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Bernstein spaces

Definition

Bp
σ for σ > 0, 1 ≤ p ≤ ∞, is the Bernstein space of all entire

functions f : C→ C that belong to Lp(R) when restricted to the
real axis as well as are of exponential type σ, i. e.,

f (z) = Of
(
exp(σ| Im z |)

)
(|z | → ∞).

There holds

B1
σ ⊂ Bp1

σ ⊂ Bp2
σ ⊂ B∞σ (1 ≤ p1 ≤ p2 ≤ ∞).

Whittaker-Kotel’nikov-Shannon sampling theorem (CST)

Theorem (Whittaker 1915, Kotel’nikov 1933, Shannon 1950)

For f ∈ B2
σ with σ > 0 we have

f (z) =
∑
k∈Z

f
(kπ
σ

)
sinc

σ

π

(
z − kπ

σ

)
(z ∈ C),

convergence being absolute and uniform on compact subsets of C,
and with respect to L2(R)-norm.

sinc z :=

{
sinπz
πz , z 6= 0

1, z = 0.



Proof of the classical sampling theorem

Assume σ = π, and f ∈ B2
τ with 0 < τ < π rather than to f ∈ B2

π.
Consider the contour integral

Im(z) :=
sinπz
2πi

∫
Cm

f (ξ)

(ξ − z) sinπξ
dξ (z /∈ Z),

where Cm is the square of side length 2m + 1, centered at the
origin, and m ∈ N is chosen so large that z ∈ int Cm.
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Proof of the classical sampling theorem, continued

The integral can be evaluated by the residue theorem to give

Im(z) =
sinπz
2πi

∫
Cm

f (ξ)

(ξ − z) sinπξ
dξ = f (z)−

m∑
k=−m

f (k) sincπ(z−k),

noting that

res
(

f (ξ)

(ξ − z) sinπξ
, z
)

=
1

sinπz
f (z),

res
(

f (ξ)

(ξ − k) sinπξ
, k
)

=
1

sinπz
f (k) sincπ(z − k).

Proof of the classical sampling theorem, continued

Using the estimate∣∣∣∣ f (ξ)

sinπξ

∣∣∣∣ ≤ c
exp(τ | Im ξ|)
exp(π| Im ξ|) = c exp

(
(τ − π)| Im ξ|

)
(|ξ| ∈ Cm),

one can show that

0 = lim
m→∞

Im(z) = f (z)− lim
m→∞

m∑
k=−m

f (k) sincπ(z − k).

This is the sampling theorem for f ∈ B2
τ with 0 < τ < π. By a

density argument, the same formula holds in the limiting case
τ = π.
Finally, for f ∈ B2

σ with arbitrary σ > 0 the assertion follows by a
linear transformation.

Reproducing kernel formula (RKF)

Theorem

For f ∈ B2
σ we have

f (z) =
σ

π

∫
R

f (u) sinc
(σ
π

(z − u)
)
du (z ∈ C).

This means that B2
σ is a reproducing kernel Hilbert space, i. e.,

there exists a kernel function k(·, z) which belongs to B2
σ for each

z ∈ C, such that

f (z) =
〈
f (·), k(·, z)

〉
(z ∈ C).



General Parseval formula (GPF)

Theorem

For f , g ∈ B2
σ we have∫

R
f (u)g(u) du =

π

σ

∑
k∈Z

f
(kπ
σ

)
g
(kπ
σ

)
.

Corollary

For f ∈ B2
σ there holds

‖f ‖2L2(R) =
π

σ

∑
k∈Z

∣∣∣f (kπ
σ

)∣∣∣2.

Poisson’s summation formula (particular case) (PSF)

Theorem

For f ∈ B1
σ we have∫

R
f (t) dt =

2π
σ

∑
k∈Z

f
(2kπ
σ

)
.

In B1
σ the trapezoidal rule for integration over R with step size

2π/σ is exact .

Paley-Wiener theorem (PWT)

Theorem

f ∈ B2
σ =⇒ f̂ (v) :=

1√
2π

∫
R

f (u)e−ivu du = 0
(
|v | > σ

)
.

