Basic relations valid for the Bernstein space B_{σ}^{2} and their extensions to functions from larger spaces in terms of their distances from B_{σ}^{2}
Part 1: Shannon's sampling theorem and further fundamental theorems of mathematical analysis in the bandlimited and non-bandlimited case

P. L. Butzer, G. Schmeisser, R. L. Stens

New Trends and Directions in Harmonic Analysis, Fractional Operator Theory, and Image Analysis

Summer School, Inzell, September 17-21, 2012

Outline

(1) The bandlimited case

- Classical sampling theorem
- Reproducing kernel formula
- General Parseval formula
- Poisson's summation formula (particular case)
- Paley-Wiener theorem
(2) The non-bandlimited case
- Approximate sampling theorem
- General reproducing kernel formula
- General Parseval decomposition formula
- Poisson's summation formula (general case)
- Euler-Maclaurin summation formula
- Functional equation for Riemann's zeta-function
(3) The equivalence of the bandlimited and non-bandlimited case

Bernstein spaces

Definition

B_{σ}^{p} for $\sigma>0,1 \leq p \leq \infty$, is the Bernstein space of all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ that belong to $L^{p}(\mathbb{R})$ when restricted to the real axis as well as are of exponential type σ, i.e.,

$$
f(z)=\mathcal{O}_{f}(\exp (\sigma|\mathfrak{I m} z|)) \quad(|z| \rightarrow \infty)
$$

There holds

$$
B_{\sigma}^{1} \subset B_{\sigma}^{p_{1}} \subset B_{\sigma}^{p_{2}} \subset B_{\sigma}^{\infty} \quad\left(1 \leq p_{1} \leq p_{2} \leq \infty\right)
$$

Whittaker-Kotel'nikov-Shannon sampling theorem (CST)

Theorem (Whittaker 1915, Kotel'nikov 1933, Shannon 1950)

For $f \in B_{\sigma}^{2}$ with $\sigma>0$ we have

$$
f(z)=\sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{\sigma}\right) \operatorname{sinc} \frac{\sigma}{\pi}\left(z-\frac{k \pi}{\sigma}\right) \quad(z \in \mathbb{C})
$$

convergence being absolute and uniform on compact subsets of \mathbb{C}, and with respect to $L^{2}(\mathbb{R})$-norm.

$$
\operatorname{sinc} z:= \begin{cases}\frac{\sin \pi z}{\pi z}, & z \neq 0 \\ 1, & z=0\end{cases}
$$

Proof of the classical sampling theorem

Assume $\sigma=\pi$, and $f \in B_{\tau}^{2}$ with $0<\tau<\pi$ rather than to $f \in B_{\pi}^{2}$.
Consider the contour integral

$$
I_{m}(z):=\frac{\sin \pi z}{2 \pi i} \int_{\mathcal{C}_{m}} \frac{f(\xi)}{(\xi-z) \sin \pi \xi} d \xi \quad(z \notin \mathbb{Z})
$$

where \mathcal{C}_{m} is the square of side length $2 m+1$, centered at the origin, and $m \in \mathbb{N}$ is chosen so large that $z \in \operatorname{int} \mathcal{C}_{m}$.

Proof of the classical sampling theorem, continued

The integral can be evaluated by the residue theorem to give

$$
I_{m}(z)=\frac{\sin \pi z}{2 \pi i} \int_{\mathcal{C}_{m}} \frac{f(\xi)}{(\xi-z) \sin \pi \xi} d \xi=f(z)-\sum_{k=-m}^{m} f(k) \operatorname{sinc} \pi(z-k)
$$

noting that

$$
\begin{aligned}
& \operatorname{res}\left(\frac{f(\xi)}{(\xi-z) \sin \pi \xi}, z\right)=\frac{1}{\sin \pi z} f(z) \\
& \operatorname{res}\left(\frac{f(\xi)}{(\xi-k) \sin \pi \xi}, k\right)=\frac{1}{\sin \pi z} f(k) \operatorname{sinc} \pi(z-k)
\end{aligned}
$$

