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@ The bandlimited case
@ Classical sampling theorem
@ Reproducing kernel formula
@ General Parseval formula
@ Poisson’s summation formula (particular case)
@ Paley-Wiener theorem

© The non-bandlimited case
@ Approximate sampling theorem
@ General reproducing kernel formula
@ General Parseval decomposition formula
@ Poisson’s summation formula (general case)
@ Euler-Maclaurin summation formula
@ Functional equation for Riemann’s zeta-function

© The equivalence of the bandlimited and non-bandlimited case



Bernstein spaces

Definition

BP for o > 0, 1 < p < 00, is the Bernstein space of all entire
functions f: C — C that belong to LP(R) when restricted to the
real axis as well as are of exponential type o, i.e.,

f(z) = (’)f(exp(a| sz])) (|z| = o0).

There holds

Blc Bt cBPCcBX® (1<p<pr<o0).



Whittaker-Kotel'nikov-Shannon sampling theorem (CST)

Theorem (Whittaker 1915, Kotel'nikov 1933, Shannon 1950)
For f € B2 with ¢ > 0 we have

f2) =Y f(’;—”) sinc%(z - %”) (z €Q),
k€eZ

convergence being absolute and uniform on compact subsets of C,
and with respect to L?(R)-norm.

sinmwz 2750
sincz:=¢ ™’
1, z=0.



Proof of the classical sampling theorem

Assume o =, and f € B? with 0 < 7 < 7 rather than to f € B2.
Consider the contour integral

In(2):= 5% | = Q) 4e (¢

2mi — z)sinm¢

where C, is the square of side length 2m + 1, centered at the
origin, and m € N is chosen so large that z € intC,,.

N Zy

Ca




Proof of the classical sampling theorem, continued

The integral can be evaluated by the residue theorem to give

_sinmz f(£) — f(z)— - sinc(z—
Im(2) == /cm (§ —z)sinm¢ de =)= 2 K =

k=—m

noting that

= (@) -

res ((f(g) k> L f(k)sinc(z — k).

& —k)sinm¢’ sinTz




Proof of the classical sampling theorem, continued

Using the estimate

f(€)

sinmé

c exp(7] Im¢|)
~exp(m[ImE])

=cexp ((t — m)|Tm¢]) (|| € Cm),

one can show that

0= lim In(z) = f(z) — lim_ > f(k)sincm(z — k).
k

=—m



Proof of the classical sampling theorem, continued

Using the estimate

f(€)

sinmé

c exp(7] Im¢|)
~exp(m[ImE])

=cexp ((t — m)|Tm¢]) (|| € Cm),

one can show that

0= lim In(z) = f(z) — lim_ > f(k)sincm(z — k).
k=—m

This is the sampling theorem for f € B? with 0 < 7 < 7. By a
density argument, the same formula holds in the limiting case
T=T.

Finally, for f € B2 with arbitrary o > 0 the assertion follows by a
linear transformation. Ol



Reproducing kernel formula (RKF)

For f € B2 we have

f(z) = %/Rf(u) sinc (%(z - u)) du  (z€Q).




Reproducing kernel formula (RKF)

For f € B2 we have

f(z) = %/Rf(u) sinc (%(z - u)) du  (z€Q).

This means that B2 is a reproducing kernel Hilbert space, i.e.,
there exists a kernel function k(-, z) which belongs to B2 for each
z € C, such that

f(z) = (f(-), k(-,2)) (zeC).



General Parseval formula (GPF)

For f,g € B? we have

frea@a=7 o) ()

kGZ

For f € B2 there holds

1y = = S| (<[

keZ




Poisson's summation formula (particular case) (PSF)

For f € B} we have

27 2km
/Rf(t) de = 2507 (24T,

keZ

In BL the trapezoidal rule for integration over R with step size
27 /o is exact .



Paley-Wiener theorem (PWT)

feB? — F(v):= \/LQ_W/Rf(u)e—"vu du=0 (v > o).




Paley-Wiener theorem (PWT)

feB? — F(v):= \/%_w/Rf(u)e_""” du=0 (v > o).

