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Motivation

Texture analysis is the analysis of the statistical distribution of
orientations of crystals within a specimen of a polycrystalline material,
which could be metals or rocks. The crystallographic orientation g of
an individual crystal is the active rotation g ∈ SO(3) that maps a
co-ordinate system fixed to the specimen onto another co-ordinate
system fixed to the crystal.
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Orientation density function

The orientation distribution by volume ∆Vg requires a measure of the
volume portion ∆Vg

V of total volume V carrying crystal gains with
orientations within a volume element ∆G ⊂ G of the subgroup G of all
feasible G ∈ SO(3).

∆Vg
V
→ f(g) dg
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Goniometer

classical goniometer 4-circle-goniometer
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Pole density function

odf cannot be directly measured,
only pole density functions (pdf) P (h, r) can be sampled,
let be

(Rf)(h, r) = 4π
∫
{g∈SO(3):h=gr}

f(g) dg

= 4π
∫
SO(3)

f(g)δr(g−1h)dg = (f ∗ δr),

it represents that a fixed crystal direction h statistically coincides
with the specimen direction r
Due to Friedel’s law which says that the X-ray cannot distinguish
between the top and the bottom of the lattice planes, we are only
able to measure a mean value which correspondence to a
negligence of the orientation on SO(3), i.e. the pdf

P (h, r) = 1
2 ((Rf)(h, r) + (Rf)(−h, r)) .
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Crystallographic Radon transform

Problem (Analytic reconstruction problem)
Reconstruct the ODF f(g), g ∈ SO(3), from all pole figures
P (h, r), h, r ∈ S2. Because f(g) is an ODF we have two additional
conditions:
1. f(g) ≥ 0, i.e. f is non-negative,
2.
∫
SO(3) f(g)dg = 1.

Problem (Totally geodesic Radon transform on SO(3))
Reconstruct f(g), g ∈ SO(3), from all R(h, r), h, r ∈ S2.
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Crystallographic Radon transform

Radon-Transformation

(Rf)(h, r) :=
∫
{g∈SO(3):gh=r}

f(g) dg

=
∫
SO(3)

f(g) δh(g−1r) dg = f ∗ δh, r

=
∫
SO(2)

f(rlh−1)dl,

because a great circle Ch,r can be described that way.
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Let Ĝ denote the set of all equivalence classes of irreducible
representations. Then this set parametrerizes an orthogonal
decomposition of L2(G ).

Theorem (Peter-Weyl)
Let G be a compact Lie group. Then the following statements are true.

Denote Hπ = {g 7→ trace(π(g)M) : M ∈ Cdπ×dπ}. Then the
Hilbert space L2(G ) decomposes into the orthogonal direct sum

L2(G ) =
⊕
π∈Ĝ

Hπ

For each irreducible representation π ∈ Ĝ the orthogonal projection
L2(G )→ Hπ is given by

f 7→ dπ

∫
G
f(h)χπ(h−1g) dh = dπ f ∗ χπ,

in terms of the character χπ(g) = trace(π(g)) of the representation
and dh is the normalized Haar measure.
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the matrix M in the equation f ∗ χπ = trace(π(g)M) are the
Fourier coefficient f̂(π) of f at the irreducible representation π.
f̂(π) =

∫
G f(g)π∗(g) dg

inversion formula (the Fourier expansion)
f(g) =

∑
π∈Ĝ dπ trace(π(g)f̂(π))

If we denote by ||M ||2HS = trace(M∗M) the Frobenius or
Hilbert-Schmidt norm of a matrix M, then the following Parseval
identity is true.

Lemma (Parseval identity)
Let f ∈ L2(G ). Then the matrix-valued Fourier coefficients f̂ ∈ Cdπ×dπ
satisfy

||f ||2 =
∑
π∈Ĝ

dπ ||f̂(π)||2HS .
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Definition
Let H be a subgroup of the compact Lie group G . The Radon
transform R of an integrable function f on G is defined by

Rf(x, y) =
∫

H
f(xhy−1) dh, x, y ∈ G , (1)

where dh denotes the normalized Haar measure on H .

Lemma (B./Ebert/Pesenson - 2012)
The Radon transform (1) is invariant under right shifts of x and y,
hence the range is a subset of G /H × G /H .

