Basic relations valid for the Bernstein space B_{σ}^2 and their extensions to functions from larger spaces in terms of their distances from B_{σ}^2

Part 3: Distance functional approach of Part 2 applied to fundamental theorems of Part 1

P. L. Butzer, G. Schmeisser, R. L. Stens

New Trends and Directions in Harmonic Analysis, Fractional Operator Theory, and Image Analysis Summer School, Inzell, September 17–21, 2012

Outline

- Error estimates with rates
 - Approximate sampling theorem
 - Reproducing kernel formula
 - General Parseval decomposition formula
 - Approximate sampling theorem for derivatives
- 2 Boas-type formulae for higher derivatives
 - Boas-type formulae for bandlimited functions
 - Boas-type formulae for non-bandlimited functions
- 3 Bernstein inequalities for higher order derivatives
- 4 Hilbert transforms
- 6 Applications

Approximate sampling theorem (AST) — recall Lecture 1

Theorem (Weiss 1963, Brown 1967, Butzer-Splettstößer 1977)

Let $f \in F^2 \cap S^2_{\pi/\sigma}$ with $\sigma > 0$. Then

$$f(t) = \sum_{k \in \mathbb{Z}} f\left(\frac{k\pi}{\sigma}\right) \operatorname{sinc}\left(\frac{\sigma}{\pi}t - k\right) + (R_{\sigma}^{\mathrm{WKS}}f)(t) \quad (t \in \mathbb{R}).$$

We have

$$\left|(R_\sigma^{\scriptscriptstyle \mathrm{WKS}} f)(t)\right| \leq \sqrt{\frac{2}{\pi}} \int_{|v| > \sigma} |\widehat{f}(v)| \, dv = \sqrt{\frac{2}{\pi}} \operatorname{dist}_1(f, B_\sigma^2) = o(1).$$

Corollary

If $f \in F^2$, then one has for any $r \in \mathbb{N}$, $\sigma > 0$ and $t \in \mathbb{R}$ the derivative free error estimate

$$\left| (R_{\sigma}^{\text{WKS}} f)(t) \right| \leq \sqrt{\frac{2}{\pi}} \operatorname{dist}_1(f, B_{\sigma}^2) \leq c \int_{\sigma}^{\infty} \omega_r (f, v^{-1}, L^2(\mathbb{R})) \frac{dv}{\sqrt{v}}.$$

If in addition $f \in \text{Lip}_r(\alpha, L^2(\mathbb{R}))$ for $1/2 < \alpha \le r$, then

$$(R_{\sigma}^{\text{WKS}}f)(t) = \mathcal{O}(\sigma^{-\alpha+1/2}) \qquad (\sigma \to \infty)$$

uniformly in $t \in \mathbb{R}$.

Corollary

Let $f \in W^{r,2}(\mathbb{R}) \cap C(\mathbb{R})$ for some $r \in \mathbb{N}$. Then for $t \in \mathbb{R}$,

$$\left| (R_{\sigma}^{\text{WKS}} f)(t) \right| \leq c \, \sigma^{-r+1/2} \|f^{(r)}\|_{L^2(\mathbb{R})} \qquad (\sigma > 0).$$

If moreover $f^{(r)} \in \text{Lip}_1(\alpha, L^2(\mathbb{R}))$, $0 < \alpha \le 1$, then

$$(R_{\sigma}^{ ext{WKS}}f)(t) = \mathcal{O}(\sigma^{-r-\alpha+1/2}) \qquad (\sigma \to \infty).$$

Or, if $f^{(r)} \in M^{2,1}_*$, then

$$(R_{\sigma}^{\text{WKS}}f)(t) = \mathcal{O}(\sigma^{-r}) \qquad (\sigma \to \infty).$$

Corollary

If $f \in H^2(\mathcal{S}_d)$, then for $t \in \mathbb{R}$,

$$\left| (R_{\sigma}^{\text{WKS}} f)(t) \right| \le c_d \, e^{-d\sigma} \|f\|_{H^2(\mathcal{S}_d)} \qquad (\sigma > 0).$$

Function spaces

$$F^{2} := \Big\{ f : \mathbb{R} \to \mathbb{C} : f \in L^{2}(\mathbb{R}) \cap C(\mathbb{R}), \, \widehat{f} \in L^{1}(\mathbb{R}) \Big\},$$
$$S_{h}^{p} := \Big\{ f : \mathbb{R} \to \mathbb{C} : (f(hk))_{k \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z}) \Big\}.$$

