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◮ Numerical treatment of operator equations

L : Hm
0 (Ω) → H−m(Ω), L(u) = f .
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Motivation

◮ Numerical treatment of operator equations

L : Hm
0 (Ω) → H−m(Ω), L(u) = f .

◮ Example: Poisson equation on a Lipschitz domain
Ω ⊂ R

d :

∆u = f in Ω

u = 0 on ∂Ω.

∆ : H1
0 (Ω) → H−1(Ω).
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Stokes system
Consider on a Lipschitz domain Ω ⊂ R

3:

−∆u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.
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Stokes system
Consider on a Lipschitz domain Ω ⊂ R

3:

−∆u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

Weak formulation: For given f ∈ H−1(Ω)3, determine
u ∈ H1

0 (Ω)
3 and p ∈ L2,0(Ω):= {q ∈ L2(Ω) :

∫
Ω q(x)dx = 0}

such that

a(u, v) + b(v , p) = f (v) for all v ∈ H1
0 (Ω)

3

b(u, q) = 0 for all q ∈ L2,0(Ω),

where

a(u, v) :=

∫

Ω

3∑

i ,j=1

∂ui
∂xj

∂vi
∂xj

dx,

b(v , q) := −

∫

Ω
q(x)div(v)(x)dx.
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Numerical Approaches:

◮ Nonadaptive schemes
◮ Based on uniform space refinements

◮ Approximation spaces a priori fixed

◮ ’Easy’ to implement/analyze

◮ But: convergence might be slow

◮ Adaptive schemes
◮ Nonuniform space refinements

◮ Updating strategy

◮ A posteriori error estimator

◮ Difficult to implement

◮ Goal: achieve a better convergence rate

◮ Convergence rate depends on regularity of the
solution (which regularity?)
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2. Adaptive wavelet schemes
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d : bounded domain

◮ Consider a Multiresolution analysis {Vj}j≥0 of L2(Ω):
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Wavelets

◮ Ω ⊂ R
d : bounded domain

◮ Consider a Multiresolution analysis {Vj}j≥0 of L2(Ω):

◮ Vj ⊂ Vj+1, j ≥ 0,

◮

⋃
j≥0

Vj = L2(Ω),
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Wavelets

◮ Ω ⊂ R
d : bounded domain

◮ Consider a Multiresolution analysis {Vj}j≥0 of L2(Ω):

◮ Vj ⊂ Vj+1, j ≥ 0,

◮

⋃
j≥0

Vj = L2(Ω),

◮ f ∈ Vj ⇐⇒ f (2−j ·) ∈ V0.
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Wavelets

◮ Ω ⊂ R
d : bounded domain

◮ Consider a Multiresolution analysis {Vj}j≥0 of L2(Ω):

◮ Vj ⊂ Vj+1, j ≥ 0,

◮

⋃
j≥0

Vj = L2(Ω),

◮ f ∈ Vj ⇐⇒ f (2−j ·) ∈ V0.

◮ Vj+1 = Vj ⊕Wj+1, V0 = W0 −→

L2(Ω) =
⊕

j≥0

Wj , Wj = span{ψj ,k : k ∈ Ij}
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Wavelets

◮ Ω ⊂ R
d : bounded domain

◮ Consider a Multiresolution analysis {Vj}j≥0 of L2(Ω):

◮ Vj ⊂ Vj+1, j ≥ 0,

◮

⋃
j≥0

Vj = L2(Ω),

◮ f ∈ Vj ⇐⇒ f (2−j ·) ∈ V0.

◮ Vj+1 = Vj ⊕Wj+1, V0 = W0 −→

L2(Ω) =
⊕

j≥0

Wj , Wj = span{ψj ,k : k ∈ Ij}

◮ Get a orthonormalbasis for L2(Ω)
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Solving with adaptive schemes I

◮ Determine approximations uΛ0
, uΛ1

, ...,

uΛj
=
∑

λ∈Λj

cλψλ,

such that for a given ε > 0 after a finite number of
steps we get a solution uΛkε

with

||u − uΛkε
||L2(Ω) < ε.
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Solving with adaptive schemes I

◮ Determine approximations uΛ0
, uΛ1

, ...,

uΛj
=
∑

λ∈Λj

cλψλ,

such that for a given ε > 0 after a finite number of
steps we get a solution uΛkε

with

||u − uΛkε
||L2(Ω) < ε.

