano (1951).

Meanwhile, the norm of type (4.1), as well as a similar norm for the Orlicz
spaces is nothing else but the realization of a general norm for”normalizable”
topological spacesprovided by the famous Kolmogorov theorem ( A.N.Kolmogorov,
Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes, Studia
Math., Vol. 5, 29-33, 1934.)

This theorem runs as follows.

A Hausdorff linear topological space X admits a norm iff it has a con-
vex bounded neighbourhood of the null-element and in this case Minkowsky
functional of this neighbourhood is a norm.

The Minkowsky functional of a set U ⊂ X is the functional MU(x), x ∈ X,
defined as

MU(x) = inf{λ : λ > 0,
1

λ
x ∈ U}

so that the above norm is nothing else but the Minkowsky functional of the
unit ball in X = Lp(·).

Therefore, (4.1) = the Kolmogorov-Minkowsky norm .
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The pioneer paper where the space Lp(·) was studied as a special object and
as a Banach space, was I.I. Sharapudinov. On a topology of the space Lp(t)([0, 1]).
Matem. Zametki 26(1979), no 4, 613-632,
(in the one-dimensional case, but most of the results are automatically rewrit-
ten for the multidimensional case), although this space appeared earlier as
an example illustrating the modular spaces in the investigations by H.Nakano
(1951).

Later, basic important facts for the spaces Lp(·) were developed in the paper
O.Kovacik and I.Rakosnik
On spaces Lp(x) and W k,p(x). Czech. Math. J., 1991, vol. 41(116), 592-618,
including variable order Soboleb spaces

In general, the spaces Lp(·) are particular cases of the generalized Orlicz
spaces introduced and investigated earlier by J. Musielak. However, that were
namely the specifics of the spaces Lp(·) which attracted many researchers and
allowed to develop a rich theory of these spaces, this interest being also roused
by applications revealed in various areas.
Two main trends in research:

I). Mapping problems for operators in VELS, especially in the situation
when the variable exponent may approach some critical values.

II). The corresponding Operator Theory: Fredholmness and invertibility
problems.

We mention, in particular, the case of fractional type operators.
Let Iα(·) be some fractional integration operator (potential operator), and

Dα(·) the corresponding differentiation operator, such that we have

DαIαf ≡ f

in the case of constant orders α. Now we have

Dα(·)Iα(·) = I + something.

What can be said about this ”something”?
Depending on the assumptions on the behaviour of α(x) and parameters

of the space, sometimes it may be shown that this something is a compact
operator.

But in general, this is an open problem.
A more essential question is: even if this ”something” is compact, what

about the spectrum problem?
Also: Fredholmness (normal solvability) of Wiener-Hopf and singular integral
equations with piece-wise continuous coefficients in Lp(·)(Γ)

Various problems in both the trends are mainly solved or are under intensive
investigation for the time being. Solution of many problems proved to be a
very strong fortress. Nowadays this fortress is worldwide attacked.
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5 The principal difficulties (BAD news about VELS

1) no invariance with respect to translations and dilations;

f ∈ Lp(·)(Rn) ; f(· − h) ∈ Lp(·)(Rn)

(in general), since the latter would mean the integrability∫
Rn

|f(x)|p(x+h)dx < ∞

with the wrong exponent.Similarly,

f ∈ Lp(·)(Rn) ; f(λ·) ∈ Lp(·)(Rn)

2) As a consequence, Young theorem is no more valid; i.e. let

Kf(x) =

∫
Rn

k(x− y)f(y) dy,

then the statement

∥Kf∥Lp(·)(Rn) ≤ ∥k∥L1(Rn)∥f∥Lp(·)(Rn)

is no more valid.
3) Minkowsky integral inequality∥∥∥∥∥∥

∫
Ω

F (·, y) dy

∥∥∥∥∥∥
p(·)

≤
∫
Ω

∥F (·, y)∥p(·) dy,

although valid, is a very rough mean, no help of it ...
For instance, how we prove the Young theorem in the case p is constant:

∥Kf∥p =

∥∥∥∥∥∥
∫
Rn

k(y)f(x− y)dy

∥∥∥∥∥∥
p

≤
∫
Rn

|k(y) ∥f(· − y)∥p dy

which does not work when p is variable.

6 Some hopes (GOOD news)

1) The Hölder inequality still holds, but in the form∣∣∣∣∣∣
∫
Ω

f(x)g(x) dx

∣∣∣∣∣∣ ≤ C∥f∥p(·)∥g∥q(·)
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with the constant

C =
1

p−
+

1

q−
≤ 2

where

p− = inf
x∈Ω

p(x), q− = inf
x∈Ω

q(x) and
1

p(x)
+

1

q(x)
≡ 1.

Proof.
This Hölder inequality is proved in the the standard way via the numerical

inequality

ab ≤ ap

p
+

bq

q
(6.1)

with a > 0, b > 0, 1
p
+ 1

q
= 1, 1 < p < ∞, so that∣∣∣∣ f(x)g(x)∥f∥p∥g∥q

∣∣∣∣ ≤ 1

p(x)

∣∣∣∣f(x)∥f∥p

∣∣∣∣p(x) + 1

q(x)

∣∣∣∣g(x)∥g∥q

∣∣∣∣q(x) ,
Integrating over Ω and estimating p(x) and q(x),we are done. 2

2) The norm in the space Lp(·)(Ω) seems to be complicated in a sense, to be
calculated or estimated. So the straightforward estimation of the boundedness
of an operator:

∥Af∥p(·) ≤ C∥f∥p(·) (6.2)

is not easy. However, in the case of linear operators, the above inequalities
between the norm and the modular and the homogeneity property

∥A∥X→X = sup
f∈X

∥Af∥X
∥f∥X

= sup
∥f∥X=1

∥Af∥X

allow us to replace checking of (6.2) by a work with a modular:∫
Ω

|Af(x)|p(x) dx ≤ C for all f with ∥f∥p(·) ≤ 1, (6.3)

which is certainly easier.
3) Pointwise inequalities are useful.
We have

|f(x)| ≤ |g(x)| =⇒ ∥f∥p(·) ≤ ∥g∥p(·).

Therefore, if one operator is pointwise dominated by another one:

|Af(x)| ≤ |Bf(x)|,

and we know that the operator B is bounded, then the boundedness of the
operator A immediately follows.
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EXAMPLE. Stein’s inequality states that convolution operators with ”suffi-
ciently good” kernels are dominated by the Hardy-Littlewood maximal func-
tion

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)∩Ω

|f(y)| dy

where
B(x, r) = {y ∈ Rn : |y − x| < r}.

