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The honeycomb scheme

(#)
Dyn, Levin, Liu 1991

C'limits
Interpolatory
convexity preserving
generalizable with enhanced proofs



line and planar segments




The contact elements of a honeycomb surface




The contact elements of a honeycomb surface

determine a corner cutting (cc) scheme
for the tangent polyhedra.
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# is the only known cc scheme for surfaces
cc is well-understood for curves
little is known for surface cc

line segments
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local corner cutting
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local corner cutting / 'J
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local corner cutting / 'J

el 7}

22



m local corner cutting / 'J
2D |

23



m local corner cutting / 'J
2D |

24



i
— //

different ¢ and n
for every edge

25



different ¢ and n
for every edge
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dual view
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curve

utx=1=xtu

dual lines
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tangents

curve

utx=1=xtu

dual lines
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tangents

curve

utx=1=xtu

tangents

dual curve
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curve
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curve dual curve

38



curve dual curve

SN = TN

contact element contact element

7N =

line segment corner point
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A convex curve is C
iff

the dual curve has no line segments.
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The dual honeycomb scheme
(#°)
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surface dual surface

42



surface

o\

contact element

<

dual surface

ey

contact element

43



44



<

‘
< line segmen

45



A convex surface is C!
iff

the dual surface has no line segments.
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A convex surface is C
iff

the dual surface has no line segments.

#" generates no line segments,

but corners and pinch points.
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For C' surfaces w/o line segm.
combine # and #°
to

Mixed Primal Dual honeycomb schemes

(Mpd)
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15t attempt
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#" on the tangent polyhedra
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15t attempt
alternate
# on the secant poyhedra with
#" on the tangent polyhedra

problems
- unknown tangent planes
- topology of polyhedra unpredictable
- #" may Increase angles
- # may increase edge lengths
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2nd attempt
alternate # and #°

both on the secant poyhedra

s\
Mpd = ”F(”)
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2d attempt
alternate # and #

both on the secant poyhedra

Mpd = ”p(”’t)d

Then
M;;d and Mdp
generate the same set of surfaces
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2nd attempt
alternate # and #°

both on the secant poyhedra

Mpd 2= ”P (”!)d

Then
M;d and Mdp
generate the same set of surfaces

Thus,
surfaces have no lines iff they are C1
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Theorem

|max. vertex valen ceJ
p > g

max. face valence
2

For

and d >

M, generates
convex
C' surfaces
w/o line segm.
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Remarks
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Remarks
- polyhedra generated are not nested
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Remarks
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Remarks

polyhedra generated are not nested

angles may increase
but total face angles shrink under #”
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Remarks

polyhedra generated are not nested
angles may increase
but total face angles shrink under #”

polyhedral parts that define a
neighborhood?
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