Short-time Fourier transform for quaternionic signals
 Joint work with Y. Fu and U. Kähler

P. Cerejeiras

Departamento de Matemática
Universidade de Aveiro
pceres@ua.pt

New Trends and Directions in Harmonic Analysis, Fractional Operator Theory, and Image Analysis - Inzell 2012

Frames

Definition

A discrete system $\left\{\psi_{j}, j \in J\right\}$ is a frame for a Hilbert space \mathcal{H} if there exist $0<A \leq B<\infty$ such that

$$
A\|f\|^{2} \leq \sum_{j \in J}\left|\left\langle f, \psi_{j}\right\rangle\right|^{2} \leq B\|f\|^{2}
$$

for all $f \in \mathcal{H}$.

Definition

We define the analysis operator as the linear operator $F: \mathcal{H} \rightarrow \ell_{2}(J)$, where $F f=c$, with $c_{j}=\left\langle f, \psi_{j}\right\rangle$

- Its synthesis operator F^{*} is given by $F^{*} C=\sum_{j \in J} c_{j} \psi_{j}$;
- The frame operator is given by $F F^{*}: \mathcal{H} \rightarrow \mathcal{H}$.

Frames

Definition

A discrete system $\left\{\psi_{j}, j \in J\right\}$ is a frame for a Hilbert space \mathcal{H} if there exist $0<A \leq B<\infty$ such that

$$
A\|f\|^{2} \leq \sum_{j \in J}\left|\left\langle f, \psi_{j}\right\rangle\right|^{2} \leq B\|f\|^{2}
$$

for all $f \in \mathcal{H}$.

Definition

We define the analysis operator as the linear operator $F: \mathcal{H} \rightarrow \ell_{2}(J)$, where $F f=c$, with $c_{j}=\left\langle f, \psi_{j}\right\rangle$.

- Its synthesis operator F^{*} is given by $F^{*} c=\sum_{j \in J} c_{j} \psi_{j}$;
- The frame operator is given by $F F^{*}: \mathcal{H} \rightarrow \mathcal{H}$.

Frames

Then one has

- a good characterization of f :

$$
\left\langle f, \psi_{j}\right\rangle=0, \forall j \in J \Rightarrow f=0 ;
$$

- a good reconstruction scheme for f

(1) The frame is said to be tight if $A=B$;
(2) If the frame is tight and $A=1$ then the frame is orthogonal;
(The frame is said to be exact if after redrawing an arbitrary $\psi_{j 0}$ from the system it is no longer a frame.

Frames

Then one has

- a good characterization of f :

$$
\left\langle f, \psi_{j}\right\rangle=0, \forall j \in J \Rightarrow f=0 ;
$$

- a good reconstruction scheme for f :

$$
f=\sum_{j \in J}\left\langle f, \psi_{j}\right\rangle \tilde{\psi}_{j}=\sum_{j \in J}\left\langle f, \tilde{\psi}_{j}\right\rangle \psi_{j} .
$$

(1) The frame is said to be tight if $A=B$;
(2) If the frame is tight and $A=1$ then the frame is orthogonal;
(3) The frame is said to be exact if after redrawing an arbitrary from the system it is no longer a frame.

Frames

Then one has

- a good characterization of f :

$$
\left\langle f, \psi_{j}\right\rangle=0, \forall j \in J \Rightarrow f=0 ;
$$

- a good reconstruction scheme for f :

$$
f=\sum_{j \in J}\left\langle f, \psi_{j}\right\rangle \tilde{\psi}_{j}=\sum_{j \in J}\left\langle f, \tilde{\psi}_{j}\right\rangle \psi_{j} .
$$

(1) The frame is said to be tight if $A=B$;
(2) If the frame is tight and $A=1$ then the frame is orthogonal;
(3) The frame is said to be exact if after redrawing an arbitrary $\psi_{j 0}$ from the system it is no longer a frame.

Windowed Fourier transform

Definition

For a given window $g \in L_{2}(\mathbb{R})$ we define the windowed Fourier transform of $f \in L_{2}(\mathbb{R})$ as

$$
\mathcal{F}^{w i n} f(t, \omega)=\int_{-\infty}^{+\infty} f(x) e^{-2 \pi \omega i x} g(x-t) d x
$$

Problem

For discretization of the WFT what choice of ω_{0}, t_{0} such that

- the signal is characterized by its coefficients?
- one has a numerically stable reconstruction of the signal?

Windowed Fourier transform

Definition

For a given window $g \in L_{2}(\mathbb{R})$ we define the windowed Fourier transform of $f \in L_{2}(\mathbb{R})$ as

$$
\mathcal{F}^{w i n} f(t, \omega)=\int_{-\infty}^{+\infty} f(x) e^{-2 \pi \omega i x} g(x-t) d x
$$

Problem

For discretization of the WFT what choice of ω_{0}, t_{0} such that

- the signal is characterized by its coefficients?
- one has a numerically stable reconstruction of the signal?

Discrete windowed Fourier transform

Lemma

For a giver window g and its dual window \tilde{g} in M^{1} we have that the Gabor frame operator converges in $L_{2}(\mathbb{R})$

Discrete windowed Fourier transform

Lemma

For a given window g and its dual window \tilde{g} in M^{1} we have that the Gabor frame operator converges in $L_{2}(\mathbb{R})$.