The Stein inequality is: ∣∣∣∣∫
Rn

k(x− y)f(y) dy

∣∣∣∣ ≤ cMf(x)

if the kernel k is dominated by a radial decreasing integrable function:

|k(x)| ≤ K(|x|),
∫
Rn

K(|x|) dx < ∞.

and c = 2∥K∥L1(Rn) in this case.
This inequality holds even in a stronger form

sup
ε>0

1
εn

∣∣∣∣ ∫
Rn

k
(
x−y
ε

)
f(y) dy

∣∣∣∣ ≤ cMf(x)

i.e. uniformly with respect to dilations.
Therefore, one should be interested in the boundedness of the maximal

operator in our spaces: it will involve the boundedness of many and many
convolution operators in applications.

7 Sobolev embedding

Another reason which heated this interest was that the famous Sobolev theorem
on the boundedness of the Riesz potential from Lp to Lq with the Sobolev
exponent

1

q
=

1

p
− α

n

may be derived from the boundedness of the maximal operator by the so called
Hedberg’s pointwise trick

Let us reproduce this Hedberg’s trick in the variable exponent setting. We
wish to prove that- if the maximal operator M is bounded in our space Lp(·)(Rn)
- then the potential operator

Iα(·)f(x) =

∫
Ω

f(y)

|x− y|n−α(x)
dy, x ∈ Ω
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where
inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x) < n

is bounded from the space Lp(·)(Ω) to the space Lq(·)(Ω) with the limiting variable
Sobolev exponent

1

q(x)
=

1

p(x)
− α(x)

n
.

For simplicity we consider only the case of bounded sets Ω in Rn.
About the variable exponent p(x) we assume that p ∈ P log(Ω).

Proof. We split the fractional integral:

Iα(x)f =

∫
|x−y|<r

|x− y|α(x)−nf(y)dy

+

∫
|x−y|>r

|x− y|α(x)−nf(y)dy = : Ar(x) +Br(x) (7.1)

so that Br(x) ≡ 0 for r ≥ D = diam Ω.
We shall take use of the inequality

|Ar(x)| ≤ 2nrα(x)

2α(x) − 1
Mf(x) (7.2)

which is known in case of α(x) = const and remains valid in case it is variable.
Indeed, to check it, we use the dyadic decomposition:

|Ar(x)| ≤
∞∑
k=1

∫
r

2k
<|x−y|< r

2k−1

|f(y)||x− y|α(x)−ndy

≤
∞∑
k=1

( r

2k

)α(x)−n
∫
|x−y|< r

2k−1

|f(y)|dy

≤
∞∑
k=1

( r

2k

)α(x)−n ( r

2k−1

)n

Mf(x)

= 2nrα(x)
∞∑
k=1

2−kα(x)Mf(x) .

By the assumption inf
x∈Ω

α(x) > 0 we then get

|Ar(x)| ≤ c1r
α(x)Mf(x) (7.3)

with some absolute constant c1 > 0.
We assume that ∥f∥p(·) ≤ 1.
Applying the Hölder inequality for variable exponents to the integral Br(x),

we obtain
|Br(x)| ≤ 2∥f∥p(·)

∥∥|x− y|α(x)−nχr

∥∥
p′(·)
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≤ 2
∥∥|x− y|α(x)−nχr(y)

∥∥
p′(·) ,

where χr(y) is the characteristic function of the exterior

{y ∈ Ω : |x− y| > r}

of the ball.
We can apply the estimate written in Exercise above, which yields:∥∥|x− y|α(x)−nχr(y)

∥∥
p′(·) ≤ c2r

− n
q(x) .

Then
Iα(x)f ≤ Ar(x) + Br(x)

≤ c
[
rα(x)Mf(x) + r−

n
q(x)

]
.

Minimizing the right-hand side with respect to r we see that its minimum
is reached at

rmin =

[
1

n
q(x)α(x)Mf(x)

] p(x)
n

and easy evaluations give

∣∣Iα(x)f(x)∣∣ ≤ C

p(x)

[
q(x)

n
Mf(x)

] p(x)
q(x)

[
1

α(x)

]1− p(x)
q(x)

.

Hence, ∣∣Iα(x)f(x)∣∣ ≤ C [Mf(x)]
p(x)
q(x)

so that ∫
Ω

∣∣Iα(x)f(x)∣∣q(x) dx ≤ C

∫
Ω

[Mf(x)]p(x) dx.

Recall that we assume that the maximal operator M is bounded in the space
Lp(·)(Ω), whence the boundedness of the fractional operator Iα(·) in the space
Lp(·)(Ω) follows. 2

CONCLUSION: two key moments in the proof, one is the preassumed
boundedness of the maximal operator M , another is the estimate∥∥|x− y|α(x)−nχr(y)

∥∥
p′(·) ≤ c2r

− n
q(x) .

So various efforts were spend to prove the boundedness of the maximal
operator . The breakthrough is of 2002 and is due to Lars Diening (Freiburg
University till 2010, München University after 2010).

He proved the poundedness of the maximal operator in VELS Lp(·)(Ω) in the
case of bounded domains in Rn under the following natural conditions

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ Ω (7.4)
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|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (7.5)

The latter plays in general a very important role in the theory of VELS. It is
often referred to as the ”local log-condition”. For the boundedness of the max-
imal operator this condition is necessary in a sense (in terms of the continuity
modulus), A.Lerner, 2005.

The following statement has been proved: Let

min
x∈Ω

p(x) > 1, max
x∈Ω

p(x) < ∞

and min
x∈Ω

α(x) > 0, max
x∈Ω

α(x)p(x) < n.

Then the fractional operator

Iα(·)f(x) =

∫
Ω

f(y) dy

|x− y|n−α(x)

is bounded from the variable exponent space Lp(·)(Ω) into another such space
Lq(·)(Ω), where

1

q(x)
=

1

p(x)
− α(x)

n
.

REMARK on Sobolev embedding theorem.
If we wish to deal also with the variable structure of the underlying space

X, then we will also have to work with local variable dimension n = n(x), and
even more, we have to deal with the notion of the lower and upper dimensions

dim(X, x) and dim(X, x)

at every point x ∈ X.

8 On variable dimensions

Let X be any quasimetric measure space with quasidistance d(x, y).
In the particular case: for every point x ∈ X there exists a positive number

s = s(x) such that
C1r

s(x)+ε ≤ µB(x, r) ≤ C2r
s(x)−ε, (8.1)

for every positive ε > 0, where the constants C1 > 0, C2 > 0 in general depend
on x and ε:

C1 = C1(x, ε), C2 = C2(x, ε),

then the space X may be said to
have a local dimension

at a point x, equal to s(x). It may be calculated by the formula

dimX(x) := s(x) = lim
r→0

lnµB(x, r)

ln r
.
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In the general case, this limit may not exist, but the lower and upper limits
always exist and these lower and upper limits

dimX(x) = lim
r→0

lnµB(x, r)

ln r
,

dimX(x) = lim
r→0

lnµB(x, r)

ln r

are called upper and lower local dimensions attributed to the point x. This
approach is well known in the theory of fractal sets, see for instance the book
[Falconer, 1997]

Meanwhile in the first studies of variable exponent operators in variable
exponent spaces, it proved to be that more refined definition is necessary.
Namely, the dimensions introduced as

dimX(x) := sup
r>1

ln

(
lim
t→0

µB(x,rt)
µB(x,t)

)
ln r

,

dimX(x) := inf
r>1

ln
(
lim
t→0

µB(x,rt)
µB(x,t)

)
ln r

.