Theorem (B./Ebert/Pesenson - 2012)
Let H be a subgroup of G which determines the Radon transform on G
and let Ĝ1 ⊂ Ĝ be the set of irreducible representations with respect to
H . Then for f ∈ C∞(G ) we have

||R||2L2(G /H ×G /H ) =
∑
π∈Ĝ1

rank (πH )||f̂ ||2HS .
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Hilbert space structure

We want to find a Hilbert space structure such that the Radon
transform is an isometry, which means that

||f ||2L2(G ) =
∑
π∈Ĝ

dπ||f̂(π)||2HS∑
π∈Ĝ

dπ||f̂(π)||2L2(G /H ×G /H ) = |||Rf |||2L2(G /H ×G /H )

Lemma (Taylor, 1986)
IfM is a compact rank one symmetric space, then G acts irreducibly on
each eigenspace Vλ of ∆ onM.

Examples of such compact rank one symmetric spaces are

G = SO(n+ 1), M = Sn,

G = SU(n+ 1), M = CPn(complex projective plane ).
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Definition
A representation l(g) is called a representation of class-1 relative to H
if in its space there are nonzero vectors invariant relative to H and the
restriction of l(g) to H is unitary.

Lemma
IfM = G /H is a rank one symmetric space, with H connected, than
L2(M) contains each class-1 representation, exactly once, as an
eigenspace of ∆.

Summer School S. Bernstein
Radon transform and wavelets

Applied Analysis
TU Bergakademie Freiberg 12



Spherical harmonics and Wigner polynomials

orthonormal system of spherical harmonics
Y ik ∈ C∞(Sn), k ∈ N0, i = 1, . . . , dk(n) normalized with respect
to the Lebesgue measure on Sn.
Then the Wigner polynomials on SO(n+ 1)
T ijk (g), g ∈ SO(n+ 1) are given by

T ijk (g) =
∫
Sn
Y ik(g−1x)Yjk(x) dx

Y ik(g−1x) =
dk(n)∑
j=1
T ijk (g)Yjk(x).

Wigner polynomials build an orthonormal system in L2(SO(n+ 1)).
Unfortunately, Wigner polynomials do not give all irreducible
unitary representations of SO(n+ 1) if n ≥ 2.
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Projections

We look for all representations of SO(n+ 1) which do not have
vanishing coefficients under the projection with respect to SO(n), these
are the class-1 representations of SO(n+ 1):∫

SO(n)
T ijk (g) dg =

∫
Sn

∫
SO(n)

Y ik(g−1x) dg Yjk(x) dx

= Y ik(x0)
C(n−1)/2
k

∫
Sn
C(n−1)/2
k (xT0 x)Y ik(x) dx (zonal averaging)

= Y
i
k(x0)Yjk(x0)

(C(n−1)/2
k (1))2

|Sn|
∫ 1

−1
(C(n−1)/2
k (t))2(1− t2)n/2−1 dt

(Funk-Hecke formula)

= |Sn|
dk(n)Y

i
k(x0)Yjk(x0).

x0 is the base point of SO(n+ 1)/SO(n) ∼ Sn, C(n−1)/2
k are the

Gegenbauer polynomials.
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Radon transform from span(Tk) into Sn × Sn

Let be

f(g) =
∞∑
k=0

dk(n)∑
i,j=1

f̂(k)ijT ijk .

then

(Rf)(h, r) =
∞∑
k=0

dk(n)trace (f̂(k)Tk(h)πSO(n)T ∗k (r))

=
∞∑
k=0

dk(n)
dk(n)∑
i,j=1

f̂(k)ijT i1k (h)T 1j
k (r)

=
∞∑
k=0

|Sn|
dk(n)dk(n)

dk(n)∑
i,j=1

f̂(k)ijY ik(h)Yjk(r)

= |Sn|
∞∑
k=0

dk(n)∑
i,j=1

f̂(k)ijY ik(h)Yjk(r)
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Mapping properties

∆h(Rf) = ∆r(Rf)
For g = Rf the Fourier coefficients fulfill ĝ(k)ij = |Sn|f̂(k)ij

The crystallographic Radon transform maps Wigner poynomials, i.e.
span (Tk), onto span (Y ikY

j
k).
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The case SO(3)

Lemma (Taylor, 1986)
The decomposition

L2(S2) =
⊕
k

Vk

contains each irreducible unitary representation of SO(3), exactly once.
Choosing G = SO(3), H = SO(2) and thus
G /H = SO(3)/SO(2) = S2, all irreducible representations are
equivalent to an irreducible component of the left regular representation

T (g) : f(x) 7→ f(g−1 · x),
where · denotes the canonical action of SO(3) on S2. The T invariant
subspaces of L2(S2) are Hk = {Y ik, i = 1, . . . , 2k + 1}, which are
spanned by all spherical harmonics of degree k. The dimension of the
representations space is dk = 2k + 1 and −λ2

k = −k(k + 1) we get
dk =

√
1 + 4λ2

k and
√
dk = 4

√
(2(λ2

k + λ2
k) + 1).
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Hilbert space structure

Parseval’s identity

||f ||2L2(SO(3)) =
∞∑
k=1

(2k + 1)||f̂(k)||2HS .

