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The Signal

h(x) :=
m∑
j=1

λje
ωjx , x ≥ 0 , λj ∈ C\{0} , m <∞ ,

ωj ∈ [−α, 0] + i (−π, π], ωi 6= ωj for i 6= j , α > 0,
zj := eωj ∈ [[e−α, 1]],
Known samples hk := h(k), k = 0, . . . ,N − 1.
If reconstruction is desired: N ≥ 2m.
Problem: (Re)Construct/Approximate the signal h from given samples.
Subproblem: Determination of the frequencies ωj .
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Szegő’s Approach

Calculate the moments

µj :=

{ ∑N−j−1
k=0 hkhk+j , j = 0, 1, 2, . . .

µ−j , j = −1,−2,−3, . . .

Use them to define monic Szegő polynomials s̃j resp. their
recurrence/reflection/Schur coefficients, e. g. by the Wiener-Levinson
method.↪→ Details
Use these coefficients to build up a Hessenberg matrix whose eigenvalues
are the zeros of s̃m. Use them as approximants for zj = eωj .
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Prony’s Idea

Prony polynomial ρm, ρm(z) :=
∏m

j=1(z − zj)

=
∑m

j=0 pjz
j , pm = 1

(hj+µ)j ,µ=0,...,m−1

 p0
...

pm−1

 = −

 hm
...

h2m−1

 .

Calculate all zeros zj of ρm,
ωj := Log zj , j = 1, . . . ,m
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Drawbacks

m usually not a priori known

 overestimate m.

Szegő polynomials have either all its zeros in the interior of unit
circle: Problems if some |zj | = 1.

. . . or all zeros of s̃m are unimodular: Problems if some |zj | < 1.

Szegő: Moments depend sensitive on the samples and the quantity of
them.

Prony: Small perturbations of any of the pj may result heavy
variations of the zeros of ρm.

There exist more stabilized variants of these classical methods (matrix
pencil, ESPRIT, optimization and approximation methods, . . .). Some
methods can also detect and correct noised samples and can be used for
sparse approximation, too. ↪→ Basic Ideas
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Szegő polynomials have either all its zeros in the interior of unit
circle: Problems if some |zj | = 1.
. . . or all zeros of s̃m are unimodular: Problems if some |zj | < 1.
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Szegő polynomials have either all its zeros in the interior of unit
circle: Problems if some |zj | = 1.
. . . or all zeros of s̃m are unimodular: Problems if some |zj | < 1.
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On the Position of the Zeros

Consider ‘Prony-like’ polynomial

ρm(z) =
m∑
j=0

pjz
j = pm

m∏
j=1

(z − zj) , pm 6= 0,

= pm
∏
|zj |<1

(z − zj)
∏
|zj |=1

(z − zj)

=: sδ(z)ρm−δ(z)

All zeros of ρm in [[e−α, 1]]

0 6= ρm(0) = p0 = pm(−1)m
m∏
j=1

zj

⇒ |p0| ≤ |pm|; equality iff all zeros are unimodular.
|pm| − |p0| > 0 (at least one zero has modulus < 1) ⇒ |pm|2 − |p0|2 > 0.
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Construction of a Recurrence (0 6= |p0| < |pm|)

Reciprocal polynomial ρ?m,

ρ?m(z) := zmρm(1/z) = p0z
m + . . .+ pm

Approach:

p
(1)
m−1ρm(z) = pmzρm−1(z) + p0

p
(1)
m−1

p
(1)
m−1

ρ?m−1(z)

Find the coefficients p
(1)
ν of ρm−1,

ρm−1(z) =
m−1∑
ν=0

p(1)ν zν , p
(1)
m−1 6= 0,

resp. its reciprocal polynomial ρ?m−1.
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From approach:

p
(1)
m−1ρ

?
m(z) = pmρ

?
m−1(z) + zp0

p
(1)
m−1

p
(1)
m−1

ρm−1(z) .

Combination:

pmp
(1)
m−1ρm(z)− p0p

(1)
m−1ρ

?
m(z)

=

(
|pm|2 − |p0|2

p
(1)
m−1

p
(1)
m−1

)
zρm−1(z) + p0pm

(
p
(1)
m−1

p
(1)
m−1

− 1

)
ρ?m−1(z)

= p0pm(p
(1)
m−1 − p

(1)
m−1) + z

m−1∑
ν=0

(
pmp

(1)
m−1pν+1 − p

(1)
m−1p0pm−ν−1

)
zν .

