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Navigation by lane-detection	


Fig. 10. Highway - heavy traffic Fig. 11. Highway - high curvature Fig. 12. Highway - a front car
occluding the view

Fig. 13. Highway - changing lanes
(1)

Fig. 14. Highway - changing lanes
(2)

Fig. 15. Magistral road - inner city Fig. 16. Magistral road - ambigous
lane border position

Fig. 17. Magistral road - ground
signs

Fig. 18. Magistral road - country
lane

Fig. 19. Magistral road - leaving
a small tunnel

Fig. 20. Magistral road - high cur-
vature

Fig. 21. Magistral road - dirty
windscreen

with different ground signs and magistral road in outer city
areas with different lightning conditions, road shadows and
windscreen visibility. The vision system performed robustly
in most cases except in situations where road edges were too
obscured by dark areas in outer city areas and in ambiguous
positions on the border between two lanes where flickering be-
tween two lanes may have occured since no vehicle dynamics
was included due to lack of vehicle motion sensors.
In comparison with the LoG edge cue and Colour segmen-

tation cue that are based on particle testing in image space,
the Canny edge filter with double Hough transform particle
testing performed significantly better in terms of robustness
and computation speed. This cue presents a good basis for
developement of a higher curvature road model from the
straight-line road model that is currently being used.
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[1] A.M. Lützeler, E.D. Dickmanns, ”Road recognition with MarVEye”,

Proceedings of the IEEE Intelligent Vehicles Symposium 98, Stuttgart,
Germany, October 1998, pp. 341-346.

[2] T.M. Jochem, D.A. Pomerleau, C.E. Thorpe, ”MANIAC: A next genera-
tion neurally based autonomous road follower”, Proceedings of the Third
International Conference on Intelligent Autonomous Systems, Pittsburg,
PA, February 1993.

[3] A. Broggi, M. Bertozzi, A. Fascioli, G. Conte, Automatic Vehicle
Guidance, ”The Experience of the ARGO Vehicle”, World Scientific,
Singapore, 1999.

[4] Massimo Bertozzi, Alberto Broggi, Alessandra Fascioli, Vision-based
intelligent vehicles: State of the art and perspectives, Robotics and
Autonomous Systems 32 1 - 16, 2000.

[5] J.D. Crisman, C.E. Thorpe, ”UNSCARF, a color vision system for the
detection of unstructured roads”, Proceedings of the IEEE International
Conference on Robotics and Automation, Sacramento, CA, April 1991,
pp. 4962501.

[6] L. Michael Beuvais, C. Kreucher, ”Building world model for mobile
platforms using heterogeneous sensors fusion and temporal analysis”,
Proceedings of the IEEE International Conference on Intelligent Trans-
portation Systems 97, Boston, MA, November 1997, p. 101.

[7] Nicholas Apostoloff and Alexander Zelinsky, ”Vision In and Out of
Vehicles: Integrated Driver and Road Scene Monitoring”, Proceedings
of the International Symposium of Experimental Robotics (ISER2002),
Italy, 2002.

[8] Xu Youchun, Wang Rongben, Libling, Ji Shouwen, A vision navigation
algorithm based on liner lane model, Proceedings of the IEEE Intelligent
Vehicles Symposium, Dearborn (MI), USA, 2000.

[9] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert,
Robust monte carlo localization for mobile robots, Artificial Intelligence
Journal, 2001.

[10] Michael Isard and Andrew Blake, Condensation-conditional density
propagation for visual tracking, Int. J. Computer Vision, 1998.

[11] Uwe Kiencke, Lars Nielsen Automotive control systems, Springer, Inc.
2000.

[12] J. Canny, A computational approach to edge detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 1986, vol.8, pp 679-698.

[13] Robert M. Haralick, Linda G. Shapiro Computer and Robot Vision Vol.1,
Addison-Wesley Publishing Company, Inc. 1992.

構造物認識	


290 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 2, FEBRUARY 2009

Fig. 7. Retrieval of a step edge with parameters ( and ) in an 8 8 pixels image under noisy condition. (a)–(b) Scatterplots of angle and offset
versus Cramér–Rao bound. (c)–(d) Standard deviation (averages over 10000 realizations) versus Cramér–Rao bound.

Fig. 8. (a)–(b) Extracted edges and corners with our approach on two low-resolution images of size 64 64 pixels each; (c)–(d) six corners are matched with
methods plotted against the high-resolution images (512 512 pixels).

two images using correlation and RANSAC techniques. The
matched features are plotted against and for a visual
appreciation of the subpixel accuracy [see 8(c) and (d)]. The
feature points returned by the Harris corner detector on each
image are presented in Fig. 9(a) and (b). Eighteen corners
have been matched successfully across images and are plotted
against and in Fig. 9(c) and (d).

Each set of features is independently used to estimate the
translation between the two images. The estimated translation
and registration errors with our approach are

and pixel

Similarly, the estimated translation and registration errors with
the Harris features are

and pixel

Thus, although only one third of the number of corner points
have been extracted with the proposed method in comparison to
the Harris corner detector, the registration accuracy is improved
by a factor 50 using the step edge extractor.

V. APPLICATION TO IMAGE SUPER-RESOLUTION

The goal of image super-resolution is to construct a single,
detailed, high-resolution image using a set of low-resolution im-
ages of the same scene. The problem of image super-resolution
can be conceptually divided into two sub-problems known as
image registration and image reconstruction. Image registration
aims at finding the disparity between the low-resolution images
whereas image reconstruction consists in fusing the set of reg-
istered images into a single image and removing any blur and
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*  Pixel acquisition process is modeled by spline functions 

                                                                     (Baboulaz et al., 2009) 
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Pixel value	
 Continuous image	
 Point Spread Function Model 
By B-spline or E-spline	
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(Baboulaz et al., 2009, Hirabayashi et al., 2010)	




For all detected 
pixels by Canny 
detector, we repeat 
line-edge extraction 
procedure. To do 
so, we extract 8*8 
local image around 
the focusing pixel.	
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Trigonometric E-spline	


Additive noise	
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Simulation	
  Results	

Panasonic Lumix DMC-GF2 (focal length14mm, F2, 1/60s, ISO200)	
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Super-­‐Resolution	

Panasonic Lumix DMC-GF2 (focal length 14mm, F2, 1/60s, ISO200)	


Line-edge extraction results	


Matching by RANSAC algorithm	
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Super-resolved from 16 images	




Super-­‐Resolution	


Super-resolved from 16 images	
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Summary 
•  Sampling signals with finite rate of innovation 

• Rate of innovation is defined by the number 
of unknown parameters. 
• The main signal is the stream of Diracs. 
• Signal is sampled through the filter 
• Reconstruction is done by annihilating filter 
for noiseless case while optimization 
technique is used for noisy case. 

•  Applications 
• Compressive sampling for ECG signals 
• Step line-edge extraction 
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