◮ The sets Λi , i ≥ 0 are determined adaptively by the
algorithm.
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Solving with adaptive schemes II

◮ ”ideal” algorithm: best m-term approximation.

◮

Mm :=

{
f =

∑

λ∈Λ

cλψλ : |Λ| = m

}
.

σm(u)L2(Ω) := inf
g∈Mm

||u − g ||L2(Ω) ∼ ||u − gm||L2(Ω),

gm =
∑

λ∈Λm

cλψλ, Λm=̂m biggest wavelet coefficients
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Solving with adaptive schemes II

◮ ”ideal” algorithm: best m-term approximation.

◮

Mm :=

{
f =

∑

λ∈Λ

cλψλ : |Λ| = m

}
.

σm(u)L2(Ω) := inf
g∈Mm

||u − g ||L2(Ω) ∼ ||u − gm||L2(Ω),

gm =
∑

λ∈Λm

cλψλ, Λm=̂m biggest wavelet coefficients

◮ σm(u)L2(Ω) = O(m−α/d ) ⇐=

u ∈ Bα
τ (Lτ (Ω)),

1

τ
=

1

2
+
α

d
.
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Solving with adaptive schemes II

◮ ”ideal” algorithm: best m-term approximation.

◮

Mm :=

{
f =

∑

λ∈Λ

cλψλ : |Λ| = m

}
.

σm(u)L2(Ω) := inf
g∈Mm

||u − g ||L2(Ω) ∼ ||u − gm||L2(Ω),

gm =
∑

λ∈Λm

cλψλ, Λm=̂m biggest wavelet coefficients

◮ σm(u)L2(Ω) = O(m−α/d ) ⇐=

u ∈ Bα
τ (Lτ (Ω)),

1

τ
=

1

2
+
α

d
.

◮ Implemented schemes from Cohen, Dahmen and
DeVore.
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Comparison with linear approximation

◮ Convergence using adaptive schemes:
σn(u)L2(Ω) = O(n−α/d ) ⇐=

u ∈ Bα
τ (Lτ (Ω)),

1

τ
=

1

2
+
α

d
.
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Comparison with linear approximation

◮ Convergence using adaptive schemes:
σn(u)L2(Ω) = O(n−α/d ) ⇐=

u ∈ Bα
τ (Lτ (Ω)),

1

τ
=

1

2
+
α

d
.

◮ Linear approximation:

Ej (u) := inf
g∈Vj

||u − g ||L2(Ω) . 2−βj |u|Hβ(Ω)

◮ Ej(u) = O(n−β/d ) ⇐= u ∈ Hβ(Ω).
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Comparison with linear approximation

◮ Convergence using adaptive schemes:
σn(u)L2(Ω) = O(n−α/d ) ⇐=

u ∈ Bα
τ (Lτ (Ω)),

1

τ
=

1

2
+
α

d
.

◮ Linear approximation:

Ej (u) := inf
g∈Vj

||u − g ||L2(Ω) . 2−βj |u|Hβ(Ω)

◮ Ej(u) = O(n−β/d ) ⇐= u ∈ Hβ(Ω).