The converse is also true. It follows immediately from the Fourier
inversion formula:

f (z) :=
1√
2π

∫ σ

−σ
f̂ (v)e izv dv (z ∈ C).

The equivalences between the theorems mentioned

RKF

GPF CST PSF

PWT

⇐
⇒

⇐⇒ ⇐⇒

⇐
⇒

CST = Classical sampling theorem

RKF = Reproducing kernel formula

GPF = General Parseval formula

PSF = Poisson’s summation formula

PWT = Paley-Wiener theorem



Proof of CST =⇒ PWT

We restrict the matter to σ = π, the general case follows by a
linear transformation.

We have to show: CST =⇒ f̂ (v) = 0, |v | > π, for all f ∈ B2
π.

f (t) =
∑
k∈Z

f (k) sinc(t − k) in L2(R)

=⇒ f̂ (v) =
∑
k∈Z

f (k)[sinc(· − k)]̂(v)

=
( 1√

2π

∑
k∈Z

f (k)e−ikv
)
χ[−π,π](v)

=⇒ f̂ (v) = 0 for |v | > π.

Proof of PWT =⇒ CST

We show: f̂ (v) = 0 outside [−π, π] for all f ∈ B2
π =⇒ CST.

∥∥∥f (t)−
∑
|k|≤n

f (k) sinc(t − k)
∥∥∥

L2(R)

=
∥∥∥f̂ (v)−

( 1√
2π

∑
|k|≤n

f (k)e−ikv
)
χ[−π,π](v)

∥∥∥
L2(R)

=
∥∥∥f̂ (v)− 1√

2π

∑
|k|≤n

f (k)e−ikv
∥∥∥

L2(−π,π)

=
∥∥∥f̂ (v)− 1√

2π

∑
|k|≤n

f (−k)e ikv
∥∥∥

L2(−π,π)
.

Proof of PWT =⇒ CST, continued

f (−k) =
1√
2π

∫ π

−π
f̂ (v)e−ikv dv (Fourier inversion formula)

=⇒ 1√
2π

∑
k∈Z

f (−k)e ikv is the trigonometric Fourier series of

f̂ ∈ L2(−π, π), which converges in L2(−π, π) towards f̂

=⇒ lim
n→∞

∥∥∥f (t)−
∑
|k|≤n

f (k) sinc(t − k)
∥∥∥

L2(R)

= lim
n→∞

∥∥∥f̂ (v)− 1√
2π

∑
|k|≤n

f (−k)e ikv
∥∥∥

L2(−π,π)
= 0.

1 The bandlimited case
Classical sampling theorem
Reproducing kernel formula
General Parseval formula
Poisson’s summation formula (particular case)
Paley-Wiener theorem

2 The non-bandlimited case
Approximate sampling theorem
General reproducing kernel formula
General Parseval decomposition formula
Poisson’s summation formula (general case)
Euler-Maclaurin summation formula
Functional equation for Riemann’s zeta-function

3 The equivalence of the bandlimited and non-bandlimited case



Equivalent assertions in the instance of non-bandlimited
functions

Instead of the Bernstein spaces Bp
σ we now consider the following

function spaces:

F p :=
{
f : R→ C ; f ∈ Lp(R) ∩ C (R), f̂ ∈ L1(R)

}
Sp
λ :=

{
f : R→ C ;

{
f (λk)

}
k∈Z ∈ `

p(Z)
}

(λ > 0).

There holds Bp
σ ⊂ F p ∩ Sp

λ for all σ, λ > 0 in view of Nikol’skĭı’s
inequality:{

λ
∑
k∈Z
|f (λk)|p

}1/p

≤ (1 + λσ)‖f ‖Lp(R) (f ∈ Bp
σ).

More details in Part 2.

Theorem (Weiss 1963, Brown 1967, Butzer-Splettstößer 1977)

Let f ∈ F 2 ∩ S2
π/σ with σ > 0. Then

f (t) =
∑
k∈Z

f
(kπ
σ

)
sinc

(σ
π

t − k
)

+ (RWKS
σ f )(t) (t ∈ R).

