Filter banks for arbitrary dilations

Dörte Rüweler

Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung Universität Passau

February 22, 2018

Signals Filter Dilation matrix Examples Summary	er Signal ix Examples ss
---	--------------------------------

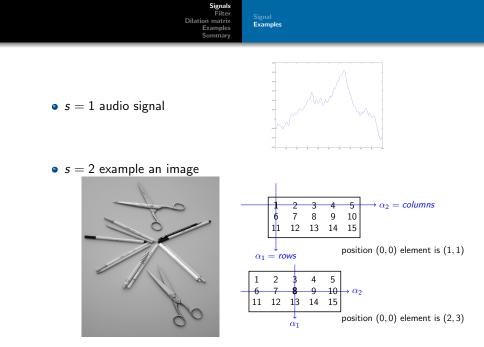
Definition

 $\ell(\mathbb{Z}^s)$ denotes the set of all signals of the form

$$c = (c(\alpha) \mid \alpha \in \mathbb{Z}^s) = (c(\alpha_1, \ldots, \alpha_s) \mid \alpha_1, \ldots, \alpha_s \in \mathbb{Z}),$$

and $c(\alpha) \in \mathbb{R}$.

• s = 1 audio signal



Signals Filter	Expanding Matrices
Dilation matrix Examples Summary	filter bank - 1 dimensional filter bank - 2 dimensional

• translation
$$\tau_{\alpha} c(\cdot) = c(\cdot + \alpha)$$

Summary

• translation
$$\tau_{\alpha}c(\cdot) = c(\cdot + \alpha)$$

• filter
$$F: \ell(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$$
 is an LTI-filter, if $F\tau_{\alpha} = \tau_{\alpha}F$

Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	--

• translation
$$au_{lpha} c(\cdot) = c(\cdot + lpha)$$

• filter
$$F: \ell(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$$
 is an LTI-filter, if $F\tau_{\alpha} = \tau_{\alpha}F$

• pulse signal
$$\delta_0(\alpha) = \begin{cases} 1, & \text{if } \alpha = 0, \\ 0, & \text{else} \end{cases}$$

Signals Filter	Expanding Matrices
Dilation matrix Examples Summary	filter bank - 1 dimension filter bank - 2 dimension

• translation
$$\tau_{\alpha} c(\cdot) = c(\cdot + \alpha)$$

- filter $F: \ell(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$ is an LTI-filter, if $F\tau_{\alpha} = \tau_{\alpha}F$
- pulse signal $\delta_0(\alpha) = \begin{cases} 1, & \text{if } \alpha = 0, \\ 0, & \text{else} \end{cases}$
- impulse response $f \in \ell(\mathbb{Z}^s)$ is defined as $f = F\delta$

Signals Filter	Expanding Matrices
Dilation matrix Examples Summary	filter bank - 1 dimensio filter bank - 2 dimensio

• translation
$$\tau_{\alpha} c(\cdot) = c(\cdot + \alpha)$$

• filter $F: \ell(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$ is an LTI-filter, if $F\tau_{\alpha} = \tau_{\alpha}F$

• pulse signal
$$\delta_0(\alpha) = \begin{cases} 1, & \text{if } \alpha = 0, \\ 0, & \text{else} \end{cases}$$

- impulse response $f \in \ell(\mathbb{Z}^s)$ is defined as $f = F\delta$
- any LTI-filter can be written as a convolution

$$Fc = f * c = \sum_{\alpha \in \mathbb{Z}^s} f(\cdot - \alpha)c(\alpha)$$

with the impulse response f

Signals	
Filter	Expanding Matrice
Dilation matrix	filter bank - 1 dim
Examples	filter bank - 2 dim
Summary	

Let $M \in \mathbb{Z}^{s \times s}$.

Definition

Downsampling operator \downarrow_M is defined as

 $\downarrow_M c = c(M \cdot).$

Signals Filter Expanding Matr Dilation matrix filter bank - 1 di Examples filter bank - 2 di Summary

Let $M \in \mathbb{Z}^{s \times s}$.

Definition

Downsampling operator \downarrow_M is defined as

 $\downarrow_M c = c(M \cdot).$

•
$$c = (3 \ 2 \ 1 \ 0 \ 2 \ 3 \ 2 \ 2)$$

Signals Filter Expanding Mat Dilation matrix filter bank - 1 o Examples filter bank - 2 o Summary

Let $M \in \mathbb{Z}^{s \times s}$.