◮ Natural question:

Besov regularity α > Sobolev regularity β?
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s

1/p



Besov regularity
for the solution of
the Stokes system
in polyhedral cones

Frank Eckhardt
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s

1/p

b

Hβ(Ω)
β

1/2
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DeVore-Triebel diagram

s

1/p

b

b

Hβ(Ω)
β

Bα
τ (Lτ (Ω))

1/2

α

1/τ
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DeVore-Triebel diagram

s

1/p

b

b

Hβ(Ω)
β

Bα
τ (Lτ (Ω))

1/2

α

1/τ

1
τ = α

d
+ 1

2
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3. Polyhedral cones and weighted Sobolev spaces
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Polyhedral cones

0

K := {x ∈ R
3 : x = ρ · ω, 0 < ρ <∞, ω ∈ Ω},

K0 := {x ∈ K : ||x ||2 ≤ r0}.
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Polyhedral cones

0

Mj

Γj

Boundary of K consists of

vertex x = 0, edges Mj , faces Γj .
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Polyhedral cones

0

Mj

Γj

θj

θj : angel at the edge Mj .
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Polyhedral cones

0

Mj

Γj

θj

ρ(x) := |x |

rj(x) := dist(x ,Mj )
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Weighted Sobolev Spaces

◮ Singularities at the edges Mj and in the vertex x = 0.
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Weighted Sobolev Spaces

◮ Singularities at the edges Mj and in the vertex x = 0.

◮ Two weights:
◮ δ := (δ1, ..., δd) ∈ Rd belongs to the edges.
◮ β ∈ R belongs to the vertex.
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Weighted Sobolev Spaces

◮ Singularities at the edges Mj and in the vertex x = 0.

◮ Two weights:
◮ δ := (δ1, ..., δd) ∈ Rd belongs to the edges.
◮ β ∈ R belongs to the vertex.

◮ Weighted Sobolev norm

||u||
W

l,2

β,~δ
(K)

:=



∫

K

∑

|α|≤l

|Dαu(x)|2dx




1/2
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Weighted Sobolev Spaces

◮ Singularities at the edges Mj and in the vertex x = 0.

◮ Two weights:
◮ δ := (δ1, ..., δd) ∈ Rd belongs to the edges.
◮ β ∈ R belongs to the vertex.

◮ Weighted Sobolev norm

||u||
W

l,2

β,~δ
(K)

:=



∫

K

∑

|α|≤l

d∏

k=1

(
rk(x)

ρ(x)

)2δk

|Dαu(x)|2dx




1/2
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Weighted Sobolev Spaces

◮ Singularities at the edges Mj and in the vertex x = 0.

◮ Two weights:
◮ δ := (δ1, ..., δd) ∈ Rd belongs to the edges.
◮ β ∈ R belongs to the vertex.

◮ Weighted Sobolev norm

||u||
W

l,2

β,~δ
(K)

:=



∫

K

∑

|α|≤l

ρ(x)2(β−l+|α|)
d∏

k=1

(
rk(x)

ρ(x)

)2δk

|Dαu(x)|2dx




1/2
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Weighted Sobolev Spaces

◮ Singularities at the edges Mj and in the vertex x = 0.

◮ Two weights:
◮ δ := (δ1, ..., δd) ∈ Rd belongs to the edges.
◮ β ∈ R belongs to the vertex.

◮ Weighted Sobolev norm

||u||
W

l,2

β,~δ
(K)

:=



∫

K

∑

|α|≤l

ρ(x)2(β−l+|α|)
d∏

k=1

(
rk(x)

ρ(x)

)2δk

|Dαu(x)|2dx




1/2

◮ W
l ,2
β,δ(K) := C∞

0 (K\{0})
||·||

W
l,2
β,δ
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The Stokes system

We consider the Stokes system

−∆u +∇p = f in K,

div u = g in K,

u = 0 on Γj , j = 1, ..., d .
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The Stokes system

We consider the Stokes system

−∆u +∇p = f in K,

div u = g in K,

u = 0 on Γj , j = 1, ..., d .

∇p =

(
∂p

∂x1
,
∂p

∂x2
,
∂p

∂x3

)
, ∆u =

(
3∑

i=1

∂2uj
∂2xi

)

j=1,2,3

.

div u =
3∑

i=1

∂ui
∂xi
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Sobolev regularity of the solution

Consider

−∆u +∇p = f in K0,

div u = g in K0,

u = 0 on Γj , j = 1, ..., d .

