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Approximate sampling theorem (AST) — recall Lecture 1

Theorem (Weiss 1963, Brown 1967, Butzer-SplettstoRer 1977)
Let f € F2N 57%/0 with o > 0. Then

f(t)=>" f(%”) sinc (%t - k) + (RVSSF)(t) (t € R).

keZ

We have

‘(R;VKSf)(t)’ < \/g/lv|> |?(v)| dv = \/gdistl(f, Bg) =o(1).

V.




Corollary

If f € F?, then one has for any r € N, o0 > 0 and t € R the
derivative free error estimate

(RY<SF)(1)] < @ disty(f, B2) < c / (v 2(R)

If in addition f € Lip,(a, L3(R)) for 1/2 < a < r, then
(RYSSF)(t) = O(o~*t?) (0 — o0)

uniformly in t € R.

dv

7




Corollary

Let f € W"2(R) N C(R) for some r € N. Then for t € R,
((RYCA(t)] < co ™ 2f D) 2y (0> 0).
If moreover f(*) € Lip;(a, L2(R)), 0 < o < 1, then
(RSA)(8) = O(o7*412) (0= ).
Or, if f() € M2?, then

(RY*SF)(t) = O(c™") (0 — 00).

| \

Corollary

Iff e HZ(Sd), then for t € R,

((RYSF)(8)] < cae™“lIflles,y (0 >0).




Function spaces

—{FRC: feP®NCER). Fel'®),
Spi={f 1R C : (F(hK)) ey € (7))

Lipschitz spaces:

we(f;0; L2 R)) := sup
|h| <6

)

Z <> (u—+jh)

=0

L2(R)
Lip,(a; L2(R)) := {f € L*(R) : w,(f;5; L*(R)) = O(5*), 6 — 0+}.
Sobolev spaces:

WP (R) = {f ‘R C : feACIAR), 0 € [P(R),0 < k < r}.



Function spaces, continued

Hardy spaces:

HP(Sy) = {f . f analyticon {z € C : |Sz| < d},

fF(t— )P+ |Fe+ )P P
¥l ::{ sup /R\( V)P +1f(t + i) dt} <OO}_

O<y<d 2

Wiener amalgam space — modulation space:

n+1 2 1/2
Mz’l:z{f:R%(C: 1{/ F(L dv} <oo,h>0},
S

M2t .= {f e M?! : series converges uniformly in h

on bounded subintervals of (0, oo)}



Reproducing kernel formula (RKF)

Theorem (extended, Butzer et al. 2011)

Let f € F2 msg/w, o> 0. Then

F(t) = %/Rf(u) sinc (2(t— w))du+ (REF)(1)  (t€R)

RRKFf / ltvd .
BN = o e v
Furthermore,
1 ~ 1 .
‘(R?KFf(t)| < E ” |f(v)| dv = Edlstl(f, B§) = o(1).
V(>0

Three corollaries above are also valid here.



General Parseval decomposition formula (GDPF)

Theorem (Butzer-Gessinger 1995/97)
Let f € F? 05;/0, and g € F?. Then foro >0

/fu)g u)du = — Zf( ) ( )+R(fg)
Ro(F.g) = /R (RYF)(u)g(u) du

\/> Z k7T E(V) eikrrv/a dv.
v|>o‘

|R(fg|<HRWKSfHL2HgHLz+\[ S|, s

|>o




Theorem

Let f € F2ﬂ571r/0 and g € F?. Then foro >0

/fu)gu)du— Zf< )( )—I—R(fg)

Rth.8)| < 1R el 32 ()], lBlav

If f,g € WH2(R) N C(R), then
9 / 2 . / 2
‘ (f g)‘ {dlStz(f B2) + dista(g’, B

+ T dista(f, B2) dista (g, Bg)}.
g




Recall Lecture 2

If £ € WL2(R) N C(R) with vf(v) € L1(R), then for each r € N,
0o 1/2
disty(f', B2) < c{/ [wr (F, vl L2(]R))]2 dv} .

If in addition ' € Lip,(a, L2(R)), 0 < a < r, then

disty(f, B2) = (9(0_1_0‘) (0 — 00).



Corollary

Iff,g € WH2(R) N C(R), r >2, and (1, g(1) € Lip; (a, L2(R)),
0 < a<l, then

Ry(f.g) =0O(c™"%) (0 — 00).
If instead f(1), g(1) ¢ M2, then

Ry(f,g) = (9(0_'_1/2) (0 — 00).

Corollary
If f,g € H*(Sy), then

| A\

Ro(f,g) < cexp(—ad)|[f s, l8llHes,) (0> 0).