The Balian-Low Theorem

The Balian-Low theorem expresses the fact that time-frequency concentration and non-redundancy are incompatible properties for Gabor systems

$$
g_{m, n}=e^{-i 2 \pi m \cdot} g(\cdot-n), n, m \in \mathbb{Z}
$$

that is to say, either

$$
\int_{-\infty}^{+\infty} x^{2}|g(x)|^{2} d x=\infty
$$

or

$$
\int_{-\infty}^{+\infty} \xi^{2}|\hat{g}(\xi)|^{2} d \xi=\infty
$$

The Zak transform - 1

The Zak transform (J. Zak, 1967) is an important tool for studying the frame given by Gabor systems.

Definition

For $f \in L_{2}(\mathbb{R})$, we have

$$
(Z f)(t, \omega)=\sum_{k \in \mathbb{Z}} e^{2 \pi i k \omega} f(t-k), \quad(t, \omega) \in[0,1)^{2}
$$

- It defines a unitary operator from $L^{2}(\mathbb{R})$ to $L^{2}\left([0,1)^{2}\right)$. In abstract harmonic analysis the Zak transform is called the Weil-Brezin map;
- The harmonic waves $e^{2 \pi i n \omega}, n \in \mathbb{Z}$ in the Zak transform have constant frequencies, which can be seen as the derivative of the
 Analysis

The Zak transform - 1

The Zak transform (J. Zak, 1967) is an important tool for studying the frame given by Gabor systems.

Definition

For $f \in L_{2}(\mathbb{R})$, we have

$$
(Z f)(t, \omega)=\sum_{k \in \mathbb{Z}} e^{2 \pi i k \omega} f(t-k), \quad(t, \omega) \in[0,1)^{2}
$$

- It defines a unitary operator from $L^{2}(\mathbb{R})$ to $L^{2}\left([0,1)^{2}\right)$. In abstract harmonic analysis the Zak transform is called the Weil-Brezin map;
- The harmonic waves $e^{2 \pi i n \omega}, n \in \mathbb{Z}$ in the Zak transform have constant frequencies, which can be seen as the derivative of the linear phase $\phi(\omega)=2 \pi n \omega$

The Zak transform - 1

The Zak transform (J. Zak, 1967) is an important tool for studying the frame given by Gabor systems.

Definition

For $f \in L_{2}(\mathbb{R})$, we have

$$
(Z f)(t, \omega)=\sum_{k \in \mathbb{Z}} e^{2 \pi i k \omega} f(t-k), \quad(t, \omega) \in[0,1)^{2}
$$

- It defines a unitary operator from $L^{2}(\mathbb{R})$ to $L^{2}\left([0,1)^{2}\right)$. In abstract harmonic analysis the Zak transform is called the Weil-Brezin map;
- The harmonic waves $e^{2 \pi i n \omega}, n \in \mathbb{Z}$ in the Zak transform have constant frequencies, which can be seen as the derivative of the linear phase $\phi(\omega)=2 \pi n \omega$;

The Zak transform -2

- The nontrivial harmonic waves $e^{i \theta_{\mathrm{a}}(2 \pi \omega)}$ have positive time-varying frequencies and are expected to be better suitable and adaptable, along with different choices of a, to nonlinear and non-stationary time-frequency analysis.

Analytic signals

Applying to a given signal $f(x)$ the Hilbert transform

$$
H f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{f(y)}{y-x} d y, y \in \mathbb{R}
$$

we obtain the complex-valued function

$$
F(x)=f(x)+i H f(x)=a(x) e^{i \theta(x)}
$$

- $F(x)$ is the analytic signal, $a(x)$ the amplitude and $\theta(x)$ the phase;
- $\omega(x)=\theta^{\prime}(x)$ is called instantaneous frequency;
- The pair (a, θ) is called canonical modulation pair of $f(x)$.

Analytic signals

Applying to a given signal $f(x)$ the Hilbert transform

$$
H f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{f(y)}{y-x} d y, y \in \mathbb{R}
$$

we obtain the complex-valued function

$$
F(x)=f(x)+i H f(x)=a(x) e^{i \theta(x)}
$$

- $F(x)$ is the analytic signal, $a(x)$ the amplitude and $\theta(x)$ the phase;
- $\omega(x)=\theta^{\prime}(x)$ is called instantaneous frequency;
- The pair (a, θ) is called canonical modulation pair of $f(x)$.

Analytic signals - Mathematical background

Riemann-Hilbert problem:

$$
\begin{array}{cl}
\frac{\partial F}{\partial z}=0 & \text { in } \operatorname{Im}(z)>0 \\
\operatorname{Re} F(z)=f(x) & \text { in } \operatorname{Im}(z)=0 \\
\operatorname{Im} F\left(z_{0}\right)=c & \text { in } \operatorname{Im}\left(z_{0}\right)>0
\end{array}
$$

- Cauchy integral transform:

- Plemelj-Sokhotzki formula:

Analytic signals - Mathematical background

Riemann-Hilbert problem:

$$
\begin{array}{cl}
\frac{\partial F}{\partial \bar{z}}=0 & \text { in } \operatorname{Im}(z)>0 \\
\operatorname{Re} F(z)=f(x) & \text { in } \operatorname{Im}(z)=0 \\
\operatorname{Im} F\left(z_{0}\right)=c & \text { in } \operatorname{Im}\left(z_{0}\right)>0
\end{array}
$$

- Cauchy integral transform:

$$
F(z):=C f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\zeta-z} f(\zeta) d \zeta
$$

- Plemelj-Sokhotzki formula:

$$
\operatorname{tr}^{ \pm} C f\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} C f(z)=\frac{1}{2}\left[f\left(z_{0}\right) \pm \frac{1}{\pi i} \int_{\Gamma} \frac{1}{\zeta-z_{0}} f(\zeta) d \zeta\right]
$$

Why does it work for signal analysis?