Proof of the classical sampling theorem, continued

Using the estimate

$$
\left|\frac{f(\xi)}{\sin \pi \xi}\right| \leq c \frac{\exp (\tau|\mathfrak{I m} \xi|)}{\exp (\pi|\mathfrak{I m} \xi|)}=c \exp ((\tau-\pi)|\mathfrak{I m} \xi|) \quad\left(|\xi| \in \mathcal{C}_{m}\right)
$$

one can show that

$$
0=\lim _{m \rightarrow \infty} I_{m}(z)=f(z)-\lim _{m \rightarrow \infty} \sum_{k=-m}^{m} f(k) \operatorname{sinc} \pi(z-k)
$$

Proof of the classical sampling theorem, continued

Using the estimate

$$
\left|\frac{f(\xi)}{\sin \pi \xi}\right| \leq c \frac{\exp (\tau|\mathfrak{I m} \xi|)}{\exp (\pi|\mathfrak{I m} \xi|)}=c \exp ((\tau-\pi)|\mathfrak{I m} \xi|) \quad\left(|\xi| \in \mathcal{C}_{m}\right)
$$

one can show that

$$
0=\lim _{m \rightarrow \infty} I_{m}(z)=f(z)-\lim _{m \rightarrow \infty} \sum_{k=-m}^{m} f(k) \operatorname{sinc} \pi(z-k)
$$

This is the sampling theorem for $f \in B_{\tau}^{2}$ with $0<\tau<\pi$. By a density argument, the same formula holds in the limiting case $\tau=\pi$.
Finally, for $f \in B_{\sigma}^{2}$ with arbitrary $\sigma>0$ the assertion follows by a linear transformation.

Reproducing kernel formula (RKF)

Theorem
For $f \in B_{\sigma}^{2}$ we have

$$
f(z)=\frac{\sigma}{\pi} \int_{\mathbb{R}} f(u) \operatorname{sinc}\left(\frac{\sigma}{\pi}(z-u)\right) d u \quad(z \in \mathbb{C})
$$

Reproducing kernel formula (RKF)

Theorem

For $f \in B_{\sigma}^{2}$ we have

$$
f(z)=\frac{\sigma}{\pi} \int_{\mathbb{R}} f(u) \operatorname{sinc}\left(\frac{\sigma}{\pi}(z-u)\right) d u \quad(z \in \mathbb{C})
$$

This means that B_{σ}^{2} is a reproducing kernel Hilbert space, i. e., there exists a kernel function $k(\cdot, z)$ which belongs to B_{σ}^{2} for each $z \in \mathbb{C}$, such that

$$
f(z)=\langle f(\cdot), k(\cdot, z)\rangle \quad(z \in \mathbb{C})
$$

General Parseval formula (GPF)

Theorem

For $f, g \in B_{\sigma}^{2}$ we have

$$
\int_{\mathbb{R}} f(u) \overline{g(u)} d u=\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{\sigma}\right) \overline{g\left(\frac{k \pi}{\sigma}\right)}
$$

Corollary
For $f \in B_{\sigma}^{2}$ there holds

$$
\|f\|_{L^{2}(\mathbb{R})}^{2}=\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}}\left|f\left(\frac{k \pi}{\sigma}\right)\right|^{2}
$$

Poisson's summation formula (particular case) (PSF)

Theorem

For $f \in B_{\sigma}^{1}$ we have

$$
\int_{\mathbb{R}} f(t) d t=\frac{2 \pi}{\sigma} \sum_{k \in \mathbb{Z}} f\left(\frac{2 k \pi}{\sigma}\right)
$$

In B_{σ}^{1} the trapezoidal rule for integration over \mathbb{R} with step size $2 \pi / \sigma$ is exact .

Paley-Wiener theorem (PWT)

Theorem

$$
f \in B_{\sigma}^{2} \Longrightarrow \widehat{f}(v):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(u) e^{-i v u} d u=0 \quad(|v|>\sigma)
$$

Paley-Wiener theorem (PWT)

Theorem

$$
f \in B_{\sigma}^{2} \Longrightarrow \widehat{f}(v):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(u) e^{-i v u} d u=0 \quad(|v|>\sigma)
$$

The converse is also true. It follows immediately from the Fourier inversion formula:

$$
f(z):=\frac{1}{\sqrt{2 \pi}} \int_{-\sigma}^{\sigma} \widehat{f}(v) e^{i z v} d v \quad(z \in \mathbb{C})
$$

The equivalences between the theorems mentioned

Proof of CST \Longrightarrow PWT

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.
We have to show: CST $\Longrightarrow \widehat{f}(v)=0,|v|>\pi$, for all $f \in B_{\pi}^{2}$.