Lipschitz spaces:

$$\omega_r(f;\delta;L^2(\mathbb{R})) := \sup_{|h| \le \delta} \left\| \sum_{j=0}^r (-1)^{r-j} \binom{r}{j} f(u+jh) \right\|_{L^2(\mathbb{R})},$$

$$\operatorname{Lip}_r(\alpha; L^2(\mathbb{R})) := \big\{ f \in L^2(\mathbb{R}) \ : \ \omega_r(f; \delta; L^2(\mathbb{R})) = \mathcal{O}(\delta^{\alpha}), \ \delta \to 0+ \big\}.$$

Sobolev spaces:

$$W^{r,p}(\mathbb{R}):=\Big\{f\,:\,\mathbb{R}\to\mathbb{C}\,:\,f\in\mathrm{AC}^{r-1}_{\mathrm{loc}}(\mathbb{R}),\,f^{(k)}\in L^p(\mathbb{R}),0\leq k\leq r\Big\}.$$

Function spaces, continued

Hardy spaces:

$$\begin{split} H^p(\mathcal{S}_d) &:= \bigg\{ f \ : \ f \ \text{ analytic on } \big\{ z \in \mathbb{C} \ : \ |\Im z| < d \big\}, \\ \|f\|_{H^p(\mathcal{S}_d)} &:= \bigg\{ \sup_{0 < y < d} \int_{\mathbb{R}} \frac{|f(t-iy)|^p + |f(t+iy)|^p}{2} \, dt \bigg\}^{1/p} < \infty \bigg\}. \end{split}$$

Wiener amalgam space — modulation space:

$$M^{2,1} := \left\{ f \colon \mathbb{R} \to \mathbb{C} : \sum_{n \in \mathbb{Z}} \frac{1}{h} \left\{ \int_{n}^{n+1} \left| f\left(\frac{v}{h}\right) \right|^{2} dv \right\}^{1/2} < \infty, \ h > 0 \right\},$$

 $M_*^{2,1}:=\Big\{f\in M^{2,1}\ : \ {
m series\ converges\ uniformly\ in\ } h$ on bounded subintervals of $(0,\infty)\Big\}.$

Reproducing kernel formula (RKF)

Theorem (extended, Butzer et al. 2011)

Let
$$f \in F^2 \cap S^2_{\sigma/\pi}$$
, $\sigma > 0$. Then

$$f(t) = -\frac{\sigma}{\pi} \int_{\mathbb{R}} f(u) \operatorname{sinc}\left(\frac{\sigma}{\pi}(t-u)\right) du + (R_{\sigma}^{RKF}f)(t) \qquad (t \in \mathbb{R}),$$

$$(R_{\sigma}^{\mathrm{RKF}}f)(t) := \frac{1}{\sqrt{2\pi}} \int_{|v| > \sigma} \widehat{f}(v) e^{itv} dv.$$

Furthermore,

$$\left|\left(R_{\sigma}^{\mathrm{RKF}}f(t)\right| \leq \frac{1}{\sqrt{2\pi}} \int_{|v| > \sigma} \left|\widehat{f}(v)\right| dv = \frac{1}{\sqrt{2\pi}} \operatorname{dist}_{1}(f, B_{\sigma}^{2}) = o(1).$$

Three corollaries above are also valid here.

General Parseval decomposition formula (GDPF)

Theorem (Butzer–Gessinger 1995/97)

Let $f \in F^2 \cap S^1_{\pi/\sigma}$ and $g \in F^2$. Then for $\sigma > 0$

$$\int_{\mathbb{R}} f(u)\overline{g(u)} du = \frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} f\left(\frac{\pi}{\sigma}k\right) \overline{g\left(\frac{\pi}{\sigma}k\right)} + R_{\sigma}(f,g),$$

$$R_{\sigma}(f,g) = \int_{\mathbb{R}} (R_{\sigma}^{ ext{WKS}}f)(u)\overline{g(u)} du$$

$$-\sqrt{\frac{\pi}{2}}\frac{1}{\sigma}\sum_{k\in\mathbb{Z}}f\left(\frac{k\pi}{\sigma}\right)\int_{|v|\geq\sigma}\widehat{\overline{g}}(v)\,e^{ik\pi v/\sigma}\,dv.$$

$$\left|R_{\sigma}(f,g)\right| \leq \|R_{\sigma}^{\text{WKS}}f\|_{L^{2}}\|g\|_{L^{2}} + \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{k \in \mathbb{Z}} \left|f\left(\frac{k\pi}{\sigma}\right)\right| \int_{|v| > \sigma} \left|\widehat{g}(v)\right| dv.$$

