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Basic Reconstruction Problem

Problem formulation:

Let Q C R? be bounded. Reconstruct a bivariate function f = f(x, y) with support
supp(f) C Q from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}
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Basic Reconstruction Problem

Problem formulation:

Let Q C R? be bounded. Reconstruct a bivariate function f = f(x, y) with support
supp(f) C Q from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}

\
ng = (—sin(0), cos(0))

ng = (cos(),sin(6))

x¢ = (tcos(0), tsin(0))

\ «
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Basic Reconstruction Problem

Problem formulation:
Let Q C R? be bounded. Reconstruct a bivariate function f = f(x, y) with support
supp(f) C Q from given Radon data

{Rf(t,0) |t R, 0€[0,nm)},

where the Radon transform Rf of f € L1(R?) is defined as

RF(t,0) = / f(x,y)dxdy for (£,6) € R x [0, 7).
{x cos(0)+ysin(0)=t}

Analytical solution:
The inversion of R involves the back projection Bh of h € L}(R x [0, 7)),

1 ™
Bh(x,y) = — / h(x cos(8) + ysin(6),6) 6 for (x,y) € R?,
T Jo
and is given, for f € L1(R?) N C(R?), by the filtered back projection formula

fxy) = %B(f*IIIS\f(Rf)(Sv9)])(X,Y) V(x,y) € R%
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The Shepp-Logan Phantom and its Radon Transform

50 100 150
0

The Shepp-Logan phantom f The Radon transform Rf
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e Back Projection of the Shepp-Logan Phantom

Original Shepp-Logan Phantom Unfiltered backprojection
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The Filtered Back Projection Formula

OBS! The filtered back projection formula

Flx.y) = 5 BF ISIFRA(S.0)]) (x.»)

is ugly and unstable.
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The Filtered Back Projection Formula

OBS! The filtered back projection formula

Flx.y) = 5 BF ISIFRA(S.0)]) (x.»)

is ugly and unstable.

Stabilization: Replace |S| by a low-pass filter

A(S) = |SIW(3/1)

with finite bandwidth L > 0 and even window W of compact supp(W) C [-1,1].
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Approximate Reconstruction

Stabilization: Replace the factor |S| by a low-pass filter A, : R — R,
AL(S) = [SIW (/1)

with finite bandwidth L > 0 and an even window function W : R — R with
compact support supp(W) C [-1,1].

Approximate reconstruction formula:
We can express the resulting approximate FBP reconstruction f, as

1
fi = - B(F AL« Rf) = f * Ky,
2
where we rely for f € L}(R?) and g € L}(R x [0, 7)) on the standard relation
Bg « f = B(g * Rf)

and define the convolution kernel K; : R> — R as

Kiloy) = 3 BF A (xy) for (xy) € B2
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Three Popular Examples for Low-Pass Filters

The Ram-Lak filter.
|S] iff |S] < L;
Al(S) = [S[-Nu(S) = .
0 iff |S| > L.

The Shepp-Logan filter.
i 2L sin(nS/(2L iff |S| < L;
AS) = |S|- <sm(7r5/(2L))) sy =4 " |sin(wS/(2L))] | |
m5/(2L) 0 iff |S| > L.
The low-pass cosine filter.
|S| - cos(7S/(2L)) iff |S] < L;

AL(S) = IS| - cos(nS/(2L)) - Mu(S) = { 0 iff |S| > L
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Three Popular Examples for Low-Pass Filters

Ram-Lak filter Shepp-Logan filter low-pass cosine filter
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Analysis of the Reconstruction Error

Analyse the FBP reconstruction error
e = f— f[_

depending on the window function W and the bandwidth L > 0.

Previous results:

@ Pointwise and L>-error estimates by [Munshi et al., 1991, Munshi, 1992]
@ LP-error estimates in terms of LP-moduli of continuity by [Madych, 1990]
Our approach:

@ L2-error estimates for target functions f from Sobolev spaces of fractional
order, i.e.,

fe H*(R?) = {g € S'(R?) | ||glla <0} fora >0,
where

1 a
lella = 5- [ [ (145 IFelx )P dedy

e L2-convergence rates (L — 00) in terms of bandwidth L and smoothness «
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A first L2 Error Estimate

Theorem (A first L2-error estimate; Beckmann & I., 2015)