The converse is also true. It follows immediately from the Fourier
inversion formula:

F(z) = \/12? _J fv)e™dv  (z€C).



The equivalences between the theorems mentioned

RKF

(o) = (o) =

(@)
| N | <
_|

PWT
CST = Classical sampling theorem

RKF = Reproducing kernel formula
GPF = General Parseval formula
PSF = Poisson’s summation formula
PWT = Paley-Wiener theorem



Proof of CST = PWT

We restrict the matter to o = 7, the general case follows by a
linear transformation.

We have to show: CST — ?(v) =0, |v| >, forall f € B2.



Proof of CST = PWT

We restrict the matter to o = 7, the general case follows by a
linear transformation.

We have to show: CST — ?(v) =0, |v| >, forall f € B2.

Zf sinc(t — k) in L3(R)

keZ



Proof of CST = PWT

We restrict the matter to o = 7, the general case follows by a
linear transformation.

We have to show: CST — /f:(v) =0, |v| >, forall f € B2.

Zf sinc(t — k) in L3(R)

keZ

= f(k)[sinc(- — k)] “(v)

keZ



Proof of CST = PWT

We restrict the matter to o = 7, the general case follows by a
linear transformation.

We have to show: CST — /f:(v) =0, |v| >, forall f € B2.

Zf sinc(t — k) in L3(R)

keZ

= f(k)[sinc(- — k)] “(v)

keZ

(rzf(k &) X[ (V)

keZ



Proof of CST = PWT

We restrict the matter to o = 7, the general case follows by a
linear transformation.

We have to show: CST — /f:(v) =0, |v| >, forall f € B2.

Zf sinc(t — k) in L3(R)

kEZ
E:f[mc—k]()

k€eZ

(rzf(k &) X[ (V)

keZ

— f(v) =0 for |v| > . O



Proof of PWT — CST

We show: ?(v) = 0 outside [—m, 7] for all f € B2 = CST.



Proof of PWT — CST

We show: ?(v) = 0 outside [—m, 7] for all f € B2 = CST.

Hf(t) — 3 F(K)sinc(t — k)

|k|<n

12(R)



Proof of PWT — CST

We show: ?(v) = 0 outside [—m, 7] for all f € B2 = CST.

Hf(t) — 3 F(K)sinc(t — k)

|k|<n

1)~ (7= 3 0™ )xra(v)

Ik|<n

12(R)

12(R)



Proof of PWT — CST

We show: ?(v) = 0 outside [—m, 7] for all f € B2 = CST.

F(t) = > f(k)sinc(t — k) .
K| <n
_ 7 v) — i —ikv v
= f( ) (\/2—7_‘_|klz<nf(k)e )X[—ﬂ'ﬂr]( ) L2(]R)
— |7y - \/12? > e,



Proof of PWT — CST

We show: ?(v) = 0 outside [—m, 7] for all f € B2 = CST.

f(t) — %;n f(k)sinc(t — k) .
_ Av _ i —ikv v
= f( ) (\/2—7_‘_|k|2<nf(k)e )X[—ﬂ'ﬂr]( ) L2(]R)
= [[Fn) — = 3 f(hye
- Vor o= 12(~m,m)
= [[Fv) - = 3 F(-kyer




Proof of PWT — CST, continued

1 [~ ,
f(—k) = m/ f(v)e ™ dv (Fourier inversion formula)



Proof of PWT — CST, continued

1

f(—k)=— f(v)e ™ dv (Fourier inversion formula
(k) == [ Fw) ( )
1 kv - . . . .
- — E f(—k)e"™" is the trigonometric Fourier series of

verm =



Proof of PWT — CST, continued

1 (7~ :
(—k) = — f(v)e ™ dv (Fourier inversion formula)
Vor J_x
— 1 Z f(—k)e™ is the trigonometric Fourier series of
VT i

fe [?(—m, ), which converges in L?(—, ) towards f



Proof of PWT — CST, continued

1
(—k) = Wors f( )e~ ™k dv  (Fourier inversion formula)
—T
= L Z f(—k)e™ is the trigonometric Fourier series of
\/ﬂ kEZ

fe [?(—m, ), which converges in L?(—, ) towards f

— Hf Z f(k)sinc(t — k) ®)
[k|<n
T 1 ikv
) Hf( Vo g;nf(_k)ek 12(—m,m)



