Mixed Primal Dual Honeycomb Schemes

Hartmut Prautzsch Huining Meng

Appl. Approx., Signals and Images, Bernried, 22.2.2018

The honeycomb scheme

Dyn, Levin, Liu 1991

C¹ limits

C¹ limits interpolatory

C¹ limits interpolatory convexity preserving

C¹ limits interpolatory convexity preserving generalizable with enhanced proofs

line and planar segments

The contact elements of a honeycomb surface

The contact elements of a honeycomb surface

determine a corner cutting (cc) scheme for the tangent polyhedra.

H is the only known cc scheme for surfaces

H is the only known cc scheme for surfacescc is well-understood for curves

H is the only known cc scheme for surfaces
 cc is well-understood for curves
 little is known for surface cc

is the only known cc scheme for surfaces cc is well-understood for curves little is known for surface cc line segments

different ξ and η for every edge

different ξ and η for every edge

$$u^{t} x = 1 = x^{t} u$$

 $\mathbf{u}^t \mathbf{x} = 1 = \mathbf{x}^t \mathbf{u}$

curve

dual curve

contact element

A convex curve is C^1

iff

the dual curve has no line segments.

The dual honeycomb scheme (#*)

dual surface

surface

surface

contact element <>> contact element

A convex surface is C¹ iff the dual surface has no line segments.

A convex surface is C¹ iff the dual surface has no line segments.

H^{*} generates no line segments,

but corners and pinch points.

For C¹ surfaces w/o line segm. combine *H* and *H**

to

$\textbf{M} ixed \textbf{P} rimal \textbf{D} ual honeycomb schemes}$ (\mathcal{M}_{pd})

alternate

- *H* on the secant poyhedra with
- *H** on the tangent polyhedra

alternate

- *H* on the secant poyhedra with
- **H*** on the tangent polyhedra

problems

- unknown tangent planes

alternate

- *H* on the secant poyhedra with
- **H*** on the tangent polyhedra

problems

- unknown tangent planes
- topology of polyhedra unpredictable

alternate

- *H* on the secant poyhedra with
- *H*^{*} on the tangent polyhedra

problems

- unknown tangent planes
- topology of polyhedra unpredictable
- H* may increase angles
- *H* may increase edge lengths

alternate *H* and *H** both on the secant poyhedra

$$\boldsymbol{\mathcal{M}}_{pd} \mathrel{\mathop:}= \boldsymbol{\mathit{H}}^{p} \left(\boldsymbol{\mathit{H}}^{*}
ight)^{d}$$

alternate *H* and *H** both on the secant poyhedra

$$\boldsymbol{\mathcal{M}}_{pd} := \boldsymbol{\mathcal{H}}^{p} \left(\boldsymbol{\mathcal{H}}^{*} \right)^{d}$$

Then M_{pd}^* and M_{dp} generate the same set of surfaces

alternate # and #* both on the secant poyhedra

$$\boldsymbol{M}_{pd} := \boldsymbol{H}^{p} (\boldsymbol{H}^{*})^{d}$$

Then M_{pd}^* and M_{dp} generate the same set of surfaces

Thus,

surfaces have no lines iff they are C¹

- polyhedra generated are not nested

- polyhedra generated are not nested
- angles may increase

- polyhedra generated are not nested
- angles may increase
- but total face angles shrink under H^{p}

- polyhedra generated are not nested
- angles may increase
- but total face angles shrink under H^{p}
- polyhedral parts that define a neighborhood?