A\




Approximate sampling theorem for derivatives

Theorem

For f € F?N 572r/0, o >0, with VS?(V) € L}(R) N L2(R) for some
s € Ng. Then

=3 F(5T)sinc 2 (- 7Y (REISAY() (e m),

keZ

(RESSF)(t) - = /v|>0 (v) ,v)fe"Vf—[(iv)ferf]*} dv

[(iv)se™]* is the 27-periodic extens. of (iv)*e™t from (—m,7) to R.
Furthermore,

[(RWESF)( y<\[/|> IV F(v)| dv = \[d.stl(f“) = o(1)

uniformly for t € R for o — 0.




Corollary

Iff € F2, s €N, and vSf(v) € LY(R), then for any r € N,

2 . s & S dv
[(RYESF)(t)| < \/;dlstl(f( ), B?) < C/Uw,(f( ) v 1,L2(R))W.

If in addition () € Lip,(, L>(R)) for 1/2 < a. < r, then

(RIESF)(t) = O(c™*™/2) (0 — ).




Corollary

Lets €N, f € W"2(R) N C(R) for some r > s+ 1. Then for
teR,

(REGEO)(B)] < co™ ™21 oy (0> 0).
If moreover f(") € Lip;(a, L3(R)), 0 < a < 1, then

(RVESF)(t) = O(o~"~oFH2) (5 — o0).

w
q
\

Corollary

Iff e HZ(Sd), then for t € R,

}(RWKSf ‘ < cy Use_dUHfHHz(Sd) (U > 0)

A\




Boas formula for the first derivative

In 1937 Boas established a differentiation formula which may be
presented as follows:

Let f € B

o !

where 0 > 0. Then, for h = /o, we have

k+1

5 g (ea(e-3))-



Boas-type formulae for higher derivatives (Schmeisser 2009)

The Boas-type formulae to be established will be deduced as
applications of the Whittaker-Kotel nikov-Shannon sampling
theorem for higher order derivatives.

Theorem (Boas-type formulae)

Let f € B3 for some o >0, and s € N. Then

FE1(1) = h2:—1 i (=1 A f(t i h<k B %)) (t €R),

k=—00

_ s R (-1Y 1\12)
Ask = (k- %)25 J_ZO (2))! [’/T(k B §)]2 (k € Z),

the series being absolutely and uniformly convergent.

A similar expansion holds for even order derivatives.



Assume o = 7. Setting t = 1/2 in derivative sampling theorem

yields
e (2) = Z F(R)sinc@* D) (3 ).

The sinc-terms can be evaluated by Leibnitz' rule, namely,

sinc®>s~1) (% — k) — (=) (25 - 1)! {51 (—1y [7r(k _ %)] 2j} |

LG ) S (2))!
=(—1)k 1Ak
F(2s— 1)( ) Z f(k k+1A

k=—o00

For arbitrary o > 0, t € R apply this to u — f(hu+ t — h). O



Theorem (Boas-type formulae, extended to non-bandlimited funct.)

Lets €N, f € F2 and let v?~1f(v) € L}(R). Then fs=1) exists
and for h > 0, o := /h there holds

f(25 1) h25 T k+1As,kf(t+h<k—%))+(R2s—1,0f)(t)7

kEZ

|(Ras—1,.1)(t)] < \/3/ (V2> (v)| dv
T Jlv|zo
= \F dist; (£~ B2).
s

The corollaries stated above for the remainder of the approximate
sampling theorem are also valid for Rps_1 ,f.




Theorem (Bernstein inequality)
For f € B, 1< p < o0, 0 >0, there holds

1F | o@) < ol fllewy (s €N).

Corollary (Bernstein inequality for trigonometric polynomials)

Iff(t) = to(t) = >.7__, cke'®, a trigonometric polynomial of
degree n, then t, € By°, and

1680y < PPlltalliemy (s € N).

Theorem (Extended Bernstein inequality)

Let s €N, f € F? and suppose that vs/f\(v) € L{R)NL%(R) as a
function of v. Then, for any o > 0, we have

1O 2@y < o° IIF ] 2wy + dista(F, BZ).

The proofs follow from the Boas-type formulae above.



The Hilbert transform

Hilbert transform or conjugate function of f € L2(R) N C(R), is
defined by Cauchy principal value

e g, [ MWl [T,

6—0+ u u

It defines a bounded linear operator from L2(R) into itself, and
[f] (v) = (—isgnv)f(v) a.e. If v°f(v) € L1(R), then by Fourier
inversion formula,

[ﬂ(s)(t) — \/127_ /_Oo ?(v)(—isgn v)(iv)*e™ dv (t eR).

Thus [7](5) = }E; i. e. derivation and taking Hilbert transform are
commutative operations.
Since sinc " (v) = 1/v/2m for |v| < 7w and = 0 otherwise,

. 1—coswt sin® (%)
sinc” (t) = =
mt %t




Theorem (Boas-type formulae for the Hilbert transform)

Let f € B2, 0 >0and h:=7/o. Then fors € N,
Fs=D(4) = ,,2371 i (~D)F A ( F(t+ hk)  (teR).
k=—o00
Aug = (1.
Agp = %{ i 7rk 21} (k #0).
j=0

The proof is based on the sampling theorem for the Hilbert
transform,

fFl2s— D( Z F(k)sinc =D (—k).

k=—o00



Theorem (Boas formulae for the Hilbert transform, extended vers.)

