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Bernstein spaces

Definition

BP for 0 >0, 1 < p < oo, is the Bernstein space of all entire
functions f: C — C that belong to LP(R) when restricted to the
real axis as well as are of exponential type o, i.e.,

f(z) = Of(exp(c]| Im z|)) (|z] = o0).

There holds

BicBPrcBP2cCBX (1<p <p< o).

@ The bandlimited case
@ Classical sampling theorem
@ Reproducing kernel formula
@ General Parseval formula
@ Poisson’s summation formula (particular case)
o Paley-Wiener theorem

© The non-bandlimited case
@ Approximate sampling theorem
@ General reproducing kernel formula
@ General Parseval decomposition formula
@ Poisson’s summation formula (general case)
@ Euler-Maclaurin summation formula
@ Functional equation for Riemann's zeta-function

© The equivalence of the bandlimited and non-bandlimited case

Whittaker-Kotel'nikov-Shannon sampling theorem (CST)

Theorem (Whittaker 1915, Kotel'nikov 1933, Shannon 1950)

For f € B2 with o > 0 we have

f2)=Y f(%”) sinc%(z _ g) (z € C),
k€EZ

convergence being absolute and uniform on compact subsets of C,
and with respect to L?(IR)-norm.

sin7rz’ z 0
sincz: =< ™ 7
1, z=0.



Proof of the classical sampling theorem Proof of the classical sampling theorem, continued

Assume o = 7, and f € B2 with 0 < 7 < 7 rather than to f € B2,

Consider the contour integral The integral can be evaluated by the residue theorem to give
sinz f(f) sin 7z f(é—) m
Im . A . d 7 s n —_ _ _ Z . _
) 2mi /Cm (§ = 2z)sinmg ¢ (z£2) Im(2) 2mi /c,,, (£ —z)sinm§ w=1) k=—m Fsiner(z=h)

where C,, is the square of side length 2m + 1, centered at the

origin, and m € N is chosen so large that z € intC,,. noting that
P f(S) 1
I res <(§—z) sin7r§’z> B sinwzf(z)’
e (&) 1 :
1 2|3 4 5 . res <(€—k)5|n7'r£’ k) = mf‘(k) SIhCTr(Z k)
Ca

Proof of the classical sampling theorem, continued Reproducing kernel formula (RKF)

Using the estimate

siifn(fr)f < CW =cexp ((r —m)|Im&|) (|| € Cm), For f € B2 we have
one can show that f(z)= %/Rf(u) sinc (%(z - u)) du (zeC).

m—00

0= lim I,(z) =f(z)— lim f(k)sincm(z — k).
() =Hz) m—>00 k_z_:m (k) ( ) This means that B2 is a reproducing kernel Hilbert space, i.e.,
there exists a kernel function k(-, z) which belongs to B2 for each

This is the sampling theorem for f € B2 with 0 < 7 < 7. By a z € C, such that
density argument, the same formula holds in the limiting case
T=. f(z) =(f().k(-,2)) (z2€C).

Finally, for f € B2 with arbitrary o > 0 the assertion follows by a
linear transformation. O



General Parseval formula (GPF) Poisson’s summation formula (particular case) (PSF)

For f,g € B2 we have

km\ kmy For f € B} we have
/f(u g(W)du=" Zf( ) ( )
T kez
€ /f ) dt = 27rzf(2k7r)
keZ
For f € B2 there holds In B} the trapezoidal rule for integration over R with step size

2w /o is exact .

|f”L2(R) Z‘ (kw)‘

keZ

Paley-Wiener theorem (PWT) The equivalences between the theorems mentioned

RKF
fe 82 — f(v): / f(u _’V”du: 0 (|v|> o). GPF | < | CST | < | PSF
()= = (11> ) GPF) : (PSF )
The converse is also true. It follows immediately from the Fourier PWT
inversion formula: CST = Classical sampling theorem
RKF = Reproducing kernel formula
f(z) = f(v)e’z" dv (z € Q). GPF = General Parseval formula

V27 J s

PSF = Poisson’s summation formula
PWT = Paley-Wiener theorem



Proof of CST = PWT Proof of PWT — CST

We restrict the matter to o = 7, the general case follows by a R
linear transformation. We show: f(v) = 0 outside [—m, 7] for all f € B2 = CST.