Because of ∆ on S2 is equal to −k(k + 1) on the representation space
= eigenspace Hk of the Laplacian we obtain

=
∞∑
k=1

(2k+1)||4πf̂(k)||2L2(S2×S2) = ||4π(−2(∆1+∆2)+1)1/4Rf ||2L2(S2×S2),

where ∆1 + ∆2 is a Laplace operator on S2 × S2. Thus we define the
following norm for u ∈ C∞(S2 × S2)

|||u|||2 = (4π)2((−2∆S2×S2 + 1)1/2u, u)L2(S2×S2),

where ∆S2×S2 = ∆1 + ∆2.
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Sobolev spaces

Definition
The Sobolev space Ht(S2 × S2), t ∈ R, is defined as the domain of the
operator (1− 2∆S2×S2)

t
2 with graph norm

||f ||t = ||(1− 2∆S2×S2)
t
2 f ||L2(S2×S2), f ∈ L2(S2 × S2).

The Sobolev space H∆
t (S2 × S2), t ∈ R, is defined as the subspace of

all functions f ∈ Ht(S2 × S2) such ∆1f = ∆2f.

Definition
The Sobolev space Ht(SO(3)), t ∈ R, is defined as the domain of the
operator (1− 4∆SO(3))

t
2 with graph norm

|||f |||t = ||(1− 4∆SO(3))
t
2 f ||L2(SO(3)), f ∈ L2(SO(3)).
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Theorem (Range description, B./Ebert/Pesenson, 2012)
For any t ≥ 0 the Radon transform on SO(3) is an invertible mapping

R : Ht(SO(3))→ H∆
t+ 1

2
(S2 × S2). (2)

Proof: It is sufficient to consider case t = 0.
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Grouptheoretical approach

Wavelets are coherent states.
Consider the affine group of translations and dilations acting on the real
line. LetM be a Riemannian manifold. A wavelet transform in L2(M)
is defined in terms of an unitary representation U of Lie group G

U : G → L(L2(M)).

A non-zero vector Ψ ∈ L2(M) is an admissible wavelet if∫
G
|〈f, U(g)Ψ〉L2(M)|2 dg <∞

for all f ∈ L2(M). The associated wavelet transform is

Wf(g) = 〈f, U(g)Ψ〉L2(M)

bounded and invertible on its range.
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Grouptheretical approach – drawbacks

Because L2(M) is infinite dimensional, no compact group admits
an irreducible unitary representation of this form.
However, compact groups seem natural at least in the situation
whereM itself is a homogeneous space of a compact group. For
example S2 = SO(3)/SO(2).
Spheres: Irreducible representation of that form are not square
integrable and hence one cannot find an admissible wavelet.

Summer School S. Bernstein
Radon transform and wavelets

Applied Analysis
TU Bergakademie Freiberg 22



Alternative approaches

Classical wavelet theory (in Rn) is based on the group generated by
translations and dilations.
Translations on a sphere (seen as a homogeneous space of rotations) are
rotations.
What are dilations?
Key idea: generate dilations from a diffusive semigroup, e.g., from
time-evolution of solutions to a heat equation on a homogeneous space.
W. Freeden, T. Gervens, and M. Schreiner, Constructive Approximation on the
Sphere with Applications to Geomathematics, Oxford Univ. Press, Oxford, 1999.

Discrete wavelet transforms in such a setting:

R. Coifman, M. Maggioni, Diffusion wavelets, Appl. Comp. Harm. Anal. 21(1):53-94,
2006.
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Diffusive wavelets – General philosophy

Let pt ∈ L1(G) be an approximate convolution identity, i.e. ϕ ∗ pt → ϕ
as t→ 0 for all ϕ ∈ L2(G).
Assign families ψρ,Ψρ ∈ L1(G) to pt such that

pt =
∫ ∞
t

ψ̌ρ ∗Ψρ α(ρ) dρ.

We assign to ϕ a two-parameter function Wϕ, the Wavelet transform
ϕ(g) 7→Wϕ(ρ, g),

Wϕ(ρ, g) = ϕ ∗ ψ̌ρ =
∫
G
ϕ(h)ψ̌ρ(h−1g) dµG(h) = 〈ϕ, Tgψρ〉,
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Diffusive wavelets – General philosophy

and the inversion formula

ϕ =
∫ ∞
→0

Wϕ(ρ, ·) ∗Ψρ α(ρ) dρ = ϕ ∗
∫ ∞
→0

ψ̌ρ ∗Ψρ α(ρ) dρ.