Normalization p
(1)
m−1 ∈ R\{0}: For p2m − |p0|2 > 0

p(1)ν =
p
(1)
m−1

p2m − |p0|2︸ ︷︷ ︸
=:c1

(
pmpν+1 − p0pm−ν−1

)︸ ︷︷ ︸
=:β

(1)
ν

, ν = 0, . . . ,m − 1 .
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pmp

(1)
m−1pν+1 − p

(1)
m−1p0pm−ν−1

)
zν .

Normalization p
(1)
m−1 ∈ R\{0}: For p2m − |p0|2 > 0

p(1)ν =
p
(1)
m−1

p2m − |p0|2︸ ︷︷ ︸
=:c1

(
pmpν+1 − p0pm−ν−1

)︸ ︷︷ ︸
=:β

(1)
ν

, ν = 0, . . . ,m − 1 .
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Iff |p(1)m−1|2 − |p
(1)
0 |2 = 0 ⇒ all zeros of ρm−1 are unimodular.

Otherwise restart with ρ
(1)
m−1 (Normalization p

(2)
m−2 ∈ R\{0}) etc.

We get (ρm−µ)δµ=0, δ ≤ m,

ρm−µ(z) =

m−µ∑
ν=0

p(µ)ν zν ,

where ρm−δ has only unimodular zeros for δ ≤ m − 1.

Arbitray chosen leading coefficients κm−j := p
(j)
m−j ∈ R\{0} of ρm−j ,

am−j := ρm−j(0) = p
(j)
0 , especially∣∣∣∣ am−δκm−δ

∣∣∣∣ = 1
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Calculation of monomial coefficients

(am−1, c1, β
(1)
ν known from before)

For µ = 1, . . . ,m − δ − 1 do

cµ+1 := cµ
κm−(µ+1)

κ2m−µ − |am−µ|2
;

(normalization of ρm−(µ+1))

For ν = 0, . . . ,m − µ do

β(µ+1)
ν := κm−µβ

(µ)
ν+1 − am−µβ

(µ)
m−µ−ν−1 ;

(from the recurrence approach)

p(µ+1)
ν := β(µ+1)

ν cµ+1 ; am−(µ+1) := p
(µ+1)
0 ;
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Recurrence Relations

From approach:

ρµ(z) =
κµ
κµ−1

zρµ−1(z) +
aµ
κµ−1

ρ?µ−1(z) ,

ρ?µ(z) =
κµ
κµ−1

ρ?µ−1(z) + z
aµ
κµ−1

ρµ−1(z) , µ = m, . . . ,m − δ .

For δ = m − 1: ρ0(z) := ρ?0(z) := κ0 = a0 ∈ R\{0}.
For δ < m − 1 the recurrence stops with ρm−δ, κ

2
m−δ = |am−δ|2, and all

zeros of ρm−δ are unimodular.
ρm−δ is a common divisor of each ρm−ν : ρm−ν = ρm−δsδ−ν for
ν = 0, . . . , δ,

sj(z) =
κj+m−δ

κj+m−δ−1
zsj−1(z) +

aj+m−δ

κj+m−δ−1

κm−δ

am−δ
s?j−1(z) ,

s?j (z) =
κj+m−δ

κj+m−δ−1
s?j−1(z) + z

aj+m−δ

κj+m−δ−1

κm−δ

am−δ
sj−1(z) , j = 1, . . . , δ ,

where s0 := s?0 := 1.
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Theorem

All zeros of sj are in the interior of the unit circle. Furthermore, sj and
sj−1, j = 1, . . . , δ, have no common zeros.

Theorem

In our model the Prony-like polynomial ρm can be factorized as

ρm(z) = ρm−δ(z)sδ(z) ,

where all zeros of ρm−δ lie on [[1, 1]] and a Szegő polynomial sδ, whose
zeros are in [[e−α, 1)).
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Zeros in the Interior of the Unit Circle

Abbreviations αj :=
aj+m−δ

κj+m−δ−1

κm−δ

am−δ
, β0 := 1,

βj :=
∏j
µ=1

(
γµ − |αµ|2

γµ

)
=
(
γj −

|αj |2
γj

)
βj−1 > 0, γj :=

κj+m−δ

κj+m−δ−1
and

m − δ =: ω, 0 ≤ ω ≤ m.

For j = 1, . . . , δ:

zsj−1(z) =
1

γj
sj(z)−

αj

γj
s?j−1(z)

=
1

γj
sj(z)−

αj

γj

αj−1
γj−1

sj−1(z)−
αjβj−1
γj

j−2∑
ν=0

αν
γνβν

sν(z) .

z


s0(z)
s1(z)

...
sδ−1(z)

 = A


s0(z)
s1(z)

...
sδ−1(z)

+
1

γδ


0
0
...

sδ(z)

 .