The series converges absolutely and uniformly on R.
We have

(RWKS
σ f )(t) :=

1√
2π

∑
k∈Z

(
1− e−i2ktσ) ∫ (2k+1)σ

(2k−1)σ
f̂ (v) e ivt dv

∣∣(RWKS
σ f )(t)

∣∣ ≤√ 2
π

∫
|v |≥σ

|f̂ (v)| dv = o(1) (σ →∞).

General reproducing kernel formula (GRKF)

Theorem (extended, Butzer et al. 2011)

Let f ∈ F 2 ∩ S2
σ/π, σ > 0. Then

f (t) =
σ

π

∫
R

f (u) sinc
(σ
π

(t − u)
)
du + (RRKF

σ f )(t) (t ∈ R),

(RRKF
σ f )(t) :=

1√
2π

∫
|v |>σ

f̂ (v)e itv dv .

Furthermore,∣∣(RRKF
σ f (t)

∣∣ ≤ 1√
2π

∫
|v |>σ

∣∣f̂ (v)
∣∣ dv = o(1) (σ →∞).

General Parseval decomposition formula (GPDF)

Theorem (Butzer–Gessinger 1995/97)

Let f ∈ F 2 ∩ S1
π/σ and g ∈ F 2. Then for σ > 0∫

R
f (u)g(u) du =

π

σ

∑
k∈Z

f
(π
σ

k
)
g
(π
σ

k
)

+ Rσ(f , g) ,

Rσ(f , g) =

∫
R

(RWKS
σ f )(u)g(u) du

−
√
π

2
1
σ

∑
k∈Z

f
(kπ
σ

)∫
|v |≥σ

ĝ(v) e ikπv/σ dv .

∣∣Rσ(f , g)
∣∣ ≤ ‖RWKS

σ f ‖L2‖g‖L2+

√
π

2
1
σ

∑
k∈Z

∣∣∣f (kπ
σ

)∣∣∣ ∫
|v |>σ

∣∣ĝ(v)
∣∣ dv .



Poisson’s summation formula (general case) (PSF)

Theorem

Let f ∈ F 1 such that f̂ ∈ S1
σ, then

√
2π
σ

∑
k∈Z

f
(
x +

2kπ
σ

)
=
∑
k∈Z

f̂ (kσ)e ikσx (a. e.).

Euler-Maclaurin summation formula (EMSF)

Theorem

For n, r ∈ N and f ∈ C (2r)[0, n], we have

n∑
k=0

f (k) =

∫ n

0
f (x) dx +

+
1
2
[
f (0) + f (n)

]
+

r∑
k=1

B2k

(2k)!

[
f (2k−1)(n)− f (2k−1)(0)

]
+

+ (−1)r
∞∑

k=1

∫ n

0

e i2πkt + e−i2πkt

(2πk)2r f (2r)(t) dt ,

where B2k are the Bernoulli numbers.

Functional equation for Riemann’s zeta-function (FERZ)

Definition

ζ(s) :=
∞∑

k=1

1
ks (s ∈ C,Re s > 1).

ζ has a meromorphic extension to C \ {1}. At s = 1 it has a simple
pole with residue 1.

Theorem

π−s/2 Γ
( s
2

)
ζ(s) = π−(1−s)/2 Γ

(1− s
2

)
ζ(1− s) (s ∈ C).

The equivalences in the non-bandlimited case

GRKF

GPDF AST PSF FERZ

EMST APSF

⇐
⇒

⇐⇒ ⇐⇒ ⇐⇒

⇐
⇒

⇐⇒

AST = Approximate sampling theorem

ARKF = Approximate reproducing kernel formula

GPDF = General Parseval decomposition formula

PSF = Poisson’s summation formula

FERZ = Functional equation for Riemann’s zeta-function

EMSF = Euler-Maclaurin summation formula

APSF = Abel-Plana summation formula



Equivalence of the bandlimited and non-bandlimited case

RKF

GPF CST PSF

PWT

⇐
⇒

⇐⇒ ⇐⇒
⇐
⇒ GRKF

GPDF AST PSF FERZ

EMST APSF
⇐
⇒

⇐⇒ ⇐⇒ ⇐⇒

⇐
⇒

⇐⇒

⇐=================⇒

Proof of AST =⇒ CST

We restrict the matter to σ = π, the general case follows by a
linear transformation.