Proof of CST \Longrightarrow PWT

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.
We have to show: CST $\Longrightarrow \widehat{f}(v)=0,|v|>\pi$, for all $f \in B_{\pi}^{2}$.

$$
f(t)=\sum_{k \in \mathbb{Z}} f(k) \operatorname{sinc}(t-k) \quad \text { in } L^{2}(\mathbb{R})
$$

Proof of CST \Longrightarrow PWT

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.
We have to show: CST $\Longrightarrow \widehat{f}(v)=0,|v|>\pi$, for all $f \in B_{\pi}^{2}$.

$$
\begin{aligned}
f(t) & =\sum_{k \in \mathbb{Z}} f(k) \operatorname{sinc}(t-k) \text { in } L^{2}(\mathbb{R}) \\
\Longrightarrow \widehat{f}(v) & =\sum_{k \in \mathbb{Z}} f(k)[\operatorname{sinc}(\cdot-k)](v)
\end{aligned}
$$

Proof of CST \Longrightarrow PWT

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.
We have to show: CST $\Longrightarrow \widehat{f}(v)=0,|v|>\pi$, for all $f \in B_{\pi}^{2}$.

$$
\begin{aligned}
f(t) & =\sum_{k \in \mathbb{Z}} f(k) \operatorname{sinc}(t-k) \text { in } L^{2}(\mathbb{R}) \\
\Longrightarrow \widehat{f}(v) & =\sum_{k \in \mathbb{Z}} f(k)[\operatorname{sinc}(\cdot-k)] \widehat{ }(v) \\
& =\left(\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} f(k) e^{-i k v}\right) \chi_{[-\pi, \pi]}(v)
\end{aligned}
$$

Proof of CST \Longrightarrow PWT

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.
We have to show: CST $\Longrightarrow \widehat{f}(v)=0,|v|>\pi$, for all $f \in B_{\pi}^{2}$.

$$
\begin{aligned}
f(t) & =\sum_{k \in \mathbb{Z}} f(k) \operatorname{sinc}(t-k) \text { in } L^{2}(\mathbb{R}) \\
\Longrightarrow \widehat{f}(v) & =\sum_{k \in \mathbb{Z}} f(k)[\operatorname{sinc}(\cdot-k)] \widehat{ }(v) \\
& =\left(\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} f(k) e^{-i k v}\right) \chi_{[-\pi, \pi]}(v) \\
\Longrightarrow \widehat{f}(v) & =0 \text { for }|v|>\pi .
\end{aligned}
$$

Proof of PWT \Longrightarrow CST

We show: $\widehat{f}(v)=0$ outside $[-\pi, \pi]$ for all $f \in B_{\pi}^{2} \Longrightarrow$ CST.

Proof of PWT \Longrightarrow CST

We show: $\widehat{f}(v)=0$ outside $[-\pi, \pi]$ for all $f \in B_{\pi}^{2} \Longrightarrow$ CST.

$$
\left\|f(t)-\sum_{|k| \leq n} f(k) \operatorname{sinc}(t-k)\right\|_{L^{2}(\mathbb{R})}
$$

Proof of PWT \Longrightarrow CST

We show: $\widehat{f}(v)=0$ outside $[-\pi, \pi]$ for all $f \in B_{\pi}^{2} \Longrightarrow$ CST.

$$
\begin{aligned}
& \left\|f(t)-\sum_{|k| \leq n} f(k) \operatorname{sinc}(t-k)\right\|_{L^{2}(\mathbb{R})} \\
= & \left\|\widehat{f}(v)-\left(\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(k) e^{-i k v}\right) \chi_{[-\pi, \pi]}(v)\right\|_{L^{2}(\mathbb{R})}
\end{aligned}
$$

