Intrinsic Elliptic PDE on Submanifolds

Approximate Ambient Solutions

Lars-B. Maier

Technische Universität Darmstadt

23.02.2018

In euclidean space, a common partial differential equation is

$$\Delta u - \lambda u = f$$
 in Ω

such that $\lambda \ge 0$ and

$$u = 0$$
 in $\partial \Omega$

Therein, $\Delta f = \sum_{i=1}^{d} \frac{\partial^2 f}{\partial^2 x_i}$ and Ω a suitable domain.

Now consider a hypersurface $\mathbb{M} \subseteq \mathbb{R}^d$. What does Δf in the above version mean there?

Take for example $F : \mathbb{R}^2 \to \mathbb{R}$ to be given as F(x, y) = x. $\Longrightarrow \Delta F = 0$.

Now choose \mathbb{M} as the unit circle, $\mathbb{M} = \{(x, y) = (\cos t, \sin t), t \in [0, 2\pi]\}$ $\implies F_{|_{\mathbb{M}}}(x, y) = f(t) = \cos t.$

From this point of view, clearly the *intrinsic* second derivative does not vanish.

Now consider a hypersurface $\mathbb{M} \subseteq \mathbb{R}^d$. What does Δf in the above version mean there?

Now choose \mathbb{M} as the unit circle, $\mathbb{M} = \{(x, y) = (\cos t, \sin t), t \in [0, 2\pi]\}$ $\implies F_{|_{\mathbb{M}}}(x, y) = f(t) = \cos t.$

One would expect to have something like

$$(\Delta_{\mathbb{M}}f)(t) = -\cos t.$$

One would expect to have something like

$$(\Delta_{\mathbb{M}}f)(t) = -\cos t.$$

This is achieved if you replace euclidean by tangential derivatives:

DEFINITION (Tangential Derivative)

Let $F : \mathbb{R}^d \to \mathbb{R}$ and $f = F_{|_{M}}$. The **Tangential Derivative Operator d**_M is given as

$$\mathbf{d}_{\mathbb{M}}f := \mathbf{d}F - \pi_{N}(\mathbf{d}F)$$

and independent of the choice of F. π_N is the projection on the pointwise normal space.

One would expect to have something like

 $(\Delta_{\mathbb{M}}f)(t) = -\cos t.$

This is achieved if you choose the *intrinsic* Laplacian or *Laplace – Beltrami* as:

DEFINITION (Tangential Laplacian)

 $\Delta_{\mathbb{M}} f := \operatorname{div}_{\mathbb{M}} \nabla_{\mathbb{M}} f.$

Therein, $div_{\mathbb{M}}, \nabla_{\mathbb{M}}$ are given by tangential derivatives.

So in the hypersurface setting, the PDE reads like

$$\Delta_{\mathbb{M}} u - \lambda u = f \qquad \text{in } \Omega \subseteq \mathbb{M}$$

such that $\lambda \ge 0$ and

$$u = 0$$
 in $\partial \Omega$.

There, Ω is a suitable subdomain of \mathbb{M} .

For the sake of simplicity, we restrict ourselves to some $\Omega = \mathbb{M}$ closed and without boundary, and $\lambda = 1$. It still remains

 $\Delta_{\mathbb{M}} u - u = f$ in \mathbb{M}

How can this be solved?

NEW ATTEMPT (M., REIF)

- \blacktriangleright Use some function space in a suitable ambient neighbourhood of $\mathbb{M}:$ RBF, Splines...
- ► Transfer intrinsic properties into extrinsic (ambient) properties approximately.
- ► Solve approximately intrinsic problem with extrinsic methods.

Pro's:

- Extrinsic function spaces are well understood.
- Extrinsic function space are applicable to any submanifold.
- Easily understood and implemented even for non-mathematicians.

SOLUTION IDEA: BACKGROUND

THEOREM (e.g. [Dziuk/Elliot, 2013])

Let $f \in C^2(\mathbb{M})$, and \overline{f} an extension that is **constant in normal directions** of \mathbb{M} . Then the 1st and 2nd **tangential** derivatives of f <u>coincide</u> with the **euclidean** 1st and 2nd derivatives of \overline{f} on the tangent space.

 $\Longrightarrow \Delta \text{ and } \Delta_{\mathbb{M}} \text{ coincide}!$

SOLUTION IDEA: BACKGROUND

Тнеовем (М. 2015)

Let $f \in C^2(\mathbb{M})$, and F an arbitrary extension. Then the deviations of the 1st and 2nd **tangential** derivatives of f from the **euclidean** 1st and 2nd derivatives of F on the tangent space are **Lipschitz functions** of the first normal directional derivatives.

Consider
$$\Delta_{ au}f := \sum_{i=1}^k rac{\partial^2 f}{\partial^2 au_i}$$
 with arbitrary ONB $au_1, ... au_q$ of $T_x \mathbb{M}$.

 \implies For Δ_{τ} and $\Delta_{\mathbb{M}}$ differ only in terms of the first order normal directional derivatives!

SOLUTION IDEA: BACKGROUND

What does that mean?

- ► Euclidean derivatives of *F* give **approximate** access to tangential derivatives of *f*
- ► Standard methods can be used to handle intrinsic problems **approximately**
- ► Intrinsic functionals are easily **approximated** by standard functionals

NEW APPROACH (M., REIF): SOLUTION IDEA

Let $U(\mathbb{M})$ be a suitable neighbourhood of \mathbb{M} , best such that any point has a unique closest point on \mathbb{M} .

Consider a suitable function space $\mathcal{F}(U(\mathbb{M}))$ on $U(\mathbb{M})$.