Such limits when applied to Young functions in the theory of Orlicz spaces
are known as Matuszewska-Orlicz indices.

REMARK . Introduction of a new notion of dimensions

dimX(x) and dimX(x)

in the above form is caused by the fact that they arise naturally when dealing
with Muckenhoupt type condition for radial type weights on metric measure
spaces. They seem may not coincide with dimensions

dimX(x), dimX(x).

There is an impression that probably for different goals different notions of
dimensions may be useful.

The Sobolev embedding theorem in its general form

1

q(x)
=

1

p(x)
− α(x)

?(x)

is not proved, up to now, but some weaker versions have been obtained.
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9 Convolution operators

Convolution operators

Af(x) =

∫
Rn

k(y)f(x− y)dy

with rather ”nice” kernels for which the local log-condition is not needed,

The Young theorem in its natural form is not valid in the case of variable
exponent, even if p(x) is very smooth.

As is known, the Young theorem is valid under the log-condition on p(x) if
the kernel is dominated by a radial integrable non-increasing function.

However, a natural expectation was that the Young theorem may be valid
in the case of rather ”nice” kernels without the local log-condition, which was
proved inDiening,Samko, 2007.

Let
P∞(Rn)

be the set of measurable bounded functions on Rn such that: 1) 1 ≤ p− ≤
p(x) ≤ p+ < ∞, x ∈ Rn,2) there exists p(∞) = lim

x→∞
p(x)3) and

|p(x)− p(∞)| ≤ A

ln (2 + |x|)
, x ∈ Rn. (9.1)

THEOREM. Let
|k(y)| ≤ C(1 + |y|)−λ, y ∈ Rn

for some

λ > n

(
1− 1

p(∞)
+

1

q(∞)

)
.

Then the convolution operator∫
Rn

k(x− y)f(y) dy

is bounded from Lp(·)(Rn) to Lq(·)(Rn) under the only assumption that

p, q ∈ P∞(Rn) and q(∞) ≥ p(∞).

10 Characterization of the range of the fractional

operator

Recall that the Riesz fractional integration operator is given by

Iαf(x) =
1

γn(α)

∫
Rn

f(y) dy

|x− y|n−α
, 0 < α < n,

17



where the normalizing constant γ(α) = 2απ
n
2Γ

(
α
2

)/
Γ

(
n−α
2

)
is chosen so

that the semigroup property IαIβ = Iα+β holds.
How can one construct the inverse operator which may be called Riesz

fractional differentiation or Riesz fractional derivative? This inverse operator
will be denoted by

Dαf.

Formally,
Iαf = F−1|ξ|−αFf =⇒ Dαf = F−1|ξ|αFf.

It is known that
|ξ|α

is the Fourier transform ( in the distributional sense) of the distribution

const

|x|n+α
,

so that the operator Dα is the convolution with the above distribution.
One of the known ways to construct a realization of this convolution (reg-

ularization) is via subtracting Taylor terms in a neighborhood of the singular
point. Another way avoids the usage of derivatives and is more direct: it uses
finite differences.

We start with the case
0 < α < 1.

In this case Taylor formula approach and finite differences approach coincide
and provide the hypersingular construction

Dαf =
1

dn(α)

∫
Rn

f(x)− f(y)

|y|n+α
dy,

where
dn(α) = −γn(−α).

This is what is usually called Riesz fractional derivative of order α. It exists
for sufficiently nice functions. For not so nice functions it is interpreted as
the limit of the corresponding truncated integrals:

Dαf(x) =
1

dn(α)
lim
ε→0

∫
|y|>ε

f(x)− f(y)

|y|n+α
dy,

where the limit is interpreted in this or other sense, depending on the class of
functions involved, for instance in the norm of Lp :

Dαf(x) =
1

dn(α)
lim
ε→0

Lp(Rn)

∫
|y|>ε

f(x)− f(y)

|y|n+α
dy. (10.1)
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The construction (10.1) first appeared in a paper by E.Stein (1961), where it
was used to characterize the space

Bα(Lp) := {f : f = Bαφ, φ ∈ Lp(Rn)}

of Bessel potentials

Bαf :=

∫
Rn

Gα(x− y)f(y) dy,

where

Ĝα(ξ) =
1

(1 + |ξ|2)
α
2

.

It was shown that a function f ∈ Lp(Rn) belongs to Bα(Lp) if and only if the
limit (10.1) exists in Lp(Rn).

Let now
0 < α < ∞.

We define the finite difference

(
∆ℓ

hf
)
(x) =

ℓ∑
k=0

(−1)k
(
ℓ

k

)
f(x− kh)

with the integer order ℓ,
ℓ > α

( fractional orders ℓ may be also used, but we do not touch this case) and
introduce the hypersingular integral of higher order by

Dαf = lim
ε→0

Dα
ε f,

where the truncated hypersingular integral Dα
ε f has the form

Dα
ε f :=

1

dn,ℓ(α)

∫
|y|>ε

(
∆ℓ

yf
)
(x)

|y|n+α
dy

and the normalizing constant

dn,ℓ(α) =

∫
Rn

(
1− eiy1

)ℓ dy

|y|n+α

may be explicitly calculated by the formula

dn,ℓ(α) =
π1+n

2

2αΓ
(
1 + α

2

)
Γ
(
n+α
2

)Aℓ(α)

sin απ
2

,

where

Aℓ(α) =
ℓ∑

k=0

(−1)k−1

(
ℓ

k

)
kα.
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The extension, from 0 < α < 1 to the general case 0 < α < ∞, of above Stein’s
characterization of the Bessel potential space Bα(Lp(Rn)) is due to P.Lizorkin
(1970).

But what about the Riesz potential case?
The first arising question is about the inversion of the Riesz potential oper-

ator. We expect that Dα is the left inverse to Iα:

DαIαf ≡ f, 0 < α < n

within the frameworks of the Lp(Rn)-spaces, 1 < p < n
α
.

A justification if this inversion for constant p was given in [S.Samko] (1976).
In this justification we have to show that the limit

lim
ε→0
Lp

Dα
ε I

αf

exists in the norm of the space Lp(Rn) for f ∈ Lp(Rn).
Since both Dα

ε and Iα are convolution operators, their composition Dα
ε I

α is
the same:

Dα
ε I

α =

∫
Rn

Kε(x− y)f(y) dy.

The key moment:the kernel Kε(x) has the dilation structure

Kε(x) =
1

εn
Kℓ,α

(x
ε

)
.