Proof of PWT \Longrightarrow CST

We show: $\widehat{f}(v)=0$ outside $[-\pi, \pi]$ for all $f \in B_{\pi}^{2} \Longrightarrow$ CST.

$$
\begin{aligned}
& \left\|f(t)-\sum_{|k| \leq n} f(k) \operatorname{sinc}(t-k)\right\|_{L^{2}(\mathbb{R})} \\
= & \left\|\widehat{f}(v)-\left(\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(k) e^{-i k v}\right) \chi_{[-\pi, \pi]}(v)\right\|_{L^{2}(\mathbb{R})} \\
= & \left\|\widehat{f}(v)-\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(k) e^{-i k v}\right\|_{L^{2}(-\pi, \pi)}
\end{aligned}
$$

Proof of PWT \Longrightarrow CST

We show: $\widehat{f}(v)=0$ outside $[-\pi, \pi]$ for all $f \in B_{\pi}^{2} \Longrightarrow$ CST.

$$
\begin{aligned}
& \left\|f(t)-\sum_{|k| \leq n} f(k) \operatorname{sinc}(t-k)\right\|_{L^{2}(\mathbb{R})} \\
= & \left\|\widehat{f}(v)-\left(\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(k) e^{-i k v}\right) \chi_{[-\pi, \pi]}(v)\right\|_{L^{2}(\mathbb{R})} \\
= & \left\|\widehat{f}(v)-\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(k) e^{-i k v}\right\|_{L^{2}(-\pi, \pi)} \\
= & \left\|\widehat{f}(v)-\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(-k) e^{i k v}\right\|_{L^{2}(-\pi, \pi)}
\end{aligned}
$$

Proof of PWT \Longrightarrow CST, continued

$$
f(-k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{-i k v} d v \quad \text { (Fourier inversion formula) }
$$

Proof of PWT \Longrightarrow CST, continued

$$
f(-k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{-i k v} d v \quad \text { (Fourier inversion formula) }
$$

$\Longrightarrow \frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} f(-k) e^{i k v}$ is the trigonometric Fourier series of

Proof of PWT \Longrightarrow CST, continued

$$
f(-k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{-i k v} d v \quad \text { (Fourier inversion formula) }
$$

$\Longrightarrow \frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} f(-k) e^{i k v}$ is the trigonometric Fourier series of $\widehat{f} \in L^{2}(-\pi, \pi)$, which converges in $L^{2}(-\pi, \pi)$ towards \widehat{f}

Proof of PWT \Longrightarrow CST, continued

$$
f(-k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{-i k v} d v \quad(\text { Fourier inversion formula) }
$$

$\Longrightarrow \frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} f(-k) e^{i k v}$ is the trigonometric Fourier series of $\widehat{f} \in L^{2}(-\pi, \pi)$, which converges in $L^{2}(-\pi, \pi)$ towards \widehat{f}

$$
\begin{aligned}
& \Longrightarrow \quad\left\|f(t)-\sum_{|k| \leq n} f(k) \operatorname{sinc}(t-k)\right\|_{L^{2}(\mathbb{R})} \\
&=\quad\left\|\widehat{f}(v)-\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(-k) e^{i k v}\right\|_{L^{2}(-\pi, \pi)}
\end{aligned}
$$

Proof of PWT \Longrightarrow CST, continued

$$
f(-k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{-i k v} d v \quad(\text { Fourier inversion formula) }
$$

$\Longrightarrow \frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} f(-k) e^{i k v}$ is the trigonometric Fourier series of $\widehat{f} \in L^{2}(-\pi, \pi)$, which converges in $L^{2}(-\pi, \pi)$ towards \widehat{f}

$$
\begin{align*}
\Longrightarrow & \lim _{n \rightarrow \infty}\left\|f(t)-\sum_{|k| \leq n} f(k) \operatorname{sinc}(t-k)\right\|_{L^{2}(\mathbb{R})} \\
= & \lim _{n \rightarrow \infty}\left\|\widehat{f}(v)-\frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq n} f(-k) e^{i k v}\right\|_{L^{2}(-\pi, \pi)}=0 .
\end{align*}
$$