Theorem

Let $f \in F^2 \cap S^1_{\pi/\sigma}$ and $g \in F^2$. Then for $\sigma > 0$

$$\int_{\mathbb{R}} f(u)\overline{g(u)} du = \frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} f\left(\frac{\pi}{\sigma}k\right) \overline{g\left(\frac{\pi}{\sigma}k\right)} + R_{\sigma}(f,g),$$

$$\left|R_{\sigma}(f,g)\right| \leq \|R_{\sigma}^{\text{WKS}}f\|_{L^{2}}\|g\|_{L^{2}} + \sqrt{\frac{\pi}{2}} \frac{1}{\sigma} \sum_{k \in \mathbb{Z}} \left|f\left(\frac{k\pi}{\sigma}\right)\right| \int_{|v| > \sigma} \left|\widehat{g}(v)\right| dv.$$

If
$$f,g \in W^{1,2}(\mathbb{R}) \cap C(\mathbb{R})$$
, then

$$ig|R_{\sigma}(f,g)ig| \leq rac{\mathcal{C}}{\sigma} \Big\{ \operatorname{dist}_2(f',B_{\sigma}^2) + \operatorname{dist}_2(g',B_{\sigma}^2) \ + rac{\pi}{\sigma} \operatorname{dist}_2(f',B_{\sigma}^2) \operatorname{dist}_2(g',B_{\sigma}^2) \Big\}.$$

Recall Lecture 2

If $f \in W^{1,2}(\mathbb{R}) \cap C(\mathbb{R})$ with $v\widehat{f}(v) \in L^1(\mathbb{R})$, then for each $r \in \mathbb{N}$,

$$\operatorname{dist}_2(f',B_{\sigma}^2) \leq c \left\{ \int_{\sigma}^{\infty} \left[\omega_r (f',v^{-1},L^2(\mathbb{R})) \right]^2 dv \right\}^{1/2}.$$

If in addition $f' \in \operatorname{Lip}_r(\alpha, L^2(\mathbb{R}))$, $0 < \alpha \le r$, then

$$\operatorname{\mathsf{dist}}_2(f',B^2_\sigma) = \mathcal{O}\big(\sigma^{-1-lpha}\big) \qquad (\sigma o \infty).$$

Corollary

If $f, g \in W^{r,2}(\mathbb{R}) \cap C(\mathbb{R})$, $r \geq 2$, and $f^{(r)}, g^{(r)} \in \text{Lip}_1(\alpha, L^2(\mathbb{R}))$, $0 < \alpha \leq 1$, then

$$R_{\sigma}(f,g) = \mathcal{O}(\sigma^{-r-\alpha}) \qquad (\sigma \to \infty).$$

If instead $f^{(r)}, g^{(r)} \in M_*^{2,1}$, then

$$R_{\sigma}(f,g) = \mathcal{O}(\sigma^{-r-1/2}) \qquad (\sigma \to \infty).$$

Corollary

If $f, g \in H^2(\mathcal{S}_d)$, then

$$R_{\sigma}(f,g) \le c \exp(-\sigma d) \|f\|_{H^{2}(S_{d})} \|g\|_{H^{2}(S_{d})} \qquad (\sigma > 0).$$

Approximate sampling theorem for derivatives

Theorem

For $f \in F^2 \cap S^2_{\pi/\sigma}$, $\sigma > 0$, with $v^s \widehat{f}(v) \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ for some $s \in \mathbb{N}_0$. Then

$$f^{(s)}(t) = \sum_{k \in \mathbb{Z}} f\left(\frac{k\pi}{\sigma}\right) \operatorname{sinc}^{(s)} \frac{\sigma}{\pi} \left(t - \frac{k\pi}{\sigma}\right) + (R_{s,\sigma}^{\operatorname{WKS}} f)(t) \qquad (t \in \mathbb{R}),$$

$$(R_{s,\sigma}^{\text{WKS}}f)(t) := \frac{1}{\sqrt{2\pi}} \int_{|v| > \sigma} \widehat{f}(v) \Big[(iv)^r e^{ivt} - [(iv)^r e^{ivt}]^* \Big] dv.$$

 $[(iv)^s e^{ivt}]^*$ is the 2π -periodic extens. of $(iv)^s e^{ivt}$ from $(-\pi, \pi)$ to \mathbb{R} . Furthermore,

$$|(R_{s,\sigma}^{\scriptscriptstyle \mathrm{WKS}}f)(t)| \leq \sqrt{\frac{2}{\pi}} \int_{|v| > \sigma} |v^s \widehat{f}(v)| \, dv = \sqrt{\frac{2}{\pi}} \operatorname{dist}_1(f^{(s)}, B_{\sigma}^2) = o(1)$$

uniformly for $t \in \mathbb{R}$ for $\sigma \to \infty$.