It may be shown that

Kℓ,α ∈ L1(Rn) and

∫
Rn

Kℓ,α(y) dy = 1.

Then it suffices to make use of the well known identity approximation theorem.
Now, what about variable Lp(·)-spaces?
The fact that we just have Kℓ,α ∈ L1(Rn) is helpless: no Young theorem.
Fortunately, there may be obtained an additional information: the kernel

Kℓ,α is a bounded function beyound the origin and admits the bounds

|Kℓ,α(x) ≤
C

|x|n−α
for |x| ≤ 1

and

|Kℓ,α(x) ≤
C

|x|n+ℓ−α
for |x| ≥ 1.

( recall that ℓ is always chosen so that ℓ > α.)
Consequently, this kernel is dominated by a radial decreasing integrable

function. Then Stein’s pointwise uniform inequality
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1
εn

∣∣∣∣ ∫
Rn

k
(
x−y
ε

)
f(y) dy

∣∣∣∣ ≤ cMf(x)

is applicable, so that

|Dα
ε I

αf | ≤ cMf(x)

where c does not depend on ε.
We assume that

1 < α <
n

p+

when apply the above to functions f ∈ Lp(·)(Rn).
Thus we need the boundedness of the maximal operator M in the VELS

Lp(·)(Rn). We already know that in the case of bounded set Ω, the maximal
operator M is bounded in the space Lp(·)(Ω) under the condition

p ∈ P log(Ω).

In the case of unbounded sets, there appears an additional condition (the decay
condition): there exists

p∞ := lim
|x|→∞

p(x)

and

|p(x)− p∞| ≤ C

ln(e+ |x|)
.

Both these conditions and the standard assumption

1 < p− ≤ p(x) ≤ p+ < ∞,

guarantee the boundedness of the operator M in Lp(·)(Rn) ( D. Cruz-Uribe,
A.Fiorenza, C.J. Neugebauer, 2003)

Then under these conditions we obtain that the composition

Dα
ε I

α

admits the uniform boundedness

∥Dα
ε I

αf∥p(·) ≤ C∥f∥p(·).

Then (by Banach-Steinhaus theorem) it suffices to check the convergence

Dα
ε I

αf(x) → f(x)

in Lp(·)(Rn)-norm on a dense set.
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Since p− ≤ p(x) ≤ p+, by standard arguments it may be proved that

∥f∥p(·) ≤ Cmax{∥f∥p− , ∥f∥p+}

Consequently,
∥Dα

ε I
αf − f∥p(·)

≤ Cmax
{
∥Dα

ε I
αf − f∥p− , ∥Dα

ε I
αf − f∥p+

}
.

Thus the convergence

∥Dα
ε I

αf − f∥p(·) → 0

reduces to similar convergence with constant exponents, which is known. It
remains to note that the set

Lp−(Rn)
∩

Lp+(Rn)

is dense in Lp(·)(Rn).
We have proved the following
THEOREM.Let p ∈ P log(Rn) satisfy the decay condition and 1 < p− ≤ p(x) ≤

p+ < n
α
. If

f(x) = (Iαφ)(x)

where φ ∈ Lp(·)(Rn), then
φ(x) = lim

ε→0
(Dα

ε f) (x)

where the limit is understood in the Lp(·)(Rn)-norm.
The above theorem was proved in [A.Almeida, 2003].
A development of this result, obtained in [Almeida, Samko, 2006] concerns

the description of functions representable by the fractional integral of functions
in Lp(·)(Rn).

THEOREM Let p satisfy the decay condition and

p ∈ P log(Rn), 1 < p− ≤ p+ <
n

α

and f be a locally integrable function. Then

f ∈ Iα[Lp(·)(Rn)],

if and only if

f ∈ Lq(·)(Rn),
1

q(·)
=

1

p(·)
− α

n
,

and
Dαf ∈ Lp(·)(Rn).

A study of the range Iα[Lp(·)(Ω)] for domains Ω ⊂ Rn is an open question; in
a form similar to the previous Theorem, it is open even in the case of constant
p.

One of the reasons is in the absence of the corresponding tool of hypersin-
gular integrals adjusted to domains in Rn;
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11 Variable order Hölder spaces

In application often not Lebesgue spaces, but Hölder (Lipschitz) spaces are of
more use. In the Euclidean case Hölder spaces are defined by the condition

f ∈ Hλ(Ω) : sup
|h|<t

|f(x+ h)− f(x)| ≤ Ctλ, x ∈ Ω,

where 0 < λ ≤ 1.
We now are going to consider fractional type operators Iα(·) inHölder spaces

Hλ(·) of variable order.
First, what we know in the case of constant orders λ and α?
In the one-dimensional case, for the Riemann-Liouville fractional integrals

(
Iαa+φ

)
(x) :=

1

Γ(α)

x∫
a

φ(t) dt

(x− t)1−α
, x > a

we have
φ ∈ Hλ([a, b]), −∞ < a < b < ∞,

=⇒ f(x) =
f(a)

Γ(1 + α)
(x− a)α + g(x)

where
g ∈ Hλ+α([a, b])

under the condition
λ+ α < 1

(G.Hardy, J.Littlewood, 1928).
Note that

f(a) ̸= 0 ⇐⇒ f(a)

Γ(1 + α)
(x− a)α /∈ Hλ+α([a, b])

(the influence of the boundary is expected in the multidimensional case).
Multidimensional case: first there were obtained statements on such napping
properties for the spherical fractional integrals

Iαf(ξ) =
∫

Sn−1

f(σ) dσ

|ξ − σ|n−1−α
, ξ ∈ Sn−1,

on the unit sphere Sn−1 in Rn. It was shown (B.Vakulov, 1978-1980) that

Iα(Hλ(Sn−1)) = Hλ+α(Sn−1) !!

From these spherical versions there were derived weighted statements for
spatial Riesz fractional integrals viathe stereographical projection of Rn−1 onto
Sn−1 in the space Rn:

ξ = s(x) = {s1(x), s2(x), ..., sn(x)}, ξ ∈ Sn−1, x ∈ Rn
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where

sk(x) =
2xk

1 + |x|2
, k = 1, 2, ..., n− 1 and sn(x) =

|x|2 − 1

|x|2 + 1
.