We have to show: CST — ?(v) =0, |v| >, forall f € B2.

F(t) = Y f(k)sinc(t — k) .

= f(K)sinc(t — k) in L*(R) ) |k3n1

) = —_ —ikv

keL = ||f(v) <\/2—W|Hz<:nf(k)e )X[_,m](v) s

= > F(k)lsinc(- — k)] (v) <

) —If v) — i —ikv

keZ ={|f(v) \/2?%: f(k)e -

( f _IkV>X—7r7r (V) <

\/E ; o —If 1 ikv
- ={|f(v) - \/ﬂklg f(—k)e e

= f(v) =0 for |v| > . O <

Proof of PWT = CST, continued

1
f(—k) = T f( )e = dv  (Fourier inversion formula)
1 .
— —— ) f(—k)e™" is the trigonometric Fourier series of
Vam ;Z

R ~ © The non-bandlimited case

f € L?(—m,7), which converges in L?(—x, ) towards f @ Approximate sampling theorem

@ General reproducing kernel formula

@ General Parseval decomposition formula

@ Poisson’s summation formula (general case)

— lim )f(t)— 3 f(K)sinc(t — k)

2 . .
e [k|<n L(®) @ Euler-Maclaurin summation formula
1 @ Functional equation for Riemann's zeta-function
= lim Hf(v) N f(—k)el ~0. O
n—00 V2T |k|z<:n L2(—m,m)



Equivalent assertions in the instance of non-bandlimited

functions Theorem (Weiss 1963, Brown 1967, Butzer-SplettstoRer 1977)

Let f € F2N Sfr/a with o > 0. Then
Instead of the Bernstein spaces BS we now consider the following

function spaces: _ kmy 4 WKS
) F(t) = %f(;) sinc (;t - k) + (RYSSF)(t)  (teR).
FP={f:R—C; felP(R)NC(R), f € L'(R)} ©
The series converges absolutely and uniformly on R.

SP= {f; R C; {f(AK)} ey € eP(Z)} (A > 0). We have
(2k+1)o
—12kt0' ivt
There holds BY ¢ FP N S? for all o, A > 0 in view of Nikol'skii’s (Re™F)(t) - \/_ Z ) / f(v) e dv
] ) A ez (2k—1)o
inequality:
1/p WKS 2 7
RYF)(t)| < —/ f(v)|dv =o(1 — 00).
DX irowr) <@ erniflom (<) (R N@I <2 [ FWldv=0) (o)
keZ )

More details in Part 2.

General reproducing kernel formula (GRKF) General Parseval decomposition formula (GPDF)

Theorem (Butzer-Gessinger 1995/97)

Theorem (extended, Butzer et al. 2011) Let f € F2 5;/0 and g € F2. Then foro >0

Let f € F2n Sg/ﬂ, o> 0. Then
f(t) = %/Rf(u)sinc (%(t—u))dw(RgKFf)(t) (t € R), /f Zf< ) ( )+R (f.8),
RKF ity RU(f’g) = (R;VKSf)(u)ﬁdu
(RI*FF)(t) \/g/‘/ba dv. /R
Furthermore, \/> Z k” |> ’\( )e iknv/o 4,
[(RE<“f(¢) (v)| dv = o(1) (0 — ).

2 /v o 1 k ~
e / [Ro(f. )| < HR;VKSfHLzHgHLH@; 3{ES] /| Jawla
keZ vi>o




Poisson’s summation formula (general case) (PSF) Euler-Maclaurin summation formula (EMSF)

Theorem

For n,r € N and f € C"[0, n], we have

. F(k) = / At
Let f € F! such that f € S}, then k=0 g
2km -~ ikox 1 £ £ - F(2k—1) £(2k-1)
Zf( ) =Y Flko)e*™ (a.e.). + 5 [F(0) + f(m)] + (2 )i = [FBF 1 () - (0)] +
keZ keZ k=1

127Tkt —i2mkt
Z te ;
/ - (erk)r e,

where By are the Bernoulli numbers.