The bandlimited case

- Classical sampling theorem
- Reproducing kernel formula
- General Parseval formula
- Poisson's summation formula (particular case)
- Paley-Wiener theorem
(2) The non-bandlimited case
- Approximate sampling theorem
- General reproducing kernel formula
- General Parseval decomposition formula
- Poisson's summation formula (general case)
- Euler-Maclaurin summation formula
- Functional equation for Riemann's zeta-function
(3) The equivalence of the bandlimited and non-bandlimited case

Equivalent assertions in the instance of non-bandlimited functions

Instead of the Bernstein spaces B_{σ}^{p} we now consider the following function spaces:

$$
\begin{aligned}
& F^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C} ; f \in L^{p}(\mathbb{R}) \cap C(\mathbb{R}), \widehat{f} \in L^{1}(\mathbb{R})\right\} \\
& S_{\lambda}^{p}:=\left\{f: \mathbb{R} \rightarrow \mathbb{C} ;\{f(\lambda k)\}_{k \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z})\right\} \quad(\lambda>0) .
\end{aligned}
$$

There holds $B_{\sigma}^{p} \subset F^{p} \cap S_{\lambda}^{p}$ for all $\sigma, \lambda>0$ in view of Nikol'skiî's inequality:

$$
\left\{\lambda \sum_{k \in \mathbb{Z}}|f(\lambda k)|^{p}\right\}^{1 / p} \leq(1+\lambda \sigma)\|f\|_{L^{p}(\mathbb{R})} \quad\left(f \in B_{\sigma}^{p}\right)
$$

More details in Part 2.

Theorem (Weiss 1963, Brown 1967, Butzer-Splettstößer 1977)

Let $f \in F^{2} \cap S_{\pi / \sigma}^{2}$ with $\sigma>0$. Then

$$
f(t)=\sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{\sigma}\right) \operatorname{sinc}\left(\frac{\sigma}{\pi} t-k\right)+\left(R_{\sigma}^{\mathrm{WKS}} f\right)(t) \quad(t \in \mathbb{R})
$$

The series converges absolutely and uniformly on \mathbb{R}.
We have

$$
\begin{aligned}
& \left(R_{\sigma}^{\mathrm{WKS}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \sigma}\right) \int_{(2 k-1) \sigma}^{(2 k+1) \sigma} \widehat{f}(v) e^{i v t} d v \\
& \left|\left(R_{\sigma}^{\mathrm{WKS}} f\right)(t)\right| \leq \sqrt{\frac{2}{\pi}} \int_{|v| \geq \sigma}|\widehat{f}(v)| d v=o(1) \quad(\sigma \rightarrow \infty)
\end{aligned}
$$

General reproducing kernel formula (GRKF)

Theorem (extended, Butzer et al. 2011)

Let $f \in F^{2} \cap S_{\sigma / \pi}^{2}, \sigma>0$. Then

$$
\begin{gathered}
f(t)=\frac{\sigma}{\pi} \int_{\mathbb{R}} f(u) \operatorname{sinc}\left(\frac{\sigma}{\pi}(t-u)\right) d u+\left(R_{\sigma}^{\mathrm{RKF}} f\right)(t) \quad(t \in \mathbb{R}) \\
\left(R_{\sigma}^{\mathrm{RKF}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \int_{|v|>\sigma} \widehat{f}(v) e^{i t v} d v
\end{gathered}
$$

Furthermore,

$$
\left\lvert\,\left(\left.R_{\sigma}^{\mathrm{RKF}} f(t)\left|\leq \frac{1}{\sqrt{2 \pi}} \int_{|v|>\sigma}\right| \widehat{f}(v) \right\rvert\, d v=o(1) \quad(\sigma \rightarrow \infty)\right.\right.
$$

General Parseval decomposition formula (GPDF)

Theorem (Butzer-Gessinger 1995/97)

