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Definition

`(Zs) denotes the set of all signals of the form

c =
(
c(α) | α ∈ Zs

)
=
(
c(α1, . . . , αs) | α1, . . . , αs ∈ Z

)
,

and c(α) ∈ R.
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s = 1 audio signal

s = 2 example an image

α2 = columns

α1 = rows

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

position (0, 0) element is (1, 1)

α2

α1

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

position (0, 0) element is (2, 3)
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Dörte Rüweler Filter banks for arbitrary dilations



Signals
Filter

Dilation matrix
Examples
Summary

Expanding Matrices
filter bank - 1 dimensional
filter bank - 2 dimensional

translation ταc(·) = c(·+ α)

filter F : `(Zs)→ `(Zs) is an LTI-filter, if F τα = ταF

pulse signal δ0(α) =

{
1, if α = 0,

0, else

impulse response f ∈ `(Zs) is defined as f = F δ

any LTI-filter can be written as a convolution

Fc = f ∗ c =
∑
α∈Zs

f (· − α)c(α)

with the impulse response f
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Let M ∈ Zs×s .

Definition
Downsampling operator ↓M is defined as

↓M c = c(M·).

Definition
Upsampling operator ↑M is defined as

↑M c(α) =

{
c(M−1α), if α ∈ MZs

0, else
.

c =
(
3 2 1 0 2 3 2 2

)
c̃ =↓2 c =

(
2 0 3 2

)
↑2 c̃ =

(
0 2 0 0 0 3 0 2 0

)
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Definition

A matrix M ∈ Zs×s is expanding, if all eigenvalues are > 1 in modulus,
that means if

lim
k→∞

∥∥M−k∥∥ = 0.

MZs ⊂ Zs is a subgrid of Zs

Zs =
⋃
ξ∈EM

MZs + ξ

coset representer EM := M[0, 1)s ∩ Zs

|EM | = |det(M)| =: d

anisotropic matrices for edge detection
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filter bank 1-dimensional: M = 2

F0 lowpass analysis filter and F1 highpass analysis filter

G0 lowpass synthesis filter and G1 highpass synthesis filter

perfect reconstruction: c? = c

example discrete wavelet transform
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critically sampled filter bank

we use the index set Zd = {0, . . . , d − 1} to label the components of
the filter bank

formally define the filter bank as

analysis part F : `(Zs) → `d(Zs) where

Fc = [↓M Fjc : j ∈ Zd ]

synthesis part G : `d(Zs) → `(Zs) where

G [cj : j ∈ Zd ] =
∑
j∈Zd

Gj ↑M cj

perfect reconstruction ⇔ GF = I
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Dörte Rüweler Filter banks for arbitrary dilations



Signals
Filter

Dilation matrix
Examples
Summary

Expanding Matrices
filter bank - 1 dimensional
filter bank - 2 dimensional

filter bank 2-dimensional: M =

(
2 0
0 2

)
= 2I with det(M) = 4

c �

F0 ↓M c̃ ↑M G0

⊕ c?

F1 ↓M d̃1 ↑M G1

F2 ↓M d̃2 ↑M G2

F3 ↓M d̃3 ↑M G3

example 2-dim discrete wavelet transform

Dörte Rüweler Filter banks for arbitrary dilations



Signals
Filter

Dilation matrix
Examples
Summary

Smith Decomposition
Downsampling implementation

Definition

M ∈ Zs×s is called unimodular, if |det(M)| = 1.

Theorem

M ∈ Zs×s can be decomposed as

M = PDQ (1)

where P, Q ∈ Zs×s are unimodular matrices and D is a diagonal matrix
in Zs×s .

Definition

(1) is called Smith decomposition.
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Smith Decomposition
Downsampling implementation

Definition

Let M ∈ Zs×s and i ∈ {1, . . . , s}. Define fi to be the greatest common
divisor of all the determinants of i × i minors of M. These fi are called
determinantal divisors of M.
We set f0 = 1 for notational convenience.