Functional equation for Riemann's zeta-function (FERZ) The equivalences in the non-bandlimited case

Definition
(0.9]
((s):=)_ % (s € C,Mes > 1). (GPDF J¢&= [ AST | <= ( PSF | «=( Ferz |
k=1 ﬂ
¢ has a meromorphic extension to C\ {1}. At s =1 it has a simple —
pole with residue 1.

AST = Approximate sampling theorem

ARKF = Approximate reproducing kernel formula

GPDF = General Parseval decomposition formula

PSF = Poisson's summation formula
FERZ = Functional equation for Riemann's zeta-function
> (1 = S) (5 € (C) EMSF = Euler-Maclaurin summation formula

APSF = Abel-Plana summation formula

—5/2 r(g)C( 5) = o—(1-5)/2 l'(




Equivalence of the bandlimited and non-bandlimited case

RKF

!
(7r) = [cs7) = [Ps)

-\“

RKF
GPDF — [AsT]
I

(EmST | < [ APsF |

Proof of AST = CST, continued

Now assume that f € B2. Then ASF applies:

F(t) = f(k)sinc(t — k) + (RY*F)(t)  (tER),

keZ

(2k+1)m __ )
(RWKS)( (t \/7 Z 712kt7r / f(V) e/vt dv .
(

ke 2k—1)m

Here f, the infinite series and hence the remainder belong to Bfr.
Moreover, the remainder vanishes for t = j € Z. In view of the
identity theorem, it follows that the remainder vanishes for all

te R, i.e., AST reduces to CST. O

Proof of AST — CST

We restrict the matter to o = 7, the general case follows by a
linear transformation.

Identity theorem for bandlimited functions:
Iff € BE, 1< p<oo, withf(j)=0,j€Z, then f =0.
Idea of proof: Use

f(z) = Or(exp(r| Im z|)) (|z| = o0)

to show that the entire function f(z)/sin(rz) is bounded. By
Liouville it follows that f(z)/sin(rz) = const. Hence

f(z) = csin(rz) (z € C).

Since f € B?, 1 < p < 00, the constant must be zero.

Proof of CST = AST

Let Sg(t) := > iz &(k)sinc(t — k). We have to prove:

(2k+1)m __ )
f( ) Z 712kt7r / f(v) eVt dv .
kEZ (2k—1)w
=(RWKSF)(t)

By the Fourier inversion formula

1
f(t) \/% -7 \/g v|>7r

Now £ € B2 and hence f; = Sf; by CST. It follows that
f=Sh+h=5t+h)+{h—Sht="5+{hL—5hH}

We have to show that

" F(v)e dut e dv =: fi(t)+h(t).

RVESf — f, — Sf.



Proof of CST = AST, continued

Expanding [e™f]* in its Fourier series gives

Proof of CST = AST, continued

1

g RWKSf t) = H(t) — — T ivt *d
(RYKSF)(t) := 1 (1 — e 72ktm) /(2k+1) F(v) e dv (Re2F)(1) = (1) V27 Juon (v)[e"] dv
2\ = (2k—1)r
= f(t) - \/12? y ?(v){ Zsinc(t - k)eikv}dv
s v|i>T
/ /kv dv — 1 Z/(2k+l) /)E(V) eit(v—2k7r) dv ke
\/ﬂ lv|>m \/Q?kez (2k—1) ) ~ .
Zsmc (t—k)— f(v)e™ dv
kez \/7 V|>7ir .

= f(t) — — / )[e"]" dv, fo(K)
V2r S h(t) — Sh(t).

where [e"]* denotes the 27-periodic extension of v +— et from

Interchange of summation and integration is valid, since the partial
(—m,7) to R. s g ’ P

sums EIXN sinc(t — k)e* are uniformly bounded with respect to
veRand NeN. O
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