Let $f \in F^{2} \cap S_{\pi / \sigma}^{1}$ and $g \in F^{2}$. Then for $\sigma>0$

$$
\begin{gathered}
\int_{\mathbb{R}} f(u) \overline{g(u)} d u=\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} f\left(\frac{\pi}{\sigma} k\right) \overline{g\left(\frac{\pi}{\sigma} k\right)}+R_{\sigma}(f, g), \\
R_{\sigma}(f, g)=\int_{\mathbb{R}}\left(R_{\sigma}^{\mathrm{WKS}} f\right)(u) \overline{g(u)} d u \\
-\sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{\sigma}\right) \int_{|v| \geq \sigma} \widehat{\bar{g}}(v) e^{i k \pi v / \sigma} d v . \\
\left|R_{\sigma}(f, g)\right| \leq\left\|R_{\sigma}^{\mathrm{WKS}} f\right\|_{L^{2}}\|g\|_{L^{2}}+\sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{k \in \mathbb{Z}}\left|f\left(\frac{k \pi}{\sigma}\right)\right| \int_{|v|>\sigma}|\widehat{g}(v)| d v .
\end{gathered}
$$

Poisson's summation formula (general case) (PSF)

Theorem

Let $f \in F^{1}$ such that $\widehat{f} \in S_{\sigma}^{1}$, then

$$
\frac{\sqrt{2 \pi}}{\sigma} \sum_{k \in \mathbb{Z}} f\left(x+\frac{2 k \pi}{\sigma}\right)=\sum_{k \in \mathbb{Z}} \widehat{f}(k \sigma) e^{i k \sigma x} \quad \text { (a. e.). }
$$

Euler-Maclaurin summation formula (EMSF)

Theorem

For $n, r \in \mathbb{N}$ and $f \in C^{(2 r)}[0, n]$, we have

$$
\begin{aligned}
\sum_{k=0}^{n} f(k) & =\int_{0}^{n} f(x) d x+ \\
& +\frac{1}{2}[f(0)+f(n)]+\sum_{k=1}^{r} \frac{B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(n)-f^{(2 k-1)}(0)\right]+ \\
& +(-1)^{r} \sum_{k=1}^{\infty} \int_{0}^{n} \frac{e^{i 2 \pi k t}+e^{-i 2 \pi k t}}{(2 \pi k)^{2 r}} f^{(2 r)}(t) d t
\end{aligned}
$$

where $B_{2 k}$ are the Bernoulli numbers.

Functional equation for Riemann's zeta-function (FERZ)

Definition

$$
\zeta(s):=\sum_{k=1}^{\infty} \frac{1}{k^{s}} \quad(s \in \mathbb{C}, \mathfrak{R e} s>1)
$$

ζ has a meromorphic extension to $\mathbb{C} \backslash\{1\}$. At $s=1$ it has a simple pole with residue 1.

Functional equation for Riemann's zeta-function (FERZ)

Definition

$$
\zeta(s):=\sum_{k=1}^{\infty} \frac{1}{k^{s}} \quad(s \in \mathbb{C}, \mathfrak{R e} s>1)
$$

ζ has a meromorphic extension to $\mathbb{C} \backslash\{1\}$. At $s=1$ it has a simple pole with residue 1.

Theorem

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) \quad(s \in \mathbb{C}) .
$$

The equivalences in the non-bandlimited case

AST $=$ Approximate sampling theorem
ARKF $=$ Approximate reproducing kernel formula
GPDF $=$ General Parseval decomposition formula
PSF $=$ Poisson's summation formula
FERZ $=$ Functional equation for Riemann's zeta-function
$\mathrm{EMSF}=$ Euler-Maclaurin summation formula
APSF $=$ Abel-Plana summation formula

Equivalence of the bandlimited and non-bandlimited case

Proof of AST \Longrightarrow CST

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.

Identity theorem for bandlimited functions:
If $f \in B_{\pi}^{p}, 1 \leq p<\infty$, with $f(j)=0, j \in \mathbb{Z}$, then $f=0$.

Proof of AST \Longrightarrow CST

We restrict the matter to $\sigma=\pi$, the general case follows by a linear transformation.

Identity theorem for bandlimited functions:
If $f \in B_{\pi}^{p}, 1 \leq p<\infty$, with $f(j)=0, j \in \mathbb{Z}$, then $f=0$.
Idea of proof: Use

$$
f(z)=\mathcal{O}_{f}(\exp (\pi|\mathfrak{I m} z|)) \quad(|z| \rightarrow \infty)
$$

to show that the entire function $f(z) / \sin (\pi z)$ is bounded. By Liouville it follows that $f(z) / \sin (\pi z)=$ const. Hence

$$
f(z)=c \sin (\pi z) \quad(z \in \mathbb{C})
$$

Since $f \in B_{\pi}^{p}, 1 \leq p<\infty$, the constant must be zero.