This projection transforms spherical potential into the space potential and
vice versa. Namely, the formula is valid:∫

Sn−1

f(σ) dσ

|ξ − σ|n−α

= 2α(1 + |x|2)
n−1−α

2

∫
Rn−1

f [s(y)] dy

|x− y|n−1−α(1 + |y|2)n−1+α
2

No results known for domains in Rn till 2011.
Why only Sn−1 and Rn?
Answer: cancelation property∫

RN

[
1

|z − x|N−α
− 1

|z − y|N−α

]
dz ≡ 0.

and similarly for the sphere.
In cases where the potential of a constant function on X is well defined, the

cancelation property means: the potential of a constant is constant.
The cancelation property is very restrictive in applications:it fails for do-

mains Ω in Rn.
Results on mapping properties of fractional integrals were proved in the

general setting of quasimetric measure spaces assuming that the cancelation
property holds (A.Gatto, 1996-2006)

Now we pass to recent results:A) we admit variable orders λ(x) and α(x);B)
for functions vanishing on the boundary we avoid the cancelation property

We deal with the general setting of quasimetric measure spaces

(X, d, µ)

with quasidistance d(x, y) and measure µ which satisfy the growth condition

µB(x, r) ≤ KrN as r → 0, K > 0,

where N > 0 need not be an integer, and for the fractional operators

Iα(·)f(x) =

∫
X

f(y) dµ(y)

[d(x, y)]N−α(x)

we admit variable exponent α(x) with

0 ≤ α(x) < 1,
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and assume that Ω is an open bounded set in X.
We also consider the corresponding hypersingular operators

(Dαf)(x) = lim
ε→0

∫
y∈Ω:ϱ(x,y)>ε

f(y)− f(x)

ϱ(x, y)N+α(x)
dµ(y), (11.1)

within the frameworks of the Hölder spaces Hλ(·)(Ω).
In the case of constant α and λ a study in the general setting of quasimetric

measure spaces (X, ϱ, µ) with growth condition and cancelation property, is
known, see [Gatto, 1990, 1996, 2004, 2006].

Avoiding cancelation property via vanishing α(x) on the boundary
The estimate we present here reveal the mapping properties of the operators

Iα and Dα in dependence on local values of α(x) and λ(x). Note that estimations
with variable λ(x) and α(x) were known in the special case

X = Sn−1

for spherical potential operators and related hypersingular integrals, and even
in a more general setting of generalized Hölder spaces defined by a given
(variable) dominant w(x, h) of continuity modulus (Vakulov, 2005-06, N.Samko,
Vakulov, 2009).

The estimates we present here are related to a general quasimetric measure
spaces and admit the situation when α(x) may be degenerate on Ω. We denote

Πα = {x ∈ Ω : α(x) = 0}

and suppose that
µ(Πα) = 0.

To obtain results stating that the range of the potential operator
over this or that Hölder space is imbedded into a better space of a similar

nature, the usual mean is Zygmund type estimates for the continuity modu-
lus. In the case we study, these estimates are local, depending on points x.
By means of Zygmund type estimates of such a kind, it is possible to prove
theorems on the mapping properties

Iα(·) : H
λ(·)
0 (Ω) → Hλ(·)+α(·)(Ω),

and similar results for the operator Dα(·), 0 < α(x) < 1.
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12 Preliminaries on quasimetric measure spaces

Recall some facts for the quasimetric measure spaces (QMMS) (X, d, µ).
Given a set X, a function

d : X ×X → [0,∞)

is called quasimetric, if

d(x, y) ≤ K[d(x, z) + d(z, y)], K ≥ 1 (12.1)

where x, y, z ∈ X. We assume that

d(x, y) = d(y, x).

Other assumptions:1) C0(Ω) is dense in L1(X,µ);2) X is closed with respect
to the quasimetric d;3) the measure µ satisfies the growth condition = upper
Ahlfors N-regularity), if

µB(x, r) ≤ crN , N > 0; (12.2)

5) µ(∂Ω) = 0.
By

δ(x) = δ(x, ∂Ω) := inf
y∈∂Ω

d(x, y)

we denote the distance of x to the boundary.
We do not assume the measure µ to be doubling, but base ourselves on the

growth condition (12.2).
An important fact, proved in R. A. Maćıas and C. Segovia.Lipshitz functions

on spaces of homogeneous type. Adv. Math., 33:257–270, 1979.
Every quasidistance d on a quasimetric space (X, d) admits an equivalent

quasimetric d1 for which there exists an exponent θ ∈ (0, 1] such that

|d1(x, z)− d1(y, z)| (12.3)

≤ Mdθ1(x, y) {d1(x, z) + d1(y, z)}1−θ

and
d1(x, y) = d(x, y)

1
θ (12.4)

where d(x, y) is a quasimetric.
By the elementary inequality

|aβ − bβ| ≤ |β||a− b|max(aβ−1, bβ−1), a, b ∈ R1
+, (12.5)

the property (12.3) is an immediate consequence of (12.4) and it holds with

M =
1

θ
.

Definition We say that the quasimetric d is regular of order θ ∈ (0, 1], if it
itself satisfies property (12.4).

We suppose that our quasimetric d is regular of order θ ∈ (0, 1].
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13 Mapping properties of fractional integrals; the 1st

approach

For fixed x ∈ Ω we consider the local continuity modulus

ω(f, x, h) = sup
z∈Ω:

d(x,z)≤h

|f(x)− f(z)| (13.1)

of a function f at the point x, |h| < 1.
The following lemma explicitly show us teh role of the log-condition for

variable exponents

Lemma 13.1. For all x, y ∈ Ω with d(x, y) ≤ h,

1

C
ω(f, x, h) ≤ ω(f, y, h) ≤ Cω(f, x, h) (13.2)

where C = [2k] + 2. If a(x) ∈ P log(Ω), then

1

C
ha(x) ≤ ha(y) ≤ Cha(x) (13.3)

for all x, y such that d(x, y) < h, where C ≥ 1 depends on the function a, but
does not depend on x, y and h.

The p r o o f of (13.2) is direct. Let us check (13.3). It suffices to consider
only small values

h ≤ min(1,diamΩ).

the inequality (13.3) is equivalent to

1

C
≤ ha(y)−a(x) ≤ C

or
|a(y)− a(x)|| · | lnh|| ≤ C1, C1 = ln C.

By the definition of the class P log(Ω), the function a satisfies the condition

|a(y)− a(x)| ≤ A

ln 1
d(x,y)

, d(x, y) ≤ 1

2

Then moreover

|a(y)− a(x)| ≤ A

ln 1
h

.

For a function λ(x) defined on Ω we suppose that

λ− := inf
x∈X

λ(x) > 0 and λ+ := sup
x∈X

λ(x) < 1.

DEFINITION. By Hλ(·)(Ω) we denote the space of functions f ∈ C(Ω) such
that

ω(f, x, h) ≤ Chλ(x),
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where C > 0 does not depend on x, y ∈ Ω. Equipped with the norm

∥f∥Hλ(·)(Ω) = ∥f∥C(Ω) + sup
x∈Ω

sup
h∈(0,1)

ω(f, x, h)

hλ(x)
,

this is a Banach space.
In Hölder norm estimations of fractional integrals Iαf , the case f ≡ const

play an important role, in the case where

Iα(x) := Iα(1)(x) =

∫
Ω

dµ(z)

d(x, z)N−α(x)
(13.4)

is well defined.
In the Euclidean case Ω = X = RN , this integral although not well directly

defined, may be treated as a constant in the case

α(x) = α = const

in the sense that the cancelation property∫
RN

[
1

|z − x|N−α
− 1

|z − y|N−α

]
dz ≡ 0,

holds for all x, y ∈ RN , when 0 < α < 1.
But the cancelation property of the type∫

Ω

[
1

|z − x|N−α(x)
− 1

|z − y|N−α(y)

]
dµ(z) ≡ 0,

no more holds even for Ω = RN or Ω = SN−1.
When we consider Hölder type spaces Hλ(·)(Ω) which contain constants, the

condition
Iα(1) ∈ Hλ(·)+α(·)(Ω)

is necessary for the mapping

Iα : Hλ(·)(Ω) → Hλ(·)+α(·)(Ω)

to hold.