- Hardy decomposition: $L_{p}(\Gamma)=H_{p}^{+}(\Gamma) \oplus H_{p}^{-}(\Gamma)$;
- Poisson kernel

$$
P(z, \zeta)=\operatorname{Re} \frac{1}{\zeta-z_{0}} .
$$

- Basic idea: Poisson kernel is also low-pass filter!
- Scale-space analysis by Gaussian kernel can be replaced by scale-space analysis using Poisson kernel;
- $f(x)=a(x) e^{i \theta(x)}$;
- Weyl-relation $[x, D]=i$ with $D=-i \partial_{x}$
- $\left.\left\langle\omega>=\int \omega\right| \mathcal{F} f(\omega)\right|^{2} d \omega=\int \theta^{\prime}(x) a(x)^{2} d x$

Extension to \mathbb{C}^{2}

- Riemann-Hilbert problem

$$
\begin{aligned}
\frac{\partial F}{\partial \bar{z}_{1}}=0 & \left(z_{1}, z_{2}\right) \in \mathbb{C}^{2},\left|z_{1}\right|<1 \&\left|z_{2}\right|<1, \\
\frac{\partial F}{\partial \bar{z}_{2}}=0 & \left(z_{1}, z_{2}\right) \in \mathbb{C}^{2},\left|z_{1}\right|<1 \&\left|z_{2}\right|<1, \\
\operatorname{Re} F\left(\xi_{1}, \xi_{2}\right)=f\left(\xi_{1}, \xi_{2}\right) & \left|\xi_{1}\right|=1,\left|\xi_{2}\right|=1 .
\end{aligned}
$$

- Solution:

Extension to \mathbb{C}^{2}

- Riemann-Hilbert problem

$$
\begin{aligned}
\frac{\partial F}{\partial \bar{z}_{1}}=0 & \left(z_{1}, z_{2}\right) \in \mathbb{C}^{2},\left|z_{1}\right|<1 \&\left|z_{2}\right|<1, \\
\frac{\partial F}{\partial \bar{z}_{2}}=0 & \left(z_{1}, z_{2}\right) \in \mathbb{C}^{2},\left|z_{1}\right|<1 \&\left|z_{2}\right|<1, \\
\operatorname{Re} F\left(\xi_{1}, \xi_{2}\right)=f\left(\xi_{1}, \xi_{2}\right) & \left|\xi_{1}\right|=1,\left|\xi_{2}\right|=1 .
\end{aligned}
$$

- Solution:

$$
F\left(z_{1}, z_{2}\right):=C f\left(z_{1}, z_{2}\right)=\frac{1}{4 \pi^{2}} \int_{\mathcal{T}^{2}} \frac{1}{\left(\xi_{1}-z_{1}\right)\left(\xi_{2}-z_{2}\right)} f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2} .
$$

Hypercomplex signal by T. Bülow

- Two different imaginary units: $z_{1}=x_{1}+i y_{1}$ and $\mathbf{z}_{2}=x_{2}+j y_{2}$
- Solution of Riemann-Hilbert problem:

- Plemelj-Sokhotzki formula (just one side):

Hypercomplex signal by T. Bülow

- Two different imaginary units: $z_{1}=x_{1}+i y_{1}$ and $\mathbf{z}_{2}=x_{2}+j y_{2}$
- Solution of Riemann-Hilbert problem:

$$
\operatorname{Cf}\left(z_{1}, \mathbf{z}_{2}\right)=\frac{1}{4 \pi^{2}} \int_{\mathcal{T}^{2}} \frac{1}{\left(\xi_{1}-z_{1}\right)\left(\xi_{2}-\mathbf{z}_{2}\right)} f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
$$

- Plemelj-Sokhotzki formula (just one side):

Hypercomplex signal by T. Bülow

- Two different imaginary units: $z_{1}=x_{1}+i y_{1}$ and $\mathbf{z}_{2}=x_{2}+j y_{2}$
- Solution of Riemann-Hilbert problem:

$$
\operatorname{Cf}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\frac{1}{4 \pi^{2}} \int_{\mathcal{T}^{2}} \frac{1}{\left(\xi_{1}-z_{1}\right)\left(\xi_{2}-\mathbf{z}_{2}\right)} f\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
$$

- Plemelj-Sokhotzki formula (just one side):

$$
\begin{aligned}
\operatorname{trCf}\left(x_{1}, x_{2}\right) & =\frac{1}{4}\left(I+i H_{1}\right)\left(I+j H_{2}\right) f\left(x_{1}, x_{2}\right) \\
& =\frac{1}{4}\left(f+i H_{1} f+j H_{2} f+k H f\right)\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Quaternionic algebra

Quaternion algebra \mathbb{H}

The quaternion algebra is an extension of complex numbers to a 4D algebra. Every element of \mathbb{H} is a linear combination of a real scalar and three orthogonal imaginary units (denoted by $\mathbf{i}, \mathbf{j}, \mathbf{k}$) with real coefficients

$$
\mathbb{H}=\left\{q: q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}, q_{0}, \quad q_{1}, q_{2}, q_{3} \in \mathbb{R}\right\}
$$

where the elements $\mathbf{i}, \mathbf{j}, \mathbf{k}$ obey the Hamilton's multiplication rules

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}, \mathbf{k} \mathbf{i}=-\mathbf{i} \mathbf{k}=\mathbf{j}, \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1 .
$$

