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Outline of the Talk

1. The linear Lane-Riesenfeld (LR) algorithms

2. Non-linear averages of numbers

3. LR algorithms with non-linear averages

4. Conjecture about smoothness equivalence and a counter example

5. Sufficient conditions for smoothness equivalence

6. A conjecture based on simulations

7. Method of analysis
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The linear Lane-Riesenfeld algorithms (Lane, Riesenfeld, 1980)

The data: m, f0 = {f0
i ∈ R : i ∈ Z}

for level k = 1,2, . . . , do:

for i ∈ Z do: f
k,0
2i ← fk−1

i , f
k,0
2i+1 ← fk−1

i

(defining fk,0 by an elementary refinement of fk−1)

for round ℓ = 1,2, . . . , m do:

for i ∈ Z do: f
k,ℓ
i ←

f
k,ℓ−1
i +f

k,ℓ−1
i+1

2

(defining fk,ℓ by averaging)

for i ∈ Z do: fk
i ← f

k,m
i

(defining fk—the data at refinement level k)
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On the linear LR algorithm of order m (LRm)

1. The algorithm converges to a Cm−1 limit function

2. The limit is the spline function

∑

i∈Z

f0
i Bm(t− i)

Bm is a B-spline of degree m with integer knots and support (0, m+1)

Non-linear LR algorithms are obtained by replacing the

arithmetic average in the linear LR algorithm by Non-lineaer symmetric

binary averages
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Non-linear symmetric binary averages

A(u, v), u, v ∈ R+ is a symmetric binary average if it satisfies

1. A(u, v) = A(v, u) and A(u, u) = u

2. min{u, v} < A(u, v) < max{u, v} whenever u 6= v

Examples:

1. geometric average A(u, v) = (uv)
1
2

2. harmonic average A(u, v) = 1
1
2

(

1
u
+1

v

)

3. p-average Ap(u, v) =
(

up+vp

2

)
1
p , p 6= 0,1
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The only linear symmetric binary average is the arithmetic mean u+v
2

For a smooth (CM) average A(u, v) Property 1. of A(u, v) implies

A(u, v) =
u + v

2
+ (u− v)2

M−2
∑

i=0

ci(u− v)i

If the non-linear LR algorithm of order m (NLRm) is converging, then

for k large the non-linear averages operate on fk with |fk
i+1− fk

i | small,

so that A(fk
i , fk

i+1) is close to the arithmetic mean of fk
i and fk

i+1.

Therefore the conjector that the smoothness of the limits generated

by NLRm equals that of the limits of the linear LRm (the smoothness

equivalence property) is reasonable
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Previous results strengthening the equivalence conjecture

• Goldman, Schaefer, Vouga (2008) showed that if the arithmetic av-

erage in a linear LR algorithm is replaced everywhere by the SAME

non-linear average, then the algorithm converges to a limit which is a

function of a limit of the corresponding linear scheme.

Under certain mild conditions on the non-linear average used, proper-

ties of the limit can be deduced from those of the limit of the linear

scheme, in particular the smoothness

In that work the smoothness equivalence, when DIFFERENT non-

linear averages replace the arithmetic means, is conjectured, based on

simulations
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• Dyn, Goldman (2011) considered a more general class of NLRm algo-

rithms, obtained by replacing the arithmetic means in a LRm algorithm

by DIFFERENT non-linear averages, all C2 functions with a uniform

bound on their second pure partial derivatives

It is proved there that converging NLRm schemes with m ≥ 2, and

with ANY CHOICE of such averages generate C1 limits

Conditions on the initial data guaranteeing convergence are also derived
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A counter example to the smoothness equivalence conjecture in

its most generality

Duchamp, Xie, Yu (2016): The algorithm NLR3, where the nonlinear

average

A(u, v) =
u + v

2
+ c(u− v)p, p = 2

replaces the arirhmetic means only in every third round at odd loca-

tions (definition of f
k,3
2i+1). The limits of this scheme are only C1, as

concluded from their general theory and asserted by simulations, while

the limits of LR3 are C2

It is also shown there that if p = 4 in the definition of the non-linear

average, then the limit is C2

8



The theory of Duchamp, Xie, Yu (2016) is based on their technique

termed Differential Proximity Conditions. With this technique they

proved (2017) that the smoothness of NLRm is equal to the smooth-

ness of LRm, when in any round the same average is used, but in

different rounds different averages can be used

Their technique applies to uniform non-linear schemes, while NLRm

with different averages in the same round is a non-uniform scheme

(different refinements at different locations) Yet, the example with

p = 4 indicates that it is possible to have C2 limits of NLR3 with

DIFFERENT averages in the same round

The next slides are concerned with sufficient conditions on the averages

used in the same round for the NLRm to have Cℓ limits, with ℓ ≤ m−1.
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Smoothness results

Recently Dyn, Levin, Goldman proved that a converging NLRm can

have Cℓ limits (smoothness ℓ) with ℓ ≤ m− 1, if consecutive averages

used in the same round vary smoothly with the location

More precisely

Denote by A
k,r
i (u, v) the average applied in the NLRm algorithm at

location i in level k and round r.

Theorem 1: Consider a converging NLRm algorithm. If

A
k,r
i+1(u, v)− A

k,r
i (u, v) = (u− v)2ℓCi(u, v)

with Ci(u, v) a smooth function, and 0 ≤ ℓ ≤ m − 1, then the limits

generated by this NLRm are Cℓ.
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Theorem 2: For k ∈ Z0 and r ∈ {1, ..., m}, let Ak,r(u, v, p) be a family of

averages depending smoothly on u, v, p. Consider the NLRm algorithm

with A
k,r
i (u, v) = Ak,r(u, v, i2−k). If the algorithm converges then its

smoothness (the smoothness of its limits) equals that of the linear

LRm algorithm.

Two families of smooth averages depending on a parameter

(i) The p-averages

A(u, v, p) =

(

up + vp

2

)
1
p

(ii) The q averages

A(u, v, p) =
up + vp

up−1 + vp−1
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Conclusion from simulations

The conditions in Theorem 1 are only sufficient

It seems that to get smoothness ℓ > 1 of a converging NLRm algorithm

with m ≥ ℓ +1, any average can be used in the first two rounds, while

in round r ∈ [3, ℓ] the averages used should satisfy

A
k,r
i+1(u, v)− A

k,r
i (u, v) = (u− v)2(r−1)C

k,r
i (u, v)

with C
k,r
i (u, v) a smooth function. Moreover in the rest of the rounds

r ∈ [ℓ + 1, m] the averages used should satisfy

A
k,r
i+1(u, v)− A

k,r
i (u, v) = (u− v)2ℓC

k,r
i (u, v)
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The Analysis method

(i) For given initial data f0 the values generated by a NLRm, is also

generated by a non-uniform linear scheme with masks coefficients de-

pending on f0 and on the non-linear averages used.

(ii) The smoothness of the limit generated by the NLRm from f0 is

equal to the smoothness of the above non-uniform linear scheme

(iii) This smoothness is derived with the analysis tools developed in

Dyn, Levin, Yoon (2014) for non-uniform linear subdivision schemes
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