Definition

Downsampling operator \downarrow_M is defined as

 $\downarrow_M c = c(M \cdot).$

•
$$c = \begin{pmatrix} 3 & 2 & 1 & \mathbf{0} & 2 & 3 & 2 & 2 \end{pmatrix}$$

• $\tilde{c} = \downarrow_2 c = \begin{pmatrix} 2 & \mathbf{0} & 3 & 2 \end{pmatrix}$

Signals Filter Expan Dilation matrix Examples filter b Summary

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Let $M \in \mathbb{Z}^{s \times s}$.

Definition

Downsampling operator \downarrow_M is defined as

 $\downarrow_M c = c(M \cdot).$

Definition

Upsampling operator \uparrow_M is defined as

$$\uparrow_{M} c(\alpha) = \begin{cases} c(M^{-1}\alpha), & \text{ if } \alpha \in M\mathbb{Z}^{s} \\ 0, & \text{ else} \end{cases}$$

•
$$c = \begin{pmatrix} 3 & 2 & 1 & 0 & 2 & 3 & 2 & 2 \end{pmatrix}$$

• $\tilde{c} = \downarrow_2 c = \begin{pmatrix} 2 & 0 & 3 & 2 \end{pmatrix}$

Signals Filter Expan Dilation matrix Examples filter I Summary

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Let $M \in \mathbb{Z}^{s \times s}$.

Definition

Downsampling operator \downarrow_M is defined as

 $\downarrow_M c = c(M \cdot).$

Definition

Upsampling operator \uparrow_M is defined as

$$\uparrow_{M} c(\alpha) = \begin{cases} c(M^{-1}\alpha), & \text{ if } \alpha \in M\mathbb{Z}^{s} \\ 0, & \text{ else} \end{cases}$$

•
$$c = \begin{pmatrix} 3 & 2 & 1 & 0 & 2 & 3 & 2 & 2 \end{pmatrix}$$

- $\tilde{c} = \downarrow_2 c = \begin{pmatrix} 2 & \mathbf{0} & 3 & 2 \end{pmatrix}$
- $\uparrow_2 \tilde{c} = \begin{pmatrix} 0 & 2 & 0 & 0 & 3 & 0 & 2 & 0 \end{pmatrix}$

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M\in\mathbb{Z}^{s\times s}$ is expanding, if all eigenvalues are >1 in modulus, that means if

$$\lim_{k\to\infty} \left\| M^{-k} \right\| = 0.$$

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M \in \mathbb{Z}^{s \times s}$ is expanding, if all eigenvalues are > 1 in modulus, that means if

 $\lim_{k\to\infty} \|M^{-k}\| = 0.$

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding integer matrix:

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M \in \mathbb{Z}^{s \times s}$ is expanding, if all eigenvalues are > 1 in modulus, that means if

$$\lim_{k\to\infty} \left\| M^{-k} \right\| = 0.$$

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding integer matrix:

• $M\mathbb{Z}^{s} \subset \mathbb{Z}^{s}$ is a subgrid of \mathbb{Z}^{s}

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M \in \mathbb{Z}^{s \times s}$ is expanding, if all eigenvalues are > 1 in modulus, that means if

$$\lim_{k\to\infty} \left\| M^{-k} \right\| = 0.$$

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding integer matrix:

• $M\mathbb{Z}^{s} \subset \mathbb{Z}^{s}$ is a subgrid of \mathbb{Z}^{s}

۲

$$\mathbb{Z}^s = \bigcup_{\xi \in E_M} M \mathbb{Z}^s + \xi$$

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M \in \mathbb{Z}^{s \times s}$ is expanding, if all eigenvalues are > 1 in modulus, that means if

$$\lim_{k\to\infty} \left\| M^{-k} \right\| = 0.$$

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding integer matrix:

• $M\mathbb{Z}^s \subset \mathbb{Z}^s$ is a subgrid of \mathbb{Z}^s

۲

$$\mathbb{Z}^s = \bigcup_{\xi \in E_M} M \mathbb{Z}^s + \xi$$

coset representer E_M := M[0,1)^s ∩ Z^s

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M \in \mathbb{Z}^{s \times s}$ is expanding, if all eigenvalues are > 1 in modulus, that means if

$$\lim_{k\to\infty} \left\| M^{-k} \right\| = 0.$$

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding integer matrix:

• $M\mathbb{Z}^s \subset \mathbb{Z}^s$ is a subgrid of \mathbb{Z}^s

۲

$$\mathbb{Z}^s = \bigcup_{\xi \in E_M} M \mathbb{Z}^s + \xi$$

• coset representer $E_M := M[0,1)^s \cap \mathbb{Z}^s$

•
$$|E_M| = |\det(M)| =: d$$

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

Definition

A matrix $M \in \mathbb{Z}^{s \times s}$ is expanding, if all eigenvalues are > 1 in modulus, that means if

$$\lim_{k\to\infty} \left\| M^{-k} \right\| = 0.$$

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding integer matrix:

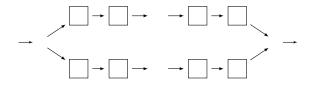
• $M\mathbb{Z}^s \subset \mathbb{Z}^s$ is a subgrid of \mathbb{Z}^s

۲

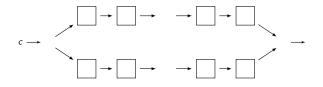
$$\mathbb{Z}^s = \bigcup_{\xi \in E_M} M \mathbb{Z}^s + \xi$$

- coset representer $E_M := M[0,1)^s \cap \mathbb{Z}^s$
- $|E_M| = |\det(M)| =: d$
- anisotropic matrices for edge detection

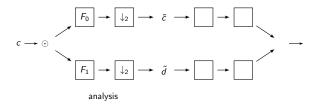
Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	--



Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	--

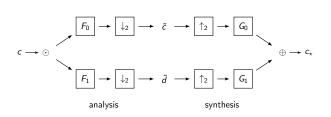


Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	--



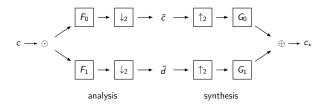
• F_0 lowpass analysis filter and F_1 highpass analysis filter

Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	---



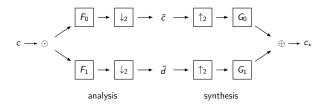
- F_0 lowpass analysis filter and F_1 highpass analysis filter
- G_0 lowpass synthesis filter and G_1 highpass synthesis filter

Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	--



- F_0 lowpass analysis filter and F_1 highpass analysis filter
- G_0 lowpass synthesis filter and G_1 highpass synthesis filter
- perfect reconstruction: $c_{\star} = c$

Signals Filter Dilation matrix Examples Summary	Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional
---	--



- F_0 lowpass analysis filter and F_1 highpass analysis filter
- G_0 lowpass synthesis filter and G_1 highpass synthesis filter
- perfect reconstruction: $c_{\star} = c$
- example discrete wavelet transform

Expanding Matrices filter bank - 1 dimensional filter bank - 2 dimensional

• critically sampled filter bank

- critically sampled filter bank
- we use the index set $\mathbb{Z}_d = \{0, \dots, d-1\}$ to label the components of the filter bank

- critically sampled filter bank
- we use the index set $\mathbb{Z}_d = \{0, \dots, d-1\}$ to label the components of the filter bank
- formally define the filter bank as

- critically sampled filter bank
- we use the index set $\mathbb{Z}_d = \{0, \dots, d-1\}$ to label the components of the filter bank
- formally define the filter bank as
 - analysis part $F: \ell(\mathbb{Z}^s) \to \ell^d(\mathbb{Z}^s)$ where

$$Fc = [\downarrow_M F_j c : j \in \mathbb{Z}_d]$$

- critically sampled filter bank
- we use the index set $\mathbb{Z}_d = \{0, \dots, d-1\}$ to label the components of the filter bank
- formally define the filter bank as
 - analysis part $F: \ell(\mathbb{Z}^s) \to \ell^d(\mathbb{Z}^s)$ where

$$Fc = [\downarrow_M F_j c : j \in \mathbb{Z}_d]$$

• synthesis part $G: \ell^d(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$ where

$$G[c_j: j \in \mathbb{Z}_d] = \sum_{j \in \mathbb{Z}_d} G_j \uparrow_M c_j$$

- critically sampled filter bank
- we use the index set $\mathbb{Z}_d = \{0, \dots, d-1\}$ to label the components of the filter bank
- formally define the filter bank as
 - analysis part $F: \ell(\mathbb{Z}^s) \to \ell^d(\mathbb{Z}^s)$ where

$$Fc = [\downarrow_M F_j c : j \in \mathbb{Z}_d]$$

• synthesis part $G: \ell^d(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$ where