The scalar part is denoted as $S c(q)=q_{0}$ and has the cyclic multiplication symmetry

$$
S c(q r s)=S c(r s q), \forall q, r, s \in \mathbb{H}
$$

$\mathbb{H}-$-valued function space

\mathbb{H}-conjugation of a given $q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}=\operatorname{Sc}(q)+\operatorname{Vec}(q)$ is

$$
\bar{q}=S c(q)-\operatorname{Vec}(q) .
$$

Consider the quaternion-valued function space $L_{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ equipped with the quaternionic-valued inner product

$$
(f, g):=\int_{\mathbb{R}^{2}} f(\mathbf{x}) \overline{g(\mathbf{x})} d \mathbf{x} .
$$

Additionally, consider also the complex-valued inner product

$\mathbb{H}-$-valued function space

\mathbb{H}-conjugation of a given $q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}=\operatorname{Sc}(q)+\operatorname{Vec}(q)$ is

$$
\bar{q}=S c(q)-\operatorname{Vec}(q) .
$$

Consider the quaternion-valued function space $L_{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ equipped with the quaternionic-valued inner product

$$
(f, g):=\int_{\mathbb{R}^{2}} f(\mathbf{x}) \overline{g(\mathbf{x})} d \mathbf{x}
$$

Additionally, consider also the complex-valued inner product

\mathbb{H}-valued function space

\mathbb{H}-conjugation of a given $q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}=\operatorname{Sc}(q)+\operatorname{Vec}(q)$ is

$$
\bar{q}=S c(q)-\operatorname{Vec}(q) .
$$

Consider the quaternion-valued function space $L_{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ equipped with the quaternionic-valued inner product

$$
(f, g):=\int_{\mathbb{R}^{2}} f(\mathbf{x}) \overline{g(\mathbf{x})} d \mathbf{x} .
$$

Additionally, consider also the complex-valued inner product

$$
\langle f, g\rangle:=S c(f, g)=\int_{\mathbb{R}^{2}} S c[f(\mathbf{x}) \overline{g(\mathbf{x})}] d \mathbf{x}
$$

Quaternionic windowed Fourier transform

Definition

Given a 2D quaternion-valued signal $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we defined its quaternionic Fourier transform as

$$
\mathcal{F}_{\mathbb{H}}[f](\mathbf{w})=\int_{\mathbb{R}^{2}} e^{-2 \pi i x_{1} \omega_{1}} f(\mathbf{x}) e^{-2 \pi \mathrm{j} x_{2} \omega_{2}} d \mathbf{x}, \quad \mathbf{w}=\left(\omega_{1}, \omega_{2}\right), \mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

Definition

Given a wind owed function $g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, we set the windowed quaternionic Fourier transform (WQFT) of a 2D quaternion-valued signal $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ as

Quaternionic windowed Fourier transform

Definition

Given a 2D quaternion-valued signal $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we defined its quaternionic Fourier transform as

$$
\mathcal{F}_{\mathbb{H}}[f](\mathbf{w})=\int_{\mathbb{R}^{2}} e^{-2 \pi i x_{1} \omega_{1}} f(\mathbf{x}) e^{-2 \pi \mathrm{j} x_{2} \omega_{2}} d \mathbf{x}, \quad \mathbf{w}=\left(\omega_{1}, \omega_{2}\right), \mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

Definition

Given a windowed function $g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, we set the windowed quaternionic Fourier transform (WQFT) of a 2D quaternion-valued signal $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ as

$$
\mathcal{Q}_{g}[f](\mathbf{w}, \mathbf{b})=\int_{\mathbb{R}^{2}} e^{-2 \pi \mathrm{i} x_{1} \omega_{1}} f(\mathbf{x}) g(\mathbf{x}-\mathbf{b}) e^{-2 \pi \mathbf{j} x_{2} \omega_{2}} d \mathbf{x}
$$

Multiplication operator

Aim: to express the kernel of the WQFT!
Solution: to introduce the multiplication operator.
For $f, g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we define their pointwise product as

$$
C[f, g](\mathbf{x})=f(\mathbf{x}) g(\mathbf{x})
$$

Based on this, we define the left and right multiplicative operators,
\square
$\mathcal{C}[\lambda, \cdot] f(\mathbf{x}):=f(\mathbf{x}) \lambda, \quad$ resp. $f(\mathbf{x}) \mathcal{C}[\cdot, \lambda]:=\lambda f(\mathbf{x})$.

Multiplication operator

Aim: to express the kernel of the WQFT!
Solution: to introduce the multiplication operator.
For $f, g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we define their pointwise product as

$$
\mathcal{C}[f, g](\mathbf{x})=f(\mathbf{x}) g(\mathbf{x}) .
$$

Based on this, we define the left and right multiplicative operators, $\mathcal{C}[\lambda, \cdot]$, resp. $\mathcal{C}[\cdot, \lambda]$, as

$$
\mathcal{C}[\lambda, \cdot] f(\mathbf{x}):=f(\mathbf{x}) \lambda, \quad \text { resp. } f(\mathbf{x}) \mathcal{C}[\cdot, \lambda]:=\lambda f(\mathbf{x})
$$

Multiplication operator - 2

Then

$$
\overline{\mathcal{C}[\lambda, \cdot]}:=\mathcal{C}[\cdot, \bar{\lambda}] \quad \text { and } \overline{\mathcal{C}[\cdot, \lambda]}:=\mathcal{C}[\bar{\lambda}, \cdot] .
$$

Definition

For a windowed function $g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, then

is the kernel of the WQFT.