Proof of AST \Longrightarrow CST, continued

Now assume that $f \in B_{\pi}^{2}$. Then ASF applies:

$$
\begin{gathered}
f(t)=\sum_{k \in \mathbb{Z}} f(k) \operatorname{sinc}(t-k)+\left(R_{\pi}^{\mathrm{WKS}} f\right)(t) \quad(t \in \mathbb{R}), \\
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v .
\end{gathered}
$$

Proof of AST \Longrightarrow CST, continued

Now assume that $f \in B_{\pi}^{2}$. Then ASF applies:

$$
\begin{gathered}
f(t)=\sum_{k \in \mathbb{Z}} f(k) \operatorname{sinc}(t-k)+\left(R_{\pi}^{\mathrm{WKS}} f\right)(t) \quad(t \in \mathbb{R}), \\
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v .
\end{gathered}
$$

Here f, the infinite series and hence the remainder belong to B_{π}^{2}. Moreover, the remainder vanishes for $t=j \in \mathbb{Z}$. In view of the identity theorem, it follows that the remainder vanishes for all $t \in \mathbb{R}$, i. e., AST reduces to CST .

Proof of CST \Longrightarrow AST

Let $S g(t):=\sum_{k \in \mathbb{Z}} g(k) \operatorname{sinc}(t-k)$. We have to prove:

$$
f(t)=S f(t)+\underbrace{\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v}_{=\left(R_{\pi}^{\mathrm{WKS}} f\right)(t)} .
$$

Proof of CST \Longrightarrow AST

Let $S g(t):=\sum_{k \in \mathbb{Z}} g(k) \operatorname{sinc}(t-k)$. We have to prove:

$$
f(t)=S f(t)+\underbrace{\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v}_{=\left(R_{\pi}^{\mathrm{WKS}} f\right)(t)}
$$

By the Fourier inversion formula
$f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{i t v} d v+\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v) e^{i t v} d v=: f_{1}(t)+f_{2}(t)$.

Proof of CST \Longrightarrow AST

Let $S g(t):=\sum_{k \in \mathbb{Z}} g(k) \operatorname{sinc}(t-k)$. We have to prove:

$$
f(t)=S f(t)+\underbrace{\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v}_{=\left(R_{\pi}^{\mathrm{WKS}} f\right)(t)}
$$

By the Fourier inversion formula
$f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \widehat{f}(v) e^{i t v} d v+\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v) e^{i t v} d v=: f_{1}(t)+f_{2}(t)$.
Now $f_{1} \in B_{\pi}^{2}$ and hence $f_{1}=S f_{1}$ by CST. It follows that

$$
f=S f_{1}+f_{2}=S\left(f_{1}+f_{2}\right)+\left\{f_{2}-S f_{2}\right\}=S f+\left\{f_{2}-S f_{2}\right\}
$$

We have to show that

$$
R_{\pi}^{\mathrm{WKS}} f=f_{2}-S f_{2} .
$$

Proof of CST \Longrightarrow AST, continued

$$
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v
$$

Proof of CST \Longrightarrow AST, continued

$$
\begin{aligned}
& \left(R_{\pi}^{\mathrm{WKS}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v \\
= & \frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v) e^{i k v} d v-\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i t(v-2 k \pi)} d v
\end{aligned}
$$

Proof of CST \Longrightarrow AST, continued

$$
\begin{aligned}
& \left(R_{\pi}^{\mathrm{WKS}} f\right)(t):=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left(1-e^{-i 2 k t \pi}\right) \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i v t} d v \\
= & \frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v) e^{i k v} d v-\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} \int_{(2 k-1) \pi}^{(2 k+1) \pi} \widehat{f}(v) e^{i t(v-2 k \pi)} d v \\
= & f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left[e^{i v t}\right]^{*} d v,
\end{aligned}
$$

where $\left[e^{i v t}\right]^{*}$ denotes the 2π-periodic extension of $v \mapsto e^{i v t}$ from $(-\pi, \pi)$ to \mathbb{R}.