Corollary

If
$$f \in F^2$$
, $s \in \mathbb{N}$, and $v^s \widehat{f}(v) \in L^1(\mathbb{R})$, then for any $r \in \mathbb{N}$,

$$\left| (R_{s,\sigma}^{\scriptscriptstyle{\mathrm{WKS}}} f)(t) \right| \leq \sqrt{\frac{2}{\pi}} \operatorname{dist}_1(f^{(s)}, B_{\sigma}^2) \leq c \int_{\sigma}^{\infty} \omega_r (f^{(s)}, v^{-1}, L^2(\mathbb{R})) \frac{dv}{\sqrt{v}}.$$

If in addition
$$f^{(s)} \in \operatorname{Lip}_r(\alpha, L^2(\mathbb{R}))$$
 for $1/2 < \alpha \le r$, then

$$(R_{s,\sigma}^{\text{WKS}}f)(t) = \mathcal{O}(\sigma^{-\alpha+1/2}) \qquad (\sigma \to \infty).$$

Corollary

Let $s \in \mathbb{N}$, $f \in W^{r,2}(\mathbb{R}) \cap C(\mathbb{R})$ for some $r \geq s+1$. Then for $t \in \mathbb{R}$,

$$\left| \left(R_{s,\sigma}^{\text{WKS}} f \right)(t) \right| \le c \, \sigma^{-r+s+1/2} \| f^{(r)} \|_{L^2(\mathbb{R})} \qquad (\sigma > 0).$$

If moreover $f^{(r)} \in \text{Lip}_1(\alpha, L^2(\mathbb{R}))$, $0 < \alpha \le 1$, then

$$(R_{s,\sigma}^{\text{WKS}}f)(t) = \mathcal{O}(\sigma^{-r-\alpha+s+1/2}) \qquad (\sigma \to \infty).$$

Corollary

If $f \in H^2(\mathcal{S}_d)$, then for $t \in \mathbb{R}$,

$$\left| (R_{s,\sigma}^{\text{WKS}} f)(t) \right| \le c_d \, \sigma^s e^{-d\sigma} \|f\|_{H^2(\mathcal{S}_d)} \qquad (\sigma > 0).$$

Boas formula for the first derivative

In 1937 Boas established a differentiation formula which may be presented as follows:

Let $f \in B^{\infty}_{\sigma}$, where $\sigma > 0$. Then, for $h = \pi/\sigma$, we have

$$f'(t) = \frac{1}{h} \sum_{k \in \mathbb{Z}} \frac{(-1)^{k+1}}{\pi (k - \frac{1}{2})^2} f(t + h(k - \frac{1}{2})).$$

Boas-type formulae for higher derivatives (Schmeisser 2009)

The Boas-type formulae to be established will be deduced as applications of the Whittaker-Kotel'nikov-Shannon sampling theorem for higher order derivatives.

Theorem (Boas-type formulae)

Let $f \in B^{\infty}_{\sigma}$ for some $\sigma > 0$, and $s \in \mathbb{N}$. Then

$$f^{(2s-1)}(t) = \frac{1}{h^{2s-1}} \sum_{k=-\infty}^{\infty} (-1)^{k+1} A_{s,k} f\left(t + h\left(k - \frac{1}{2}\right)\right) \quad (t \in \mathbb{R}),$$

$$A_{s,k} := \frac{(2s-1)!}{\pi(k-\frac{1}{2})^{2s}} \sum_{j=0}^{s-1} \frac{(-1)^j}{(2j)!} \left[\pi(k-\frac{1}{2}) \right]^{2j} \qquad (k \in \mathbb{Z})$$

the series being absolutely and uniformly convergent.

A similar expansion holds for even order derivatives.