Multiplication operator - 2

Then

$$
\overline{\mathcal{C}[\lambda, \cdot]}:=\mathcal{C}[\cdot, \bar{\lambda}] \quad \text { and } \quad \overline{\mathcal{C}}[\cdot, \lambda]:=\mathcal{C}[\bar{\lambda}, \cdot] .
$$

Definition

For a windowed function $g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, then

$$
g_{\mathbf{w}, \mathbf{b}}(\mathbf{x})=e^{2 \pi \mathrm{j} x_{2} \omega_{2}} g(\mathbf{x}-\mathbf{b}) \mathcal{C}\left[e^{2 \pi \mathrm{i} \mathrm{x}_{1} \omega_{1}}, \cdot\right]
$$

is the kernel of the WQFT.

Consequences

Then

- $f(\mathbf{x}) \overline{g_{\mathbf{w}, \mathbf{b}}}=g_{\mathbf{w}, \mathbf{b}} \overline{f(\mathbf{x})}$; so that

$$
\left(f, g_{\mathbf{w}, \mathbf{b}}\right):=\int_{\mathbb{R}^{2}} f(\mathbf{x}) \overline{g_{\mathbf{w}, \mathbf{b}}} d^{2} \mathbf{x}
$$

- the WQFT can be write as

$$
Q_{[}[f](w, b)=\left(f, g_{w, b}\right) .
$$

Theorem [Reconstruction formula]

For $g \in I^{2}\left(\mathbb{R}^{2} . \mathbb{R}\right)$ non-zero real-valued window function, then every $f \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ can be reconstructed via

Consequences

Then

- $f(\mathbf{x}) \overline{g_{\mathbf{w}, \mathbf{b}}}=g_{\mathbf{w}, \mathbf{b}} \overline{f(\mathbf{x})}$; so that

$$
\left(f, g_{\mathbf{w}, \mathbf{b}}\right):=\int_{\mathbb{R}^{2}} f(\mathbf{x}) \overline{g_{\mathbf{w}, \mathbf{b}}} d^{2} \mathbf{x}
$$

- the WQFT can be write as

$$
\mathcal{Q}_{g}[f](\mathbf{w}, \mathbf{b})=\left(f, g_{\mathbf{w}, \mathbf{b}}\right) .
$$

Theorem [Reconstruction formula]

For $g \in I^{2}\left(\mathbb{R}^{2} . \mathbb{R}\right)$ non-zero real-valued window function, then every $f \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ can be reconstructed via

Consequences

Then

- $f(\mathbf{x}) \overline{g_{\mathbf{w}, \mathbf{b}}}=g_{\mathbf{w}, \mathbf{b}} \overline{f(\mathbf{x})}$; so that

$$
\left(f, g_{\mathbf{w}, \mathbf{b}}\right):=\int_{\mathbb{R}^{2}} f(\mathbf{x}) \overline{g_{\mathbf{w}, \mathbf{b}}} d^{2} \mathbf{x}
$$

- the WQFT can be write as

$$
\mathcal{Q}_{g}[f](\mathbf{w}, \mathbf{b})=\left(f, g_{\mathbf{w}, \mathbf{b}}\right)
$$

Theorem [Reconstruction formula]

For $g \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ non-zero real-valued window function, then every $f \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ can be reconstructed via

$$
f(\mathbf{x})=\frac{1}{\|g\|_{L^{2}}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} e^{2 \pi \mathrm{i}_{1} \omega_{1}} \mathcal{Q}_{g}[f](\mathbf{w}, \mathbf{b}) g(\mathbf{x}-\mathbf{b}) e^{2 \pi \mathrm{j} x_{2} \omega_{2}} d^{2} \mathbf{w} d^{2} \mathbf{b} .
$$

Expansion

Moreover, if the system $\left\{1 \overline{g_{-m, n}}: \quad m, n \in \mathbb{Z}^{2}\right\}$ is a Gabor orthonormal basis, a function $f \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ admits the expansion

$$
f(\mathbf{x})=\sum_{m, n \in \mathbb{Z}^{2}} c_{m, n}\left(1 \overline{g_{-m, n}}\right)(\mathbf{x})
$$

with $c_{m, n}=\left\langle f, 1 \overline{g_{-m, n}}\right\rangle$.
This expansion can be regarded as the discrete form of the previous continuous reconstruction formula.

Quaternionic Zak transform

Definition

Given a function $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we set its quaternionic Zak transform as

$$
Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})=\sum_{\mathbf{k} \in \mathbb{Z}^{2}} e^{2 \pi j k_{2} \omega_{2}} f(\mathbf{x}-\mathbf{k}) e^{2 \pi \mathrm{i} k_{1} \omega_{1}}, \quad \mathbf{x}, \mathbf{w} \in[0,1)^{2}
$$

Properties
(1) $Z_{\mathbb{H}}[f]$ is a well defined function in $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$;
(2) $Z_{\text {Hi }}[f](\mathbf{x}+\mathbf{n}, \mathbf{w})=e^{2 \pi j n_{2} \omega_{2}} Z_{H}[f](\mathbf{x}, \mathbf{w}) e^{2 \pi \mathrm{i}_{1} \omega_{1}}$, and
$Z_{\text {III }}[f](\mathrm{x}, \mathrm{w}+\mathrm{n})=Z_{\text {II }}[f](\mathrm{x}, \mathrm{w})$, where $\mathrm{n} \in \mathbb{Z}^{2}$;
(c) $Z_{\mathbb{H}}$ is a unitary operator from $L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ to $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$,

Quaternionic Zak transform

Definition

Given a function $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we set its quaternionic Zak transform as

$$
Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})=\sum_{\mathbf{k} \in \mathbb{Z}^{2}} e^{2 \pi \mathrm{j} k_{2} \omega_{2}} f(\mathbf{x}-\mathbf{k}) e^{2 \pi \mathrm{i} k_{1} \omega_{1}}, \quad \mathbf{x}, \mathbf{w} \in[0,1)^{2}
$$