Proposition (M. Dauge, 89)

Assume (f , g) ∈ L2(K0)
3 × Hα0(K0) for α0 < 1/2. Let g

fulfill ∫

K0

g(x) d x = 0.

Then there exists a unique solution

(u, p) ∈ Hα0+1(K0)
3 × Hα0(K0).
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Weighted Sobolev estimates of the solution

Proposition (V. Maz’ya, J. Rossmann, 01)

Suppose (f , g) ∈ W
l−2,2
β,δ (K)3 ×W

l−1,2
β,δ (K) where l ≥ 2 is

an integer. Then there exists a countable set E ⊂ C such

that the following holds. If β ∈ R and the vector

δ ∈ (R\Z)d are chosen such that

Re λ 6= l − β −
3

2
for all λ ∈ E

and

max

(
0, l − 1−

π

θk

)
< δk < l − 1, k = 1, ..., d ,

then there exists a uniquely determined solution

(u, p) ∈ W
l ,2
β,δ(K) ×W

l−1,2
β,δ (K)
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Besov regularity of the solution

Theorem (E., 12)

Assume that the conditions in the above propositions are

fulfilled. For β < l − 1 we obtain

u ∈ B s1
τ1 (Lτ1(K0))

3, s1 < min

(
l ,
3

2
· (α0 + 1), 3 · (l − |~δ|)

)
,

1

τ1
=

s1

3
+

1

2
,

p ∈ B s2
τ2 (Lτ2(K0)), s2 < min

(
l − 1,

3

2
· α0, 3 · (l − (|~δ|+ 1))

)
,

1

τ2
=

s2

3
+

1

2
.
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Summary

◮ Motivation: Justification of the use of adaptive
schemes.

◮ Investigate the Besov regularity of the solution of the
Stokes system.

◮ Proof is performed by using characterization of Besov
spaces by wavelet expansions.

◮ For valid parameters the Besov regularity is 3/2 times
higher than its Sobolev regularity.
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Sketch of the proof I

Idea: Estimate the coefficients of the wavelet decomposition
of the solution.

Proposition

Let s ∈ R and 0 < p, q <∞. Suppose

r > max
(
s, nmax

(
0, 1

p
− 1
)
− s
)
. Then

f ∈ B s
q(Lp(R

n))

⇐⇒




2n−1∑

i=1

∞∑

j=0

2j(s+n(1/2−1/p))q

(
∑

k∈Zn

| 〈f , ψi ,j ,k〉 |
p

)q/p



1/q

<∞
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Sketch of the proof II

Idea: Estimate the coefficients of the wavelet decomposition
of the solution.

◮ Wavelets are assumed to be compact supported.

◮ Then there exists a cube Q centered at the origin, s.t.

Qj ,k := 2−jk + 2−jQ, j ∈ N0, k ∈ Z
3

contains the support of the wavelets ψi ,j ,k .
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Sketch of the proof II

Idea: Estimate the coefficients of the wavelet decomposition
of the solution.

◮ Wavelets are assumed to be compact supported.

◮ Then there exists a cube Q centered at the origin, s.t.

Qj ,k := 2−jk + 2−jQ, j ∈ N0, k ∈ Z
3

contains the support of the wavelets ψi ,j ,k .

◮ Consider the set of indices

Λι := {(i , j , k) : Qj ,k ⊂ K0, 2
−3ι ≤ 2−j ≤ 2−3ι+2}.
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Sketch of the proof III
Estimate the coefficients | 〈v , ψi ,j ,k〉 | in three steps:

◮ Consider for κ ∈ N the set

Λι,κ := {(i , j , k) ∈ Λι : κ2
−ι ≤ dist(Qj ,k , 0) < (κ+ 1)2−ι}.
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Sketch of the proof III
Estimate the coefficients | 〈v , ψi ,j ,k〉 | in three steps:

◮ Consider for κ ∈ N the set

Λι,κ := {(i , j , k) ∈ Λι : κ2
−ι ≤ dist(Qj ,k , 0) < (κ+ 1)2−ι}.