Proof of PWT — CST, continued

1
(—k) = Wors f( )e~ ™k dv  (Fourier inversion formula)
—T
= L Z f(—k)e™ is the trigonometric Fourier series of
\/ﬂ kEZ

fe [?(—m, ), which converges in L?(—, ) towards f

= lim Hf( Z f(k)sinc(t — k)

e [k|<n L2(R)
~ 1 .
= lim [[f(v) - — f(—k)e*v =0. O
nLrgo H (V) /27 I<|Z<n ( ) L2(—m,m)



© The non-bandlimited case

@ Approximate sampling theorem
General reproducing kernel formula
General Parseval decomposition formula
Poisson’s summation formula (general case)
Euler-Maclaurin summation formula
Functional equation for Riemann's zeta-function

®© 6 6 o o



Equivalent assertions in the instance of non-bandlimited

functions

Instead of the Bernstein spaces BY we now consider the following
function spaces:

FP.={f:R—C; felP(R)NC(R), f € [}(R)}

SP = {f; R C; {f(\K)}, oy € EP(Z)} (A > 0).

There holds BY ¢ FP N SY for all o, A > 0 in view of Nikol'skil's
inequality:

1/p
P} < aanifloe (e

keZ
More details in Part 2.



Theorem (Weiss 1963, Brown 1967, Butzer-SplettstoRer 1977)

Let f € F2n 572/0 with o > 0. Then

:Zf(l::) sinc <%t—k> + (RY™F)(t) (t € R).
kEZ

The series converges absolutely and uniformly on R.
We have

(RWKSf‘) : \/7 Z

kEZ

[(RYSF)(1)| < \/E/ - ]?(v)] dv =o(1) (0 = 00).

(2k+1)o __ )
—:2kta / f(V) elvt dv
(2k—1)o




General reproducing kernel formula (GRKF)

Theorem (extended, Butzer et al. 2011)

Let f € F2 ﬂ5§/ﬂ, o > 0. Then

F(t) = /f ysinc (2(t — w))du+ (REFF)() (€ R),

(RRKF f) ltv dV .

=7 e

Furthermore,

}(R?KFf(t)’ < \/%_ﬂ /| . ’?(v)’ dv = o(1) (0 — o0).




General Parseval decomposition formula (GPDF)

Theorem (Butzer-Gessinger 1995/97)
Let f € F? 05;/0, and g € F?. Then foro >0

/fu)g u)du = — Zf( ) ( )+R(fg)
Ro(F.g) = /R (RYF)(u)g(u) du

\/> Z k7T E(V) eikrrv/a dv.
v|>o‘

|R(fg|<HRWKSfHL2HgHLz+\[ S|, s

|>o




Poisson's summation formula (general case) (PSF)

Let f € FL such that f € S}, then

@Zf(x 2"”) Y F(ko)e*™*  (a.e.).

keZ keZ




Euler-Maclaurin summation formula (EMSF)

Theorem
For n,r € N and f € C(?)[0, n], we have

2k! [f(2k_1)(n) _ f(2k_1)(0)] +

l27rkt + e—l27rkt

+(=1) Z/ DG FI(t) dt |

where By are the Bernoulli numbers.




Functional equation for Riemann's zeta-function (FERZ)

o0

¢(s) ::Z:l (s € C,Res > 1).

ks

k=1

¢ has a meromorphic extension to C\ {1}. At s = 1 it has a simple
pole with residue 1.

v




Functional equation for Riemann's zeta-function (FERZ)

Definition

— 1

¢(s) ::ZF (s € C,Res > 1).
k=1

¢ has a meromorphic extension to C\ {1}. At s = 1 it has a simple

pole with residue 1.