Remark 13.2. Let inf
x∈Ω

α(x) ≥ 0 and x, y /∈ Πα. Then

|Iα(x)− Iα(y)| ≤

C
|α(x)− α(y)|

min(α(x), α(y))
+
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∣∣∣∣∣∣
∫
Ω

[
d(x, z)α(x)−N − d(y, z)α(x)−N

]
dµ(z)

∣∣∣∣∣∣
and

|α(x)Iα(x)− α(y)Iα(y)| ≤ C |α(x)− α(y)|

+min(α(x), α(y))

∣∣∣∣∣∣
∫
Ω

[
d(x, z)α(x)−N − d(y, z)α(x)−N

]
dµ(z)

∣∣∣∣∣∣
where C > 0 does not depend on x, y ∈ Ω.

Remark 13.3. The meaning of the above estimates is in the fact that the
second term on the right-hand sides may be subject to the cancelation property:
at the least it disappears when Ω = X = RN or Ω = X = SN−1.

The estimate given in the following theorem clearly shows how the behaviour
of the local continuity modulus

ω(Iαf, x, h)

worsens when x approaches the points where α(x) vanishes. We also give a
weighted estimate with the weight α(x).

We use the notation
αh(x) = min

d(x,y)<h
α(y).

Theorem 13.4. Let Ω be a bounded open set in X, let

α ∈ P log(Ω)

and
0 ≤ inf

x∈Ω
α(x) ≤ sup

x∈Ω
α(x) < min(1, N).

Then for all the points x ∈ Ω\Πα such that

αh(x) ̸= 0, 0 < h <
d

2
,

the following Zygmund type estimate is valid

ω(Iαf, x, h) ≤ C

αh(x)
hα(x)ω(f, x, h)+

Chθ

d∫
h

ω(f, x, t)dt

t1+θ−α(x)

+Cω(α, x, h)

d∫
h

ω(f, x, t)dt

t2−α(x)
+ Cω(Iα, x, h)∥f∥C(Ω).
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Also, for all the points x ∈ Ω\Πα the weighted estimate holds

ω(αIαf, x, h) ≤ Chα(x)ω(f, x, h)+

Chθ

d∫
h

ω(f, x, t)dt

t1+θ−α(x)

+Cω(α, x, h)

d∫
h

ω(f, x, t)dt

t2−α(x)
+

Cω(αIα, x, h)∥f∥C(Ω),

Zygmund type estimates of hypersingular integrals

Theorem 13.5. Let
α ∈ P log(Ω)

and
0 ≤ inf

x∈Ω
α(x) ≤ max

x∈Ω
α(x) < min{θ,N}.

If f ∈ C(Ω), then for all x, y ∈ Ω with d(x, y) < h such that α(x) ̸= 0 and α(y) ̸= 0,
the following estimate is valid

|(Dαf)(x)− (Dαf)(y)| ≤

C

min(α(x), α(y))

h∫
0

[
ω(f, x, t)

t1+α(x)
+

ω(f, y, t)

t1+α(y)

]
dt

+C

2∫
h

[
ω(α, x, h) + hθt1−θ

] ω(f, x, t)dt
t2+α(x)

,

where C > 0 does not depend on x, y and h.
Theorems on mapping properties
Recall that for the fractional operator Iα(·) we allow the variable order α(x)

to be degenerate on a set Πα (of measure zero).
Consider the weighted space

Hλ(·)+α(·)(Ω, α) = {f : α(x)f(x) ∈ Hλ(·)+α(·)(Ω}.

Theorem 13.6. Let

α(x) ≥ 0, max
x∈Ω

α(x) < min(θ,N),

α ∈ Lip(Ω),
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and
sup
x∈Ω

[λ(x) + α(x)] < θ. (13.5)

If
αIα ∈ Hλ(·)+α(·), (13.6)

then the operator Iα(·) is bounded from the space Hλ(·)(Ω) into the weighted
space Hλ(·)+α(·)(Ω, α).

A ”non-degeneracy” version of Theorem 13.6 runs as follows.

Theorem 13.7. Let α ∈ Lip(Ω) and

0 < min
x∈Ω

α(x) ≤ max
x∈Ω

α(x) < min(θ,N). (13.7)

Under the conditions
sup
x∈Ω

[λ(x) + α(x)] < θ.

αIα ∈ Hλ(·)+α(·),

the operator Iα(·) is bounded from the space Hλ(·)(Ω) into the space Hλ(·)+α(·)(Ω).
The corresponding mapping theorem for the hypersingular operator runs as

follows.

Theorem 13.8. Under the conditions

αIα ∈ Hλ(·)+α(·),

and
0 < min

x∈Ω
α(x) ≤ max

x∈Ω
α(x) < min(θ,N),

the operator Dα(·) is bounded from the space Hλ(·)(Ω) into the space Hλ(·)−α(·)(Ω),
if

0 < inf
x∈Ω

{λ(x)− α(x)}, sup
x∈Ω

λ(x) < 1.

REMARK.Condition αIα ∈ Hλ(·)+α(·) is rather restrictive. In general, the
function Iα(x) is Lipschitz inside Ω, but

Iα(x)− Iα

∣∣∣
∂(Ω)

∼ [δ(x, ∂Ω)]α(x)

as x → ∂Ω. This means that the above condition may hold only when α(x)
vanishes at the boundary. Thus it may not be valid when α is constant.
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14 Mapping properties on sets without cancelation

property

Now we return to the case of constant α, but keep λ(x) variable, and will show
how it is possible to avoid cancelation property in the case of Hölder functions
vanishing on the boundary.

In the Euclidean case for instance, statements of the type

IαΩ : Hλ(Ω) → Hλ+α(Ω), Ω ⊂ Rn,

for the potential operator

IαΩf(x) :=

∫
Ω

f(y) dy

|x− y|n−α

may not be valid for domains,since , as was already noted,

Iα(x)− Iα

∣∣∣
∂(Ω)

∼ δα(x)

where
δ(x) = δ(x, ∂Ω).

However, one may expect that

IαΩ : Hλ
0 (Ω) → Hλ+α(Ω) (14.1)

for the subspace
Hλ

0 (Ω) = {f ∈ Hλ(Ω) : f
∣∣
∂Ω

= 0}.