Assume $\sigma=\pi$. Setting t=1/2 in derivative sampling theorem yields

$$f^{(2s-1)}\left(\frac{1}{2}\right) = \sum_{k=-\infty}^{\infty} f(k)\operatorname{sinc}^{(2s-1)}\left(\frac{1}{2} - k\right).$$

The sinc-terms can be evaluated by Leibnitz' rule, namely,

$$\operatorname{sinc}^{(2s-1)}\left(\frac{1}{2}-k\right) = \underbrace{\frac{(-1)^{k+1}(2s-1)!}{\pi(k-\frac{1}{2})^{2s}} \left\{ \sum_{j=0}^{s-1} \frac{(-1)^{j} \left[\pi(k-\frac{1}{2})\right]^{2j}}{(2j)!} \right\}}_{=(-1)^{k+1}A_{s,k}}.$$

$$f^{(2s-1)}\left(\frac{1}{2}\right) = \sum_{k=-\infty}^{\infty} f(k)(-1)^{k+1} A_{s,k}.$$

For arbitrary $\sigma > 0$, $t \in \mathbb{R}$ apply this to $u \mapsto f(hu + t - h)$.

Theorem (Boas-type formulae, extended to non-bandlimited funct.)

Let $s \in \mathbb{N}$, $f \in F^2$ and let $v^{2s-1}\widehat{f}(v) \in L^1(\mathbb{R})$. Then $f^{(2s-1)}$ exists and for h > 0, $\sigma := \pi/h$ there holds

$$f^{(2s-1)}(t) = \frac{1}{h^{2s-1}} \sum_{k \in \mathbb{Z}} (-1)^{k+1} A_{s,k} f\left(t + h\left(k - \frac{1}{2}\right)\right) + (R_{2s-1,\sigma}f)(t),$$

$$ig|(R_{2s-1,\sigma}f)(t)ig| \leq \sqrt{rac{2}{\pi}} \int_{|v| \geq \sigma} ig|v^{2s-1}\widehat{f}(v)ig| dv$$

$$= \sqrt{rac{2}{\pi}} \operatorname{dist}_1(f^{(2s-1)}, B^2_{\sigma}).$$

The corollaries stated above for the remainder of the approximate sampling theorem are also valid for $R_{2s-1,\sigma}f$.

Theorem (Bernstein inequality)

For $f \in B_{\sigma}^{p}$, $1 \leq p \leq \infty$, $\sigma > 0$, there holds

$$||f^{(s)}||_{L^p(\mathbb{R})} \le \sigma^s ||f||_{L^p(\mathbb{R})} \qquad (s \in \mathbb{N}).$$

Corollary (Bernstein inequality for trigonometric polynomials)

If $f(t) = t_n(t) = \sum_{k=-n}^{n} c_k e^{ikt}$, a trigonometric polynomial of degree n, then $t_n \in \mathcal{B}_n^{\infty}$, and

$$||t_n^{(s)}||_{L^{\infty}(\mathbb{R})} \leq n^s ||t_n||_{L^{\infty}(\mathbb{R})} \qquad (s \in \mathbb{N}).$$

Theorem (Extended Bernstein inequality)

Let $s \in \mathbb{N}$, $f \in F^2$ and suppose that $v^s \widehat{f}(v) \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ as a function of v. Then, for any $\sigma > 0$, we have

$$||f^{(s)}||_{L^2(\mathbb{R})} \le \sigma^s ||f||_{L^2(\mathbb{R})} + \operatorname{dist}_2(f^{(s)}, B^2_\sigma).$$

The proofs follow from the Boas-type formulae above.

The Hilbert transform

Hilbert transform or conjugate function of $f \in L^2(\mathbb{R}) \cap C(\mathbb{R})$, is defined by Cauchy principal value

$$\widetilde{f}(t) := \lim_{\delta \to 0+} \int_{|u| > \delta} \frac{f(t-u)}{u} du = \operatorname{PV} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(t-u)}{u} du,$$

It defines a bounded linear operator from $L^2(\mathbb{R})$ into itself, and $[\widetilde{f}]^{\widehat{}}(v)=(-i\operatorname{sgn} v)\widehat{f}(v)$ a. e. If $v^s\widehat{f}(v)\in L^1(\mathbb{R})$, then by Fourier inversion formula,

$$\left[\widetilde{f}\,\right]^{(s)}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(v)(-i\operatorname{sgn} v)(iv)^{s} e^{ivt} dv \qquad (t \in \mathbb{R}).$$

Thus $\left[\widetilde{f}\right]^{(s)} = \widetilde{f^{(s)}}$; i. e. derivation and taking Hilbert transform are commutative operations.