Minimize
$$\int_{\mathbb{M}} (\Delta_{\tau} u - u - f)^2$$

such that:

Normal derivatives $\rightarrow 0$

OPTIMIZATION FUNCTIONAL: TENSOR-PRODUCT B-SPLINES

Minimize for grid width h > 0 and $\tau_1, ..., \tau_q$ an ONB of $T_x \mathbb{M}$

$$\mathbf{E}_{\mathbb{M}}(\mathbf{s}_{h}) := \int_{\mathbb{M}} \left| \sum_{i=1}^{k} \frac{\partial^{2} \mathbf{s}_{h}}{\partial^{2} \tau_{i}} - \mathbf{s}_{h} - f \right|^{2} + h^{-\sigma} \int_{\mathbb{M}} \left| \frac{\partial \mathbf{s}_{h}}{\partial \nu} \right|^{2} + h^{-\sigma} \int_{\mathcal{C}_{h}(\mathbb{M})} \left| \frac{\partial \mathbf{s}_{h}}{\partial \nu} \right|^{2}$$

 $C_h(\mathbb{M})$ are the spline cells that intersect \mathbb{M} .

 $\nu = \nu(x)$ is normal to $x \in \mathbb{M}$.

 $\nu = \nu(x)$ for $x \notin \mathbb{M}$ is the normal of the closest point to *x* on \mathbb{M} .

 σ is a suitable penalty exponent, e.g. $\sigma = 1$.

THEORY: SOLVABILITY AND CONVERGENCE

Тнеогем (М. 2017):

Assume that the PDE has a solution u^* in $\mathcal{H}^{2+\ell}(\mathbb{M})$ for $\ell \in \mathbb{N}$. Let the spline order *m* be sufficiently large.

- 1. For TP-Splines and sufficiently small h, the above problem is uniquely solvable.
- 2. Restrictions of optimal splines $s_h|_{\mathbb{M}}$ approach unique solution u^* in $\mathcal{H}^2(\mathbb{M})$:

$$\|\boldsymbol{s}_h - \boldsymbol{u}^*\|_{\mathcal{H}^2} \leq Ch^{\ell} \, \|\boldsymbol{u}^*\|_{\mathcal{H}^{2+\ell}} \, .$$

Approximation results for model equation $\Delta_{\mathbb{M}} u - 4u = f$ with solution $u^*(t) = \cos(5t)$:

BICUBICS : — energy error (reference h^2), … RMS error BIQUARTICS : — energy error (reference h^3), … RMS error

Approximation results for model equation $\Delta_{\mathbb{M}} u - u = f$

with solutions $u_1^*(t) = \cos(4t), u_2^*(t) = \cos(9t) + \sin(3t)$:

BICUBICS BICUBICS : — energy error (reference h^2), … RMS error BIQUARTICS BIQUARTICS : — energy error (reference h^3), … RMS error BIQUINTICS BIQUINTICS : - - - energy error (reference h^3), … RMS error

Approximation results for model equation $\Delta_{\mathbb{M}} u - u = f$

with solutions $u_1^*(t) \triangleq \cos(4t)$, $u_2^*(t) \triangleq \cos(t) + \sin(t)$:

BICUBICS BICUBICS : — energy error (reference h^2), … RMS error BIQUARTICS BIQUARTICS : — energy error (reference h^3), … RMS error BIQUINTICS BIQUINTICS : - - - energy error (reference h^3), … RMS error Example functions for surfaces: Restriction of the functions

$$u_{1}(x, y, z) := \frac{3}{4} \exp((-(9x-2)^{2} - (9y-2)^{2})/4) + \frac{3}{4} \exp(-(9x+1)^{2}/49 - (9y+1)/10)$$

+ $\frac{1}{2} * \exp((-(9x-7)^{2} - (9y-3)^{2})/4) - \frac{1}{5} * \exp(-(9x-4)^{2} - (9y-7)^{2})$
+ $\sin(x+y) \exp(xy) \cos(4y+z)$

$$u_2(x, y, z) := \frac{1}{4} \exp((-(9x-2)^2 - (9y-2)^2)/4) + \frac{1}{4} \exp(-(9x+1)^2/49 - (9y+1)/10) \\ + \frac{3}{4} \exp((-(9x-7)^2 - (9y-3)^2)/4) - \frac{1}{4} \exp(-(9x-4)^2 - (9y-7)^2) \\ + \cos(x+y) \log(x^2y^2 + 1) \sin(4y^2 + z)$$

Approximation results for model equation $\Delta_{\mathbb{M}} u - u = f$ with solutions u_1, u_2 :

BICUBICS BICUBICS : — energy / residual error (reference h^2), … L_2 -error BIQUARTICS BIQUARTICS : — energy error (reference h^3), … L_2 -error

Approximation results for model equation $\Delta_{\mathbb{M}}u - u = f$ with solutions u_1, u_2 : BICUBICS / BICUBICS : — energy / residual error (reference h^2), … L_2 -error BIQUARTICS / BIQUARTICS : — energy error (reference h^3), … L_2 -error

Approximation results for model equation $\Delta_{\mathbb{M}} u - u = f$ with solutions u_1, u_2 :

BICUBICS BICUBICS : — energy / residual error (reference h^2), … L_2 -error BIQUARTICS BIQUARTICS : — energy error (reference h^3), … L_2 -error

SUMMARY

New approach to certain partial differential equations on closed submanifolds:

- Provides satisfactory convergence
- Applies well-known concepts in novel setting
- Easy to implement
- Produces pleasant results