Let f € LY(R?) N H*(R?), for some o >0, W € L°(R) and K, € L(R?). Then,
the L2-norm of the FBP reconstruction error e, = f — f; is bounded above by

lecllrz@) < 1T = Wlloo (—11llfllzo(e) + L[ fla-

Proof: For f € L}(R?) N L?(R?) and by the Rayleigh—Plancherel theorem, we get
1
”eL”i?(]RZ) = [f —f=x KLH%Q(RZ) ~ o | Ff - ]:f']:KLH%Q(RZ;C)
1
= 5 |Ff— Wi Fflfamecy = h + b,

where we used W, (||(x,y)|l2) = FKi(x,y) for K. € L}(R?), and where we let

1

ho= o (Ff— W, - Ff)(x,y)? d(x, y),
T JlGeylo<t
1

b= [FF(x,y)[? d(x, y).

27 Jji x>t
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A first L2 Error Estimate

Proof (continued):
e For W € L*>°(R), the first integral

1
h= (Ff = We - Ff)(x,y)I* d(x,y),
TGyt

can be bounded above by

1
h< ot - Wil -y IFFIEa@ac) = 11 = W 1y 111 2ee)-

e For f € H¥(R?), with a > 0, the second integral

1
/2:27 |ff(X7y)|2d(X,y)
T JN(xop)ll2>L

can be bounded above by

1 o
e (145 +92)" L2 FFxy)? d(xy) < L2
Tl Ge)ll>L
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Refined L?-Error Analysis

Theorem (Refined L2-error estimate; Beckmann & I., 2016)

Let f € LY(R?) N H*(R?) for some o > 0, let W € L>°(R) and K, € L'(R?).
Then, the L2-norm of the FBP reconstruction error e, = f — f; is bounded above
by

leclliagee) < (2w (L) + L) I fllas

where a W(S))2
O, w(L) = sup L forl>0.
w(l) sel-1,1] (1+L252)

Proof: For f € H*(R?), with a > 0, we bound integral /, as before and /; by

. L= WGP (g, 2, 2y i
h = — a 1+x“+4y Ff(x,y)?d(x,y
1 21 Jieyhse (L +x2+y2) ( )" FFx )P d(x,y)

( sup W);/}R/R(l—i—xz—ﬂﬁ)a | FFf(x,y)|? dxdy.

Se[-L,L]

IN

Matthias Beckmann (University of Hamburg) Saturation Rates for Filtered Back Projection



Refined L?-Error Analysis

Proof (continued): Since

(1— Wi (S))? (1— W(s/1))? (1—W(S))?
su — o — Su T oo — Su LY IR
Se[—‘Z,L] (1+S?%) Se[—FL),L] (1+S?%) 56[—F1),1] (1+L252)

and with letting

_ (1-w(s))
S w(l)= sup for L >0

sel-1,1] (1+1252)"

we find

(1-w(s)) 2 2
L < ——== | |fll, = L)|f
= (L, T ) e = eomon

and so

1-W(S)? | o
lewlBy < (S iy L ) 112 = (@aw(L) + L) 2.
e€l-1,
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Refined L?-Error Analysis

Theorem (Convergence of &, \v; Beckmann & |., 2016)

Let W be continuous on [—1,1] and satisfy W(0) = 1. Then, for all o > 0,

&, w(l) = max (1-W(s)y

- 0 f L .
sefo,1] (14 L252)” - or B

Proof (sketch): Let S; ,, € [0,1] be the smallest maximizer in [0, 1]of

(1-wW(s))
(11 [252)°

Case 1: S |, ; uniformly bounded away from 0, 57 | > ¢ = ca,w > 0. Then,

. 2
(1—W(S:w.)) 11— W||io,[—1,1] L—o00

S0 w,1(S) = for S € [0, 1].

0<® S ) = WLl o . 0.
< Pawi(Saw.r) 1+ 2S5y )?)" ~ ([1+12)
Case 2: S, | — 0 for L — oo. Then,
2
1—-W(S;:
0< b w,(Sews) = ( ( a’W’L)) < (1—w( ;,W,L))2 2, O

(1+L2(S5w,)?)" ~
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Convergence of the FBP Reconstruction

Corollary (L2 convergence of FBP reconstruction; Beckmann & I., '16)