Since sinc $(v) = 1/\sqrt{2\pi}$ for $|v| \le \pi$ and = 0 otherwise,

$$\operatorname{sinc}^{\sim}(t) = \frac{1 - \cos \pi t}{\pi t} = \frac{\sin^2\left(\frac{\pi t}{2}\right)}{\frac{\pi t}{2}}.$$

Theorem (Boas-type formulae for the Hilbert transform)

Let $f \in \mathcal{B}^2_{\sigma}$, $\sigma > 0$ and $h := \pi/\sigma$. Then for $s \in \mathbb{N}$,

$$\widetilde{f}^{(2s-1)}(t) = \frac{1}{h^{2s-1}} \sum_{k=-\infty}^{\infty} (-1)^{k+1} \widetilde{A}_{s,k} f(t+hk) \qquad (t \in \mathbb{R}).$$

$$\widetilde{A}_{s,0} := (-1)^s \frac{\pi^{2s-1}}{2s},$$

$$\widetilde{A}_{s,k} := \frac{(2s-1)!}{\pi k^{2s}} \left\{ (-1)^k - \sum_{j=0}^{s-1} \frac{(-1)^j}{(2j)!} (\pi k)^{2j} \right\} \quad (k \neq 0).$$

The proof is based on the sampling theorem for the Hilbert transform,

$$\widetilde{f}^{(2s-1)}(0) = \sum_{k=-\infty}^{\infty} f(k) \operatorname{sinc}^{\sim (2s-1)}(-k).$$

Theorem (Boas formulae for the Hilbert transform, extended vers.)

Let $s \in \mathbb{N}$, $f \in F^2$ and let $v^{2s-1}\widehat{f}(v) \in L^1(\mathbb{R})$. Then $f^{(2s-1)}$ exists and for h > 0, $\sigma := \pi/h$,

$$\widetilde{f}^{(2s-1)}(t) = \frac{1}{h^{2s-1}} \sum_{k \in \mathbb{Z}} (-1)^{k+1} \widetilde{A}_{s,k} f(t+hk) + (\widetilde{R}_{2s-1,\sigma} f)(t),$$

where

$$\begin{aligned} \left| (\widetilde{R}_{2s-1,\sigma} f)(t) \right| &\leq \frac{1}{\sqrt{2\pi}} \int_{|v| \geq \sigma} \left| v^{2s-1} \widehat{f}(v) \right| dv \\ &= \frac{1}{\sqrt{2\pi}} \operatorname{dist}_1(f^{(2s-1)}, B_{\sigma}^2). \end{aligned}$$

First assume h=1, i.e., $\sigma=\pi$. Let

$$f_1(t) := rac{1}{\sqrt{2\pi}} \int_{|v| \geq \pi} \widehat{f}(v) e^{itv} dv.$$

Then $f - f_1 \in B_{\pi}^{\infty}$ and so the bandlimited case applies to this difference, i. e.,

$$(\widetilde{R}_{2s-1,\pi}f)(t) = (\widetilde{R}_{2s-1,\pi}(f-f_1))(t) + (\widetilde{R}_{2s-1,\pi}f_1)(t) = (\widetilde{R}_{2s-1,\pi}f_1)(t),$$

and we find that for t = 0,

$$(\widetilde{R}_{2s-1,\pi}f)(0) = \widetilde{f_1}^{(2s-1)}(0) - \sum_{k=-\infty}^{\infty} (-1)^{k+1} \widetilde{A}_{s,k} f_1(k).$$

Proof, continued

$$(\widetilde{R}_{2s-1,\pi}f)(0) = \widetilde{f_1}^{(2s-1)}(0) - \sum_{k=-\infty}^{\infty} (-1)^{k+1} \widetilde{A}_{s,k} f_1(k).$$

$$\widetilde{f_1}^{(2s-1)}(0) = \frac{1}{\sqrt{2\pi}} \int_{|v| \ge \pi} \widehat{f}(v) (-i \operatorname{sgn} v) (iv)^{2s-1} dv$$

$$f_1(k) = \frac{1}{\sqrt{2\pi}} \int_{|v| \ge \pi} \widehat{f}(v) e^{ikv} dv \qquad (k \in \mathbb{Z}).$$

Inserting the last two equations into the first one and interchanging summation and integration yields

$$(\widetilde{R}_{2s-1,\pi}f)(0) = \frac{1}{\sqrt{2\pi}} \int_{|v| \ge \pi} \widehat{f}(v) \left[(-i\operatorname{sgn} v)(iv)^{2s-1} - \sum_{k=-\infty}^{\infty} (-1)^{k+1} \widetilde{A}_{s,k} e^{ikv} \right] dv.$$