Such a mapping is elementary in the one-dimensional case (G.Hardy and
J.Littlewood),

A multi-dimensional result of such a kind was recently proved in the paper
L. Diening and S. Samko. On potentials in generalized Hölder spaces over uni-
form domains in Rn. Revista Matematica Complutense, 24(2):357–373, 2011.
where this result was obtained for uniform domains(Jones domains or banana
domains).
We present a more general approach (S.Samko, to appear in Nonlinear Anal-
ysis) in a general setting of quasimetric measure spaces

(X, d, µ)

with the growth condition on the measure. This approach allows us to cover
the case of an arbitrary open set Ω in Rn. No restriction on the geometry of Ω
!

We show that a mapping of type

IαΩ : Hλ
0 (Ω) → Hλ+α(Ω)
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and more generally, for spaces of the type

Hω(Ω)

holds for measurable bounded sets Ω in (X, d, µ) satisfying the so called α-
property.
Roughly speaking: we can state a result on mapping properties of the fractional
operator, if we know how the potential operator of the constant, i.e.

JΩ,α(x) =

∫
Ω

dµ(y)

d(x, y)N−α
, x ∈ Ω, (14.2)

behaves near the boundary of Ω.
NOTE: we deal with the problem in intrinsic terms of the given set Ω ⊆ X. I.e.
we do not use any continuation of functions on Ω to X with preservation of the
continuity modulus, possible at the least in teh Euclidean case Ω = Rn.

We study mapping properties of potential operators

(Iαf)(x) =

∫
Ω

f(y) dµ(y)

d(x, y)N−α
, x ∈ Ω ⊆ X, (14.3)

for functions f defined on an open set Ω of a quasimetric measure space (X, d, µ),
where N is the exponent from the growth condition.

The following estimates are known:∫
B(x,r)

dµ(y)

d(x, y)N−α
≤ crα, (14.4)

∫
X\B(x,r)

dµ(y)

d(x, y)N+β
≤ cr−β, β > 0. (14.5)

and ∫
Ω\B(x,r)

dµ(y)

d(x, y)N
≤ c ln

D

r
, D > diamΩ. (14.6)

Their standard proof is via the dyadic splitting of the ball or its exterior.

15 Fractional integrals of constant functions on a set

We denote

JΩ,α(x) =

∫
Ω

dµ(y)

d(x, y)N−α
, x ∈ Ω, (15.1)
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which is well defined when Ω is bounded, in view of (14.4). When Ω is not
necessarily bounded, we define the difference of the potential by

JΩ,α(x, y) :

=

∫
Ω

(
1

d(x, z)N−α
− 1

d(y, z)N−α

)
dµ(z).

If Ω is bounded, then
JΩ,α(x, y) = JΩ,α(x)− JΩ,α(y).

Examples of explicitly calculated functions JΩ,α(x):
1) X = Rn, Ω = B(0,R), 0 < α < n : JΩ,α(x) = c0 + c1(R − |x|)α + g(x), x ∈
B(0, R),where g ∈ Lip(B(0, R)) and g

∣∣
|x|=R

= 0;

2) X = Rn, Ω = Rn
+ = {x ∈ Rn : xn > 0}, 0 < α < 1:JΩ,α(x, y) = cn(α)(sgn(xn)|xn|α−

sgn(yn)|yn|α);
3) X = R2, Ω = R2

++ = {x ∈ R2
+ : x1 > 0,x2 > 0}, 0 < α < 1:

JΩ(x, y) =
c
α
([δ(x)]α − [δ(y)]α + xα

1 − yα1 + xα
2 − yα2 )+U(x)−U(y), where c =

√
π

2α
Γ
(
1−α
2

)
Γ−1

(
2−α
2

)
andU(x) = |x|tA(t), t = min

{
x1

x2
, x2

x1

}
, A(t) is analytic in t.

4) X = Sn−1 = {σ = (σ1, ..., σn) : |σ| = 1} with the Euclidean distance, and
Ω = Sn−1

+ := {σ ∈ Sn−1 : σn > 0}; δ(σ, ∂Ω) ∼ σn;in this case JSn−1
+ ,α(σ) = c0 + 2c1|σn|α +

k(σ)where c0 and c1 are the same as in example 1), and k ∈ Lip(Sn−1
+ ), and

k
∣∣
∂Ω

= 0.
The functions JΩ,α(x) and JΩ,α(x, y) are continuous. But they are better than

just continuous in the inner points of Ω, see Lemma 16.1 below.

16 On the α-property of sets

Is known in the Euclidean case:the fractional integral of order α of a bounded
function on a bounded domain is α-Hölder continuous in Ω. This is a particular
case of the Sobolev theorem

IαΩ : Lp(Ω) → Hα−n
p (Ω), 1 < p ≤ ∞

when
n

p
< α <

n

p
+ 1.

In the following lemma we extend this for sets Ω in

(X, d, µ)

in the case p = ∞, where Ω may be unbounded and we include all x, y ∈ X into
the Hölder condition, not only x, y ∈ Ω.
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Lemma 16.1. Let Ω ⊂ X be measurable and α ∈ (0, θ). Then

|JΩ,α(x, y)| ≤ c d(x, y)α, (16.1)

where c depends on x and y. If Ω is bounded, the case

α = θ

may be also admitted with the estimate

|JΩ,θ(x, y)| ≤ c d(x, y)θ ln
D

d(x, y)
, x, y ∈ Ω, (16.2)

where D > diamΩ.

Proof. Splitting:

JΩ,α(x, y)

=

∫
Ω\B(x,r)

[
d(x, z)α−N − d(y, z)α−N

]
dµ(z)

+

∫
Ω∩B(x,r)

d(x, z)α−N dµ(z)

−
∫

Ω∩B(x,r)

d(y, z)α−N dµ(z) =: J1 + J2 − J3.

2

In the above examples: JΩ,α(x, y) is even Lipschitz off the boundary ∂Ω.
In the general setting of quasimetric spaces:it is natural to suppose that in

many cases the function JΩ,α(x, y) is Hölderian of order θ off the boundary,the
case α = θ being an analogue of the Lipschitz case.
The next definition is aimed to provide an appropriate language to single out
the class of sets Ω ⊆ X, with a prescribed way of how the Lipschitz θ-behaviour
worsens to Hölder α-behaviour, α < θ, when x and y approach the boundary.
Definition. Let Ω ⊂ X be a measurable set and α ∈ (0, θ]. We say that Ω has
the α-property, if there exists c > 0 such that for x, y ∈ Ω

|JΩ,α(x, y)| ≤ c
d(x, y)θ

max{δ(x), δ(y)}θ−α
, (16.3)

if

d(x, y) ≤ 1

2
1
θ

max{δ(x), δ(y)}
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Lemma 16.2. Let Ω be bounded, the quasidistance d be regular of order
θ ∈ (0, 1] and α ∈ (0, θ]. Then

d(x, y) ≤ 1

2
1
θ

max{δ(x), δ(y)} =⇒

|δ(x)α − δ(y)α| ≤ α2
2−α−θ

θ
d(x, y)θ

max{δ(x), δ(y)}θ−α
. (16.4)

The following corollary provides a sufficient condition for a domain Ω to
possess the α-property.