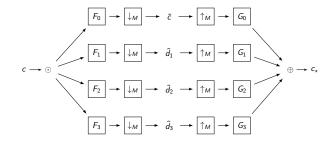
$$G[c_j: j \in \mathbb{Z}_d] = \sum_{j \in \mathbb{Z}_d} G_j \uparrow_M c_j$$

• perfect reconstruction \Leftrightarrow *GF* = *I*

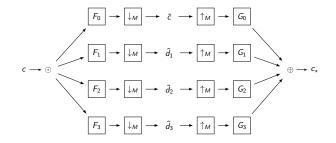
Signals Filter Expanding Matrices Dilation matrix filter bank - 1 dimensional Examples filter bank - 2 dimensional Summary
--

• filter bank 2-dimensional:
$$M = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I$$
 with det $(M) = 4$

• filter bank 2-dimensional:
$$M = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I$$
 with det $(M) = 4$



• filter bank 2-dimensional:
$$M = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I$$
 with det $(M) = 4$



• example 2-dim discrete wavelet transform

Smith Decomposition Downsampling implementation

Definition

 $M \in \mathbb{Z}^{s \times s}$ is called unimodular, if $|\det(M)| = 1$.

Smith Decomposition Downsampling implementation

Definition

 $M \in \mathbb{Z}^{s \times s}$ is called unimodular, if $|\det(M)| = 1$.

Theorem

 $M \in \mathbb{Z}^{s imes s}$ can be decomposed as

$$M = PDQ \tag{1}$$

where P, $Q \in \mathbb{Z}^{s \times s}$ are unimodular matrices and D is a diagonal matrix in $\mathbb{Z}^{s \times s}$.

Smith Decomposition Downsampling implementation

Definition

 $M \in \mathbb{Z}^{s \times s}$ is called unimodular, if $|\det(M)| = 1$.

Theorem

 $M \in \mathbb{Z}^{s imes s}$ can be decomposed as

$$M = PDQ \tag{1}$$

where P, $Q \in \mathbb{Z}^{s \times s}$ are unimodular matrices and D is a diagonal matrix in $\mathbb{Z}^{s \times s}$.

Definition

(1) is called Smith decomposition.

Smith Decomposition Downsampling implementation

Definition

Let $M \in \mathbb{Z}^{s \times s}$ and $i \in \{1, ..., s\}$. Define f_i to be the greatest common divisor of all the determinants of $i \times i$ minors of M. These f_i are called determinantal divisors of M. We set $f_0 = 1$ for notational convenience.

Smith Decomposition Downsampling implementation

Definition

Let $M \in \mathbb{Z}^{s \times s}$ and $i \in \{1, ..., s\}$. Define f_i to be the greatest common divisor of all the determinants of $i \times i$ minors of M. These f_i are called determinantal divisors of M. We set $f_0 = 1$ for notational convenience.

Definition

For the decomposition M = PDQ we can find the elements d_i as $d_i = \frac{f_{i+1}}{f_i}$ where f_i is defined as before. Then we call D the Smith normal form of M.

Smith Decomposition Downsampling implementation

•
$$D_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$

Smith Decomposition Downsampling implementation

•
$$D_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$

• both diagonal matrices of a Smith decomposition

Smith Decomposition Downsampling implementation

•
$$D_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$

• both diagonal matrices of a Smith decomposition

• compute determinantal divisors:

$$\begin{array}{ll} f_0 = 1 & & \tilde{f_0} = 1 \\ f_1 = \gcd \left\{ 2, 3 \right\} = 1 & & \tilde{f_1} = \gcd \left\{ 1, 6 \right\} = 1 \\ f_2 = \gcd \left\{ 6 \right\} = 6 & & \tilde{f_2} = \gcd \left\{ 6 \right\} = 6 \end{array}$$

Smith Decomposition Downsampling implementation

•
$$D_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$

• both diagonal matrices of a Smith decomposition

• compute determinantal divisors:

$$\begin{array}{ll} f_0 = 1 & & \tilde{f}_0 = 1 \\ f_1 = \gcd \left\{ 2, 3 \right\} = 1 & & \tilde{f}_1 = \gcd \left\{ 1, 6 \right\} = 1 \\ f_2 = \gcd \left\{ 6 \right\} = 6 & & \tilde{f}_2 = \gcd \left\{ 6 \right\} = 6 \end{array}$$

ullet \to D_2 is Smith normal form

Smith Decomposition Downsampling implementation

•
$$D_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$

• both diagonal matrices of a Smith decomposition

• compute determinantal divisors:

$$\begin{array}{ll} f_0 = 1 & & \tilde{f}_0 = 1 \\ f_1 = \gcd \left\{ 2, 3 \right\} = 1 & & \tilde{f}_1 = \gcd \left\{ 1, 6 \right\} = 1 \\ f_2 = \gcd \left\{ 6 \right\} = 6 & & \tilde{f}_2 = \gcd \left\{ 6 \right\} = 6 \end{array}$$