The equivalences in the non-bandlimited case

i

[GPDFJ<:> [AETJ = [PSF] <:>[FERZJ
[ EMST Je={ APSF |

AST = Approximate sampling theorem

ARKF = Approximate reproducing kernel formula
GPDF = General Parseval decomposition formula
PSF = Poisson’s summation formula
FERZ = Functional equation for Riemann’s zeta-function
EMSF = Euler-Maclaurin summation formula

APSF = Abel-Plana summation formula



Equivalence of the bandlimited and non-bandlimited case

RKF

|
E

\
I

(aror) — (as7) — [rsr) = (rese)
!

(EmST | <= [ APsF




Proof of AST — C(CST

We restrict the matter to o = 7, the general case follows by a
linear transformation.

Identity theorem for bandlimited functions:
Iff € BR, 1< p< oo, with f(j) =0, j € Z, then f = 0.



Proof of AST — C(CST

We restrict the matter to o = 7, the general case follows by a
linear transformation.

Identity theorem for bandlimited functions:
Iff € BR, 1< p< oo, with f(j) =0, j € Z, then f = 0.

Idea of proof: Use
f(z) = Of(exp(w\ 3mz|)) (|z| — o0)

to show that the entire function f(z)/sin(7z) is bounded. By
Liouville it follows that f(z)/sin(wz) = const. Hence

f(z) = csin(nz) (zeC).

Since f € BE, 1 < p < o0, the constant must be zero.



Proof of AST = CST, continued

Now assume that f € B2. Then ASF applies:

= f(k)sinc(t — k) + (RY*SF)(t)  (t€R),
kEZ

(2k+1)m __ )
(RWKS f . Z —l2k1:7r / f(V) elvt dv .
k (2k—1)m



Proof of AST = CST, continued

Now assume that f € B2. Then ASF applies:

= f(k)sinc(t — k) + (RY*SF)(t)  (t€R),

keZ

WKS —12kt7r (kD) ivt
(RYES)(t) )/( F(v) et dv.

~ Vor keZ 2k—1)m
Here f, the infinite series and hence the remainder belong to B72r.
Moreover, the remainder vanishes for t = j € Z. In view of the
identity theorem, it follows that the remainder vanishes for all

t e R, i.e., AST reduces to CST. O



Proof of CST = AST

Let Sg(t) := > ez g(k)sinc(t — k). We have to prove:

(2k+1)m __ )
F(t) = Sf(t) + Z e 2km) / f(v)e*tdv .
(

kEZ 2k—1)m

/

~(RWESF)(1



Proof of CST = AST

Let Sg(t) := > ez g(k)sinc(t — k). We have to prove:

(2k+1)m __ )
F(t) = Sf(t) + Z e 2km) / f(v)e*tdv .
kGZ (2k—1)w
=(RYESF)(2)

By the Fourier inversion formula
1

f(t) = f v+

) Var ) (Ve

1 T itv _.
\/ﬂ/vm F(v)e™ dv = fi(£)+h(t).



Proof of CST = AST

Let Sg(t) := > ez g(k)sinc(t — k). We have to prove:

(k+1)m __ )
f(t) = SF(t) + Z e~ /2Kt / f(v)edv .
kEZ (2k—1)w
=(RWKSF)(2)

By the Fourier inversion formula

1
f(t) = f it dy+
()= —= | Tt dvr—— L
Now f; € B,zr and hence f; = Sf; by CST. It follows that
f=S8h+h=S(h+h)+{kh—Sh}=5F+{fH-ShH}

We have to show that

e dv =: fi(t)+h(t).

RVSSF = fo — Sh.



Proof of CST = AST, continued

WKS —i2ktm (@l ivt
(RYSSF)(t) = (1-e >/( flv)e™ dv

2k—1)m

5~
3

keZ



Proof of CST = AST, continued

(2k+1)w __

1 : .
RWKS £ — 1— efl2kt7r f(v) et dv
(Re™2F)(2) > ( )/( (v)

2k—1)m

= — v)e™dv — — v) e™\VTe ) dy



Proof of CST = AST, continued

, (2k+1)7 _
(RVSSF)(t) = == 37 (1 — e~2ktr) / F(v) e dv
2r = (2k—1)
" 1 (2k+1)m __ ie(v—2kn)
e dv — — / f(v)e™V=="") dy
\/277 /v|>7r V2m % (2k—1)m V)

—f2 t _ / lvt V,
V2 Jiv|>r

where [e"!]* denotes the 27-periodic extension of v — e™t from
(—m,7m) to R



Proof of CST = AST, continued

ivt]*

Expanding [e

RWKSf t _ / lvt
( ) \/E [v|>m

in its Fourier series gives



Proof of CST = AST, continued

ivt]*

Expanding [e

RWKSf t _ / lvt
(Re0)(0) N .