Corollary. If JΩ,α(x) has the structure

JΩ,α(x) = cδ(x)α + g(x), x ∈ Ω, (16.5)

where c is a constant and g ∈ Lipθ(Ω), then Ω possesses the α-property.

17 Mapping properties of the fractional operator Iα

in generalized Hölder type spaces

We now define the generalized Hölder spaces on a set Ω, with the continuity
modulus

ω(f, h) = sup
x,y∈Ω:

d(x,y)<h

|f(x)− f(y)|

dominated by a given function ω(h).
Definition. Given a continuous semi-additive function ω(h), positive for

h > 0, with ω(0) = 0, by Hω(Ω) we denote the space of functions f ∈ C(Ω) with
the finite norm

∥f∥Hω = ∥f∥C(Ω̄) + sup
0<h<diamΩ

ω(f, h)

ω(h)
.

By Hω
0 (Ω) we denote the subspace in Hω(Ω) of functions f which vanish on

the boundary ∂Ω of Ω.

Lemma 17.1. Let 0 < α < θ and Ω ⊆ X have the α-property. Let f ∈ Hω
0 (Ω),

where
ω(h) is almost increasing (17.1)

and
ω(h)

hθ−α
is almost decreasing.

Then
sup

x,y∈Ω:d(x,y)<h

∣∣f(x)[JΩ,α(x, y)]
∣∣ (17.2)

≤ Cωα(h)∥f∥Hω(Ω),
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where
ωα(h) = hαω(h).

In particular,
sup

x,y∈Ω:d(x,y)<h

∣∣f(x)[JΩ,α(x, y)]
∣∣

≤ Chα+λ∥f∥Hλ(Ω),

when f ∈ Hλ
0 (Ω) and λ+ α ≤ θ.

Definition. ω belongs to a Zygmund class Φβ, β > 0, if it is continuous,
non-negative, almost increasing and

d∫
h

(
h

t

)β
w(t)

t
dt ≤ cw(h),

The most general result we have for variable α(x) up to now is as follows

Theorem 17.2. Let α ∈ Lip(Ω) and

α(x) ≥ 0, max
x∈Ω

α(x) < min(θ,N),

If ω ∈ Φθ−α and
α(·)Iα ∈ Hλ(·)+α(·).

Then the operator
α(x)Iα

is bounded from the space Hω(·)(Ω) into the space Hωα(·)(Ω).
( This result was given in the preceding part for the case ω = hλ(x).)

Now, making use of the above arguments, we mayavoid the condition

αIα ∈ Hλ(·)+α(·)

on the set Ω, replacing it by the assumption that Ω has the α-property ( which
often holds, for instance for any domain in Rn.)

Theorem 17.3. Let
0 < α < θ

and Ω have the α-property. If ω ∈ Φθ−α, then

Iα : Hω
0 (Ω) → Hωα(Ω).

In particular, Iα is bounded from Hλ
0 (Ω) to Hλ+α(Ω) if λ+ α < θ.

Proof. We may adjust the proof from the above cited paper for our goals.
The key moment: for x, y ∈ Ω with d(x, y) < h we have

Iαf(x)− Iαf(y) =

∫
d(x,z)<2h

[f(z)− f(x)]d(x, z)α−Ndµ(z)
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−
∫

d(x,z)<2h

[f(z)− f(x)]d(y, z)α−Ndµ(z)

+

∫
d(x,z)>2h

[f(z)− f(x)]
{
d(x, z)α−N − d(y, z)α−N

}
dµ(z)

+f(x)

∫
Ω

{
d(x, z)α−N − d(y, z)α−N

}
dµ(z)

=: ∆1 +∆2 +∆3 +∆4

We need to take care of

∆4 = f(x)[JΩ,α(x)− JΩ,α(y)].

The term ∆4 is now estimated by means of Lemma 17.1. Note that assump-
tions of that lemma follow from the assumption ω ∈ Φθ−α. This completes the
proof. 2

18 The case of spatial and spherical fractional inte-

grals in Rn

18.1 Any domain in Rn possesses the α-property

We improve a result from
L. Diening and S. Samko. On potentials in generalized Hölder spaces over uni-
form domains in Rn. Revista Matematica Complutense, 24(2):357–373, 2011.
where it was shown that the α-property holds for uniform domains.

Thus we show that the validity of the α-propertydoes not depend on the
structure of the boundary, at the least in the case of the Lebesgue measure.

Lemma 18.1. Every domain in Rn has the α-property, 0 < α < 1.

Theorem 17.3 and Lemma 18.1 yield the following statement (Hardy-Littlewood
type multidimensional result).

Theorem 18.2. Let Ω be an arbitrary bounded domain in Rn, let f ∈ Hω(Ω)
and

f
∣∣
x∈∂Ω ≡ f0 = const.

If ω(h) satisfies the assumptions of Theorem 17.3, then the fractional integral
IαΩf, 0 < α < 1, has the following structure

IαΩf(x) = f0a(x) + Af(x), x ∈ Ω,
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where A is an operator bounded from Hω(Ω) to Hωα(Ω), while the function

a(x) = JΩ,α(x)

is Lipschitz beyond the boundary ∂Ω and its Hölder properties near the bound-
ary are described by the condition

|a(x)− a(y)| ≤ c
|x− y|

max{δ(x), δ(y)}1−α

18.2 The case of spherical fractional integrals over caps

Now let Ω be an arbitrary surface domain on the unit sphere

X = Sn−1 = {σ = (σ1, ..., σn) : |σ| = 1}

in Rn, we will call it
spherical cap.

The subsequente application of Theorem 17.3 is inspired by some applica-
tions of spherical harmonic analysis to a problem of aerodynamics given in
N. Plakhov and S. Samko. An inverse problem of Newtonian aerodynamics.
Math. Engin. Sci. and Aerospace, 1(4):351–369, 2010.

The corresponding fractional integral in that paper was

IαΩf(ξ) =
∫

Sn−1
+

f(σ) dσ

|ξ − σ|n−1−α
, ξ ∈ Ω, (18.1)

over a semisphere.

Lemma 18.3. Every spherical cap has the α-property, with respect to the
potential (18.1), 0 < α < 1.

Proof. Reduce to the case of domains in Rn via the stereographic projection
2

In view of Lemma 18.3, similarly to the previous subsection, from Theorem
17.3 we obtain that the same mapping properties remain validfor the spherical
fractional integral over any spherical cap on Sn−1.
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