Identity theorem for bandlimited functions:
If f ∈ Bp

π , 1 ≤ p <∞, with f (j) = 0, j ∈ Z, then f = 0.

Idea of proof: Use

f (z) = Of
(
exp(π| Im z |)

)
(|z | → ∞)

to show that the entire function f (z)/sin(πz) is bounded. By
Liouville it follows that f (z)/sin(πz) = const. Hence

f (z) = c sin(πz) (z ∈ C).

Since f ∈ Bp
π , 1 ≤ p <∞, the constant must be zero.

Proof of AST =⇒ CST, continued

Now assume that f ∈ B2
π. Then ASF applies:

f (t) =
∑
k∈Z

f (k) sinc(t − k) + (RWKS
π f )(t) (t ∈ R),

(RWKS
π f )(t) :=

1√
2π

∑
k∈Z

(
1− e−i2ktπ) ∫ (2k+1)π

(2k−1)π
f̂ (v) e ivt dv .

Here f , the infinite series and hence the remainder belong to B2
π.

Moreover, the remainder vanishes for t = j ∈ Z. In view of the
identity theorem, it follows that the remainder vanishes for all
t ∈ R, i. e., AST reduces to CST.

Proof of CST =⇒ AST

Let Sg(t) :=
∑

k∈Z g(k) sinc(t − k). We have to prove:

f (t) = Sf (t) +
1√
2π

∑
k∈Z

(
1− e−i2ktπ) ∫ (2k+1)π

(2k−1)π
f̂ (v) e ivt dv︸ ︷︷ ︸

=(RWKS
π f )(t)

.

By the Fourier inversion formula

f (t) =
1√
2π

∫ π

−π
f̂ (v)e itv dv+

1√
2π

∫
|v |>π

f̂ (v)e itv dv =: f1(t)+f2(t).

Now f1 ∈ B2
π and hence f1 = Sf1 by CST. It follows that

f = Sf1 + f2 = S(f1 + f2) + {f2 − Sf2} = Sf + {f2 − Sf2}
We have to show that

RWKS
π f = f2 − Sf2.



Proof of CST =⇒ AST, continued

(RWKS
π f )(t) :=

1√
2π

∑
k∈Z

(
1− e−i2ktπ) ∫ (2k+1)π

(2k−1)π
f̂ (v) e ivt dv

=
1√
2π

∫
|v |>π

f̂ (v)e ikv dv − 1√
2π

∑
k∈Z

∫ (2k+1)π

(2k−1)π
f̂ (v) e it(v−2kπ) dv

= f2(t)− 1√
2π

∫
|v |>π

f̂ (v)
[
e ivt]∗dv ,

where [e ivt ]∗ denotes the 2π-periodic extension of v 7→ e ivt from
(−π, π) to R.

Proof of CST =⇒ AST, continued

Expanding [e ivt ]∗ in its Fourier series gives

(RWKS
π f )(t) = f2(t)− 1√

2π

∫
|v |>π

f̂ (v)
[
e ivt]∗dv

= f2(t)− 1√
2π

∫
|v |>π

f̂ (v)
{∑

k∈Z
sinc(t − k)e ikv

}
dv

= f2(t)−
∑
k∈Z

sinc(t − k)
1√
2π

∫
|v |>π

f̂ (v)e ikv dv︸ ︷︷ ︸
f2(k)

= f2(t)− Sf2(t).

Interchange of summation and integration is valid, since the partial
sums

∑N
−N sinc(t − k)e ikv are uniformly bounded with respect to

v ∈ R and N ∈ N.
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