Of interest are in particular those for which the operator ∗∂tpt is
positive. Then the corresponding Fourier coefficients are positive
matrices and the choice ψρ = Ψρ seems reasonable.
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Diffusive approximate identity

Definition
Let Ĝ+ ⊂ Ĝ be cofinite. A family t→ pt from C1(R+;L1(G)) will be
called diffusive approximate identity with respect to Ĝ+ if it satisfies

||p̂t(π)|| ≤ C uniform in π ∈ Ĝ+ and t ∈ R+;
limt→0 p̂t(π) = I for all π ∈ Ĝ+;
limt→∞ p̂t(π) = 0 for all π ∈ Ĝ+;
−∂tp̂t(π) is a positive matrix for all t ∈ R+.
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Diffusive wavelets on a compact Lie group

Definition
Let pt be a diffusive approximate identity and α(ρ) > 0 a given weight
function.
A family ψρ ∈ L2

0(G) =
⊕
π∈Ĝ+

Hπ is called diffusive wavelet family, if
it satisfies the admissibility condition

pt|Ĝ+
=
∫ ∞
t

ψ̌ρ ∗ ψρ α(ρ) dρ.

This equation can be solved explicitely. Applying Fourier transform to
both sides and by differentiating both sides yields

−∂tp̂t(π) = ψ̂ρ(π)ψ̂∗ρ(π)α(ρ).
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Heat wavelet family

If pt is the heat kernel we get

ψ̂ρ(π) = 1√
α(ρ)

λπe
−ρλ2

π/2ηπ(ρ)

for any (fixed) choice of a family ηπ(ρ) ∈ U(dπ). This implies

ψρ = 1√
α(ρ)

∑
π∈Ĝ

dπλπe
−ρλ2

π/2 trace (π(g)ηπ(ρ)).

The weight function α(ρ) can be used to normalize the family ψρ.

α(ρ) = −∆Gpρ(1),

where pρ(1) is just the heat trace on G.
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Diffusive wavelets on homogeneous spaces G/H

We have two options to construct wavelets on homogeneous spaces:
The naive way: We apply the wavelet transform to the lifted function
ϕ̃(g) = ϕ(g · x0) with base-point x0 ∈ X = G/H for some ϕ ∈ L2(X).
This defines a function on R+ ×G via

Wϕ̃(ρ, g) =
∫
G
ϕ̃(h)ψ̌ρ(h−1g) dµG(h) =

∫
G
ϕ(h · x0)ψ̌ρ(h−1g) dµG(h)

But we would prever to have a transform living on R+ ×X instead of
R+ ×G.
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Diffusive wavelets on homogeneous spaces X = G/H

Let pt be a diffusive approximate identity and α(ρ) > 0 be a given weight function. A
family ψρ ∈ L2(X) is called a diffusive wavelet family if the admissibility condition

pXt (x)
∣∣
Ĝ+

=
∫ ∞
t

ψρ•̂ψρ(x)α(ρ) dρ

is satiesfied. We associate to this family the wavelet transform

WXϕ(ρ, g) = ϕ • ψρ(g) =
∫
X

ϕ(x)ψ(g−1 · x) dx

with inverse given as

ϕ̃ =
∫ ∞
→0

WXϕ(ρ, ·) ∗ ψ̃ρ α(ρ) dρ for all ϕ ∈ L2
0(X).

ϕ ∗ ψ(x) =
∫
G
ϕ(g · x0)ψ(g−1 · x) dµg ∈ L1(X), ϕ̃ ∗ ψ = ϕ̃ ∗ ψ̃

ϕ•̂ψ(x) =
∫
X
ϕ(g · x0)ψ(g · x) dµg = 〈ϕ, Tgψ〉 ∈ L1(G), ϕ•̂ψ = ˇ̃ϕ ∗ ψ̃,

ϕ • ψ(g) =
∫
X
ϕ(x)ψ(g−1 · x) dx ∈ L1(X), ϕ • ψ = ϕ̃ ∗ ˇ̃ψ.
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Crystallographic Radon transform

Theorem (Wavelets from wavelets)
Let {Ψρ, ρ > 0} be a family of class type wavelets (ηρ(π) = I) on
SO(3), then the family of function {RΨρ(x, .), ρ > 0, x ∈ S2fixed}
defines a family of zonal wavelets on S2.

If we make a non-trivial choice ηρ(π) 6= 0, we obtain non-zonal wavelets.
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The end

Thank you for your attention!
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