Proof of CST \Longrightarrow AST, continued

Expanding $\left[e^{i v t}\right]^{*}$ in its Fourier series gives

$$
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t)=f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left[e^{i v t}\right]^{*} d v
$$

Proof of CST \Longrightarrow AST, continued

Expanding $\left[e^{i v t}\right]^{*}$ in its Fourier series gives

$$
\begin{aligned}
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t) & =f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left[e^{i v t}\right]^{*} d v \\
& =f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left\{\sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) e^{i k v}\right\} d v
\end{aligned}
$$

Proof of CST \Longrightarrow AST, continued

Expanding $\left[e^{i v t}\right]^{*}$ in its Fourier series gives

$$
\begin{aligned}
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t) & =f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left[e^{i v t}\right]^{*} d v \\
& =f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left\{\sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) e^{i k v}\right\} d v \\
& =f_{2}(t)-\sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) \underbrace{\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v) e^{i k v} d v}_{f_{2}(k)}
\end{aligned}
$$

Proof of CST \Longrightarrow AST, continued

Expanding $\left[e^{i v t}\right]^{*}$ in its Fourier series gives

$$
\begin{aligned}
\left(R_{\pi}^{\mathrm{WKS}} f\right)(t) & =f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left[e^{i v t}\right]^{*} d v \\
& =f_{2}(t)-\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v)\left\{\sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) e^{i k v}\right\} d v \\
& =f_{2}(t)-\sum_{k \in \mathbb{Z}} \operatorname{sinc}(t-k) \underbrace{\frac{1}{\sqrt{2 \pi}} \int_{|v|>\pi} \widehat{f}(v) e^{i k v} d v}_{f_{2}(k)} \\
& =f_{2}(t)-S f_{2}(t) .
\end{aligned}
$$

Interchange of summation and integration is valid, since the partial sums $\sum_{-N}^{N} \operatorname{sinc}(t-k) e^{i k v}$ are uniformly bounded with respect to $v \in \mathbb{R}$ and $N \in \mathbb{N}$.

References I

囦 P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser, and R. L. Stens.

The sampling theorem, Poisson's summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals - their interconnections. Applicable Analysis, 90(3-4):431-461, 2011.
围
P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser, and R. L. Stens.

The generalized Parseval decomposition formula, the approximate sampling theorem, the approximate reproducing kernel formula, Poisson's summation formula and Riemann's zeta function; their interconnections for non-bandlimited functions.
to appear.

References II

國 P．L．Butzer，P．J．S．G．Ferreira，G．Schmeisser，and R．L．Stens． The summation formulae of Euler－Maclaurin，Abel－Plana，Poisson， and their interconnections with the approximate sampling formula of signal analysis．
Results Math．，59（3－4）：359－400， 2011.
围
P．L．Butzer and A．Gessinger．
The approximate sampling theorem，Poisson＇s sum formula，a decomposition theorem for Parseval＇s equation and their interconnections．
Ann．Numer．Math．，4（1－4）：143－160， 1997.
目
P．L．Butzer，G．Schmeisser，and R．L．Stens． Basic relations valid for the Bernstein space B_{σ}^{p} and their extensions to functions from larger spaces in terms of their distances from B_{σ}^{p} ．
to appear．

References III

P. L. Butzer, G. Schmeisser, and R. L. Stens.

Shannon's sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivatives the aliasing error involved by their extensions from bandlimited to non-bandlimited signals.
invited for publication in Entropy.
R. P. L. Butzer and W. Splettstösser.

A sampling theorem for duration limited functions with error estimates.
Inf. Control, 34:55-65, 1977.
P. L. Butzer, W. Splettstösser, and R. L. Stens.

The sampling theorem and linear prediction in signal analysis. Jber.d.Dt.Math.-Verein., 90:1-70, 1988.

References IV

G. Schmeisser.Numerical differentiation inspired by a formula of R. P. Boas.
J. Approximation Theory, 160:202-222, 2009.R. L. Stens.

A unified approach to sampling theorems for derivatives and Hilbert transforms.
Signal Process., 5(2):139-151, 1983.