Let f € LY(R?) N H*(R?) for some a > 0, K, € L}(R?) and W € C([-1,1]) with
W(0) = 1. Then, the L?-norm of the FBP reconstruction error e, = f — f, satisfies

lecllLemey = o(1)  for L — oo. O

Basic Assumption

Let S; v, be uniformly bounded away from 0, i.e., there is ¢, w > 0 satisfying

SS,W,LZ Ca,W VL>O

OBS! Under the basic assumption we have

Saw(Ll) < ciwll= WIS 1 L2 =0(L7>*) for L— oo
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Rate of Convergence

Theorem (Rate of convergence; Beckmann & 1., 2016)

Let f € L}(R?) N H*(R?) for some o > 0, let K, € L}(R?) and W € C([-1,1])
with W(0) = 1. Further, let the basic assumption be satisfied for a constant ¢, w .
Then, the L2-norm of the FBP reconstruction error e, = f — f; is bounded by

leclliegez) < (a1 = Wlhse v + 1) L7 1o

Therefore,
lecllzrey = O(L™®)  for L —s o0,

i.e., the decay rate is determined by the smoothness « of the target function f. [

v

OBS! Let the window function W € C([-1,1]), W # x[_1,1), satisfy
W(S)=1 VS e (—¢,¢)

for some 0 < € < 1. Then, the basic assumption is fulfilled with c, w = €.
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Numerical Observations

We investigated the behaviour of S¥ |, , numerically for standard low-pass filters:

@ Shepp-Logan filter: W(S) = sinc(Z2) - xj-1,11(5),

o Cosine filter: W(S) = co ( ) X[-1,11(5),
e Hamming filter (for 8 € [3,1]): W(S) = (B + (1 — B) cos(7S)) - x[-1,11(S).
o Gaussian filter (for 8 > 1): W(S) = exp(—(75/8)?) - x[-1.11(5)-

e For a < 2, we found that the basic assumption
Elca7W > ovL >0: SZ,W,L Z Ca7W
is fulfilled whereby

Sow(L) =0(L2*) for L— oo

e But for a > 2, we observed S |, | — 0 for L — oo.
Moreover, in this case the convergence rate of ®, v stagnates at

S w(l)=0(L% for L— oo
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Numerical Observations

— oy
— "
10° 10° 107
10 = mm\ ’ mu\
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(d) =25 (e) a=3 (f) a=4

Fig.: Decay rate of &, w for the Shepp-Logan filter
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L2-Error Analysis for C*-Windows

Theorem (Convergence rate of ®, v for W € CX; Beckmann & 1., '16)
For k > 2, let W € C¥[—1,1] satisfy

wo)=1, WY0)=0 Vi<j<k-1
Then, we have

L=2  fora >k
L=2> fora < k,

¢aw(L)<{ G IW e v

1 2 || W (k) ||oo,[71,1]

where the constant

= () ()

is strictly monotonically decreasing in o > k. In particular, we have

G (L) = O(L—2m‘"{kva}) for L —» oco. 0
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L2-Error Analysis for C*-Windows

Corollary (L?-error estimate for C*-windows; Beckmann & 1., 2016)

Let f € LY(R?) N HY(R?), for some a > 0, let K, € L}(R?) and W € C*([-1,1]),
for k > 2, with

wo)=1, WY0)=0 V1<j<k-1.
Then, the L2-norm of the FBP reconstruction error e, = f — f; is bounded by

Sk || WR) || oo f_q LK + L‘“)||f||a S

lle]lLzre) <
EIWO L=+ L) |flla fora <k

In particular, we have

lecliagee) < (CUWS oo,y L=™ed 1 L=2)|Ifl = O(Lmmntke}),

In conclusion, the rate of convergence saturates at O(L=). O
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Asymptotic L?-Error Analysis

Theorem (Asymptotic L2-error estimate; Beckmann & ., 2016)

Let f € LY(R?) N H*(R?), for some o > 0, K, € L}(R?) and let W € L>=(R) be
k-times differentiable at the origin, k > 2, with

wo)=1, WYW0)=0 VIi<j<k-1.
Then, the L2-norm of the FBP reconstruction error e, = f — f, is bounded by
L ok WKL+ L) |flla + o(L7%) fora >k
llecllLzrey < 3 /) I .
LIWRE) L7+ L) [[fla+o(L™?)  fora <k

with the strictly monotonically decreasing constant

Cak = (aﬁk)kﬁ(a;k)“/z for o > k.

In particular, we have

||eL||L2(R2) < (C|W(k)(0)| | — min{k,a} + L*Oé) Iflla + o(L* min{k’a})' 0
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