- ullet \to D_2 is Smith normal form
- Smith normal form is unique

Compute $\downarrow_M I$:

i) compute the Smith decomposition of M = PDQ (with matlab function)

Smith Decomposition Downsampling implementation

- i) compute the Smith decomposition of M = PDQ (with matlab function)
- ii) perform a matrix transformation P^{-1} , that means $\mathbb{Z}^s o P^{-1}\mathbb{Z}^s$

Smith Decomposition Downsampling implementation

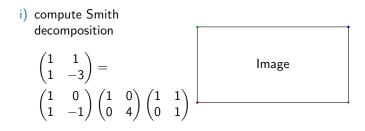
- i) compute the Smith decomposition of M = PDQ (with matlab function)
- ii) perform a matrix transformation P^{-1} , that means $\mathbb{Z}^s o P^{-1}\mathbb{Z}^s$
- iii) a) downsample the rows with factor d_1

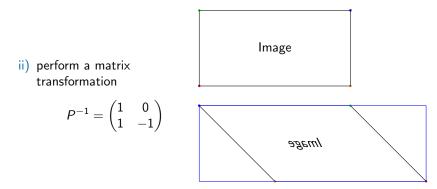
Smith Decomposition Downsampling implementation

- i) compute the Smith decomposition of M = PDQ (with matlab function)
- ii) perform a matrix transformation P^{-1} , that means $\mathbb{Z}^s o P^{-1}\mathbb{Z}^s$
- iii) a) downsample the rows with factor d_1
 - b) downsample the columns with factor d_2

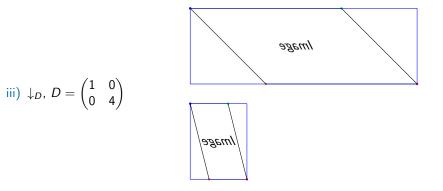
Smith Decomposition Downsampling implementation

- i) compute the Smith decomposition of M = PDQ (with matlab function)
- ii) perform a matrix transformation P^{-1} , that means $\mathbb{Z}^s o P^{-1}\mathbb{Z}^s$
- a) downsample the rows with factor d₁
 b) downsample the columns with factor d₂
- iv) perform a matrix transformation Q^{-1} , that means $D^{-1}P^{-1}\mathbb{Z}^s \to Q^{-1}D^{-1}P^{-1}\mathbb{Z}^s$





Signals Filter Dilation matrix Examples Summary	Smith Decomposition Downsampling implementation
--	--



iv) perform a matrix transformation

$$Q^{-1}=egin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix}$$

Image

Note that P and Q are not unique:

$$M = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -1 & 4 \end{pmatrix}$$

Does it make a difference for the result?

Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

Our image

$$I = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}$$

the number in boldface is the (0,0) element.

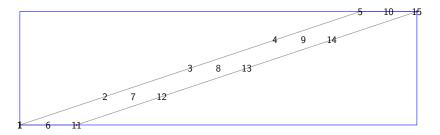
$$M_{Q} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \det(M_{Q}) = 2$$

$$1 - 2 - 3 - 4 - 5$$

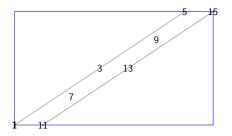
$$6 - 7 - 8 - 9 - 10$$

$$1 - 12 - 13 - 14 - 15$$

$$M_Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \det(M_Q) = 2$$



$$M_Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \det(M_Q) = 2$$



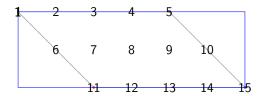
$$M_{Q} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \det(M_{Q}) = 2$$

			Signals Filter Dilation matrix Examples Summary			He	incunx xagonal tronei3 rmal forn	1 or?					
	(0	0	0	0	0	0	0	0	0	0	0	0/	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	5	0	0	0	0	0	
	0	0	0	0	0	3	9	15	0	0	0	0	
$\downarrow_{M_Q} I =$	0	0	0	0	1	7	13	0	0	0	0	0	
	0	0	0	0	0	11	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0/	0	0	0	0	0	0	0	0	0	0	0/	
	•												

Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

$$M_Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$



Filter Dilation matrix Examples	Quincunx Hexagonal Cotronei3 Normal form or?
---------------------------------------	---

$$M_Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

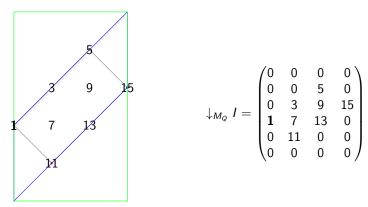
$$1 \qquad 3 \qquad 5 \qquad 7 \qquad 9 \qquad 14 \qquad 13 \qquad 15$$

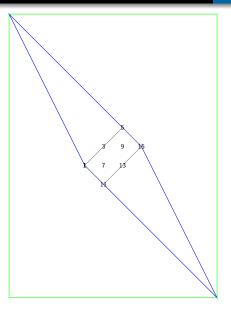
Signals Filter Dilation matrix Examples Summary Normal form or ...?

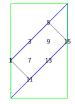
$$M_Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Signals Quincumx Filter Hexagonal Dilation matrix Cotronei3 Examples Normal form or ...

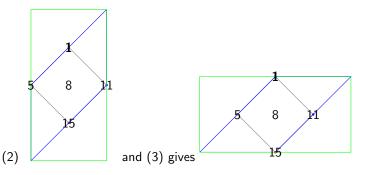
$$M_Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$







$$M_{H} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
(2)
$$= \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$$
matlab (3)



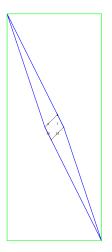
$$\begin{aligned} &M_C = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \text{ (matlab),} \\ &\det(M_C) = -3 \end{aligned}$$

	/0	0	0	0	0	0	0	0	0	0\
	6	0	0	0	0	0	0	0	Ő	ő)
	0	0	0	0	0	0	0	0	Ő	ő
	l o	0	0	0	0	0	0	0	0	ŏ
	0	0	0	0	0	0	0	0	0	ő
		0		0	0	0	0	0		
	0		0						0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0
$\downarrow_{M_{matlabC}} I =$	0	0	0	0	4	7	0	0	0	0
matiabe	0	0	0	0	10	13	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	Ó	0	Ó	0	0	Ó	Ó	0	0
	l o	ō	ō	ō	ō	ō	ō	õ	ō	ō
	0	Ō	ō	Ō	ō	Ō	Ō	Ō	ō	ō/

ncunx agonal ronei3 mal form or?

and we get with another decomposition

$$M_{C} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$\downarrow_{M_{C}} I = \begin{pmatrix} 0 & 1 \\ 4 & 7 \\ 10 & 13 \\ 0 & 0 \end{pmatrix}$$



Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

• diagonal matrix can be decomposed into a smith normal form

$$M_D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$$

Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

• diagonal matrix can be decomposed into a smith normal form

$$M_D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$$

• without Smith decomposition

$$\downarrow_{M_D} I = \begin{pmatrix} \mathbf{1} & \mathbf{4} \\ 11 & 14 \end{pmatrix}$$

Quincunx Hexagonal Cotronei3 Normal form or ...?

• with Smith decomposition

Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

With
$$M = \begin{pmatrix} 2 & -4 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 we get
$$\downarrow_{M} I = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 4 \\ 0 & 13 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Signals Filter Dilation matrix: E Examples Summary	Quincumx Hexagonal Cotronei3 Normal form or?
---	---

and we get with

with size($\downarrow_{M_{withMat}}$ I) = 50 × 10 (24 zero rows above the (0,0)-element and 22 zero rows at the end)

Signals Filter Dilation matrix Examples Summary	Quincunx Hexagonal Cotronei3 Normal form or?
--	---

and we get with

BUT size($\downarrow_M I$) = 70 × 21, this is too big for the slide

Dilation matrix Examples Cotronei3	Examples	Quincunx Hexagonal Cotronei3 Normal form or?
--	----------	---

$$M = \begin{pmatrix} 2 & -4 \\ -1 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 1 & -5 \\ -1 & 6 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$$

Summary:

• can use Smith decomposition

Summary:

- can use Smith decomposition
- there is dependency between decomposition and result

Summary:

- can use Smith decomposition
- there is dependency between decomposition and result
- how to find good P and Q?

Summary:

- can use Smith decomposition
- there is dependency between decomposition and result
- how to find good P and Q?

Thank you.