Definition
For the decomposition M = PDQ we can find the elements di as
di = fi+1

fi
where fi is defined as before. Then we call D the Smith normal

form of M.
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Smith Decomposition
Downsampling implementation

D1 =

(
2 0
0 3

)
and D2 =

(
1 0
0 6

)

both diagonal matrices of a Smith decomposition

compute determinantal divisors:

f0 = 1 f̃0 =1

f1 = gcd {2, 3} = 1 f̃1 = gcd {1, 6} = 1

f2 = gcd {6} = 6 f̃2 = gcd {6} = 6

→ D2 is Smith normal form

Smith normal form is unique
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Dörte Rüweler Filter banks for arbitrary dilations



Signals
Filter

Dilation matrix
Examples
Summary

Smith Decomposition
Downsampling implementation

D1 =

(
2 0
0 3

)
and D2 =

(
1 0
0 6

)
both diagonal matrices of a Smith decomposition

compute determinantal divisors:

f0 = 1 f̃0 =1

f1 = gcd {2, 3} = 1 f̃1 = gcd {1, 6} = 1

f2 = gcd {6} = 6 f̃2 = gcd {6} = 6

→ D2 is Smith normal form

Smith normal form is unique
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Smith Decomposition
Downsampling implementation

Compute ↓M I :

i) compute the Smith decomposition of M = PDQ (with matlab
function)

ii) perform a matrix transformation P−1, that means Zs → P−1Zs

iii) a) downsample the rows with factor d1
b) downsample the columns with factor d2

iv) perform a matrix transformation Q−1, that means
D−1P−1Zs → Q−1D−1P−1Zs

Dörte Rüweler Filter banks for arbitrary dilations



Signals
Filter

Dilation matrix
Examples
Summary

Smith Decomposition
Downsampling implementation

Compute ↓M I :

i) compute the Smith decomposition of M = PDQ (with matlab
function)

ii) perform a matrix transformation P−1, that means Zs → P−1Zs

iii) a) downsample the rows with factor d1
b) downsample the columns with factor d2

iv) perform a matrix transformation Q−1, that means
D−1P−1Zs → Q−1D−1P−1Zs
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iii) a) downsample the rows with factor d1

b) downsample the columns with factor d2

iv) perform a matrix transformation Q−1, that means
D−1P−1Zs → Q−1D−1P−1Zs
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Smith Decomposition
Downsampling implementation

Compute ↓M I :

i) compute the Smith decomposition of M = PDQ (with matlab
function)

ii) perform a matrix transformation P−1, that means Zs → P−1Zs

iii) a) downsample the rows with factor d1
b) downsample the columns with factor d2

iv) perform a matrix transformation Q−1, that means
D−1P−1Zs → Q−1D−1P−1Zs
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Smith Decomposition
Downsampling implementation

Compute ↓M I :

i) compute the Smith decomposition of M = PDQ (with matlab
function)

ii) perform a matrix transformation P−1, that means Zs → P−1Zs

iii) a) downsample the rows with factor d1
b) downsample the columns with factor d2

iv) perform a matrix transformation Q−1, that means
D−1P−1Zs → Q−1D−1P−1Zs
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Smith Decomposition
Downsampling implementation

i) compute Smith
decomposition(

1 1
1 −3

)
=(

1 0
1 −1

)(
1 0
0 4

)(
1 1
0 1

) Image
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Smith Decomposition
Downsampling implementation

ii) perform a matrix
transformation

P−1 =

(
1 0
1 −1

)
Image

Image
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Smith Decomposition
Downsampling implementation

iii) ↓D , D =

(
1 0
0 4

)
Image

Image
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Smith Decomposition
Downsampling implementation

iv) perform a matrix
transformation

Q−1 =

(
1 −1
0 1

)
Image

Image
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Smith Decomposition
Downsampling implementation

Note that P and Q are not unique:

M =

(
1 1
1 −3

)
=

(
1 0
1 −1

)(
1 0
0 4

)(
1 1
0 1

)
=

(
5 1
1 0

)(
1 0
0 4

)(
1 −3
−1 4

)
Does it make a difference for the result?
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

Our image

I =

 1 2 3 4 5
6 7 8 9 10

11 12 13 14 15


the number in boldface is the (0, 0) element.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

MQ =

(
1 1
−1 1

)
=

(
3 1
−1 0

)(
1 0
0 2

)(
1 −1
−1 2

)
, det(MQ) = 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

MQ =

(
1 1
−1 1

)
=

(
3 1
−1 0

)(
1 0
0 2

)(
1 −1
−1 2

)
, det(MQ) = 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

MQ =

(
1 1
−1 1

)
=

(
3 1
−1 0

)(
1 0
0 2

)(
1 −1
−1 2

)
, det(MQ) = 2

1

3

5

7

9

11

13

15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

MQ =

(
1 1
−1 1

)
=

(
3 1
−1 0

)(
1 0
0 2

)(
1 −1
−1 2

)
, det(MQ) = 2

1

3

5

7

9

11

13

15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

↓MQ
I =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 0 0 0 0 0
0 0 0 0 0 3 9 15 0 0 0 0
0 0 0 0 1 7 13 0 0 0 0 0
0 0 0 0 0 11 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and with the decomposition