= fH(t) — \/% ?(v){ Zsinc(t - k)eikv}dv

|v|>m keZ

in its Fourier series gives



Proof of CST = AST, continued

ivt]*

Expanding [e

RWKSf t _ / lvt
( ) \/E [v|>m

= f(t) — \/%/V|>7T Zsmc ’k"}dv

in its Fourier series gives

keZ
— ) sinc(t — / e dv
é \/ 2m v\>7r |

fz(k)



Proof of CST = AST, continued

Expanding [e"!]* in its Fourier series gives

RWKSf t _ / lvt
(RN =0~ 0= | d
= f(t) —/ Zsmc e \dy
\/% [v|>m keZ }
- Z sinc(t — / eV dv
ke \/% v\>7r B
fz(k)

— f(t) — Sh(1).

Interchange of summation and integration is valid, since the partial
sums Eﬂ,\, sinc(t — k)e’" are uniformly bounded with respect to

vERand N eN. O



References |

@ P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser, and
R. L. Stens.
The sampling theorem, Poisson’s summation formula, general
Parseval formula, reproducing kernel formula and the Paley-Wiener
theorem for bandlimited signals - their interconnections.
Applicable Analysis, 90(3-4):431-461, 2011.

@ P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser, and
R. L. Stens.
The generalized Parseval decomposition formula, the approximate
sampling theorem, the approximate reproducing kernel formula,
Poisson's summation formula and Riemann's zeta function; their
interconnections for non-bandlimited functions.
to appear.



References |l

@ P. L. Butzer, P. J. S. G. Ferreira, G. Schmeisser, and R. L. Stens.
The summation formulae of Euler-Maclaurin, Abel-Plana, Poisson,
and their interconnections with the approximate sampling formula of
signal analysis.

Results Math., 59(3-4):359-400, 2011.

[d P. L. Butzer and A. Gessinger.
The approximate sampling theorem, Poisson’s sum formula, a
decomposition theorem for Parseval’s equation and their
interconnections.
Ann. Numer. Math., 4(1-4):143-160, 1997.

@ P. L. Butzer, G. Schmeisser, and R. L. Stens.
Basic relations valid for the Bernstein space BP and their extensions
to functions from larger spaces in terms of their distances from BP.
to appear.



References ||

@ P. L. Butzer, G. Schmeisser, and R. L. Stens.
Shannon’s sampling theorem for bandlimited signals and their
Hilbert transform, Boas-type formulae for higher order derivatives —
the aliasing error involved by their extensions from bandlimited to
non-bandlimited signals.
invited for publication in Entropy.

[3 P. L. Butzer and W. Splettstosser.
A sampling theorem for duration limited functions with error
estimates.
Inf. Control, 34:55-65, 1977.

@ P. L. Butzer, W. Splettstdsser, and R. L. Stens.
The sampling theorem and linear prediction in signal analysis.
Jber.d.Dt.Math.-Verein., 90:1-70, 1988.



References |V

E

B

G. Schmeisser.
Numerical differentiation inspired by a formula of R. P. Boas.
J. Approximation Theory, 160:202-222, 2009.

R. L. Stens.

A unified approach to sampling theorems for derivatives and Hilbert
transforms.

Signal Process., 5(2):139-151, 1983.



	The bandlimited case
	Classical sampling theorem
	Reproducing kernel formula
	General Parseval formula
	Poisson's summation formula (particular case)
	Paley-Wiener theorem

	The non-bandlimited case
	Approximate sampling theorem
	General reproducing kernel formula
	General Parseval decomposition formula
	Poisson's summation formula (general case)
	Euler-Maclaurin summation formula
	Functional equation for Riemann's zeta-function

	The equivalence of the bandlimited and non-bandlimited case
	References