Properties

(1) $Z_{\mathbb{H}}[f]$ is a well defined function in $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$;

Quaternionic Zak transform

Definition

Given a function $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we set its quaternionic Zak transform as

$$
Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})=\sum_{\mathbf{k} \in \mathbb{Z}^{2}} e^{2 \pi \mathrm{j} k_{2} \omega_{2}} f(\mathbf{x}-\mathbf{k}) e^{2 \pi \mathrm{i} k_{1} \omega_{1}}, \quad \mathbf{x}, \mathbf{w} \in[0,1)^{2}
$$

Properties

(1) $Z_{\mathbb{H}}[f]$ is a well defined function in $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$;
(2) $Z_{H}[f](\mathbf{x}+\mathbf{n}, \mathbf{w})=e^{2 \pi \mathrm{j} n_{2} \omega_{2}} Z_{H}[f](\mathbf{x}, \mathbf{w}) e^{2 \pi \mathrm{i} n_{1} \omega_{1}}$, and $Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}+\mathbf{n})=Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})$, where $\mathbf{n} \in \mathbb{Z}^{2}$;
(C) $Z_{\text {III }}$ is a unitary operator from $L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ to $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$

Quaternionic Zak transform

Definition

Given a function $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, we set its quaternionic Zak transform as

$$
Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})=\sum_{\mathbf{k} \in \mathbb{Z}^{2}} e^{2 \pi \mathrm{j} k_{2} \omega_{2}} f(\mathbf{x}-\mathbf{k}) e^{2 \pi \mathrm{i} k_{1} \omega_{1}}, \mathbf{x}, \mathbf{w} \in[0,1)^{2}
$$

Properties

(1) $Z_{\mathbb{H}}[f]$ is a well defined function in $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$;
(2) $Z_{H}[f](\mathbf{x}+\mathbf{n}, \mathbf{w})=e^{2 \pi \mathrm{j} n_{2} \omega_{2}} Z_{H}[f](\mathbf{x}, \mathbf{w}) e^{2 \pi \mathrm{i}_{1} \omega_{1}}$, and $Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}+\mathbf{n})=Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})$, where $\mathbf{n} \in \mathbb{Z}^{2} ;$
(3) $Z_{\mathbb{H}}$ is a unitary operator from $L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ to $L_{2}\left([0,1)^{2} \times[0,1)^{2}, \mathbb{H}\right)$, i.e.,

$$
\langle Z f, Z g\rangle=\langle f, g\rangle ;
$$

Quaternionic Zak transform

Properties (cont.)

(3)

$$
f(\mathbf{x})=\int_{[0,1)^{2}} Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}) d \mathbf{w}, \quad \mathbf{x} \in \mathbb{R}^{2} ;
$$

Space \mathcal{Z} of all $\phi: \mathbb{R}^{2} \rightarrow \mathbb{H}$ such that
$\phi(x+n, w)=e^{2 \pi n_{n} w_{2}} \phi(x, w) e^{2 \pi n_{1} w_{1}}, \phi(x, w+n)=\phi(x, w), \quad \forall n \in \mathbb{Z}^{2}$.

Quaternionic Zak transform

Properties (cont.)
(1)

$$
f(\mathbf{x})=\int_{[0,1)^{2}} Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}) d \mathbf{w}, \quad \mathbf{x} \in \mathbb{R}^{2} ;
$$

©

$$
\mathcal{F}_{\mathbb{H}}[\bar{f}](-\mathbf{w})=\int_{[0,1)^{2}} e^{2 \pi \mathrm{i} n_{1} \omega_{1}} \overline{Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})} e^{2 \pi \mathrm{j} n_{2} \omega_{2}} d \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{2}
$$

Space \mathcal{Z} of all $\phi: \mathbb{R}^{2} \rightarrow \mathbb{H}$ such that
$\phi(\mathbf{x}+\mathbf{n}, \mathbf{w})=e^{2 \pi \mathrm{j} n_{2} \omega_{2}} \phi(\mathbf{x}, \mathbf{w}) e^{2 \pi \mathrm{i} n_{1} \omega_{1}}, \phi(\mathbf{x}, \mathbf{w}+\mathbf{n})=\phi(\mathbf{x}, \mathbf{w}), \quad \forall \mathbf{n} \in \mathbb{Z}^{2}$,

Quaternionic Zak transform

Properties (cont.)
(4)

$$
f(\mathbf{x})=\int_{[0,1)^{2}} Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}) d \mathbf{w}, \quad \mathbf{x} \in \mathbb{R}^{2} ;
$$

©

$$
\mathcal{F}_{\mathbb{H}}[\bar{f}](-\mathbf{w})=\int_{[0,1)^{2}} e^{2 \pi \mathrm{i} n_{1} \omega_{1}} \overline{Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w})} e^{2 \pi \mathrm{j} n_{2} \omega_{2}} d \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{2} ;
$$

Space \mathcal{Z} of all $\phi: \mathbb{R}^{2} \rightarrow \mathbb{H}$ such that

$$
\phi(\mathbf{x}+\mathbf{n}, \mathbf{w})=e^{2 \pi \mathrm{j} n_{2} \omega_{2}} \phi(\mathbf{x}, \mathbf{w}) e^{2 \pi \mathrm{i} n_{1} \omega_{1}}, \phi(\mathbf{x}, \mathbf{w}+\mathbf{n})=\phi(\mathbf{x}, \mathbf{w}), \quad \forall \mathbf{n} \in \mathbb{Z}^{2}
$$

$$
\|\phi\|^{2}=\int_{[0,1)^{2}} \int_{[0,1)^{2}}|\phi(\mathbf{x}, \mathbf{w})|^{2} d \mathbf{x} d \mathbf{w}<\infty
$$

Consequences

The quaternion Zak transform $Z_{\text {HI }}$ is an unitary map between $L_{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ and \mathcal{Z}.