MQ =

(
1 1
−1 1

)
=

(
1 0
−1 1

)(
1 0
0 2

)(
1 1
0 1

)
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and with the decomposition

MQ =

(
1 1
−1 1

)
=

(
1 0
−1 1

)(
1 0
0 2

)(
1 1
0 1

)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and with the decomposition

MQ =

(
1 1
−1 1

)
=

(
1 0
−1 1

)(
1 0
0 2

)(
1 1
0 1

)
1 3 5

7 9

11 13 15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and with the decomposition

MQ =

(
1 1
−1 1

)
=

(
1 0
−1 1

)(
1 0
0 2

)(
1 1
0 1

)

1

3

5

7

9

11

13

15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and with the decomposition

MQ =

(
1 1
−1 1

)
=

(
1 0
−1 1

)(
1 0
0 2

)(
1 1
0 1

)

1

3

5

7

9

11

13

15

↓MQ
I =


0 0 0 0
0 0 5 0
0 3 9 15
1 7 13 0
0 11 0 0
0 0 0 0
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

1

3

5

7

9

11

13

15

1

3

5

7

9

11

13

15

Dörte Rüweler Filter banks for arbitrary dilations



Signals
Filter

Dilation matrix
Examples
Summary

Quincunx
Hexagonal
Cotronei3
Normal form or ...?

MH =

(
1 1
2 −2

)
=

(
1 0
2 −1

)(
1 0
0 4

)(
1 1
0 1

)
(2)

=

(
1 0
−2 −1

)(
1 0
0 4

)(
1 1
−1 0

)
matlab (3)

(2)

1

5 8 11

15

and (3) gives

1

5 8 11

15
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

MC =

(
1 1
1 −2

)
=

(
4 1
1 0

)(
1 0
0 3

)(
1 −2
−1 3

)
(matlab),

det(MC ) = −3

↓MmatlabC
I =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 4 7 0 0 0 0
0 0 0 0 10 13 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and we get with another decomposition

MC =

(
1 1
1 −2

)
=

(
1 0
1 −1

)(
1 0
0 3

)(
1 1
0 1

)

↓MC
I =


0 1
4 7

10 13
0 0
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

1

4 7

10 13

1

4 7

10 13
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

diagonal matrix can be decomposed into a smith normal form

MD =

(
2 0
0 3

)
=

(
−2 −1
3 1

)(
1 0
0 6

)(
2 3
−1 −1

)

without Smith decomposition

↓MD
I =

(
1 4
11 14

)
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

diagonal matrix can be decomposed into a smith normal form

MD =

(
2 0
0 3

)
=

(
−2 −1
3 1

)(
1 0
0 6

)(
2 3
−1 −1

)
without Smith decomposition

↓MD
I =

(
1 4
11 14

)
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

with Smith decomposition

↓MD
I =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 4 0 0 0 0 0
0 0 0 0 11 14 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

With M =

(
2 −4
−1 5

)
=

(
2 −1
−1 1

)(
1 0
0 6

)(
1 1
0 1

)
we get

↓M I =



0 0
1 0
0 0
0 4
0 13
0 0
0 0
0 0
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and we get with

M =

(
2 −4
−1 5

)
=

(
8 1
−1 0

)(
1 0
0 6

)(
1 −5
−1 6

)
matlab

(38)

↓MwithMat
I =


0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 13 0 0 0 0


with size(↓MwithMat

I ) = 50× 10 (24 zero rows above the (0, 0)-element
and 22 zero rows at the end)
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

and we get with

M =

(
2 −4
−1 5

)
=

(
5 4
−4 −3

)(
2 0
0 3

)(
−1 −4
1 3

)

↓M I =


0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 13 0 0 0


BUT size(↓M I ) = 70× 21, this is too big for the slide
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Quincunx
Hexagonal
Cotronei3
Normal form or ...?

M =

(
2 −4
−1 5

)
=

(
2 −1
−1 1

)(
1 0
0 6

)(
1 1
0 1

)
=

(
8 1
−1 0

)(
1 0
0 6

)(
1 −5
−1 6

)
=

(
5 4
−4 −3

)(
2 0
0 3

)(
−1 −4
1 3

)

1
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Summary:

can use Smith decomposition

there is dependency between decomposition and result

how to find good P and Q?
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can use Smith decomposition

there is dependency between decomposition and result

how to find good P and Q?
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Summary:

can use Smith decomposition

there is dependency between decomposition and result

how to find good P and Q?
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Summary:

can use Smith decomposition

there is dependency between decomposition and result

how to find good P and Q?

Thank you.
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