Proof, continued

The foregoing infinite series is a Fourier series of a 2π -periodic function and can be evaluated to be

$$\sum_{k=-\infty}^{\infty} (-1)^{k+1} \widetilde{A}_{s,k} e^{ikv} = (-1)^{s+1} |v|^{2s-1} \qquad (|v| < \pi).$$

$$\left| (\widetilde{R}_{2s-1,\pi}f)(0) \right|$$

$$= \left| \frac{1}{\sqrt{2\pi}} \int_{|v| \ge \pi} \widehat{f}(v) \Big[(-i \operatorname{sgn} v) (iv)^{2s-1} - (-1)^{s+1} \big[|v|^{2s-1} \big]^* \Big] dv \right|$$

$$\leq \sqrt{\frac{2}{\pi}} \int_{|v| > \varepsilon} \left| v^{2s-1} \widehat{f}(v) \right| dv = \sqrt{\frac{2}{\pi}} \operatorname{dist}_1(f^{(2s-1)}, B_{\sigma}^2).$$

 $[|v|^{2s-1}]^*$ is the 2π -periodic extension of $|v|^{2s-1}$ from $(-\pi,\pi)$ to \mathbb{R} .

This is the desired inequality for $\sigma=\pi$, h=1 and t=0. For the general case apply this estimate to the function $u\mapsto f(t+hu)$.

Applications

Consider $g(t):=1/(1+t^2)$, $t\in\mathbb{R}$, Fourier transform $\sqrt{\pi/2}\exp(-|v|)$, Hilbert transform $\widetilde{g}(t)=t/(1+t^2)$. Extended sampling theorem for Hilbert transform takes on concrete form for \widetilde{g}' ,

$$\left| rac{1-t^2}{(1+t^2)^2}
ight|$$

$$-\sum_{k=-\infty}^{\infty} \frac{\sigma^2}{\sigma^2 + (k\pi)^2} \frac{\pi(\sigma t - k)\sin(\pi(\sigma t - k)) + \cos(\pi(\sigma t - k)) - 1}{\pi(\sigma t - k)^2}$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{|v| > \sigma} \sqrt{\frac{\pi}{2}} |v| e^{-|v|} dv = (1+\sigma) e^{-\sigma} \qquad (\sigma > 0).$$

Truncation error

In practise one has to deal with finite sum, no infinite series. Leads to additional *truncation error*,

$$(T_{\sigma,N}f)(t) = \sum_{|k|>N+1} \frac{\sigma^2}{\sigma^2 + (k\pi)^2} \frac{\pi(\sigma t - k)\sin(\pi(\sigma t - k)) + \cos(\pi(\sigma t - k)) - 1}{\pi(\sigma t - k)^2}$$

This yields for the truncation error

$$\begin{split} \big| (T_{\sigma,N}f)(t) \big| &\leq \frac{\sigma^2(2\gamma+1)}{\pi^2(\gamma-1)} \sum_{|k| \geq N+1} \frac{1}{|k|^3} \\ &\leq \frac{2\sigma^2(2\gamma+1)}{\pi^2(\gamma-1)} \int_N^\infty \frac{1}{u^3} \, du = \frac{\sigma^2(2\gamma+1)}{\pi^2(\gamma-1)} N^{-2}. \end{split}$$

for $N \ge \gamma \sigma |t|$ and some constant $\gamma > 1$.

Combined error

Combining the aliasing error with truncation error we finally obtain

$$\left|\frac{1-t^2}{(1+t^2)^2} - \sum_{k=-N}^{N} \mathsf{clear}\right| \le (1+\sigma) \mathsf{e}^{-\sigma} + \frac{\sigma^2(2\gamma+1)}{\pi^2(\gamma-1)} \mathsf{N}^{-2}$$

$$(\sigma > 0; \mathsf{N} \ge \gamma \sigma |t|).$$

Similarly, Boas-type theorem for derivative \widetilde{g}' takes the form

$$\left| \frac{1 - t^2}{(1 + t^2)^2} - \left\{ \frac{\pi}{2h} \frac{1}{1 + t^2} - \frac{1}{h} \sum_{k = -\infty}^{\infty} \frac{2}{\pi (2k + 1)^2} \frac{1}{1 + [t + (2k + 1)h]^2} \right\} \right|$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{|v| > \sigma} \sqrt{\frac{\pi}{2}} |v| e^{-|v|} dv = (1+\sigma) e^{-\sigma} \qquad (\sigma > 0).$$