We know the inverse map as well: for every $\phi \in \mathcal{Z}$,

Lemma

Given $f \in I_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, and a Gabor system $\left\{1 \mathrm{~g}-\mathrm{m}, \mathrm{n}, \mathrm{m}, \mathrm{n} \in \mathbb{Z}^{2}\right\}$ we have

Consequences

The quaternion Zak transform Z_{H} is an unitary map between $L_{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ and \mathcal{Z}.

We know the inverse map as well: for every $\phi \in \mathcal{Z}$,

$$
Z_{\mathbb{H}}^{-1} \phi(\mathbf{x})=\int_{[0,1)^{2}} \phi(\mathbf{x}, \mathbf{w}) d \mathbf{w} .
$$

Lemma

Given $f \in \boldsymbol{I}_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, and a Gabor system $\left\{1 \mathrm{~g}-\mathrm{m}, \mathrm{n}, \mathrm{m}, \mathrm{n} \in \mathbb{Z}^{2}\right\}$ we have

Consequences

The quaternion Zak transform Z_{H} is an unitary map between $L_{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$ and \mathcal{Z}.

We know the inverse map as well: for every $\phi \in \mathcal{Z}$,

$$
Z_{\mathbb{H}}^{-1} \phi(\mathbf{x})=\int_{[0,1)^{2}} \phi(\mathbf{x}, \mathbf{w}) d \mathbf{w} .
$$

Lemma

Given $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, and a Gabor system $\left\{1 \overline{g_{-\mathbf{m}, \mathbf{n}}}, \mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}\right\}$ we have

$$
\sum_{\mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}}\left|\left\langle f, g_{\mathbf{m}, \mathbf{n}}\right\rangle\right|^{2}=\left\|Z_{\mathbb{H}}[f] \overline{Z_{\mathbb{H}}\left[1 \overline{g_{-\mathbf{m}, \mathbf{n}}}\right]}\right\|^{2}
$$

Link with Weyl-Heisenberg algebra

- Annihilation/creation operators:

$$
\mathbf{a}_{1}=\frac{1}{2 \pi} \partial_{x_{1}}+x_{1}, \mathbf{a}_{1}^{\dagger}=-\frac{1}{2 \pi} \partial_{x_{1}}+x_{1}, \quad \mathbf{a}_{2}=\frac{1}{2 \pi} \partial_{x_{2}}+x_{2}, \mathbf{a}_{2}^{\dagger}=-\frac{1}{2 \pi} \partial_{x_{2}}+x_{2}
$$

- Link with Zak transform:

$$
Z_{H}\left[a_{2} \Pi(x, w)=A_{2} Z_{H}\left[\Pi(x, w), Z_{H}\left[f a_{1}\right](x, w)=Z_{H} A_{2}[f](x, w)\right.\right.
$$

where $A_{1}=\frac{1}{2 \pi i}\left(\partial_{\omega_{1}}+i \partial_{x_{1}}\right)+x_{1}, A_{2}=\frac{1}{2 \pi j}\left(\partial_{\omega_{2}}+j \partial_{x_{2}}\right)+x_{2}$

- Quaternionic time-frequency shift: $Z_{H}\left[M_{\theta} T_{p} f\right](\mathrm{x}, \mathrm{w})=e^{2 \pi i\left(p_{2} \omega_{2}+\theta_{2} x_{2}\right)} Z_{\mathrm{B}}[f](\mathrm{x}, \mathrm{w}) e^{2 \pi i\left(p_{1} w_{1}+\theta_{1} x_{1}\right)}$

Link with Weyl-Heisenberg algebra

- Annihilation/creation operators:

$$
\mathbf{a}_{1}=\frac{1}{2 \pi} \partial_{x_{1}}+x_{1}, \mathbf{a}_{1}^{\dagger}=-\frac{1}{2 \pi} \partial_{x_{1}}+x_{1}, \quad \mathbf{a}_{2}=\frac{1}{2 \pi} \partial_{x_{2}}+x_{2}, \mathbf{a}_{2}^{\dagger}=-\frac{1}{2 \pi} \partial_{x_{2}}+x_{2}
$$

- Link with Zak transform:

$$
Z_{H}\left[\mathbf{a}_{2} f\right](\mathbf{x}, \mathbf{w})=A_{2} Z_{H}[f](\mathbf{x}, \mathbf{w}), Z_{\mathrm{H}}\left[f \mathbf{a}_{\mathbf{1}}\right](\mathbf{x}, \mathbf{w})=Z_{\mathbb{H}} A_{2}[f](\mathbf{x}, \mathbf{w})
$$

where $A_{1}=\frac{1}{2 \pi i}\left(\partial_{\omega_{1}}+i \partial_{x_{1}}\right)+x_{1}, A_{2}=\frac{1}{2 \pi j}\left(\partial_{\omega_{2}}+j \partial_{x_{2}}\right)+x_{2}$;

- Quaternionic time-frequency shift:
$Z_{\text {II }}\left[M_{\theta} T_{\rho} f\right](\mathbf{x}, \mathbf{w})=e^{2 \pi j\left(p_{2} \omega_{2}+\theta_{2} x_{2}\right)} Z_{I I}[f](\mathbf{x}, \mathbf{w}) e^{2 \pi i\left(p_{1} \omega_{1}+\theta_{1} x_{1}\right)}$