Hence, the zeros of sδ are the eigenvalues of A ∈ Cδ,δ.
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A = DBD−1

where D := diag (β0, . . . , βδ−1) , D−1 = diag
(

1
β0
, . . . , 1

βδ−1

)
and

B =



− aωaω+1

κωκω+1
1−

∣∣∣ aω+1

κω+1

∣∣∣2 0
− aωaω+2

κωκω+2
− aω+1aω+2

κω+1κω+2
1−

∣∣∣ aω+2

κω+2

∣∣∣2
...

...
. . .

. . .

− aωaω+δ−1

κωκω+δ−1
− aω+1aω+δ−1

κω+1κω+δ−1
· · · − aδ−2aδ−1

κδ−2κδ−1
1−

∣∣∣ aω+δ−1

κω+δ−1

∣∣∣2
− aωaω+δ

κωκω+δ
− aω+1aω+δ

κω+1κω+δ
· · · − aω+δ−2aω+δ

κω+δ−2κω+δ
− aω+δ−1aω+δ

κω+δ−1κω+δ


.
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Zeros on the Unit Circle

Consider ρω(z) =
∑ω

ν=0 p
(ω)
ν zν on [[1, 1]].

Simplification: Assume p
(ω)
ν ∈ R (or consider ρωρω), write

z = e i t , −π < t ≤ π, i.e. ρω(e i t) = uω(t) + i vω(t) with

uω(t) =
ω∑
ν=0

p(ω)ν cos νt ,

vω(t) =
ω∑
ν=0

p(ω)ν sin νt .

Common zeros tj of uω and vω in (−π, π] yield the zeros zj of ρm in
[[1, 1]] and the frequencies via ωj = i tj , j = 1, . . . , ω.
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ρω([[1, 1]]) symmetric to the real axis: Consider ρω(e i t) for t ∈ [0, π]
instead for −π < t ≤ π.

ṽω−1(t) :=
vω(t)

sin t
=

ω−1∑
ν=0

p
(ω)
ν+1

sin (ν + 1)t

sin t
.

Transformation x := cos t, t ∈ [0, π], x ∈ [−1, 1], is bijective and we have

ρω(e i t) = uω(t) + i sin t ṽω(t)

=
ω∑
ν=0

p(ω)ν Tν(x) + i
√

1− x2
ω−1∑
ν=0

p
(ω)
ν+1Uν(x)

=: rω(x) + i
√

1− x2rω−1(x)

Zeros of ρω on [[1, 1]] are either ±1 or can be obtained from the common
zeros of rω and rω−1 in (−1, 1).
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ν+1

sin (ν + 1)t

sin t
.

Transformation x := cos t, t ∈ [0, π], x ∈ [−1, 1], is bijective and we have

ρω(e i t) = uω(t) + i sin t ṽω(t)

=
ω∑
ν=0

p(ω)ν Tν(x) + i
√

1− x2
ω−1∑
ν=0

p
(ω)
ν+1Uν(x)

=: rω(x) + i
√

1− x2rω−1(x)

Zeros of ρω on [[1, 1]] are either ±1 or can be obtained from the common
zeros of rω and rω−1 in (−1, 1).
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Detect and divide out possible zero of ρω in ±1 by Horner’s
algorithm, assume that ρω(±1) 6= 0.

Calculate rω/2 := gcd(rω, rω−1) ∈ Πω/2 with the Euclidean algorithm
for Chebyshev expansions.

It has all its ω/2 (simple) zeros in (−1, 1) and can be obtained e.g.
by Newton’s method with deflation.

This deflation can be done by the Euclidean algorithm for Chebyshev
expansions, too.
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Zeros Near the Unit Circle

Distinguishing between ‘interior’ and ‘on the boundary’ of unit circle is
numerical fragile. Replace test criterion

1−
∣∣∣∣ am−µκm−µ

∣∣∣∣ > 0 resp. = 0, 0 ≤ µ ≤ δ ≤ m − 1,

New test criterion

1−
∣∣∣∣ am−µκm−µ

∣∣∣∣ > ε , 0 < ε� 1, 0 ≤ µ ≤ δ ≤ m − 1 .

Normalization: |κm−µ| > ε.
sδ has all it zeros in [[e−α, 1− ε)), ρm−δ has deg(gcd(uω, vω)) zeros on the
unit circle.

Determine remaining m − δ − deg(gcd(uω, vω)) zeros of ρm in
[[1− ε, 1)).
Consider ρm−δ on [[1− ε, 1− ε]], i.e. ρm−δ((1− ε)·) on the unit circle.
Repeat this e. g. by a bisection strategy on
[[1− εν , 1− εν ]], εν := ε

2ν , until all zeros are found.
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