For the second order derivative \tilde{g}'' one obtains

$$\left| \frac{2t^3 - 6t}{(1+t^2)^3} - \frac{1}{h^2} \sum_{k=-\infty}^{\infty} \frac{8(\pi - 2\pi k + 2(-1)^k)}{\pi (2k-1)^3} \frac{(-1)^k}{1 + [t + (2k+1)h]^2} \right|$$

$$\leq rac{1}{\sqrt{2\pi}} \int_{|v| > \sigma} \sqrt{rac{\pi}{2}} v^2 e^{-|v|} dv = (2 + 2\sigma + \sigma^2) e^{-\sigma} \qquad (\sigma > 0).$$

These are the aliasing errors for the reconstruction of derivatives of the Hilbert transform in terms of Boas-type formulae. In both cases the truncation errors can be handled in a similar fashion as above.

Some Boas-type formulae for bandlimited functions and their Hilbert transform

$$f'(t) = \frac{1}{h} \sum_{k \in \mathbb{Z}} \frac{(-1)^{k+1}}{\pi(k - \frac{1}{2})^2} f\left(t + h\left(k - \frac{1}{2}\right)\right),$$

$$f''(t) = -\frac{\pi^2}{3h^2} f(t) + \frac{2}{h^2} \sum_{\substack{k = -\infty \\ k \neq 0}}^{\infty} f(t + hk) \frac{(-1)^{k+1}}{k^2},$$

$$f^{(3)}(t) = \frac{1}{h^3} \sum_{k = -\infty}^{\infty} \frac{(-1)^{k+1} 6}{\pi(\frac{1}{2} - k)^4} \left[1 - \frac{\pi^2}{2} \left(\frac{1}{2} - k\right)^2\right] f\left(t + h\left(k - \frac{1}{2}\right)\right),$$

$$\tilde{f}'(t) = \frac{\pi}{2h} f(t) + \frac{1}{h} \sum_{k = -\infty}^{\infty} \frac{-2}{\pi(2k+1)^2} f\left(t + h(2k+1)\right),$$

$$\tilde{f}''(t) = \frac{1}{h^2} \sum_{k = -\infty}^{\infty} (-1)^{k+1} \frac{2\left[(-1)^k + \left(\pi\left(k - \frac{1}{2}\right)\right)\right]}{\pi\left(k - \frac{1}{2}\right)^3} f\left(t + h\left(k - \frac{1}{2}\right)\right).$$

References L

P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser, and R. L. Stens.

The sampling theorem, Poisson's summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals - their interconnections. Applicable Analysis, 90(3-4):431-461, 2011.

P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser, and R. L. Stens.

The generalized Parseval decomposition formula, the approximate sampling theorem, the approximate reproducing kernel formula, Poisson's summation formula and Riemann's zeta function; their interconnections for non-bandlimited functions.

to appear.

References II

P. L. Butzer, P. J. S. G. Ferreira, G. Schmeisser, and R. L. Stens.

The summation formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis.

Results Math., 59(3-4):359-400, 2011.

P. L. Butzer and A. Gessinger.

The approximate sampling theorem, Poisson's sum formula, a decomposition theorem for Parseval's equation and their interconnections.

Ann. Numer. Math., 4(1-4):143-160, 1997.

P. L. Butzer, G. Schmeisser, and R. L. Stens.

Basic relations valid for the Bernstein space B_{σ}^{p} and their extensions to functions from larger spaces in terms of their distances from B_{σ}^{p} . to appear.

References III

P. L. Butzer, G. Schmeisser, and R. L. Stens.

Shannon's sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivatives the aliasing error involved by their extensions from bandlimited to non-bandlimited signals.

invited for publication in Entropy.

P. L. Butzer and W. Splettstösser.

A sampling theorem for duration limited functions with error estimates.

Inf. Control, 34:55-65, 1977.

P. L. Butzer, W. Splettstösser, and R. L. Stens.

The sampling theorem and linear prediction in signal analysis. Jber.d.Dt.Math.-Verein., 90:1-70, 1988.

References IV

G. Schmeisser.

Numerical differentiation inspired by a formula of R. P. Boas.

J. Approximation Theory, 160:202-222, 2009.

R. L. Stens.

A unified approach to sampling theorems for derivatives and Hilbert transforms.

Signal Process., 5(2):139-151, 1983.