→ Weighted Sobolev esimates
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Sketch of the proof III
Estimate the coefficients | 〈v , ψi ,j ,k〉 | in three steps:

◮ Consider the set

Λι,0 := {(i , j , k) ∈ Λι : 0 < dist(Qj ,k , 0) < 2−ι}.
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Sketch of the proof III
Estimate the coefficients | 〈v , ψi ,j ,k〉 | in three steps:

◮ Consider the set

Λι,0 := {(i , j , k) ∈ Λι : 0 < dist(Qj ,k , 0) < 2−ι}.

→ Sobolev regularity
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Sketch of the proof III
Estimate the coefficients | 〈v , ψi ,j ,k〉 | in three steps:

◮ Consider the set

Λ#
ι := {(i , j , k) : Qj ,k ∩ ∂K0 6= ∅, 2−3ι ≤ 2−j ≤ 2−3ι+2}.
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Sketch of the proof III
Estimate the coefficients | 〈v , ψi ,j ,k〉 | in three steps:

◮ Consider the set

Λ#
ι := {(i , j , k) : Qj ,k ∩ ∂K0 6= ∅, 2−3ι ≤ 2−j ≤ 2−3ι+2}.

→ Sobolev regularity
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Norm estimate I
We obtain

◮ ||u||Hα0+1(K0)3
+ ||p||Hα0 (K0) . ||f ||L2(K0)3 + ||g ||Hα0 (K0).
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Norm estimate I
We obtain

◮ ||u||Hα0+1(K0)3
+ ||p||Hα0 (K0) . ||f ||L2(K0)3 + ||g ||Hα0 (K0).

◮ Define

Hβ :=
{
u ∈ W

l ,2
β,0(K)3 : u = 0 on Γj , j = 1, ..., d

}
.

The functional

F (v) :=

∫

K
(f +∇g) · v d x

defines a linear and continuous mapping on Hl−1−β.
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Norm estimate I
We obtain

◮ ||u||Hα0+1(K0)3
+ ||p||Hα0 (K0) . ||f ||L2(K0)3 + ||g ||Hα0 (K0).

◮ Define

Hβ :=
{
u ∈ W

l ,2
β,0(K)3 : u = 0 on Γj , j = 1, ..., d

}
.

The functional

F (v) :=

∫

K
(f +∇g) · v d x

defines a linear and continuous mapping on Hl−1−β.

◮ The solution (u, p) found in the Proposition fulfills

||u||
W

l,2
β,δ

(K)3
+ ||p||

W
l−1,2
β,δ

(K)
.

(
||F ||H∗

l−1−β
+ ||g ||

V
0,2
β−l+1(K)

+ ||f ||
W

l−2,2
β,δ

(K)
+ ||g ||

W
l−1,2
β,δ

(K)

)
.
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Norm estimate II

◮ We show for β < l − 1

||u||Bs1
τ1
(Lτ1 (K0))3

+ ||p||Bs2
τ2
(Lτ2 (K0))

.

||u||
W

l,2
β,δ

(K)3
+||u||Hα0+1(K0)3

+||p||
W

l−1,2
β,δ

(K)
+||p||Hα0 (K0).
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Norm estimate II

◮ We show for β < l − 1

||u||Bs1
τ1
(Lτ1 (K0))3

+ ||p||Bs2
τ2
(Lτ2 (K0))

.

||u||
W

l,2
β,δ

(K)3
+||u||Hα0+1(K0)3

+||p||
W

l−1,2
β,δ

(K)
+||p||Hα0 (K0).

◮ All in all this leads to

||u||
B

s1
τ1
(Lτ1 (K0))3

+ ||p||
B

s2
τ2
(Lτ2 (K0))

.

||F ||H∗

l−1−β
+||g ||

V
0,2
β−l+1(K)

+||g ||
W

l−1,2
β,δ

(K)
+||g ||Hα0 (K0)+

||f ||
W

l−2,2
β,δ

(K)3
+ ||f ||L2(K0)3