Link with Weyl-Heisenberg algebra

- Annihilation/creation operators:

$$
\mathbf{a}_{1}=\frac{1}{2 \pi} \partial_{x_{1}}+x_{1}, \mathbf{a}_{1}^{\dagger}=-\frac{1}{2 \pi} \partial_{x_{1}}+x_{1}, \quad \mathbf{a}_{2}=\frac{1}{2 \pi} \partial_{x_{2}}+x_{2}, \mathbf{a}_{2}^{\dagger}=-\frac{1}{2 \pi} \partial_{x_{2}}+x_{2}
$$

- Link with Zak transform:

$$
Z_{\mathbb{H}}\left[\mathbf{a}_{2} f\right](\mathbf{x}, \mathbf{w})=A_{2} Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}), Z_{\mathbb{H}}\left[f \mathbf{a}_{1}\right](\mathbf{x}, \mathbf{w})=Z_{\mathbb{H}} A_{2}[f](\mathbf{x}, \mathbf{w})
$$

where $A_{1}=\frac{1}{2 \pi i}\left(\partial_{\omega_{1}}+i \partial_{x_{1}}\right)+x_{1}, A_{2}=\frac{1}{2 \pi j}\left(\partial_{\omega_{2}}+j \partial_{x_{2}}\right)+x_{2}$;

- Quaternionic time-frequency shift:

$$
Z_{\mathbb{H}}\left[M_{\theta} T_{p} f\right](\mathbf{x}, \mathbf{w})=e^{2 \pi j\left(p_{2} \omega_{2}+\theta_{2} x_{2}\right)} Z_{\mathbb{H}}[f](\mathbf{x}, \mathbf{w}) e^{2 \pi i\left(p_{1} \omega_{1}+\theta_{1} x_{1}\right)}
$$

Case of Gaussian window

- Gaussian window $M_{\theta} T_{p} \phi(x), \phi(x)=2^{1 / 2} e^{-\pi|x|^{2}}$:

$$
Z_{\mathbb{H}}\left[M_{\theta} T_{p} \phi\right](\mathbf{x}, \mathbf{w})=e^{2 \pi j\left(p_{2} \omega_{2}+\theta_{2} x_{2}\right)} e^{-\pi|\mathbf{x}|^{2}} \Theta\left(\mathbf{z}_{2}\right) \Theta\left(z_{1}\right) e^{2 \pi i\left(p_{1} \omega_{1}+\theta_{1} x_{1}\right)}
$$

with $z_{1}=\omega_{1}+i x_{1}, \mathbf{z}_{2}=\omega_{2}+j x_{2}$ and $\Theta(z)=2^{1 / 2} \theta_{3}(z ; i)-$ Jacobi elliptic function;

- Link with annihilation operator:

$$
\begin{aligned}
\left(M_{\theta} T_{p} \phi\right) \mathbf{a}_{1} & =\left(M_{\theta} T_{p} \phi\right)\left(\omega_{1}+i p_{1}\right) \\
\mathbf{a}_{2}\left(M_{\theta} T_{p} \phi\right) & =\left(\omega_{2}+j p_{2}\right)\left(M_{\theta} T_{p} \phi\right)
\end{aligned}
$$

Frame condition

Theorem

A Gabor system $\left\{1 \overline{g_{-\mathbf{m}, \mathbf{n}}}, \mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}\right\}$ is
(1) a frame for $L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ if there exist bounds $0<A \leq B<\infty$ such that

$$
A \leq\left|Z_{\mathbb{H}}[g](\mathbf{x}, \mathbf{w})\right|^{2} \leq B, \quad \text { a.e. } \mathbf{x}, \mathbf{w} \in \mathbb{R}^{2} .
$$

(2) an orthonormal basis for $L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ iff additionally

$$
\left|Z_{\mathbb{H}}[g](\mathbf{x}, \mathbf{w})\right|^{2}=1,
$$

for a.e. $\mathbf{x}, \mathbf{w} \in \mathbb{R}^{2}$.

The Balian-Low Theorem

Balian-Low Theorem

Let $g \in L_{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ be such that the associated Gabor system

$$
\left\{1 \overline{g_{-\mathbf{m}, \mathbf{n}}}, \mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}\right\}
$$

is a frame for $L_{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$. Then

$$
\Delta x_{k} \Delta \omega_{k}=\infty, \quad k=1,2
$$

where

$$
\Delta x_{k}=\frac{\left\|x_{k} f\right\|^{2}}{\|f\|^{2}}, \quad \Delta \omega_{k}=\frac{\left\|\omega_{k} \mathcal{F}_{\mathbb{H}}[f]\right\|^{2}}{\left\|\mathcal{F}_{\mathbb{H}}[f]\right\|^{2}}, \quad k=1,2 .
$$

References

[1] I. Daubechies: Ten lectures on wavelets, SIAM, 1992.
[2] T. Bülow, G. Sommer, Hypercomplex signals: A novel extension of the analytic signal to the multidimensional case, IEEE Transactions on signal processing 49, N.o 11, 2844-2852, 2001.
[3] P. Cerejeiras, Y. Fu, U. Kähler, Quaternionic Zac transform and the Balian-Low theorem, submitted.
[4] P. Cerejeiras, Y. Fu, U. Kähler, The Balian-Low theorem for a new kind of Gabor systems, accepted in Applicable Analysis.
[5] V.P. Palamodov, Relaxed Gabor expansion at critical density and a 'certainty principle', ArXiv, 2005.