Lets €N, f € F2 and let v>*~1f(v) € LX(R). Then f5=1) exists
and for h >0, o :=7/h,

f(25 1)

,,25 £ O (LFTRAKF(E+ hK) + (Res—1,07)(1),
keZ

where

D 1 2 17
1o < — ST f d
[(Ree-s.aF)(B)| < —= /MZJ ()] dv

— d|st (Fs=1) B2).

@




First assume h=1, i.e., o = m. Let

f(t) = — F(v)e™ dv .

© Vor Jss

Then f — fi € B and so the bandlimited case applies to this
difference, i.e.,

(Ros—1.)(t) = (Ras—1,0(F ) ()4 (Ros— 1) (t) = (Ros—1.-f1)(t),
and we find that for t = 0,

~(2s—1

(R F)O) = A 7 (0) i (—1)F A fi (k).

k=—o00



Proof, continued

~(25-1) >

(Ros 1..0)(0) = A 0) = 3 (m1) A4 A(K).
k=—00
AR P F(v)(—isgnv)(iv)*Ldv
1 ”‘m/mf( )(~isgnv)(iv)>td
/kv
fi(k \/ﬂ/|>7r dv  (keZ).

Inserting the last two equations into the first one and interchanging
summation and integration yields

(Ras—1.7)(0) —isgnv)(iv)®1

\/ﬂ /v|>7r |:
- Z (1)K A i eV dv.

k=—o00



Proof, continued

The foregoing infinite series is a Fourier series of a 27-periodic
function and can be evaluated to be

oo

Yo (DA = (—1)TTH P (] < ).

k=—o00

|(Ras—1.£)(0)]

- ‘\/127 /v|zﬂ?(v) [(—isgn v)(iv)* Tt = (=17 UV|25_1H dv‘

< \F / V27 (v)| dv = \F dist; (F*~1, B3).
T Jjv|zo T

[|v|?$~1]* is the 2m-periodic extension of |v|?>s~! from (—m,7) to R.

This is the desired inequality for o = m, h=1 and t = 0. For the
general case apply this estimate to the function v +— f(t+ hu). U



Applications

Consider g(t) := 1/(1 + t?), t € R, Fourier transform
\/7/2exp(—|v|), Hilbert transform g(t) = t/(1 + t). Extended
sampling theorem for Hilbert transform takes on concrete form

for g’,
1— ¢
R o? m(ot — k) sin(m(ot — k)) + cos(m(ot — k)) — 1
a k;m 0% + (km)? (ot — k)2

1/ \/? v -
< — —lvleVdv = (1 +0)e ? o > 0).
Vg IRIEIL (1+a)e  (0>0)



Truncation error

In practise one has to deal with finite sum, no infinite series. Leads
to additional truncation error,

(Tonf)(t)
B o2 m(ot — k) sin(m(ot — k)) + cos(m(ot — k)) — 1
N |kZZN+1 02 + (km)? (ot — k)2

This yields for the truncation error

RATGIE 2(2]_“ ) ki

|k|=N+

2022y +1) [~ 1 o2y +1),, ,
< — 7 — S Sl A .
- om(y-1) /N ¢ 7Tz(vfl)N

for N > ~yo|t| and some constant v > 1.



Combined error

Combining the aliasing error with truncation error we finally obtain
N

1-t E clea
s r
2\2
(1+1t2) Bt

a?(2y+1)

A S L Y
(v —1) N

<(l4+o0)e 7+

(o0 >0; N> ~olt|).

Similarly, Boas-type theorem for derivative g’ takes the form

1- (x 1 1 i 2 1
(14 t2)2 2h1+ ¢? hk:_oo’fr(2k+1)2 14 [t+ (2k 4+ 1)h]?

1 s
< — — My = (1 I > 0).
—\/2?/@\@”'9 V= to)e”  (0>0)



For the second order derivative g’ one obtains

263 — 2: 8(m — 2mk +2(=1)%) (-D*
(1+ t2 h2 m(2k — 1)3 1+ [t+ (2k+1)h]?

1 / \ﬁ 2 —|v] 2y —
< — —vie Mldv=(2+20+0%)e? (0 >0).
V2 Jjvjze V 2

These are the aliasing errors for the reconstruction of derivatives of
the Hilbert transform in terms of Boas-type formulae. In both cases
the truncation errors can be handled in a similar fashion as above.




Some Boas-type formulae for bandlimited functions and
their Hilbert transform

P = 2 ()4 o > f(t+hk)(_i)2
ez
P05 2 g3 a0 e)

[e.o]

~, 1 -2
F(t) = 2hf() ”k:Z Wf(wh(zku)),

- k;m( e 2D (:_(”()/‘3_2)] f<t+h(ki%)>‘
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